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Abstract

An Ensemble Kalman filter (EnKF) is used to assimilate airborne measurements of 1.4 GHz surface brightness temperature ðTBÞ
acquired during the 1997 Southern Great Plains Hydrology Experiment (SGP97) into the TOPMODEL-based Land–Atmosphere

Transfer Scheme (TOPLATS). In this way, the potential of using EnKF-assimilated remote measurements of TB to compensate land
surface model predictions for errors arising from a climatological description of rainfall is assessed. The use of a real remotely sensed

data source allows for a more complete examination of the challenges faced in implementing assimilation strategies than previous

studies where observations were synthetically generated. Results demonstrate that the EnKF is an effective and computationally

competitive strategy for the assimilation of remotely sensed TB measurements into land surface models. The EnKF is capable of
extracting spatial and temporal trends in root-zone (40 cm) soil water content from TB measurements based solely on surface (5 cm)
conditions. The accuracy of surface state and flux predictions made with the EnKF, ESTAR TB measurements, and climatological
rainfall data within the Central Facility site during SGP97 are shown to be superior to predictions derived from open loop modeling

driven by sparse temporal sampling of rainfall at frequencies consistent with expectations of future missions designed to measure

rainfall from space (6–10 observations per day). Specific assimilation challenges posed by inadequacies in land surface model physics

and spatial support contrasts between model predictions and sensor retrievals are discussed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The steady accumulation of evidence suggesting that
the accurate specification of root-zone soil moisture in

numerical weather prediction models can improve sea-

sonal weather prediction for certain locations on the

globe (see e.g. [25]) has driven efforts to develop obser-

vational and modeling capabilities for soil moisture at

continental-scales. Large-scale observational strategies

have focused primarily on the potential of spaceborne

microwave radiometry at low frequencies (<10 GHz) to
infer surface (2–5 cm) soil water content. Results have

been encouraging over lightly vegetated portions of the

globe such as the Southern Great Plains (SGP) region in

the south-central United States. The operational re-

trieval of soil moisture from space is expected to begin in
earnest with the deployment of the 6.925 GHz Ad-

vanced Microwave Scanning Radiometer (AMSR-E) in

2002 and the 1.4 GHz Soil Moisture and Ocean Salinity

(SMOS) sensor in 2005. Despite these advances, the

utility of spaceborne soil moisture retrievals is hampered

by several factors including: poor spatial resolution,

limited vertical penetration depths, and low accuracy

over heavily vegetated regions.
Recent modeling advances have centered on the Land

Data Assimilation System (LDAS) project which dem-

onstrates the feasibility of operationally modeling land

surface water and energy balance processes at conti-

nental scales using forcing data obtained from both

in situ and remote sensing sources. Soil moisture assim-

ilation strategies constitute a logical extension of these
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advances by providing a strategy for efficiently com-

bining soil moisture information derived from observa-

tional and modeling sources and, ideally, overcoming

the limitations of each. For instance, assimilation of

surface brightness temperature ðTBÞ measurements into
physically based models of near surface heat and water

transport can potentially increase both the effective

vertical penetration [18] and horizontal resolution [34] of

spaceborne radiometers. Conversely, sequential micro-

wave brightness temperature measurements can aid land

surface modelers in soil hydraulic parameter selection

[3,27] and mitigating errors arising from poor model

initialization [13].
Persisting concerns about its limitations, however,

has led some to question the overall role of microwave

soil moisture remote sensing in the study of land surface

water and energy balance processes. An alternative

strategy is to place additional emphasis on the remote

observation of global land surface model forcings (e.g.

precipitation, surface meteorology, and solar radiation)

and develop �open loop� modeling capabilities that op-
erate without assimilated information. Comparisons

between open loop and sequential soil moisture/TB as-
similation strategies have been made in a preliminary

manner by [26]. However, a complete assessment re-

quires actual remote measurements to realistically in-

corporate challenges arising from the interpretation of

remotely sensed data and a viable assimilation strategy

to combine model predictions and remote observations
in a sound manner.

A variety of strategies for the assimilation of TB
measurements into land surface models have been in-

troduced recently. The most effective strategies are based

on either sequential assimilation using some variant of

the Kalman filter (KF) algorithm [18,29] or non-

sequential variational smoother approaches [20,35]. See

[33] for a complete review of procedures. Of special in-
terest here is the Ensemble Kalman filter (EnKF) in-

troduced by [14] and applied to the problem of

assimilating synthetically generated surface brightness

temperature measurements into a land surface model by

[36]. As noted by [36], the EnKF approach is attractive

for the TB assimilation problem because: (i) its sequential
nature is well suited for assimilation of real-time ob-

servations into operational models, (ii) it is easy to im-
plement for land surface models and does not require

the calculation of an adjoint, (iii) the Monte Carlo na-

ture of the ensemble generation allows for any statistical

form or time/space correlation in error structure, and

(iv) it does not require the computationally expensive

dynamic updating of error/covariance information.

The purpose of this study is twofold. First, to extend

the EnKF methodology described in [36] to a real-data
case involving the assimilation of remotely sensed TB
data into a land surface model validated against inde-

pendent observations. Second, to assess the ability of the

EnKF to compensate predictions of surface latent heat

flux and root-zone water storage for errors associated

with the use of only climatological rainfall data. Such an

assessment allows for comparison of the relative merits

associated with land surface observations from a mi-
crowave radiometer versus precipitation estimates from

a spaceborne radar.

2. The Ensemble Kalman filter

The EnKF is based on the generation of an ensemble

of model predictions to estimate the error/covariance

information required by the standard KF for the up-

dating of model predictions with observations [14]. All

error information is contained within the ensemble,

avoiding the computationally expensive explicit propa-
gation of the error covariance matrix.

The EnKF can be generalized using a state space

representation of prediction and observation operators.

The development and notation presented in this section

follow the discussion presented in [36]. Take YðtÞ to be a
vector of land surface state variables at time t. The
equation describing the evolution of these states, as

determined by a potentially non-linear land surface
model f, is given by

dY

dt
¼ fðY;wÞ ð1Þ

where w relates errors in model physics, parameteriza-

tion, and/or forcing data and is taken to be mean zero

with a covariance Cw. The goal of the filtering problem

is to constrain these predictions using a set of observa-
tions which are related to the model states contained in

Y. Let the operatorM represent the observation process

which relates Y to the actual measurements taken at

time tk

Zk ¼ MðYðtkÞ; vkÞ ð2Þ
where vk represents Gaussian measurement error with

covariance Cvk. The EnKF is initialized by the intro-

duction of synthetic Gaussian error into initial condi-

tions and generating an ensemble of model predictions

using Eq. (1). At the time of measurement, predictions
made by the ith model replicate are referred to as the
state forecast Yi

�. If f is linear and all errors are additive,

independent and Gaussian, the optimal updating of Yi
�

by the measurement Zk is given by

Yi
þ ¼ Yi

� þ Kk½Zk �MkðYi
�Þ� ð3Þ

and

Kk ¼ ½CYMðCM þ CvÞ�1�t¼tk
ð4Þ

where CM is the error covariance matrix of the mea-

surement forecasts MkðYi�Þ and CYM is the cross-

covariance matrix linking the predicted measurements

with the state variables contained in Yi
�. All covariance
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values are statistically estimated around the ensemble

mean. Here Yi
þ signifies the updated or analysis state

representation. To ensure the Monte Carlo simulation

converges to the same error predictions made by the

standard KF, each assimilated measurement Zk should
be perturbed with synthetic measurement error consis-

tent with the error characteristics contained in Cv [2].

Unlike the standard KF, the EnKF does not make

use of a dynamic equation to explicitly update either CM

or CYM . Updating is based on a gain function K derived

solely from information contained within the ensemble.

Final state and measurement estimates are calculated by

averaging predictions made by model replicates within
the ensemble. While application of the EnKF does not

explicitly require model linearity or Gaussian errors, the

filter will cease to be optimal if either condition is not

met.

3. Application during SGP97

Analysis was based on data collected during the 1997
Southern Great Plains Hydrology Experiment (SGP97)

run within central Oklahoma between June 18 (Julian

day 169) and July 18, 1997 (Julian day 199). During

SGP97, L-band (1.4 GHz) surface brightness tempera-

ture observations were acquired with the electronically

scanned thinned array radiometer (ESTAR) flown

aboard a P3B aircraft. Usable 800-m TB imagery was
obtained on June 18, 19, 20, 25, 26, 27, 29, and 30, and
on July 1, 2, 3, 11, 12, 13, 14, and 16. Ground-based soil

moisture sampling was concentrated at three study areas

within the transect imaged by ESTAR: the Central Fa-

cility area, the El Reno area, and the Little Washita

Basin. See Fig. 1a for transect and study area locations

and [23] for a complete description of SGP97 data col-

lection and processing techniques.

Surface water and energy balance modeling was per-
formed using the TOPMODEL-based Land–Atmo-

sphere Transfer Scheme (TOPLATS) [15,31]. The Land

Surface Microwave Emission Model (LSMEM) [12] was

used to produce estimates of 1.4 GHz surface brightness

temperature ðTBÞ based on TOPLATS surface state
predictions. In this way, an ensemble of TB predictions
were calculated using a simple Poisson model of daily

precipitation accumulations parameterized with clima-
tological rainfall values. The surface state variables as-

sociated with each ensemble member were then updated

by ESTAR TB measurements using the EnKF framework
reviewed in Section 2. The following subsections describe

components of this methodology in greater detail.

3.1. TOPLATS modeling

The TOPLATS model version used was identical to

that described by [31] except for the insertion of two

additional computational layers in the model�s soil water
balance algorithm. Consequently, soil water balance

calculations were made within four layers: 0–5, 5–15,

15–40, and 40 cm to the top of the water table. Diffusive

and gravity drainage fluxes between layers were calcu-
lated using the numerical approximations presented in

[31]. Following [40], evapotranspiration E was calcu-
lated as

E ¼Min
X4
i¼1

qiETi ;Ep

" #
ð5Þ

where ETi is the maximum rate of transpiration (i.e. the
threshold transpiration) each soil layer i is capable of
sustaining, qi is the fraction of total root surface area in

each soil layer, and Ep is the potential evapotranspira-
tion. The relationship between soil moisture in layer i
and ETi was taken from [17,39] and Ep was calculated
assuming zero water stress and the Jarvis-type formu-

lation presented in [31]. Soil temperature was calculated

at surface (0 cm), 7.5, and 50 cm nodes.

Point-scale TOPLATS results were generated at the

Department of Energy�s Atmospheric Radiation Mea-
surement Cloud and Radiation Testbed (ARM CART)

extended facility (EF) site 13 (36�360 N, 97�290 W) near
Lamont, Oklahoma and the National Oceanic and At-
mospheric Administration/Atmospheric Turbulence and

Diffusion Division (NOAA/ATDD) Little Washita

Watershed site (34�580 N, 97�570 W) near Chickasha,
Oklahoma. The ARM CART EF13 site is located

within the Central Facility area and the NOAA/ATDD

site in the northeastern corner of the Little Washita

Basin. Land cover at both sites was classified as grass-

land/rangeland. Based on typical grassland conditions,
the albedo of both sites was taken to be 0.20 [9] and the

roughness length for momentum transfer to be 2.5 cm

[1]. Forty percent (40%) of the root surface area was

assigned to the 0–5-cm soil layer, 30% to the 5–15-cm

layer, 20% to the 15–40-cm layer, and 10% to be below

40 cm. Parameters describing the threshold evapotran-

spiration of the grasses were taken from [6,16] and the

impact of environmental factors on stomatal resistance
followed the parameterization given in [31]. Plant

heights at both sites were taken from [19].

Leaf area index (LAI) values for TOPLATS were

tuned to improve latent heat flux ðkEÞ predictions. The
fitted LAI value for the Central Facility ARM CART

EF13 site ðLAI ¼ 2:5Þ fell within the LAI measurement
range for grass fields in the Central Facility area

ðLAI ¼ 2:0	 0:6Þ [19]. However, the LAI value re-
quired at the Little Washita NOAA/ATDD site

ðLAI ¼ 0:75Þ did not fall within the observed range for
grass fields within the Little Washita Basin ðLAI ¼
1:9	 0:2Þ and must therefore be considered a calibrated
parameter. Following [22], soil texture was assumed to

be loam at the ARM CART EF13 site and silt loam at
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the NOAA/ATDD site. Soil hydraulic information was

available from bore-hole data taken near all ARM
CART sites. However, direct incorporation of in situ

sampled values of soil parameters led to overly dry

conditions at the ARM CART EF13 site. As a com-

promise, the in situ values at the ARM CART EF13 site

were averaged with values suggested for loam soils by

the lookup table presented in [32]. Since no bore-hold

data was available at the NOAA/ATDD site, hydraulic

parameters suggested by [32] for a silt loam soil were
used directly. When available, surface soil moisture

values were initialized with either gravimetric or soil

moisture probe measurements. Initial water table

depths, deep soil moisture, and TOPLATS baseflow
calibration parameters were set to climatologically rea-

sonable values derived from long-term TOPLATS

modeling of the region [7].

TOPLATS was also run on a 0.01� grid over the
entire SGP97 ESTAR transect shown in Fig. 1 (15,810

computational pixels). At this larger scale, precipitation

data was obtained from 4-km Weather Surveillance

Radar (WSR-88D) hourly rainfall products, incoming
solar radiation from 8-km Geostationary Operational

Environmental Satellite (GOES) insolation imagery,

Fig. 1. (a) 800-m ESTAR brightness temperature image acquired on July 1, 1997 and study areas where intensive soil gravimetric sampling occurred.

The ARM CART EF13 site is located within the Central Facility area and the NOAA/ATDD Little Washita Basin site in the northeastern corner of

the Little Washita Basin. (b) Aggregation of the July 1 TB imagery into four 50-km
 70-km footprint-scale pixels.
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and other meteorological data from an interpolation of

hourly National Climate Data Center (NCDC) station

measurements. Land-cover data was obtained from a

land-cover classification of the region performed by [11]

and soil texture data from the multilayer soil charac-
teristics data set (CONUS-SOIL) developed at Penn

State University�s Earth System Science Center [28].
Surface soil moisture was initialized using ESTAR-

derived soil moisture created by [23] on June 18 (Julian

day 169). As in the point-scale modeling, initial water

table depths, deep soil moisture, and TOPLATS base-

flow calibration parameters were set to climatologically

reasonable values derived from long-term TOPLATS
modeling of the region [7]. Soil hydraulic parameters

were assigned using the look-up table presented in [32].

All vegetation present in pixels classified as winter wheat

was assumed to be in senescence and not transpiring.

Based on measurements presented in [19], 45% of winter

wheat fields in the transect were assumed to be covered

by senescent vegetation which effectively shaded the

underlying soil and 55% were considered to be com-
pletely devoid of vegetative cover. The soil resistance

scheme developed by [30] and incorporated into

TOPLATS by [31] was used to model bare soil evapo-

ration at these sites.

3.2. LSMEM modeling

Brightness temperature modeling by the LSMEM

was based on surface (0–5 cm) soil moisture and a

weighted combination of surface and 7.5-cm soil tem-

perature predictions by TOPLATS. Various compo-

nents of the LSMEM are based on previously published

algorithms. Its calculation of soil dielectric is based on

[10]. Reflectivity off a smooth surface is based on the

two-layer model described in [38]. The impact of surface
roughness is based on [4], and vegetation effects were

incorporated using the model of [24]. Surface roughness,

vegetation water content, and vegetation structure co-

efficients were taken from measurements made during

SGP97 and processed by [23]. Vegetation coverage

fraction was assumed to be 80% and the single scattering

albedo off of the vegetation canopy to be 0.04 for all

vegetation types. While both values are somewhat ar-
bitrary, LSMEM TB predictions during SGP97 exhibited
little sensitivity to the specification of either parameter.

Soil bulk density values were based on either ground

sampling data (when available) or default values as-

signed according to the specified soil texture in the

CONUS-SOIL classification. No atmospheric effects

were incorporated into the microwave emission model.

3.3. TOPLATS/LSMEM validation

Point-scale TOPLATS state variable and flux pre-

dictions were validated using in situ flux tower data and

gravimetric soil moisture measurements made during

SGP97. In addition, TOPLATS/LSMEM TB predictions
were compared to ESTAR TB observations over each
site. Due to uncertainty concerning the georegistration

of the ESTAR imagery [23], ESTAR observations were
taken from the spatial average of retrievals within a

3
 3 pixel window centered on each site. Validation
results at the NOAA/ATDD Little Washita Basin and

ARM CART EF13 sites are shown in Figs. 2 and 3

respectively. Comparisons to flux tower and gravimetric

soil moisture observations are generally quite good, but

discernible biases appear in model predictions of TB and
soil moisture relative to ESTAR observations. One
source of this error is likely the difference between the

spatial support of model predictions and the ESTAR

observations. Conditions reflected by the model may be

accurate within a local plot-scale (<100 m) but not
representative of microwave emission for the entire 2.42-

km2 window (3
 3 800-m pixels) from which ESTAR
observations were obtained. For instance, ESTAR esti-

mations of soil moisture over the entire 2.42-km2 area
containing the NOAA/ATDD site are biased low versus

gravimetric samples taken immediately around the flux

Fig. 2. Validation results for the NOAA/ATDD site within the Little

Washita Basin. Latent heat flux and surface temperature values are

daily averages of bowen ratio flux tower measurements made between

16 and 22 GMT (10 am and 5 pm CST).
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tower site (Fig. 2). This suggests that the area sur-

rounding the site is locally wet, and has a low TB, relative
to the larger 2.42-km2 window in which the site is em-

bedded. Because of georegistration uncertainty, com-
parisons did not improve when made between model

predictions and the single 8002-m2 ESTAR pixel judged

closest to each site.

Shortcomings in model physics can also lead to dis-

crepancies between model results and observations. At

the ARM CART EF13 site (Fig. 3) the model tends to

overestimate TB. Some of this overestimation occurs in
the immediate aftermath of heavy rainfall events (see
Julian days 178, 181, 182, and 193). Rainfall accumula-

tions at the ARM CART EF13 site from June 18 to July

19 were at least double climatologically expected levels

(>200 mm versus 90 mm). Consequently, one possible
contributing factor to the overestimation of TB is the
presence of standing water in fields recently wetted by

heavy rainfall. Standing water was observed, although

not sampled gravimetrically, at the site during Julian
days 181 and 182. The impact of this standing water,

and the inability of the model to represent it, should in-

troduce a high bias in modeled TB predictions. In con-

trast to the ARMCARTEF13 site, model estimates of TB
are biased low by 13.6 K at the NOAA/ATDD Little

Washita Basin site (Fig. 2). Here comparisons to both

ESTAR and gravimetric observations demonstrate that

TOPLATS overestimates soil moisture during dry peri-
ods of the experiment (see Julian days 181–184 and 194–

197 in Fig. 2). This overestimation is likely due to the

neglect of bare soil evaporation beneath vegetation by

TOPLATS and the accumulated drying power of this

process during the tail end of dry-down events.

A more natural scale to compare model predictions

and ESTAR TB observations is at a spatial scale equiv-
alent to the footprint size expected for next-generation
spaceborne radiometers. Fig. 1b illustrates the division

of the ESTAR transect into 4 approximately

50-km
 70-km footprints. Each footprint was modeled
by TOPLATS/LSMEM using a 0.01� grid size. Scaling
the analysis up to a footprint-scale overcomes some of

the spatial support problems encountered at the site-

scale. For instance, aggregating ESTAR observations

and TOPLATS/LSMEM TB predictions within the Little
Washita footprint (see Fig. 1b) reduces the bias in

TOPLATS/LSMEM TB predictions from )13.6 K (ob-
served at the NOAA/ATDD Little Washita Basin site)

to )4.9 K.
A still coarser scale is obtained by averaging results

for all four footprints in Fig. 1b into a single 50-km

280-km transect-scale value. A comparison between

transect-averaged TB values obtained from ESTAR and
TOPLATS/LSMEM modeling is shown in Fig. 4. At the

transect-scale, LSMEM/TOPLATS TB predictions re-
main biased slightly high. The bias is pronounced during

dry periods of the simulation and likely reflects the

continued overestimation of top 5-cm soil moisture by

TOPLATS due to the neglect of bare soil evaporation

below vegetation canopies. Despite this bias, indepen-

dent surface soil moisture estimates derived from ES-
TAR and the model of [21] match TOPLATS/LSMEM

predictions within a root-mean-squared (RMS) dif-

ference of 2.3% volumetric [0.023 cm3water cm
�3
soil]. In ad-

dition, RMS differences between transect-averaged

TOPLATS effective soil temperature estimates and those

calculated by [23], using 10-cm Oklahoma Mesonet soil

temperature measurements and the method of [5], are

small (1.0 K).

3.4. Rainfall ensemble generation

The EnKF was applied to the problem of accurately

modeling root-zone soil moisture using sequential ob-
servations of 1.4 GHz brightness TB and no supporting
rainfall data. Between each of the 16 ESTAR TB ac-
quisitions during SGP97, an ensemble of TOPLATS

forecasts with 100 members was generated using clima-

tological rainfall parameters and a daily rainfall model

that assumed storms arrivals to be a Poisson process

Fig. 3. Validation results for the ARM CART EF13 site within the

Central Facility area. Latent heat flux and surface temperature values

are daily averages of eddy correlation flux tower measurements made

between 16 and 22 GMT (10 am and 5 pm CST).
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with exponentially distributed intensities. While simple
in nature, such a model has been used successfully in

previous soil moisture studies [37]. Daily rainfall depths

were downscaled to hourly values by assuming all

rainfall occurs within a continuous four-hour period

randomly located within the day. Mean rainfall statistics

during June and July for locations within the SGP97

study area were obtained from the Oklahoma State

Climatology Service and rain gauge data collected
between 1970 and 2001 at El Reno, Oklahoma (see

Fig. 1a).

4. EnKF results

Fig. 5 illustrates the EnKF�s sequential assimilation
of ESTAR TB measurements over the ARM CART
EF13. The ensemble of TOPLATS/LSMEM predictions

was initialized by adding mean zero Gaussian noise with

a standard error of 3% volumetric to initial surface soil

moisture values derived from ESTAR imagery on June

18 (Julian day 169). Between ESTAR overflights, an

ensemble of TOPLATS runs, based on 100 separate

realizations of the Poisson/exponential rainfall model,

was generated. At every observation time, model states

for each of the ensemble members were updated using

ESTAR TB measurements and Eqs. (3) and (4). A
standard error of 5 K was assumed for all ESTAR TB
measurements. The updated states constituted a new set

of ensemble members which were then propagated to the
next assimilation time by TOPLATS.

4.1. Point-scale results

Fig. 6 illustrates the ability of the EnKF and remotely

sensed 1.4 GHz TB measurements to correct errors in
TOPLATS modeling results associated with the use of

climatological rainfall information at the ARM CART

EF13 site. EnKF results are shown for updating with

both local- (2.42-km2 resolution) and footprint-scale

(50
 70-km2 resolution) ESTAR TB observations.
Benchmark TOPLATS results are based on modeling

Fig. 4. Transect-averaged comparisons of ESTAR observations and

TOPLATS/LSMEM predictions. ESTAR soil moisture values were

taken from the data set generated by [23] using the radiative transfer

model presented by [21].
Fig. 5. Updating of TOPLATS surface soil moisture and TOPLATS/

LSMEM surface brightness temperature with local ESTAR TB mea-
surements and the EnKF at the ARM CART EF13 site. Shaded region

represents 25th to 75th quartile spread of ensemble members. Dotted

vertical lines indicate ESTAR observation times.
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with all available forcing data––including gauge-based

rainfall measurements. Open loop results are derived

from the average of 100 unupdated TOPLATS repli-

cates generated with the climatologically based Poisson/

exponential rainfall model. Since June and July 1997

were exceptionally wet at the site, assuming climato-
logical rainfall levels generally underpredicts amounts of

vertically integrated root-zone water storage ðh40 cmÞ and
surface latent heat flux ðkEÞ. Even without any direct
rainfall measurements, updating members of the open

loop ensemble with ESTAR TB observations allows the
EnKF to capture both the early dry portion of the ex-

periment (Julian days 169 to 177) and the impact of

rainfall events during the very wet middle period (Julian
days 177 to 185). The improved representation of h40 cm
leads to more accurate kE predictions relative to the
open loop case during the early and middle portion of

the experiment. EnKF h40 cm predictions, however, drift
relative to benchmark results during the gap in ESTAR

overflights between Julian days 184 and 192 and remain

biased high even after ESTAR measurements resume.

The shortcomings of the EnKF during this period are
attributable to a high bias in LSMEM TB predictions
during the final week of the experiment (see Fig. 2)

which causes the filter to excessively wet the root-zone in

an attempt to keep TOPLATS/LSMEM TB predictions
low enough to match ESTAR observations.

EnKF results from the NOAA/ATDD Little Washita

Basin site shown in Fig. 7 are less encouraging. State

predictions updated by the EnKF provide only mar-
ginally better results than the climatologically based

open loop simulation. Some of the difficultly arises from

a lack of ESTAR TB observations between Julian days
184 and 192 which prevents an appropriate response to

rainfall on day 185. However, EnKF h40 cm results are
consistently biased low even during an earlier period of

near daily measurement rates between days 176 and 184.

Despite relatively accurate TOPLATS predictions of
surface soil moisture, a persistent low bias in benchmark

LSMEM TB predictions exists at the site (see Fig. 3).
This bias in predicted TB causes the EnKF to misinter-
pret ESTAR TB observations and excessively dry the soil
column. In particular, the poor EnKF update on day

176 is due to a combination of this bias and the large

model uncertainty (i.e. ensemble spread in Fig. 5) arising

from the ESTAR observation gap between days 171 and
176.

Somewhat surprisingly, EnKF results in Figs. 6 and 7

demonstrate little or no negative impact associated with

upscaling ESTAR TB observations from the local- to
footprint-scale. This lack of dependence on resolution

suggests that even coarse footprint-scale TB retrievals
have value for updating local point-scale models.

However, the limited scope of the comparisons does not
exclude other possibilities. For instance, the demon-

strated value of the footprint-scale observations could

Fig. 6. Baserun, EnKF, and open loop results for TOPLATS predic-

tions at the ARM CART EF13 site. EnKF results are shown for up-

dating with local- (2.42 km2) and footprint-scale (50
 70 km2) TB
observations. Latent heat flux values are daily averages between 16 and

22 GMT (10 am and 5 pm CST). Footprint-scale EnKF latent heat

flux results are essentially identical to local-scale EnKF results and

omitted from the plot for clarity.

Fig. 7. Baserun, EnKF, and open loop results for TOPLATS root-

zone soil moisture predictions at the NOAA/ATDD Little Washita

Basin site. EnKF results are shown for updating with both local- (2.42

km2) and footprint-scale (50
 70 km2) TB observations.
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reflect the legacy of relatively large-scale precipitation

patterns encountered during SGP97 or simply attest to

the regional representativeness of the two study sites.

4.2. Impact of ensemble size

Even under ideal conditions for application of the

EnKF (i.e. linear model, mean zero Gaussian observa-

tion and state errors) the EnKF will converge to an

optimal result only when the size of the ensemble is

sufficiently large. It is important to quantify the benefits
of enhanced EnKF performance, realized with increased

ensemble size, in the context of the additional compu-

tational costs. In a real-data case neither the true land

surface state nor the exact measurement process con-

necting land surface state variables to remote observa-

tions is known. Consequently, evaluation of the benefits

associated with increased ensemble size is difficult. Our

best guess of land surface state conditions is given by
TOPLATS/LSMEM results driven by gauge-measured

precipitation and validated against observed surface

state variable and flux measurements. These predictions

are shown in Figs. 2 and 3 and used as the benchmark

case in Figs. 4 and 5. Table 1 outlines RMS differences

between such benchmark values and results derived

from EnKF analysis with various ensemble sizes at the

ARM CART EF13 site. Results are shown for four soil
moisture and two surface temperature state variables

and are based on the assimilation of local (2.42-km2

resolution) ESTAR observations. While the EnKF

clearly improves model predictions relative to the open

loop case, little improvement is seen when increasing

ensemble size between 50 and 1000. This suggests that,

for ensemble sizes >50, alternative errors sources (e.g.
measurement biases, lack of model linearity, non-
Gaussian error distributions) and the shortcomings of

the benchmark results themselves play a larger role than

errors arising from finite ensemble sizes. In contrast,

results in [36] demonstrate improved EnKF perfor-

mance for ensemble sizes up to 1000. The larger range of

dependence in [36] is likely due to the much higher

number of degrees of freedom implicit in their hori-

zontally distributed update procedure relative to the
one-dimensional case examined here.

4.3. Comparison to spaceborne radar rainfall and direct

insertion results

A natural benchmark for EnKF results are TOPL-

ATS predictions based on rainfall times series derived
from temporal sampling patterns consistent with ex-

pectations for next-generation spaceborne missions de-

signed to measure precipitation globally. Sparse (6–10

samples per day) sampling of precipitation by space-

borne radar is generally considered to be a major

source of error in satellite-derived estimates of rainfall

accumulations (see e.g. [41]). Assuming rainfall rates to

be temporally constant between sparse measurements
can lead to large errors in estimations of hourly rainfall

rates and impact the accuracy of land surface model

predictions driven by spaceborne precipitation obser-

vations.

Fig. 8 addresses this concern by comparing the RMS

accuracy of h40 cm and kE TOPLATS predictions derived
from a range of sparse sampling rates to errors associ-

ated with the assimilation of local (2.42-km2 resolution)
TB observations and purely climatological rainfall con-
siderations. Comparisons were made using a subsam-

pling procedure on 15-min rainfall gauge data at the

ARM CART EF13 site. For a daily sampling frequency

of m, rainfall rates were assumed content and equal to
the observed 15-min gauge-derived rate for the 24m�1 h
period centered on each observation. The subsampling

exercise was repeated using every 15-min observation in
the first 24m�1 interval as the simulation start time. The
resulting set of rainfall forcing data was then used to

force an analogous set of TOPLATS observations from

which error statistics in Fig. 8 were calculated.

Since the actual integration time of each rain gauge

measurement is 15 min, and not the nearly instanta-

neous snapshot provided by a satellite, rainfall sampling

errors in Fig. 8 are likely conservative. Nevertheless, for
sampling rates expected in next-generation global pre-

cipitation missions (6–10 observations per day), EnKF

h40 cm and kE results driven by climatological rainfall
information and assimilated 1.4 GHz TB values are more
accurate than results derived from open loop strategies

based on the sparse temporal sampling of precipitation

from space.

Table 1

Errors in EnKF soil moisture ðhÞ and temperature ðT Þ predictions for various ensemble sizes at the ARM CART EF13 site
Ensemble size h5 cm h5–15 cm h15–40 cm htz Tsurf T7:5 cm

50 0.87 0.81 0.59 0.46 0.45 0.92

100 0.88 0.81 0.53 0.36 0.50 0.93

200 0.87 0.81 0.53 0.31 0.52 0.91

500 0.85 0.80 0.52 0.35 0.49 0.89

1000 0.85 0.80 0.54 0.41 0.52 0.92

The transmission zone ðhtzÞ extends from a depth of 40 cm to the top of the water table. Tsurf is the surface skin temperature and T7:5 cm is the 7.5-cm
soil temperature. All error values are calculated relative to a TOPLATS baserun simulation forced by gauge-based rainfall observations and

normalized by the error observed in the open loop case.
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Results for the direct insertion of soil moisture values
derived from ESTAR TB imagery and the backwards
radiative transfer model of [21] are also shown in Fig. 8

for comparison. As in the EnKF case, results for direct

insertion were obtained by running an ensemble of cli-

matologically derived rainfall realizations through

TOPLATS/LSMEM. At each observation time, surface

(5-cm) soil moisture in each realization was set equal to

the local ESTAR soil moisture observation. All other
model state variables were unchanged, and final state

variable predictions were obtained by averaging across

the ensemble.

Such an integration strategy is generally considered

suboptimal because it neglects information generated by

the model and updates only the single state variable––

surface soil moisture––directly observed by ESTAR.

Large rainfall events on Julian days 177 and 181 at the
ARM CART 13 site, for instance, recharge soil moisture

levels far below the 5-cm surface zone. Direct insertion

updating is incapable of capturing such recharge and

underpredicts subsequent levels of root-zone water

storage at the site. Fig. 8 demonstrates the relative su-

periority of EnKF-derived root-zone soil moisture over

direct insertion results during SGP97. Due to wet con-

ditions at the site, which minimize the sensitivity of

surface energy fluxes to soil water availability, the

EnKF�s advantage over direct insertion is very slight for
kE predictions (Fig. 8).

4.4. Footprint-scale results

For footprint-scale simulations, 800-m ESTAR TB
imagery was aggregated up to the four footprint-scales

shown in Fig. 1b. TOPLATS/LSMEM predictions for

every one of the �4000 computational grid-cells within
each footprint were updated using these spatially aver-

aged ESTAR TB measurements and the EnKF frame-
work. For computational reasons, the ensemble size (i.e.

number of model replicates) was reduced from 100 to

50. Ensemble replicates were generated using the same
daily rainfall model as the site-scale analysis. Rainfall

Fig. 8. Errors at the ARM CART EF13 site associated with the EnKF

(local ESTAR TB observations), the climatologically driven open loop,
and direct insertion strategies (local ESTAR surface soil moisture

retrievals) plotted with errors due to the sparse temporal sampling of

rainfall. Latent heat flux RMS error is given in terms of daily averages

between 16 and 22 GMT (10 am and 5 pm CST).

Fig. 9. Baserun, EnKF assimilation, and open loop root-zone soil

moisture predictions over the Central Facility and Little Washita

footprints (see Fig. 1b). Baserun results are generated by TOPLATS

with full WSR-88D rainfall information. Dotted vertical lines indicate

ESTAR observation times.
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realizations were independently generated for each of

the four footprint-scale pixels and rainfall intensities

were assumed to be homogeneous within each footprint.

A north–south gradient in rainfall accumulations

developed during SGP97. Rainfall levels in the north-
ernmost footprint-scale pixel (the Central Facility foot-

print) were several times larger than the climatological

mean, while accumulations in the southernmost pixel

(the Little Washita footprint) were below normal. Fig. 9

illustrates the ability of the EnKF, driven solely by TB
observations derived from the top 5 cm of the soil col-

umn and climatological rainfall considerations, to re-

solve these deviations from expected rainfall levels.
During the first half of the experiment, the EnKF is able

to effectively reproduce the impact of spatial rainfall

anomalies by adding soil water to the root-zone within

the Central Facility footprint and removing water

within the Little Washita footprint. Capturing this

spatial soil water pattern allows for the improved pre-

diction of surface latent heat flux within both footprints

(Fig. 10). However, as in the point-scale case, EnKF

predictions are less accurate following the temporal

gap in observations between Julian days 184 and 192.

During the final week of SGP97, the EnKF does not
outperform the open loop simulations for either foot-

print-scale pixel (see Figs. 9 and 10). Additional study is

required to determine if this is a direct consequence of

the eight-day observation gap or if it represents a more

general drift in EnKF-derived state predictions. Rainfall

levels in the two footprint-scale pixels between the

Central Facility and Little Washita footprints (see Fig.

1b) were near climatological expectations. Conse-
quently, assimilating TB adds little to surface state and
flux predictions made with the open loop simulations.

5. Discussion and conclusions

Results illustrate both the challenges and potential

benefits of using the EnKF strategy presented by [36] to

assimilate actual remote observations of surface

brightness temperature into a surface water and energy

balance model. Clearly, the assimilation process pre-

sented in the Section 3 does not meet all the require-

ments for the EnKF to be an optimal filter. For
instance, the method used to generate TOPLATS rep-

licates tends to produce skewed model ensembles and a

non-Gaussian error structure (Fig. 5). In fact, several

time steps in Fig. 5 demonstrate sufficient skew such that

the ensemble mean falls outside of the inner two quar-

tiles of the distribution. Such non-Gaussian error

structure almost certainly has a negative impact on the

EnKF�s performance. In addition, not all sources of
model and measurement error are implemented within

the ensemble generation procedure. Even if rainfall and

TB were measured perfectly, model errors would still
lead to differences between predicted and observed TB.
Some of this error is attributable to model physics like

the neglect of bare soil evaporation beneath vegetation

in TOPLATS and the inability of the LSMEM to cap-

ture the impact of standing water on land surface mi-
crowave emission. However, even in cases where model

predictions are relatively accurate, temporally persistent

biases can arise from contrasts between the spatial

support of model predictions and measurement foot-

prints [8]. This appears to be the case for point-scale

results at the NOAA/ATDD Little Washita Basin site

where the misinterpretation of TB observations by the
filter, combined with gaps in the time series of ESTAR
TB observations, leads to the excessive removal of water
from the soil column (Fig. 7).

Ideally, all such error sources should be accounted

for in an assimilation strategy. However, while some

description of model error and measurement bias may be

obtainable from either ground-based validation efforts

Fig. 10. Baserun, EnKF assimilation, and open loop latent heat flux

predictions over the Central Facility and Little Washita footprints

(Fig. 1b). Baserun results are generated by TOPLATS with full WSR-

88D rainfall information. Dotted vertical lines indicate ESTAR ob-

servation times. Plotted values are daily averages between 16 and 22

GMT (10 am and 5 pm CST).
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or statistical analysis of filter innovations, it is unlikely

that a full description of model error will be available

in operational settings at large scales. As a result, no

attempt was made to correct EnKF predictions for the

impact of model error other than that arising from a
lack of rainfall data. This was done under the assump-

tion that difficulties with spatial support, inaccurate

model physics, and measurement bias are an unavoid-

able part of attempting to compare and combine model

predictions with remotely sensed observations and

should be reflected in any realistic assessment of as-

similation strategy merit.

Despite these challenges, results at the ARM CART
EF13 site and over coarser footprint-scales are encour-

aging. Root-zone soil moisture predictions made with

the EnKF, TB observations approximately once every
other day, and climatological rainfall expectations at the

ARM CART EF13 site are more accurate than predic-

tions derived from either direct assimilation of ESTAR

surface soil moisture imagery or predictions based on

sampling rainfall rates with temporal frequencies com-
parable to expectations for future spaceborne radar

precipitation missions (Fig. 8). Even when hampered by

no direct rainfall information and constraints expected

in next-generation spaceborne remote sensors (i.e. 5-cm

measurement depth and 50-km
 70-km horizontal res-
olution), EnKF-assimilated ESTAR measurements are

capable of representing the impact of spatially hetero-

geneous rainfall on root-zone (40 cm) soil moisture
along the SGP97 transect (Fig. 9). Finally, these results

are obtainable with relatively small ensemble sizes (50–

100)––suggesting that the EnKF strategy is computa-

tionally competitive with other assimilation approaches.

The representation of rainfall and rainfall uncertainty

utilized here is clearly simplistic and not meant to rep-

resent current observational capabilities within the SGP

region. Rather, the purpose is to evaluate the potential
of the EnKF and remote measurements of 1.4 GHz TB
to compensate land surface model predictions for errors

associated with a simplistic or inaccurate representation

of rainfall. More realistic assimilation approaches

should take full advantage of capabilities for observing

and predicting precipitation at global scales. For in-

stance, of more use than a simple comparison of the

relative advantage associated with measuring either 1.4
GHz TB or rainfall at sparse sampling frequencies, is a
strategy for integrating both types of measurements in

the context of an assimilation strategy. One potential

area for future study is using an EnKF framework to

facilitate this integration. However temporally sparse,

measurements from a spaceborne precipitation mission

contain information that can be used to condition the

rainfall forecast ensemble, derived here from purely
climatological considerations, and improve the assimi-

lation of surface TB measurements. Similar conditioning
is possible using sparse spatial data from rainfall gauge

networks or quantitative precipitation forecasts derived

from regional weather prediction models. Finally, given

that the operational measurement of 1.4 GHz TB from
space is not expected before 2006, an important exten-

sion of this work is the application of the EnKF to C-
band (6.925 GHz) AMSR-E TB observations expected in
the near-future. The enhanced impact of vegetation and

atmospheric effects at higher C-band frequencies poses

an additional challenge for assimilation approaches.
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