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ABSTRACT

Using high-resolution (1 km) hydrologic modeling of the 575 000-km2 Red–Arkansas River basin, the impact
of spatially aggregating soil moisture imagery up to the footprint scale (32–64 km) of spaceborne microwave
radiometers on regional-scale prediction of surface energy fluxes is examined. While errors in surface energy
fluxes associated with the aggregation of soil moisture are potentially large (.50 W m22), relatively simple
representations of subfootprint-scale variability are capable of substantially reducing the impact of soil moisture
aggregation on land surface model energy flux predictions. This suggests that even crude representations of
subgrid soil moisture statistics obtained from statistical downscaling procedures can aid regional-scale surface
energy flux prediction. One possible soil moisture downscaling procedure, based on an assumption of spatial
scaling (i.e., a power-law relationship between statistical moments and scale), is demonstrated to improve
TOPmodel-based Land–Atmosphere Transfer Scheme (TOPLATS) prediction of grid-scale surface energy fluxes
derived from coarse-resolution soil moisture imagery.

1. Introduction

Growing evidence suggests that the accurate repre-
sentation of surface soil moisture conditions in the land
surface component of weather prediction models can
improve the predictive abilities of such models within
midcontinental areas like the Southern Great Plains
(SGP) region of the United States (Koster et al. 2000).
This potential has spurred interest in developing a ca-
pacity to measure surface soil moisture from space.
However, the sharp contrast between the fine spatial
scales at which surface soil moisture fields exhibit het-
erogeneity (,100 m) (Famiglietti et al. 1999) and the
coarse-resolution scales at which current microwave an-
tennae technology allows for observation of soil mois-
ture from space (.50 km) (Jackson et al. 1999) poses
a challenge to develop, and clearly demonstrate the val-
ue of, a large-scale monitoring system for surface soil
moisture. The scaling problem is twofold. First, land
surface heterogeneity, in concert with nonlinearities in
the spaceborne soil moisture–retrieval process, is ca-
pable of introducing error in footprint-scale soil mois-
ture products derived from spaceborne microwave sen-
sors (Njoku et al. 1996; Drusch et al. 1999a,b; Crow et
al. 2001). Second, even if footprint-scale representations
of soil moisture are free from error, the loss of subfoot-
print-scale heterogeneity may degrade the utility of such
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representations for weather and seasonal climate pre-
diction.

The second impact can be further subdivided into two
separate effects. Given modeling evidence that suggests
that sharp horizontal gradients in the land surface energy
balance can induce organized mesoscale circulations
(OMCs) (Lynn et al. 1995; Seth and Giorgi 1996; Weav-
er and Avissar 2001), the loss of soil moisture spatial
heterogeneity can potentially degrade the representation
of mesoscale circulations in weather prediction models.
Following Giorgi and Avissar (1997), this impact is
referred to as the ‘‘dynamic’’ effect of land surface het-
erogeneity. The second potential impact on weather pre-
diction, referred to as the ‘‘aggregation’’ effect by Gior-
gi and Avissar (1997), occurs when heterogeneous land
surface parameters or state variables (such as soil mois-
ture) are processed through nonlinear model physics to
obtain predictions of land surface water and energy flux-
es. This variability, the dynamic effects of which are
effectively homogenized by the planetary boundary lay-
er, does not produce a coherent atmospheric response.
Nevertheless, nonlinear relationships between land sur-
face variables and many surface fluxes dictate that grid-
scale predictions of fluxes will be sensitive to the pres-
ence, or absence, of subgrid-scale variability. Discus-
sions of aggregation effects within the SGP region often
center on soil moisture because of its critical role in
driving the surface energy balance within the region
(Gupta et al. 1999), its nonlinear relationship with many
land surface fluxes (Wetzel and Chang 1987), and the
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FIG. 1. Location of Red–Arkansas River basin and ARM CART
study site within the U.S. SGP.

large range of spatial scales at which it has been ob-
served to exhibit heterogeneity (Rodriguez-Iturbe et al.
1995; Crow et al. 2000).

Neither impact, dynamic or aggregation, has been de-
finitively shown to affect weather prediction within the
SGP region. The ability of land surface heterogeneity
to generate significant atmospheric circulations (i.e., the
dynamic effect) appears highly dependent on synoptic
conditions (Fast and McCorcle 1991), and at least some
modeling evidence suggests that realistic patterns of
land surface heterogeneity do not yield significant
OMCs (Zhong and Doran 1997, 1998). In addition, the
generation of OMCs is typically associated with het-
erogeneity at length scales coarser than 10 km (Avissar
and Schmidt 1998) and is therefore potentially resolv-
able if synthetic aperture radiometry technology is uti-
lized in next-generation antennae design for microwave
remote sensors (Le Vine et al. 1994). In terms of the
aggregation effect, Wetzel and Chang (1988), Famig-
lietti and Wood (1995), and Wood (1997) all argue for
a large impact associated with the spatial aggregation
of soil moisture, while contrary conclusions are pre-
sented by Sellers et al. (1995) and Kustas and Jackson
(1999).

In cases where land surface aggregation effects are
large, subgrid land surface heterogeneity can be incor-
porated into land surface models through a probability
density function (PDF) representation. The PDF ap-
proach has been used for soil moisture, or surrogates
for soil moisture, such as stomatal conductance, in a
number of land surface schemes (Wetzel and Chang
1988; Avissar 1992; Famiglietti and Wood 1994b; Wetz-
el and Boone 1995). However, if the grid scale corre-
sponds to the footprint scale at which soil moisture in-
formation is available, estimating subgrid statistics is
not a trivial task. Estimation of subgrid statistics in this
case requires a ‘‘downscaling’’ strategy capable of con-
necting fine-scale variability to observable magnitudes
of coarse-scale heterogeneity (Blöschl and Sivipalan
1995). One possible downscaling approach is to assume
that the statistical moments of soil moisture fields have
a power-law relationship with scale, and to estimate
magnitudes of fine-scale (or subresolution scale) vari-
ability based on fitting a scaling exponent to observed
coarse-scale field statistics and extrapolating to finer
scales (Dubayah et al. 1997).

The value of coarse-scale surface wetness observa-
tions for energy balance modeling depends both on the
magnitude of the aggregation and dynamic impacts as-
sociated with smoothing soil moisture and the feasibility
of strategies to correct modeling errors associated with
each impact. This paper focuses on the soil moisture
aggregation impact. Using TOPmodel-based Land–At-
mosphere Transfer Scheme (TOPLATS) simulations
over the SGP region, this analysis will quantify the mag-
nitude of the soil moisture aggregation effect on the
coarse-scale prediction of land surface energy fluxes and
assess the ability of the downscaling strategy introduced

by Dubayah et al. (1997) to compensate surface energy
flux predictions for the impact of nonresolved soil mois-
ture heterogeneity.

2. TOPLATS modeling

TOPLATS modeling of the SGP region was used to
generate realistically heterogeneous soil moisture fields.
For a full description of TOPLATS see Famiglietti and
Wood (1994b) and Peters-Lidard et al. (1997). Simu-
lations were run on a 1-km modeling grid over the 575
000-km2 Red–Arkansas River basin during the 1994
growing season (0100 UTC 1 April 1994–2400 UTC
31 July 1994). See Fig. 1 for location and scale of the
basin. Hourly precipitation products were obtained from
4-km estimates of hourly rainfall accumulations re-
trieved by the Next Generation Weather Radar (NE-
XRAD) system of Weather Surveillance Radar-1988
Doppler (WSR-88D) radars (Hudlow et al. 1991). In-
coming solar radiation imagery was derived from pro-
cessing 1-km Geostationary Operational Environmental
Satellite (GOES) imagery of reflected solar radiation
through the 2001 shortwave radiative transfer algorithm
(Diak and Gautier 1983). Surface meteorology data
(e.g., wind speed, air pressure, surface temperature, and
wet-bulb surface temperature) were taken from the spa-
tial interpolation of measurements made at 72 National
Climate Data Center (NCDC) stations within the south-
central United States. Land cover was taken from a 1-
km classification map derived from Advanced Very
High Resolution Radiometer (AVHRR) imagery of the
SGP region. Soil and topographic information was
based on 1-km imagery of depth-to-bedrock estima-
tions, a 1-km State Soil Geographic (STATSGO) soil
texture image, and a 1-km U.S. Department of Agri-
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TABLE 1. Vegetation parameters used in TOPLATS modeling
where, fsz is the fraction of root area in the surface zone. Surface
albedo (a) values were taken from Pielke (1984), Stull (1995), and
Dingman (1994). Surface emissivity (e) values were taken from Brut-
saert (1982). Momentum roughness (z0m) values were taken from
Brutsaert (1982) and Pielke (1984). Following Betts and Beljaars
(1993), roughness lengths for heat transport (z0h) were assigned to be
0.01*z0m. Based on recommendations made by Kondo (1971), values
of zero place desplacement (d) for trees and shrubs were set equal
to ⅔ of assumed vegetation height.

Vegetation type fsz a e z0m (m) d (m)

Crop
Short grass
Tall grass
Deciduous trees
Coniferous trees
Deciduous shrub
Coniferous shrub
Water

0.40
0.40
0.20
0.00
0.00
0.40
0.40
n/a

0.24
0.24
0.20
0.20
0.15
0.20
0.15
0.15

0.96
0.96
0.95
0.96
0.96
0.96
0.96
0.98

0.05
0.02
0.05
0.15
0.15
0.10
0.10
0.005

0.0
0.0
0.0
0.6
0.6
0.4
0.4
0.0

TABLE 2. Vegetation parameters used in TOPLATS modeling.
Leaf area index (LAI) values were based on values listed in Pielke
(1984). Minimum stomatal resistance (rs, min) values were based on
values listed in Peters-Lidard et al. (1997). Following Jacquemin and
Noilhan (1990), maximum stomatal conductance (rs, max) was set
equal to 5000 m s21 for all species. The root spacing parameter (b)
is described in Feddes and Rijtema (1972). Internal plant resistance
(Rp) values were based on values calculated by Federer (1979),
Choudhury and Federer (1984), and Choudhury and Idso (1985).
Following Wetzel and Chang (1987), the wilting soil water potential
at which vegetation close their stomata was taken to be 22.1 MPa
for all vegetation types.

Vegetation type
LAI
Max

LAI
Min

rs, min
(m s21) b (m) Rp (s)

Crop
Short grass
Tall grass
Deciduous trees
Coniferous trees
Deciduous shrub
Coniferous shrub
Water

2.0
2.0
2.0
3.0
3.0
3.0
3.0
0.0

0.5
0.5
0.5
1.0
1.0
1.0
1.0
0.0

80.0
40.0
40.0

120.0
120.0

80.0
80.0
n/a

0.001
0.001
0.001
0.0025
0.0025
0.0025
0.0025

n/a

6 3 108

6 3 108

6 3 108

1.2 3 109

1.2 3 109

1.2 3 109

1.2 3 109

n/a

culture (USDA) digital elevation map (DEM) of the
basin. Soil hydrology parameters were taken from Cos-
by et al. (1984), except for values of saturated hydraulic
conductivity, which were based on those listed in Rawls
et al. (1982). The following land cover classification
categories were used: short grass, agricultural crops, tall
grass, deciduous trees, coniferous tress, deciduous
shrubs, coniferous shrubs, water, and bare soil. Based
on values reported in the literature, Tables 1 and 2 as-
signed water and energy balance parameters to each of
these land cover types. Two soil layers were used: a 15-
cm surface zone and a subsurface zone extending from
the bottom of the surface zone to the top of the water
table.

a. TOPLATS calibration and validation

The period of high-resolution modeling was sup-
ported by longer periods of low-resolution modeling for
purposes of model calibration and generation of realistic
initial conditions. Low-resolution modeling was based
on subdivision of the entire Red–Arkansas basin into
314 separate subcatchments. Forcing data for low-res-
olution modeling was obtained from datasets construct-
ed during phase 2c of the Project for the Intercomparison
of Land-Surface Parameterization Schemes (PILPS-2c)
study of the Red–Arkansas River basin (Wood et al. 1998).

Calibration of the water balance portion of TOPLATS
was based on comparisons of TOPLATS predictions to
naturalized streamflow data obtained for five subcatch-
ments in the eastern portion of the basin. The emphasis
on the eastern edge of the Red–Arkansas basin is ap-
propriate given that the model processes affected by
calibration (i.e., baseflow and saturation excess runoff )
are significant only in the eastern portion of the SGP.
To obtain realistic initial conditions for high-resolution
TOPLATS modeling, the statistical version of TOP-
LATS was run at an hourly time step over each of the

314 subcatchments from 0100 UTC 1 January 1991 to
2400 UTC 1 March 31 1994.

Point-scale TOPLATS predictions of surface energy
flux, surface soil moisture, and surface temperature have
been extensively validated within the SGP region (Fa-
miglietti and Wood 1994a; Peters-Lidard et al. 1997,
2001). For the simulations described here, TOPLATS
energy flux predictions were validated against mea-
surements made by Energy Balance Bowen Ratio
(EBBR) flux towers within the SGP Atmospheric Ra-
diation Measurement Program Cloud and Radiation Test
bed (ARM CART) site. Figure 2 compares the spatial
average of TOPLATS predictions over the entire ARM
CART site to the average of all nine EBBR flux towers.
Unambiguous validation of energy flux predictions over
such a large spatial scale is extremely difficult, and sev-
eral points should be acknowledged with regard to val-
idation results presented in Fig. 2. Nine flux tower ob-
servations over the entire 140 000-km2 site represents
very sparse spatial sampling. Furthermore, in 1994, all
EBBR flux tower sites were located in fields containing
pasture or rangeland land cover, suggesting that abun-
dant areas of winter wheat land cover are undersampled
in our validation dataset. The overall impact of these
sampling limitations on the description of ARM CART
site–scale energy fluxes provided by averaging EBBR
flux tower observations is unclear. Gao et al. (1998)
compare 1-km PASS (PArameterization of Subscale
Surface fluxes) model results for the entire ARM CART
site to the spatial average of EBBR flux tower mea-
surements available in July 1995 and find close agree-
ment for sensible heat flux (H) magnitudes but a positive
bias of 50 W m22 in model predictions of latent heat
flux (lE) during the afternoon. They suggest that poor
EBBR sampling of the generally wetter eastern half of
the ARM CART site contributes to an underestimation
of ARM CART site–scale latent heat flux (lE) by the
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FIG. 2. Time series of modeled (TOPLATS) vs observed levels of
ARM CART site–averaged (a) latent (lE ) and (b) sensible (H ) heat
flux. Plotted values are daily averages of observations/predictions
made over a 7-h period centered on local solar noon (1900 UTC).
Observed values are an average of measurements made at nine bowen
ratio flux towers within the ARM CART site. (c) Hourly time series
of modeled (TOPLATS) surface and subsurface volumetric soil mois-
tures over the ARM CART site.

EBBR observations. However, for exactly the same time
period in summer 1995, Doran et al. (1998) make similar
comparisons between averaged EBBR observations and
distributed Simple Biosphere Model version 2 (SiB2)
predictions and find a positive bias in model predictions
of H—implying an overestimation of lE in averaged
EBBR observations—throughout the diurnal cycle.
They attribute this midsummer bias to the neglect of
EBBR observations within fallow winter wheat (i.e.,
bare soil) fields.

b. Aggregation and reinsertion procedure

Figure 3 shows imagery produced by the 1-km TOP-
LATS simulations and gives a sense as to the magnitude
of land surface heterogeneity predicted by the model.
Using TOPLATS, benchmark imagery of 1-km surface
and subsurface soil was obtained at every local solar
noon (1900 UTC) between 1 April 1994 and 31 July
1994. This soil moisture imagery was linearly aggre-

gated to a coarser footprint scale and, at the appropriate
solar noon, reinserted into a second TOPLATS simu-
lation calculated with identical forcings. Footprint scales
between 2 and 64 km were examined in this way, but
the 1-km computational grid scale and full 1-km vari-
ability in other model forcings and parameters were
maintained in all simulations. Insertion occurred every
local solar noon, and the water and energy balance of
TOPLATS was allowed to evolve normally for the 24-
h period between image insertions. TOPLATS energy
flux predictions for various soil moisture resolutions
were compared for time steps immediately following
the insertion of coarse-scale imagery to minimize the
impact of small-scale soil moisture heterogeneity re-
generated by the model. The procedure was designed
to mimic the daily insertion of coarse-scale remotely
sensed soil moisture observations into a land surface
model operating at a finer grid scale.

3. Impact of soil moisture aggregation
Spatial averaging and reinsertion of high-resolution

(1 km) TOPLATS soil moisture products back into the
energy balance portion of TOPLATS provides an op-
portunity to simulate the impact of utilizing low-reso-
lution soil moisture observations to make regional-scale
surface energy flux predictions within a higher-resolu-
tion model. Analytical representations of this impact are
straightforward. Let u(x, y) represent a continuous two-
dimensional field of soil moisture. The mean of u(x, y)
within a computational grid cell of size l is

22^u& 5 l u(x, y) dx dy 5 u , (1)l EE l

where the subscript l represents the footprint scale over
which the underlying field is averaged. For convenience,
the angled bracket notation is dropped in some expres-
sions, and the presence of a scale subscript alone is used
to indicate linear spatial averaging. Using this notation,
the difference between utilizing a continuous field mois-
ture field u and a field averaged up to some grid scale
l to calculate a grid-scale flux F can be summarized by
taking the expectation of a Taylor series expansion of
F(u) around the grid-scale soil moisture ul:

^F(u )& 2 ^F(u)&l l l

` j1 ] F(u)
j5 2 (u 2 u ) . (2)O l j7 ) 8j! (]u)j51 u ll

An expansion of Eq. (2) yields
^F(u )& 2 ^F(u)&l l l

` j1 ] F(u)
j5 2 ^(u 2 u ) &O l l j7 ) 8j! (]u)j52 u ll

` k1 ] F(u)
k2 cov (u 2 u ) , . (3)O l k5 ) 6k! (]u)k51 ul
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FIG. 3. Typical imagery of surface zone soil moisture and latent heat flux generated by a 1-km
TOPLATS simulation of the Red–Arkansas River basin.

The soil moisture aggregation effect is composed of
two separate processes. The first term on the right-hand
side of Eq. (3) describes how sensitivity to the presence
of subgrid-scale soil moisture variability arises from the
nonlinearity of F with respect to soil moisture in com-
bination with a significant spread of the local subgrid
values u around the grid-scale mean ul. This term will
be referred to as the ‘‘nonlinearity’’ term. The second
term in Eq. (3) describes the impact of losing correlation
between the subgrid field u and derivatives of the F(u)
relationship and will be referred to as the ‘‘loss-of-cor-
relation’’ term. This term can be neglected for the case
of statistical independence between subgrid soil mois-
ture and variations in the relationship between soil water
fluxes and soil moisture. However, the point-scale re-
lationship between soil water fluxes (i.e., drainage,
evaporation, and transpiration) and soil moisture varies
strongly between soil texture and vegetation types (Hil-
lel 1980). These soil water fluxes, in turn, impact ex-
pected magnitudes of soil moisture. Therefore, corre-
lation inevitably develops between local soil and veg-
etation properties, which determine F(u), and local soil

moisture fluctuations. The loss-of-correlation term de-
scribes the net impact on grid-scale fluxes of failing to
resolve such correlation. Both terms are derived with
the implicit assumption that fine-scale land surface pa-
rameters are known and, consequently, neglect impacts
associated with the aggregation of such parameters (see,
e.g., Boulet et al. 1999).

Model closure for the impact of nonresolved soil
moisture heterogeneity on flux estimates depends on the
accurate approximation of both terms in Eq. (3) using
only grid-scale information. Since higher-order deriv-
atives of the relationship between F and u are known
a priori, the nonlinearity term can be recovered from
subgrid-scale statistical information. Furthermore, if a
given two-parameter distribution shape can be accu-
rately fit to subgrid soil moisture distributions, all such
subgrid statistics are specified by the subgrid soil mois-
ture variance. In contrast, approximation of the loss of
correlation term requires a more complex representation
of subgrid variability describing the spatial interplay
between subgrid model parameters and soil moisture
heterogeneity.
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FIG. 4. Schematic of downscaling strategy based on spatial scaling.
The strategy is based on fitting a least squares regression line at
(resolvable) scales and extrapolating down to finer (unresolvable)
scales in order to estimate fine-scale soil moisture statistics (Dubayah
et al. 1997).

4. Soil moisture spatial scaling

Dubayah et al. (1997) and Hu et al. (1998) both note
the potential of spatial scaling to provide the basis for
a soil moisture downscaling approach. A given field u
is said to scale spatially if its statistical moments, ob-
served at any two spatial resolutions l and l0, obey the
following power-law relationship

K(q)
l

q q^u & 5 ^u & (4)l l01 2l0

or, equivalently,

l
q qlog^u & 5 K(q) log 1 log^u &, (5)l l01 2l0

where q is the order of the statistical moment, K is the
scaling parameter, and the angled brackets are used to
describe spatial averaging. The ratio l/l0 is called the
‘‘scale factor.’’ If l , l0, the scale factor is less than
one, and Eq. (5) illustrates a downscaling procedure that
connects fine-scale (l) field statistics to coarse-scale
(l0) information. If K(q) varies linearly with q, the field
is said to exhibit ‘‘simple scaling.’’ Simple scaling fields
therefore exhibit two basic features: log–log linearity in
^ & versus the scale factor and a linear relationshipqul

between the scaling exponents K(q) and the statistical
moment q. It is possible for the first requirement to hold,
but not the second. Fields are said to exhibit multiscaling
if they demonstrate log–log linearity in ^ & versus thequl

scale factor, but concavity in the relationship between
K(q) and q. Multiscaling fields are not strictly self-sim-
ilar, in the sense that a set of scaling exponents K(q) is
required to translate moments between scales (Gupta
and Waymire 1990).

As demonstrated by Dubayah et al. (1997), spatial
scaling allows for estimation of fine-scale (i.e., nonre-
solved) variability from coarse-scale (i.e., resolved) soil
moisture spatial structure. Figure 4 demonstrates the
procedure for the second moment ^ & of a typical soil2ul

moisture field generated by TOPLATS. Assuming the
finest observable to be 32 km, a scaling exponent K(2)
can be fitted in log–log space within the resolved range
of scales. This exponent is then used to extrapolate down
to finer scales, providing an estimate of the sub-32-km
variability present in the soil moisture field. Estimates
of such fine-scale statistics are required for approxi-
mation of the nonlinearity term in Eq. (3). Simple scal-
ing requires only that a single moment be fitted, since
the scaling exponent at one moment can be linearly
related to any other moment. The procedure is also ap-
plicable to multiscaling fields, with the caveat that fitting
of a separate scaling exponent K(q) is required for each
moment q.

5. Results

Results presented in this section use TOPLATS mod-
eling results (section 2) to quantify the impact of the

soil moisture aggregation effect (section 3) on surface
energy flux prediction within the SGP region. Based on
the downscaling procedure outlined in section 4, a strat-
egy for correcting energy flux predictions for the impact
of nonresolved soil moisture heterogeneity is developed.

a. Effect of soil moisture aggregation

Figure 5a shows a time series of biases in TOPLATS
surface energy flux predictions for the entire ARM
CART site derived from 32-km (versus 1 km) soil mois-
ture information. Coarse-scale (32 km) results are based
on noontime predictions made immediately after the in-
sertion of spatially averaged imagery back into TOP-
LATS. Soil moisture impacts lE by controlling the rate
at which water can be extracted from the soil for either
evaporation or transpiration. Following Wetzel and
Chang (1987), actual evapotranspiration is taken to be
the minimum of the threshold evapotranspiration rate
lET [calculated as a function of soil moisture u and
using the formulation presented in Feddes and Rijtema
(1972)] and the potential evapotranspiration rate lEp

[calculated using the Jarvais (1976) type formulation
outlined in Peters-Lidard et al. (1997)]. Such ‘‘supply
and demand’’ formulations for evapotranspiration are a
common component of land surface models (Desbor-
ough 1997) and have been successfully applied to sur-
face energy flux modeling with the SGP region (Wetzel
and Chang 1988; Famiglietti and Wood 1994a; Wetzel
and Boone 1995). Typical lET(u) curves, based on Fed-
des and Rijtema (1972) and parameters given in Table
2, are shown in Fig. 6. Soil moisture also directly effects
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FIG. 5. (a) Net bias of TOPLATS surface energy flux predictions
over the ARM CART site derived from 32-km (vs 1 km) soil moisture
data and (b) decomposition of bias in latent heat flux into the non-
linearity term and the loss of correlation term described in Eq. (3).

FIG. 6. Relationship between threshold evapotranspiration (lET)
and soil moisture for trees and grasses in a sandy loam soil.

ground heat flux (G) through its control on the thermal
properties of soil (Peters-Lidard et al. 1998). Since the
sensitivity of surface albedo on soil wetness is neglect-
ed, other components of the energy balance are not di-
rectly impacted by soil moisture.

Small (,10 W m22) errors in G are seen in Fig. 5a
throughout the growing season. Much larger errors in
lE appear during mid-May, when soil water storage
over portions of the ARM CART region is sufficiently
depleted to allow for soil moisture control of evapo-
transpiration. Errors in lE reach a maximum during a
particularly dry portion of the growing season in late
June and early July (see Fig. 2c). The net soil moisture
aggregation impact on lE is always positive, suggesting
that degradation of soil moisture resolution from 1 to
32 km biases large-scale calculations of lE high.
Among components of the energy balance, errors in lE
are largely compensated for by a decrease in sensible
heating H. A slight rise in Rn is observed, but it is an
order of magnitude smaller than the impact on H and
lE. This interplay maximizes the sensitivity of grid-
scale Bowen ratio (H/lE) predictions to the presence
of subgrid-scale soil moisture variability.

Latent heat flux errors shown in Fig. 5a have two
separate sources, corresponding to the two terms shown

in Eq. (3). Figure 5b shows time series of local noontime
(1900 UTC) values for both terms in Eq. (3) averaged
over the entire ARM CART site. The nonlinearity term
is consistently positive. As shown in Fig. 6, the tran-
spiration–soil moisture function has two distinct regions
of concavity, one negative at high soil moistures and
one positive at low soil moistures. Following Eq. (3),
the consistently positive bias shown in Fig. 5b implies
that the region of negative concavity plays a dominant
role in determining the sign of the nonlinearity term.
This is due to the relative scarcity of 32-km soil moisture
values within the region of positive concavity at or just
above the wilting point. Soil water loss for moisture
levels near wilting is small for bare soil surfaces and
effectively zero for vegetated pixels. Consequently, spa-
tial distributions of 1-km soil moisture values tend to
become positively skewed for dry conditions, because
local soil moisture levels have difficulty progressing far
below wilting. This skew makes it dynamically difficult
for 32-km average soil moisture values to fall into the
regime of positive concavity needed to make the non-
linearity term negative. In contrast, the loss of corre-
lation term varies in sign from negative early in the
growing season to positive during drier periods in June
and July but is significant only during two relatively
dry periods of the simulation (mid- to late May and late
June; see Fig. 2c). During these two dry periods, it
contributes about one-third of the total error associated
with the soil moisture aggregation effect.

Figure 7 plots root-mean-square (rms) error in do-
main-averaged TOPLATS lE predictions corresponding
to insertion of soil moisture products with horizontal
resolutions of 1, 2, 4, 8, 16, 32, and 64 km. Error values
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FIG. 7. Error in ARM CART site–averaged latent heat flux TO-
PLATS predictions (vs the spatial average of flux tower measure-
ments) derived from a range of soil moisture resolutions. Error values
plotted are rms errors in local solar noon (1900 UTC) TOPLATS
predictions made between 1 Jun and 31 Jul 1994.

FIG. 8. Various representations of subgrid-scale soil moisture
heterogeneity for 32-km grid cells within the ARM CART site.

are for local noontime (1900 UTC) TOPLATS predic-
tions made between 1 June and 31 July 1994 and are
calculated relative to validation estimates derived from
averaging measurements from EBBR flux towers within
the ARM CART study area. Using 1-km soil moisture
data, comparisons with flux tower data reveal an rms
difference between model and validation values of 36.9
W m22. This difference rises to 67.1 W m22 as the
spatial resolution of soil moisture information used to
predict surface energy fluxes flux is degraded from 1 to
64 km. Consequently, nearly half the error incurred
when using 64-km soil moisture data is attributable to
the neglect of soil moisture spatial variability.

The magnitude of the nonlinearity term shown in Fig.
5b is a direct consequence of nonlinearities in the mod-
eled relationship between soil moisture and evapotrans-
piration. The supply and demand–type formation em-
ployed here (Fig. 6) has a clear physical basis and is
commonly used in land surface models. Nevertheless,
it represents only one of a number of possible forma-
tions. More linear relationships between soil moisture
and evapotranspiration would yield smaller magnitudes
for the impact of soil moisture aggregation. Therefore,
some model dependency must be acknowledged for re-
sults in Figs. 6 and 7.

b. Subgrid soil moisture representations

A portion of the error observed in Fig. 7 can be re-
mediated through simplified representations of subgrid
soil moisture heterogeneity. Figure 8 demonstrates four

separate cases along the continuum of possible repre-
sentations for subgrid soil moisture heterogeneity within
the ARM CART site: explicit representation of the var-
iability, a distribution for each grid cell, a subgrid var-
iance for each grid cell, and a single subgrid variance
for the entire model domain. Figure 9a shows the rms
errors in ARM CART site–scale lE associated with uti-
lizing each representation in TOPLATS. A fifth case—
complete neglect of subgrid-scale variability—is also
considered. For the ‘‘distributed variance’’ and ‘‘aver-
aged variance’’ representations, subgrid soil moisture
variability is assumed to follow a beta probability dis-
tribution. Errors are calculated relative to both inde-
pendent ARM CART validation data and benchmark
TOPLATS results derived from 1-km soil moisture in-
formation.

Relative to benchmark TOPLATS results, degrading
soil moisture information from an ‘‘explicit field’’ to a
‘‘distribution’’ representation introduces an rms error of
11.7 W m22 into local noontime (1900 UTC) TOPLATS
predictions of ARM CART site–averaged lE. This error
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FIG. 9. Level of rms error in (a) ARM CART site–averaged and (b) 32-km noontime lE
predictions associated with each of the strategies outlined in Fig. 8, plus the case of neglecting
sub-32-km variability. Error is calculated relative to both TOPLATS predictions made with 1-
km soil moisture data and validation data derived from EBBR flux tower observations within
the ARM CART site.

is due to the inability of a statistical representation of
soil moisture to represent the loss-of-correlation term
defined in Eq. (3). However, subsequent degradation of
subgrid information from a ‘‘distribution’’ to a ‘‘local
variance’’ and from a ‘‘local variance’’ to an ‘‘averaged
variance’’ description are associated with only minor
(,3 W m22) increases in error relative to the sharp
impact of moving from an ‘‘averaged variance’’ rep-
resentation to the complete neglect of subgrid variability
(29.6 W m22). A similar pattern is seen in Fig. 9a when
TOPLATS predictions are compared to independent
ARM CART flux tower observations.

Figure 9b demonstrates the value of each soil mois-
ture representation for lE calculations at a finer scale
(32 km). The reduction in accuracy associated with the
transition from an ‘‘averaged variance’’ representation
to complete neglect of subgrid-scale variability is less
dramatic than for the coarser-scale correction shown in

Fig. 9a. Nevertheless, knowledge of an averaged sub-
grid-scale soil moisture variance allows for correction
of about one-third of the error in 32-km lE predictions
associated with the complete neglect of sub-32-km soil
moisture variability.

The large fraction of total error recovered by the
‘‘averaged variance’’ representation in Fig. 9 suggests
that even simplistic statistical representations of subgrid
soil moisture heterogeneity have value for efforts to
predict grid-scale energy fluxes and offers support for
the statistical representation of subgrid soil moisture
variability employed by many land surface models (Fa-
miglietti and Wood 1994a; Wetzel and Boone 1995).

c. Downscaling based on spatial scaling

Figure 10 examines the scaling structure of a single
surface soil moisture field generated by TOPLATS over
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FIG. 10. Log–log plots of statistical moment order q vs scale for a typical surface soil moisture
image generated by TOPLATS. Plotted resolutions vary from 1 km (20 km) to 128 km (27 km).

the Red–Arkansas River basin. It plots ^uq& versus scale
and least squares regression lines fit in log–log space
to obtain estimates of the scaling exponents K(q). Fig-
ures 11a and 11b plot the scaling exponents and cor-
relation coefficients associated with such fits for TOP-
LATS-generated surface soil moisture imagery during
the 1994 growing season. Simple scaling requires lin-
earity in the relationship between K(q) and q and a single
value for ]K(q)/]q at all q. In contrast to this require-
ment, Fig. 10c demonstrates that ]K(q)/]q becomes
smaller (more negative) as q increases. This multiscaling
signature in TOPLATS-derived soil moisture fields is
consistent with previous results for both modeled (Du-
bayah et al. 1997; Peters-Lidard et al. 2001) and re-

motely sensed (Dubayah et al. 1997; Hu et al. 1998)
soil moisture fields. Trends observed with respect to
overall hydrologic conditions in the basin are also con-
sistent with those noted in Peters-Lidard et al. (2001).
That is, the power-law relationship between scale and
statistical moments is a stronger assumption during wet
periods of the simulation, and multiscaling features (i.e.,
concavity in plots of scaling exponents versus moment)
are more pronounced during relatively dry periods.

The relatively strong power-law behavior (i.e., log–
log linearity) demonstrated in Figs. 10 and 11 provides
some confidence for applying the downscaling proce-
dure shown in Fig. 4. The distinction between multi-
and simple scaling is of secondary interest here, since
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FIG. 11. For surface soil moisture fields simulated by TOPLATS and linear least squares fits
in log–log space to the relationship between statistical moment order q and scale: (a) correlation
coefficients (r2) for q 5 2, (b) the scaling exponent (i.e., log–log slope) K(q) for q 5 2 . . . 6,
and (c) the slope of K(q) vs q evaluated at a range of q.

both predict a power-law relationship between statistical
moments and scale that can be exploited using the pro-
cedure. Time series of actual versus predicted magni-
tudes of ARM CART site–averaged sub-32-km soil
moisture variances are shown in Fig. 12. Predicted var-
iances are derived from the application of the down-
scaling approach demonstrated in Fig. 4 to 32-km TOP-
LATS soil moisture imagery for the entire Red–Arkan-
sas River basin. Actual variance magnitudes are taken
directly from 1-km TOPLATS simulations of the ARM
CART site. The downscaling procedure could be rep-
licated for additional statistical moments, providing a
more detailed estimation of subgrid statistics; however,

Fig. 9 suggests that the benefits of more detailed sta-
tistical representations of subgrid variability are mini-
mal.

For the 15-cm surface soil moisture zone, subgrid
variance estimates shown in Fig. 12 are generally rea-
sonable, except for dry periods in late May and late
June, where the downscaling approach underpredicts
subgrid variability. Log–log plots of the second statis-
tical moment versus scale during this period exhibit an
open-upward (positive) concavity, and scaling expo-
nents fit at coarse (.32 km) scales tend to be larger
(less negative) than scaling exponents fit at finer scales.
The result is an underestimation of fine-scale, subgrid
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FIG. 12. Actual vs downscaled estimates of sub-32-km soil moisture
variances for TOPLATS predictions within the ARM CART site.

variability when the fitted scaling exponent is extrap-
olated back to finer scales. Downscaling variability es-
timates for the more substantial subsurface zone appear
adequate for April and May but are biased low during
later portions of the summer. Clearly, the downscaling
procedure provides only an approximate measure of
subgrid variability. The critical question is whether such
estimates are accurate enough to parameterize the non-
linearity term in Eq. (3) and correct TOPLATS surface
energy flux predictions.

d. Correction of soil moisture aggregation impact
using downscaling

Results in sections 5a–c lay the framework for a strat-
egy to correct grid-scale surface energy flux predictions
for the impact of nonresolved soil moisture heteroge-
neity. Figure 9 demonstrates that model estimates of lE
can be substantially improved by knowledge of a single
quantity—the average subgrid-scale soil moisture var-
iance within the model domain—and Fig. 12 demon-
strates the ability of the downscaling strategy to predict
this quantity to within a reasonable accuracy.

Figure 13 plots accuracy gains in coarse-scale pre-
dictions of lE flux realized using an approach based on
parameterization of the nonlinearity term in Eq. (3),
assuming a beta probability distribution for subgrid-
scale moisture heterogeneity and the daily estimation of
a subgrid-scale soil moisture variance through the down-
scaling procedure outlined in Fig. 4. Because the ap-
proach attempts to close surface energy flux calculations
for the impact of nonresolved soil moisture heteroge-
neity, it will be referred to as the ‘‘downscaling closure
model.’’ When compared to ARM CART flux tower
observations, the model recovers about half of the error
(15.7 out of 30.3 W m22) associated with the aggre-

gation of soil moisture (i.e., moving from an ‘‘explicit’’
to ‘‘neglect’’ representation in Fig. 13a). For finer-scale
(32 km) lE calculations the downscaling closure model
is less effective and corrects slightly more than one-
quarter (16.8 out of 58.7 W m22) of the aggregation
error (Fig. 13b). Of course, impacts associated with the
aggregation of soil moisture represent only one source
of error in TOPLATS surface energy predictions derived
from 32-km soil moisture data. When both aggregation
and underlying TOPLATS model errors are considered,
the closure strategy reduces the total rms difference be-
tween ARM CART site–averaged model predictions and
EBBR flux tower observations by slightly less than one-
quarter (67.1 to 51.5 W m22 in Fig. 13a).

Corrected TOPLATS results for other soil moisture
resolutions are examined in Fig. 14 along with results
associated with the uncorrected insertion of coarse-scale
soil moisture imagery. Also plotted in Fig. 14 are error
magnitudes associated with representing subgrid soil
moisture variability using a fitted beta distribution. The
figure allows for decomposition of the error associated
with application of the downscaling closure model into
various sources. For the 51.5 W m22 error associated
with the calculation of ARM CART site–scale lE using
32-km soil moisture data and the downscaling closure
model, 36.9 W m22 is associated with model (TOP-
LATS) and/or validation error, 6.5 W m22 with degrad-
ing soil moisture variability within a 32-km grid cell
from an explicit to a statistical representation (i.e., sta-
tistical representation error), and 8.1 W m22 is attrib-
utable to the imperfect statistical description of soil
moisture provided by the downscaling model (i.e.,
downscaling model error). The ‘‘downscaling model er-
ror’’ noted in Fig. 14 is a direct consequence of inac-
curacies in the downscaling approach seen in Fig. 12,
while the ‘‘statistical representation error’’ is introduced
by the neglect of the loss-of-correlation term in the
downscaling closure model.

The decrease in error for downscaling closure model
results seen between 16 and 64 km in Fig. 14 is some-
what counterintuitive and is likely due to a spurious
cancellation of biases. Downscaled estimates of vari-
ances within 64-km grid cells are biased high because
of a slight break in the scaling of the TOPLATS-sim-
ulated soil moisture fields between 64 and 128 km. This
overestimation of subgrid variability in turn causes an
overestimation of the nonlinearity term in Eq. (3). How-
ever, the high bias of the nonlinearity term cancels a
portion of the low bias associated with the neglect of
the loss-of-correlation term and actually improves clo-
sure model results. In addition, at fine scales (,4 km)
distributions of subgrid 1-km fields become less con-
tinuous and therefore less amenable to fitting using a
smooth, unimodal beta probability distribution. This dif-
ficulty is reflected in the slight increase in error asso-
ciated with a fitted beta-distribution representation of
subgrid soil moisture at fine grid scales.
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FIG. 13. Level of rms error in (a) ARM CART site–averaged and (b) 32-km noontime lE
predictions associated with each of the strategies shown in Fig. 9, and the downscaling closure
model presented in Fig. 4.

6. Discussion and conclusions

This analysis concerns itself solely with the impact
of spatially aggregating soil moisture on the prediction
of large-scale surface energy fluxes. Analogous con-
cerns about the impact of averaging land surface pa-
rameters and the dynamic impacts of smoothing land
surface heterogeneity are not considered. The emphasis
on inserting coarse-scale (.30 km) observations into
an otherwise fine-scale (1 km) model is made relevant
by current trends in large-scale modeling capabilities
and the availability of high-resolution land surface da-
tasets. High-resolution vegetation, soil, and topographic
maps are increasingly available at global and continental
scales. Reflecting this availability, real-time land surface
modeling on an ⅛8 (;15 km) grid for North America
is currently being performed as part of the North Amer-
ican Land Data Assimilation Scheme (NLDAS) project
and on a ¼8–⅛8 grid for all land north of 608S within
the Global Land Data Assimilation Scheme (GLDAS)

project (details online at http://ldas.gsfc.nasa.gov). Even
finer grid scales should be feasible in the near future.
In contrast, the resolution of next-generation passive
radiometers designed to measure soil moisture from
space is unlikely to fall below 10–30 km even if in-
novative antennae design strategies are employed (Jack-
son et al. 1999).

The value of such coarse-scale soil moisture obser-
vations for surface energy flux prediction is contingent
upon both the magnitude of the soil moisture aggre-
gation effect and the ease with which this effect can be
corrected using downscaling techniques. For the partic-
ular soil moisture/evapotranspiration formulation em-
ployed in TOPLATS (see Fig. 6 and section 5a), spatial
smoothing of soil moisture has a profound impact on
TOPLATS surface energy flux predictions made within
the SGP ARM CART region during June and July 1994
(Fig. 5). However, results in Fig. 9 suggest that a down-
scaling strategy for soil moisture need not capture all
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FIG. 14. Level of rms error in ARM CART site–averaged lE pre-
dictions associated with various representations of subgrid soil mois-
ture heterogeneity for a range of grid scales. The error associated
with the downscaling closure model (open circles) is composed of
error in the downscaling procedure (Fig. 12), error associated with
a statistical representation of subgrid soil moisture variability (Fig.
5b), and underlying model validation errors.

subgrid information in order to effectively compensate
energy flux predictions for this error. In fact, a large
fraction of the error associated with neglecting subgrid-
scale soil moisture variability can be corrected using a
single, domain-averaged, measurement of subgrid soil
moisture variance. This result demonstrates the general
feasibility of effective correction strategies by lowering
the complexity requirements for descriptions of subgrid-
scale soil moisture heterogeneity down to levels poten-
tially obtainable using downscaling procedures.

This analysis also expands upon work by Dubayah
et al. (1997) and Peters-Lidard et al. (2001) by assessing
the spatial scaling properties of TOPLATS-simulated
soil moisture fields for a larger spatial and temporal
domain and demonstrating the degree to which the
downscaling strategy shown in Fig. 4 is applicable to
the simulated soil moisture fields. As in this previous
work, results suggest that the simulated surface soil
moisture fields consistently exhibit multiscaling behav-
ior characterized by log–log linearity in ^ & versus scalequl

l and concavity in the relationship between K(q) and q
(Fig. 10).

Despite the general strength of a power-law relation-
ship between second statistical moments and scale (Fig.
11), the downscaling procedure demonstrated in Fig. 4
provides a simplified, and at times inaccurate, repre-
sentation of subfootprint-scale soil moisture heteroge-
neity (Fig. 12). However, utilizing the imperfect de-
scription it provides, within a probability density func-
tion (PDF) representation of subgrid variability, is clear-
ly superior to the typical strategy of assuming zero
subgrid variance and applying a point-scale model to

coarse-scale information (Fig. 13). In fact, for footprint
scales greater than 16 km, the downscaling closure mod-
el corrects roughly half of the model error associated
with the aggregation of soil moisture data (Fig. 14). The
ability to correct such aggregation-based errors is a key
consideration for assessing the degree to which poor
spatial resolution compromises the value of soil mois-
ture observations from space.

The primary advantage of a downscaling procedure
based on spatial scaling lies in its simplicity and ability
to predict fine-scale variability in the absence of ancil-
lary data or modified model calibration. Because it re-
quires no additional model parameters, any benefit to
model accuracy need not be balanced against concerns
about increased model complexity. That said, a wide
range of more complex downscaling procedures are pos-
sible. One particularly promising strategy is combining
high-resolution land surface data (e.g., land cover or
soil texture) and coarse-scale remotely sensed soil mois-
ture imagery using variational data assimilation to re-
cover subfootprint-scale heterogeneity in remotely
sensed soil moisture fields (Reichle et al. 2001). This
technique allows for recovery of subfootprint-scale
cross correlation between land surface properties and
soil moisture and, consequently, correction for a portion
of the loss-of-correlation term in Eq. (3).

The coarse spatial resolution at which current anten-
nae technology allows for the remote observation of soil
moisture from space poses a challenge for efforts by
hydrologists to demonstrate the value of a spaceborne
sensor designed exclusively for the measurement of sur-
face soil moisture. While aggregation effects surround-
ing the coarse-scale retrieval and insertion of soil mois-
ture imagery into land surface models are potentially
large, prospects for remediation of these errors through
simplistic correction strategies appear quite good. The
ease with which aggregation errors can be corrected
suggests that the value of remotely sensed soil moisture
observations for large-scale energy flux prediction is not
irreparably compromised by poor horizontal sensor res-
olution.
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