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Abstract

Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches

can be applied to monitor root-zone soil moisture in agricultural landscapes. Water

and Energy Balance (WEB) SVAT modeling is based on forcing a prognostic root-

zone water balance model with observed rainfall and predicted evapotranspiration.

In contrast, thermal Remote Sensing (RS) observations of surface radiometric tem-

perature (TR) are integrated into purely diagnostic RS-SVAT models to predict the

onset of vegetation water stress. While RS-SVAT models do not explicitly monitor

soil moisture, they can be used in the calculation of thermal-based proxy variables

for the availability of soil water in the root zone. Using four growing seasons (2001 to

2004) of profile soil moisture, micro-meteorology, and surface radiometric tempera-

ture measurements at the United States Department of Agriculture (USDA) Opti-
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mizing Production Inputs for Economic and Environmental Enhancements (OPE3)

study site in Beltsville, MD, prospects for improving WEB-SVAT root-zone soil

water predictions via the assimilation of diagnostic RS-SVAT soil moisture proxy

information are examined. Results illustrate the potential advantages of such an as-

similation approach relative to the competing approach of directly assimilating TR

measurements. Since TR measurements used in the analysis are tower-based (and

not obtained from a remote platform), a sensitivity analysis demonstrates the po-

tential impact of remote sensing limitations on the value of the RS-SVAT proxy.

Overall, results support a potential role for RS-SVAT modeling strategies in im-

proving WEB-SVAT model characterization of root-zone soil moisture.

Key words: Thermal remote sensing, soil moisture, data assimilation, and surface

radiometric temperature.

1 Introduction

The development of modeling techniques to estimate soil moisture availability

beyond the near-surface has been an area of extensive research during the past

decade. Currently, the most advanced approaches are based on the assimila-

tion of remote sensing observations into soil-vegetation-atmosphere transfer

(SVAT) models. Following Crow et al. (2005a), these models can be conceptu-

ally divided into thermal remote sensing (RS) and water and energy balance

(WEB) approaches.

In RS-SVAT approaches, TR is derived from thermal remote sensing on cloud-

free days and combined with vegetation information obtained at visible and

near-infrared wavelengths in order to solve the surface energy balance. By ac-

curately interpreting thermal signals from vegetation, these approaches can
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detect the increase in surface temperature - due to a reduction in evapotran-

spiration - occurring in canopies at the onset of water stress. Detection of

these stress signals typically requires accurate ancillary vegetation cover in-

formation to distinguish between stressed vegetation and warm soil/substrate

backgrounds (see e.g. Moran, 2003). RS-SVAT approaches are generally diag-

nostic in nature and make instantaneous predictions only for times at which

remote surface TR retrievals are available.

In contrast, WEB-SVAT approaches typically neglect TR observations and

make energy flux predictions by parameterizing components of the surface

energy balance as a function of surface aerodynamic temperature and numer-

ically solving the balance equation to predict surface energy fluxes. These flux

predictions are then combined with rainfall observations and vertical modeling

of the soil column in order to continually track soil moisture. Soil water stress

is diagnosed when predicted root-zone soil moisture falls below a predefined

level and triggers an increase in vegetation stomatal resistance. If available, TR

observations can be used to constrain WEB-SVAT predictions through data

assimilation. A number of past studies have developed techniques to directly

assimilate TR observations into WEB-SVAT models with the goal of improv-

ing surface energy flux and profile soil moisture estimates (van den Hurk et

al., 1997; Jones et al., 1998; Lakshmi, 2000; Bosilovich et al. 2006). Additional

work has also focused on the assimilation of surface (0-5 cm) soil moisture re-

trievals obtained from microwave remote sensing (Houser et al., 1998; Walker

et al., 1999; Margulis et al., 2002; Reichle et al., 2005).

As a result of their structural differences, RS- and WEB-SVAT models use

fundamentally different approaches to predict surface energy fluxes and diag-

nose the availability of root-zone soil moisture. Crow et al. (2005a) demon-
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strate that, even when forced with consistent meteorological and vegetation

information, the structural differences between WEB- and RS-SVAT modeling

approaches are profound enough that errors in surface energy flux estimates

produced by both models are statistically independent. Such independence

can be exploited using data assimilation or integration approaches designed

to filter errors in continuous WEB-SVAT state predictions based on the consid-

eration of instantaneous RS-SVAT retrievals. A small number of past studies

have exploited this potential by inserting RS-SVAT evapotranspiration pre-

dictions directly into a water balance model (Meijerik et al., 2005), using

RS-SVAT energy flux predictions to constrain WEB-SVAT model parameter

selection (Franks and Beven, 1999), or employing simple data assimilation

techniques to update WEB-SVAT soil moisture predictions using RS-SVAT

evapotranspiration predictions (Schuurmans et al., 2003).

Despite these advances, little is currently known about the potential for im-

proving WEB-SVAT soil moisture estimates via the assimilation of RS-SVAT

retrievals. As noted above, the direct assimilation of TR observations offers an

alternative approach for the integration of thermal remote sensing observa-

tions into a WEB-SVAT model. Therefore, a key unresolved issue is whether

any rationale exists for processing TR observations through a RS-SVAT model

prior to their assimilation. Here we use a four-year soil moisture and TR data

set within an agricultural site to evaluate the accuracy of a RS-SVAT-based

root-zone soil moisture proxy and the potential for improving root-zone soil

moisture predictions through the assimilation of this proxy into a WEB-SVAT

model. Assimilation results are compared to the competing approach of di-

rectly assimilating TR observations. The modeling and Ensemble Kalman filter

(EnKF) data assimilation strategy used in the analysis will be presented in

4



Section 2. Modeling and data assimilation results are discussed in Section 3,

and Section 4 describes a sensitivity analysis aimed at quantifying the impact

of limitations in satellite-based TR retrievals on results.

2 Approach

Both RS- and WEB-SVAT modeling strategies are based on the partition-

ing of net radiation (RN ) into sensible heating (H), latent heating (LE), and

ground heat flux (G) components via solution of separate surface energy bal-

ance equations for the vegetation canopy (C) and soil surface (S)

RN,C =HC + LEC (1)

RN,S =HS + LES + GS. (2)

Observations of downward solar (S↓) and longwave radiation (L↓) at the top of

the vegetation canopy are decomposed into incident canopy and soil radiation

components based on the radiative transfer model of Campbell and Norman

(1998). These components are then used to calculated RN,C and RN,S as

RN,C =(1 − τlongwave)(L↓ + εSσT 4
S − 2εCσT 4

C) + (1 − τsolar)(1 − αC)S↓ (3)

RN,S = τlongwaveL↓ + (1 − τlongwave)εCσT 4
C − εSσT 4

S + τlongwave(1 − αS)S↓(4)

where ε, τ , and α refer to emissivity, canopy transmissivity and albedo pa-

rameters, respectively, and σ is the Stephen-Boltzman constant. Total surface

flux quantities are obtaining by summing canopy and surface components (e.g.

LE = LEC + LES). Subsequent differences in RS- and WEB-SVAT modeling

approaches are described below.
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2.1 RS-SVAT modeling

The RS-SVAT modeling approach employed here is based on the parallel ver-

sion of the two-source model (TSM) methodology originally described in Nor-

man et al. (1995). The TSM parameterizes sensible heating from the vegetation

canopy and soil surface as

HC = ρCp
TC − TA

RA
(5)

HS = ρCp
TS − TA

RA + RA,S
(6)

where ρ is the density of air, Cp the specific heat of air, RA the above canopy

aerodynamic resistance term, RA,S the within canopy aerodynamic resistance,

TA the air temperature, TS the soil temperature, and TC the canopy tem-

perature. The parameterization of RA and RA,S is based on assumed surface

roughness lengths, wind speed, and stability considerations presented for the

parallel version of the TSM in Norman et al. (1995). A more complicated series

resistance formulation was also developed by Norman et al. (1995) allowing

more complete interaction between soil and canopy components. However, dif-

ferences in flux predictions from the parallel and series formulations are minor

in most cases (Norman et al., 1995; Li et al., 2005). Neglecting emissivity dif-

ferences between the canopy and the soil (Kustas and Norman, 1997), TS and

TC can be constrained by the observed surface radiometric temperature (TR)

and

TR = [fvegT
4
C + (1 − fveg)T

4
S ]1/4 (7)
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where fveg is the areal fraction of the sensor field of view occupied by vegetation

predicted as a function of leaf area index (LAI) and look angle (θ) as

fveg = 1 − exp

(

−LAI

2cos(θ)

)

. (8)

Ground heat flux in (2) is modeled as

GS = cgRN,S (9)

where the variation of cg according to LAI and time of day follows the algo-

rithm presented in Kustas et al. (1998).

As a first guess, the TSM estimates LEC according to the Priestly-Taylor

formula

LEC = fgαPT
s

s + γ
RN,C (10)

where αPT is the Priestley-Taylor constant (typically taken to be ∼1.3 for

unstressed vegetation), s is the first-derivative of the Clauius-Claperon equa-

tion with respect to temperature, and fg is the “green” fraction of the canopy

actively transpiring. Using this estimate of LEC , and independent knowledge

of RN,C , (1) is solved for HC and (5) inverted to estimate TC as

TC = (1 − fgαPT
s

s + γ
)RN,C

RA

ρCp

+ TA. (11)

The constraint in (7) can then be inverted to estimate TS as

TS =
(T 4

R − fvegT
4
C

1 − fveg

)1/4
. (12)
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Prediction of TS allows for calculation of HS via (6) and consequently LES as

the residual of (2)

LES = (1 − cg)RN,S − ρCp
TS − TA

RA + RA,S
. (13)

If the vegetation canopy is under soil moisture stress, assuming αPT = ∼1.3

in (10) will overestimate LEC and lead to the underestimation of TC in (11)

and the overestimation of TS in (12). Since it is calculated as a residual in

(13), such temperature biases will eventually manifest themselves as a nega-

tive bias in LES. In normal application of the TSM this problem is addressed

by iteratively lowering αPT in (10) to ensure LES predictions are greater than

zero (Kustas and Norman, 1999). However, if this iterative correction is not

employed, uncorrected LES values will reflect both the direct impact of near-

surface water limitations on soil evaporation as well as the impact of propa-

gating biases arising from the overestimation of LEC via (10). Consequently,

water limitations in both the surface- and root-zone will both act to reduce

uncorrected LES predictions obtained from (13). Based on this reasoning, we

define a soil moisture proxy STSM equal to the value of LES obtained from

(13) when αPT is held equal to ∼1.3.

Following the approach of Reichle and Koster (2005), TSM-based STSM re-

trievals are rescaled prior to assimilation into a WEB-SVAT model such that

their temporal mean (µ) and standard deviation (σ) matches that of WEB-

SVAT root-zone soil moisture predictions (θrz)

θTSM
rz = µθrz

+ (STSM − µSTSM
)

σθrz

σSTSM

. (14)
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The skill of θTSM
rz in capturing vertically integrated root-zone soil water dy-

namics will be empirically determined through comparisons with profile soil

moisture measurements in Section 3.

2.2 WEB-SVAT modeling

The WEB-SVAT modeling employed here was derived from merging the force-

restore model introduced by Noilhan and Planton (1989), and adapted by

Montaldo and Albertson (2001), with a two-layer vegetation/soil energy bal-

ance formulation utilizing a vertical canopy structure identical to that em-

ployed by the parallel version of the TSM (Norman et al., 1995). The force-

restore water balance model conceptually divides the soil column into two

reservoirs: a surface zone and a root-zone. These two zones are overlapping

such that the surface zone constitutes the top fraction of the root zone. The

balance equation for the surface zone soil moisture (θsz) is

dθsz

dt
=

C1

dsz

[Pg − LES(ρwλ)−1] −
C2

τd

(θsz − θeq) (15)

where Pg is precipitation through-fall, τd the frequency of diurnal variations

(24 hours), ρw the density of water, λ the latent heat of vaporization for water,

and dsz the depth of the surface zone. Variables C1 and C2 are soil texture

and soil moisture dependent quantities and θeq is a function of root-zone soil

moisture (θrz) such that the second term in (15) estimates the diffusive flux

of water between the surface and bulk root zone (Noilhan and Planton, 1989;

Montaldo et al., 2001). For the root zone, the analogous balance equation is

dθrz

dt
=

1

drz

[Pg − LEC(ρwλ)−1 − LES(ρwλ)−1 − Q] (16)
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where LEC is plant canopy transpiration, drz the root-zone soil depth, and Q

drainage out the bottom of the root zone parameterized using soil saturated

hydraulic conductivity Ks, porosity θsat, and the pore size distribution index

parameter b as

Q = Ks
(

θrz

θsat

)2b+3

. (17)

Precipitation is partitioned into canopy storage and Pg by updating canopy

storage (θc) following

dθc

dt
= P − EWC (18)

where EWC is direct (or “wet”) canopy evaporation and P is observed rainfall

incident on the canopy. The vegetation canopy is assumed to posses a maxi-

mum water holding capacity of LAI/5 [mm]. When θc is below this threshold,

Pg equals zero, and when θc exceeds this threshold, Pg = P . Runoff is pro-

duced when either (15) or (16) estimates a soil moisture value that exceeds

θsat.

For consistency with the TSM: GS is modeled as a fraction of RN,C following

(9), RN,C and RN,S are modeled following (3) and (4), and HC and HS are

based on (5) and (6). However, in contrast to the TSM, WEB-SVAT LEC and

LES predictions are based on

LES = [es(TS) − ea]ρwCP γ−1/(RA,S + RA + RS) (19)

LEC = [es(TC) − ea]ρwCPγ−1/(RC + RA) (20)

where es is the saturation vapor pressure and ea the above canopy vapor

pressure. The direct canopy evaporation EWC is estimated by setting RC = 0 in

(20) and dividing by ρwCP to obtain volume flux units. Following Sellers et al.
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(1992) the soil resistance to vapor flux RS (in units of m s−1 ) is parameterized

as an empirical function of θsz

RS = exp[A − B(θsz/θsat)]. (21)

The stomatal resistance to transpiration RC is estimated using the typical

simple piecewise relationship with root-zone soil moisture

RC =























































RC,max θrz < θw

(RC,min − RC,max)
θrz−θw

θ∗−θw

+ RC,max θw < θrz < θ∗

RC,min θrz > θ∗.

(22)

The volumetric soil moistures at which canopy stress θ∗ and wilting θw begins

are calculated using soil hydraulic parameters and assuming matrix potentials

of -2.1 and -100 Mb for the onset of stress and wilting, respectively. Resistance

extremes RC,max and RC,min are specified based on typical literature values.

The overall computational stream for the WEB-SVAT model is as follows.

Water-balance estimates of θsz and θrz are used to calculate the resistance

variables in (21) and (22) which, in turn, allow all flux terms in (1) and (2)

to be expressed in terms of TC and TS. The simultaneous solution of (1) and

(2) for TC and TS - via a numerical root finder - provides the soil evaporation

(LES) and canopy transpiration (LEC) estimates required to update water

state variables and step forward in time via (15), (16) and (18). Given knowl-

edge of fveg, WEB-SVAT predicted surface radiometric temperature can then

be obtained from (7).
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2.3 Site description

The study domain is the Optimizing Production Inputs for Economic and En-

vironmental Enhancements (OPE3) site located at the USDA-ARS Beltsville

Area Research Center in Beltsville, Maryland during the 2001 to 2004 grow-

ing seasons. Local soil texture is characterized as several meters of sandy loam

sand overlying an impermeable clay lens. The topographic structure of the

clay lens has been demonstrated to exert strong control over patterns of lat-

eral subsurface flow within the site (Gish et al., 2005). Land cover is cultivated

corn typically planted in May or June and harvested in October or November.

Micro-meteorological and eddy covariance instrumentation are mounted on a

10-m tower at the OPE3 site to measure L↓, S↓, TR, LE, H, GS and meteoro-

logical observations. Sampling frequency is 10 Hz for the eddy covariance and

0.1 Hz for the energy balance and meteorological instrumentation. Air tem-

perature (Ta) and ea are measured using Vaisala HMP 45C sensors mounted

at 4 and 8 m agl, P using Texas Instruments TE-525 gauges at 2.5 and 6

m agl, and TR using an Apogee Inc. IRTS-P3 infrared radiative thermome-

ter mounted at 4.5 m. Incoming and outgoing radiation are measured with a

Kipp and Zonen, Inc. CNR-1 radiometer at 4.5 m above ground level (agl)

[Trade and company names are given for the benefit of the reader and imply

no endorsement by USDA]. Net radiation is also measured with a Kipp and

Zonen NR-Lite at 2.5 m agl and a Radiation Energy Balance Systems, Inc.

Q*7 net radiometer also at 2.5 m agl. A Campbell Scientific, Inc. 3-D sonic

anemometer and a LI-COR LI7500 infrared hygrometer positioned at 4 m agl

are used to measure H and LE flux densities as the covariance of the vertical

wind velocity with air temperature and water vapor density. Friction velocity
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and vertical velocity statistics are computed from the sonic anemometer. For

GS, six REBS soil heat flow transducers (HFT-1) are buried 0.08 m below the

soil surface. Above each soil heat flux plate at 0.02 and 0.06 m depth are two

Type-T soil thermocouples. The soil temperature data are used to compute

the storage component of G above the flux plates. Soil moisture measurements

are based on EnviroSCAN capacitance probe sensors installed at five separate

sites within 50 meters of the flux tower. A weighted average of probe mea-

surements available at depths of 10, 30, 50, and 80 cm is used to obtain a

vertically integrated, top 1-meter representation of root-zone soil moisture.

The eddy covariance data were processed with temperature and relative hu-

midity measurements used to correct for oxygen and density effects on the

evaporative and CO2 fluxes (Webb-Pearman-Leuning-WPL correction; Webb

et al., 1980). Further processing included applying a 2-D coordinate transfor-

mation (coordinate rotation-CR) forcing horizontal components of wind speed

to zero (Kaimal and Finnigan, 1994). As is the case with most study sites em-

ploying the eddy covariance technique, there is a general lack of energy balance

closure among the flux measurements, which are caused by any number of site

and instrumental factors (Foken et al., 2006). Following the suggestion of Li

et al. (2005), closure in the flux measurements was enforced by adding the

residual balance term (i.e. Rn − LE − H − G) to LE observations.

Figure 1 shows time series of observed TR, LAI, root-zone soil moisture (θrz),

and daily eddy correlation-based evapotranspiration (ET = LE (ρwλ)−1) mea-

surements for the site during the 2001, 2002, 2003 and 2004 growing seasons.

The 2002 growing season was unusually dry and exhibits clearly defined stress

signals in θrz and ET observations (Figure 1). In contrast, 2003 was wetter

than normal - especially during early portions of the growing seasons. 2001
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and 2004 were roughly typical with regards to growing season rainfall. The

solid line in the LAI graphs (second row) represents the assumed piece-wise

linear model for LAI temporal dynamics. The extensive LAI measurements

needed to fully parameterize this fit are available only in 2004. For 2001 to

2003, the dynamics observed during the 2004 growing season were integrated

with available information concerning crop emergence dates (vertical dashed

lines in LAI plots) and mature-canopy LAI measurements near the IRT in

order estimate the LAI time series.

2.4 Model parameterization and evaluation

Plant-canopy height h was assumed to follow the same piecewise-linear model

as LAI except vertically rescaled to have a minimum of 0.1 m and a maximum

of 2 m. Roughness lengths for momentum and heat transfer were assumed

equal to h/8, and zero plane displacement height was set to 2h/3. Canopy

greenness (fg) fraction was parameterized as remaining at unity until canopy

LAI reached a maximum and then slowly declining at a rate of 0.005 day−1.

All soil parameters were set equal to sandy loam lookup table values presented

in Cosby et al. (1984) and Noilhan and Planton (1989). The top layer of the

WEB-SVAT model was given a depth of 5 cm and the second layer a depth

of 1 m. Stomatal resistance values RC,min and RC,max were set equal to 100

and 5000 s m−1. Following Kustas et al. (1998), the unitless parameters A

and B in (21) were set equal to 8.2 and 4.3, respectively. At the start of the

growing season, soil moisture variables in the WEB-SVAT models are assumed

to match observed levels at the OPE3 site. Due to changes in the frequency of

archived and quality-controlled micro-meteorological observations, the WEB-
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SVAT model was run on a 10-minute time step in 2001 and 2002, and a

30-minute time step for 2003 and 2004.

The comparison of baseline WEB-SVAT predictions with OPE3 data resulted

in several small changes to the model. The original WEB-SVAT model initially

over-predicted TR and under-predicted θsz during the early portions of the

growing season (not shown). This was corrected by setting C1 in (15) to unity

- thus neglecting the more complicated treatment discussed in Noilhan and

Planton (1989) - and forcing RA,S to zero for short (i.e. h < 25 cm) vegetation

canopies. In addition, θrz was better predicted during later portions of the

growing season by using a calibrated value of 3.0 for b and not the default

value of 4.34 suggested by Cosby et al. (1984) for a sandy loam soil. Given

the rather ad hoc nature of these changes, their influence on key results will

be discussed later in the paper.

After the changes outlined above, WEB-SVAT and RS-SVAT/TSM predic-

tions results were compared to ground-based observations available at the

OPE3 site. Comparisons between WEB-SVAT and TSM ET predictions and

eddy-correlation observations in Figure 2 suggest a slightly superior perfor-

mance for the TSM with regards to surface energy fluxes. However, it should

be noted that the small positive bias seen in TSM ET predictions would in-

crease if energy flux observations are closed via conservation of the Bowen

ratio (H/LE) and not by adding the residual energy balance term to LE. In

addition, with the exception of a high bias in early season TR for 2003, WEB-

SVAT predictions of θrz (Figure 3) and TR (Figure 4) are generally quite good.

Extremely low TR observations during the early portion of the 2003 growing

season suggest the presence of standing water. The WEB-SVAT model is un-

able to capture either the overall wetness of this period (see Figure 3) or the
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potential impact of standing water on TR (Figure 4).

2.5 Data assimilation approach

Data assimilation is based on the use of an Ensemble Kalman filter (EnKF)

to sequentially assimilate either θTSM
rz retrievals or TR observations into the

WEB-SVAT model. A sequential approach is adopted to reflect our expec-

tation that the approach will eventually be used for real-time monitoring of

root-zone soil water availability, The EnKF was been widely applied to land

data assimilation applications in recent years and it generally considered a

least as accurate on competing sequential filters (e.g. Reichle et al., 2002).

Its approach is based on generating an ensemble of model realizations, each

perturbed in a Monte Carlo manner, to obtain the forecast error covariance

information required by the standard Kalman filter update equation. To create

the ensemble, a mean-zero Gaussian perturbation term δ is added to WEB-

SVAT θrz state predictions obtained via (16). Generated perturbations are

statistically independent both in time and across the forecast ensemble. At

times in which RS-SVAT θTSM
rz retrievals are available, θsz and θrz state vari-

ables associated with the ith Monte Carlo model replicate are collected in the

state vector Θi. Given the availability of a θTSM
rz observation, this vector is

updated via

Θi + = Θi− + K(θTSM
rz + vi − θi−

rz ) (23)

where v is a noise term sampled independently for each model replicate from a

mean-zero Gaussian distribution with variance (Cv) equal to the uncertainty

of the rescaled θTSM
rz observation. Plus (+) and minus (-) superscript notation
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indicates quantities before and after updating. The Kalman filter gain K is

given by

K = [CYM(CM + Cv)
−1]. (24)

where CM is the (scalar) variance of the WEB-SVAT θi
rz forecasts (θi−

rz ) and

CYM is a vector containing the variance of θi−
rz and the covariance between

θi−
rz and θi−

sz . Both quantities are obtained by statistically sampling θi−
rz and

θi−
sz and replicates around their ensemble means.

After updating via (23), ensemble components of the updated state vector

Θi + are propagated in time following (15) and (16) - and further perturbed by

additive δ noise - until the next θTSM
rz observation becomes available and the

updating procedure is repeated. Final WEB-SVAT/EnKF state predictions

are obtained by averaging Θi replicates across the entire ensemble.

In addition to the assimilation of θTSM
rz , this analysis will consider the compet-

ing methodology of directly assimilating TR observations. For this case, the

update equation in (23) is modified to

Θi + = Θi− + K(TR + vi − T i−
R,WEB) (25)

where T i−
R,WEB is the WEB-SVAT TR prediction for the ith model replicate.

No rescaling is applied to TR measurements prior to their assimilation. The

Kalman gain K in (25) is also slightly modified so that CM and Cv represent

scalar variances of TR,WEB and TR observations, respectively, and CYM is a

vector containing the covariance between T i−
R,WEB and both θi−

rz and θi−
sz . As

before, CYM and CM are obtained by sampling Monte Carlo replicates around

the ensemble mean.
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A critical aspect of any EnKF application is specifying the variance of δ (Cδ

- used to perturb model forecasts and represent WEB-SVAT forecast uncer-

tainty) and v perturbations (Cv - used to represent either TR or θTSM
rz obser-

vational uncertainty) terms. Filter innovations

ν =< θTSM
rz − θi−

rz > or ν =< TR − T i−
R,WEB >, (26)

where brackets indicate averaging across the ensemble, provide a valuable

diagnostic tool for constraining these values. If all the assumptions underlying

the optimality of the EnKF filter are met and errors are perfectly represented

in a statistical sense, then the resulting times series of ν should be mean zero

and have a variance of CM + Cv. Given an independent estimate of Cv, the

Cδ variance term can be tuned until this theoretical constraint is met (Dee,

1995). Satisfying this constraint implies that the model ensemble is correctly

representing actual forecast uncertainties.

3 Results

Soil moisture information derived from the TSM is expressed in terms of the

θTSM
rz proxy value obtained at 14 Local Solar Time (LST) (19 GMT). Figure 3

shows the time series of TSM θTSM
rz retrievals during the 2001 to 2004 growing

seasons. Gaps in θTSM
rz retrievals reflect days where solar radiative forcing is

deemed too low (S↓ < 600 W m−2) for surface stress signals to clearly register

in TR observations. Figure 5 demonstrates the relationship between all θTSM
rz re-

trievals and root-zone (0-1 meter averaged) soil moisture observations. Despite

lumping retrievals obtained over a wide range of both inter- and intra-annual

surface variability (see Figure 1), the scatterplot reveals a single, relatively
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well-defined relationship between θTSM
rz retrievals and observed θrz. The offset

from a one-to-one line observed in the scatterplot is due to a differences in the

dynamic range of the WEB-SVAT model (whose climatology θTSM
rz has been

scaled into) and observed root-zone soil moisture.

3.1 Assimilation of θTSM
rz into WEB-SVAT

Using (14) and statistics calculated from long-term (2001 to 2004) TSM and

WEB-SVAT simulations at the OPE3 site, 14 LST (19 GMT) STSM retrievals

are rescaled into a θTSM
rz time series whose temporal mean and variance matches

that of the WEB-SVAT model θrz predictions. The observation error variance

Cv is calculated by linearly rescaling observed root-zone (0-1 meter) soil mois-

ture values plotted along the x-axis of Figure 5 into the WEB-SVAT model’s

climatology - using an approach analogous to (14) - and then calculating a

mean-squared difference with θTSM
rz . During the EnKF assimilation analysis, a

30-member Monte Carlo ensemble of WEB-SVAT Θi predictions is obtained

by specifying Cδ and perturbing WEB-SVAT θrz predictions obtained via (16).

Members of this ensemble are updated via (23) using θTSM
rz retrievals obtained

from the TSM model. Because of presumably lower soil moisture skill in θTSM
rz

retrievals during cloudy days, only 14 LST (19 GMT) θTSM
rz retrievals concur-

rent with downward solar forcing (S↓) greater than 600 W m−2 are assimilated.

This corresponds to about 65% of days during the 2001-2004 growing seasons.

The entire EnKF procedure is repeated for various choices of Cδ until the time

series of filter innovations ν is mean zero with variance CM + Cv. Once the

filter is properly tuned, WEB-SVAT/EnKF results are obtained by averaging

state predictions across the ensemble.
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Figures 6 demonstrates Case WEB-SVAT/EnKF data assimilation results for

a period of the 2002 growing season. Case 1 (see Table 1) results reflect model-

ing results obtained using: calibrated soil hydraulic parameters, start-of-season

initialization using soil moisture observations, and precipitation data obtained

from a well-maintained, on-site rain gauge. Consequently, errors in Case 1

WEB-SVAT predictions reflect only the impact of structural shortcomings in

the WEB-SVAT modeling approach. For example, its inability to capture the

lateral movement of root-zone water known to occur at the site (Gish et al.,

2005). WEB-SVAT modeling predictions shown in Figures 2, 3, and 4 reflect

Case 1 results. In contrast, Case 2 (see Table 1) is based on the degradation

of Case 1 by using: default soil hydraulic parameters, a default spring soil

moisture initial condition (i.e. θrz = 0.20 cm3cm−3), and hourly rainfall ob-

servations for the site derived from continental-scale North American Land

Data Assimilation (NLDAS) precipitation products (Cosgrove et al., 2003).

Consequently, Case 2 reflects model parameterization and forcing difficulties

typically encountered when applying WEB-SVAT models over larger spatial

domains.

Figure 7 displays scatterplots of modeled versus observed root-zone soil mois-

ture for both modeling cases - with and without the EnKF-based assimilation

of TSM/RS-SVAT θTSM
rz retrievals. For WEB-SVAT modeling Case 1 (top

row), relatively little improvement is observed when assimilating θTSM
rz . In

contrast, clear improvement in the correlation between WEB-SVAT modeled

and observed θrz is found for assimilation into Case 2 WEB-SVAT modeling

results. Accounting for the reduction in the degrees of freedom within WEB-

SVAT predictions due to serial auto-correlation (Van Storch and Zwiers, 1999),

the increase in correlation for assimilation into Case 2 is significant at a 93%
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confidence level.

The need to rescale TSM soil moisture proxy observations into the WEB-SVAT

model climatology presents a potential obstacle to the real-time operation of a

sequential filter since multi-year climatological statistics are required to rescale

STSM observations via (14) before assimilation analysis can be initiated. To

examine the impact of poorly-sampled climatological statistics derived from

shorter time periods, assimilation results in Figure 7 were re-run using clima-

tological statistics derived from sampling only a single growing season (instead

of all four between 2001 and 2004). These results (not shown) demonstrated

only minor sensitivity to such a reduction. Depending on the single year cho-

sen, correlation coefficient results (R2) for the assimilation of θTSM
rz (Case 2)

changed from 0.69 to between 0.63 and 0.70. Consequently, the need to ac-

quire climatological statistics for rescaling does not appear to a be a significant

barrier for the real-time functioning of the filter. However, the requirement to

rescale observations into the WEB-SVAT model’s climatology does preclude

the assimilation of θTSM
rz from correcting existing bias and/or dynamic range

problems in WEB-SVAT soil moisture predictions. As a result, the impact of

assimilation on RMS error statistics remains small (Figure 7).

3.2 Assimilation of TR into WEB-SVAT

An obvious alternative to the assimilation of θTSM
rz is the direct assimilation of

TR observations underlying TSM predictions. Figure 8 is equivalent to Figure

7 except it demonstrates results for the EnKF-base assimilation of TR instead

of θTSM
rz . In contrast to θTSM

rz assimilation results, no marginal benefit is seen

for either modeling case when TR is directly assimilated. In addition, while
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the removal of ad hoc changes made to improve WEB-SVAT TR predictions

(see Section 2.4) has little effect on θTSM
rz assimilation results in Figure 7, it

will further degrade TR assimilation results in Figure 8.

Difficulties encountered in directly assimilating TR measurements can be traced

to a number of potential sources. First, the relationship between θrz and TR

predictions is dependent on a range of variables (e.g. wind speed, air temper-

ature, surface roughness, vegetation coverage and surface albedo) other than

θrz. Uncertainty in any of these factors can confound the accurately updating

of θrz using TR observations. In addition - even if perfectly specified - the re-

lationship between TR and θrz is highly nonlinear and not well suited for the

application of Kalman filtering techniques. Figure 9 shows examples of the

relationship for typical summertime afternoon micro-meteorology conditions

(TA = 20 C, relative humidity = 60%, S↓ = 700 W m−2 and wind speed = 3

ms−1) and a range of LAI magnitudes between 0.5 and 2.5. EnKF updating

results in Figure 8 are based on (25) and a linear approximation to the rela-

tionship between WEB-SVAT θrz predictions and TR retrievals. The inability

of (25) to capture the nonlinear nature of this relationship will introduce error

and potential instabilities into WEB-SVAT/EnKF predictions. In apparent

contrast to TR, the relationship between θrz and θTSM
rz is approximately lin-

ear and relatively well-defined even when expressed by lumping observations

obtained over a wide range of micro-meteorological, soil moisture and vege-

tative conditions (Figure 5). As a result, processing TR observations through

the TSM/RS-SVAT modeling framework results in a functional relationship

with θrz that is more amenable to application of the EnKF.
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4 Impact of remote sensing limitations

As discussed in Section 2, this analysis uses tower-based infrared thermometer

data to estimate TR. Consequently it neglects important accuracy and tem-

poral sampling issues inherent in the retrieval of TR from satellite platforms.

For instance, a key limitation of spaceborne thermal sensors is the restriction

of surface retrievals to sufficiently cloud-free days. This impact is examined in

Figure 10 where the availability of TR measurements is limited to days passing

a variable minimum solar loading (S↓) threshold. Gradually increasing the S↓

threshold, used to define a “cloud-free” scene, naturally leads to a decrease in

the frequency of 14 LST θTSM
rz retrievals (open squares in Figure 10a) avail-

able for assimilation. However, since the strongest coupling between thermal

canopy observations and soil moisture occurs on days with the highest so-

lar loading, increasing the required minimum S↓ threshold also increases the

observed correlation between θTSM
rz and root-zone soil moisture observations

(filled circles in Figure 10a). That is, utilizing a higher S↓ threshold is asso-

ciated with acquiring lower frequency, but higher quality, soil moisture infor-

mation. Because of this trade-off, the accuracy of Case 2 WEB-SVAT/EnKF

θrz results (obtained via the assimilation of θTSM
rz ) are relatively insensitive to

the choice of a minimum S↓ threshold (Figure 10b). In fact, relatively good

WEB-SVAT/EnKF results are obtained even when restricting the availability

of θTSM
rz retrievals to only the 10% of days exhibiting the highest 14 LST S↓.

As a result, the impact of temporal frequencies limitations inherent in the

retrieval of TR, and thus θTSM
rz , from satellites is expected to be small.

For sun-synchronous, polar orbiting satellites, an additional concern is the

appropriate time of day for TR measurement acquisition. All results to this
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point have been based on the specification of 14 LST for TR acquisition. Figure

11 examines the sensitivity of Case 2 WEB-SVAT/EnKF θrz (again acquired

through the assimilation of θTSM
rz ) to this choice. Results demonstrated a win-

dow of relatively good performance between 11 and 14 LST with a slight peak

at 13 LST. Consequently, results obtained at 14 LST appear roughly represen-

tative for any mid-day (11 to 14 LST) overpass time. θTSM
rz retrievals obtained

from overpass times before or after this window will possess relatively less

value as a root-zone soil moisture proxy.

In addition to temporal sampling limitations, satellite-based TR observations

will also suffer from accuracy limitations due to errors in the correction of

atmospheric radiative transfer effects. In Figure 12 we capture the impact of

such error by adding synthetic, temporally uncorrelated, Gaussian noise to

tower-based TR measurements. Increasing the magnitude of this noise clearly

reduces the observed correlation between θTSM
rz retrievals and root-zone soil

moisture observations (open squares in Figure 12). However, only modest sen-

sitivity is observed for Case 2 WEB-SVAT/EnKF θrz correlation results (solid

circles in Figure 12). As the quality of TR observations is degraded, the EnKF

approach shifts weight away from θTSM
rz retrievals derived from TR observations

and onto WEB-SVAT predictions. A properly constructed filter should never

degrade the accuracy of WEB-SVAT prediction below the open-loop model-

ing case of no data assimilation (dashed line in Figure 12). As a consequence,

added value for WEB-SVAT modeling is noted even for relatively noisy TR

observations.

Finally, the strength of correlation between θTSM
rz retrievals and root-zone soil

moisture observations in Figure 5 is partially dependent on the accuracy of

vegetation input parameters (e.g. fveg) inputted into the TSM. Here these
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parameters are estimated based on observations of crop emergence dates and

a single measurement of mature canopy LAI (see Figure 1 and Section 2);

however, their estimation from remote sensing observations will likely entail

greater uncertainty. The impact of this uncertainty can be captured through

a sensitivity analysis based on the regeneration of Figure 5 in the presence of

random, additive perturbations (with standard deviations of 0.5 and 7 days,

respectively) to observed mature canopy LAI and yearly crop emergence dates.

Results from this analysis demonstrate only minor sensitivity to such pertur-

bations. The correlation coefficient (R2) in Figure 7 (0.67) is reduced to an

average of 0.65 in the case of perturbing mature canopy LAI and an average

of 0.64 in the case of perturbing the yearly crop emergence date.

5 Discussion and Summary

At the USDA OPE3 site, four-growing seasons worth of WEB-SVAT and RS-

SVAT modeling results are obtained and compared with ground-based evapo-

transpiration (Figure 2), vertically integrated root-zone soil moisture (Figure

3), and surface radiometric temperature observations (Figure 4). RS-SVAT

root-zone estimates are based on the definition of a new root-zone soil mois-

ture proxy θTSM
rz which reflects the ability of the Two Source RS-SVAT model

(TSM) to balance net radiation and match surface radiometric temperature

observations given an assumption of unstressed canopy transpiration. Compar-

isons between this proxy and root-zone soil moisture observations demonstrate

a significant level of linear correlation (Figure 5). This correlation can be ex-

ploited through the application of a Ensemble Kalman filtering (EnKF) data

assimilation approach that integrates instantaneous θTSM
rz retrievals into con-
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tinuous WEB-SVAT modeling (Figure 6). Assimilation results demonstrate

the magnitude of improvement expected in two separate WEB-SVAT mod-

eling scenarios when θTSM
rz retrievals are sequentially assimilated. Marginal

improvement is noted for assimilation into a properly calibrated and forced

models (Cases 1 in Figure 7). However, added value - significant at a 93% con-

fidence level - is evident when the WEB-SVAT modeling approach is degraded

with regards to its initialization, precipitation forcing and parameterization

(Cases 2 in Figure 7). Overall, this suggests that the ultimate value of assim-

ilating RS-SWAT soil moisture proxies may be to mitigate the degradation of

WEB-SVAT modeling results associated with non-ideal model parameteriza-

tion, initialization and forcing.

A key issue for this type of analysis is the relative advantage of assimilating

θTSM
rz versus the direct assimilation of the TR observations. Figure 8 addresses

this issue by replicating Figure 7 for the case of directly assimilating TR obser-

vations. However, in contrast to Figure 7, no added value for WEB-SVAT soil

moisture predictions is associated with the assimilation of TR. A key reason

for this lack of success is the highly nonlinear relationship existing between

TR and θrz (Figure 9). The assimilation of θTSM
rz appears to circumvent this

nonlinearity (see Figure 5) - suggesting that the processing of TR observa-

tions through the RS-SVAT TSM prior to their assimilation may enhance the

ultimate value of thermal remote sensing observations for data assimilation

applications.

This analysis uses tower-based IRT observations instead of actual remote sens-

ing data. Consequently it neglects temporal sampling and accuracy limitations

that would be encountered when using actual remote sensing data. However,

Figure 10 demonstrates that days associated with the best remote-sensing
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based retrieval of TR (i.e. cloud-free days with high solar loading) are also the

same days in which θTSM
rz retrievals provide the greatest amount of information

concerning root-zone soil moisture. That it, satellite-based θTSM
rz retrievals will

tend to be available on the days in which they provide the most soil moisture

information. Consequently, limitations in the frequency of satellite-based TR

observations due to cloud cover will not compromise the accuracy of assimila-

tion results. Relatively modest sensitivity is also observed with respect to the

time of day (Figure 11), the accuracy of TR observations (Figure 12), and the

specification of vegetation parameters (Section 4) - implying that the approach

can be successfully scaled to satellite-based TR observations.

Nevertheless, two important limitations must be considered when interpret-

ing results. First, our particular choice of θTSM
rz as a soil moisture proxy is

based on the empirical interpretation of results in Figure 5 and not a firm

theoretical description of the relationship between θTSM
rz and θrz. Additional

study will be required to validate the relationship seen in Figure 5 over a wider

range of land surface and meteorological conditions. In addition, since θTSM
rz

measurements are linearly re-scaled to match the WEB-SVAT model’s clima-

tology, θTSM
rz assimilation is incapable of correcting for the impact of model bias

and/or an incorrect model dynamic range. However, it should be noted that -

due to large model-to-model variability in the climatology of WEB-SVAT soil

moisture predictions (Koster and Milly, 1997) - such rescaling is necessary for

the assimilation of any remotely sensed soil moisture product (Drusch et al.

2004). Given this reality, the eventual benefit of any type of remotely-sensed

soil moisture data for WEB-SVAT modeling is likely to be realized in the area

of improved anomaly detection rather than bias or dynamic range correction

(Crow et al., 2005b).

27



6 Acknowledgements

The authors would like to thank the logistical support in operating and main-

taining the OPE3 site as well as data collection and archiving efforts of Drs.

Craig Daughtry, Timothy Gish and Greg McCarty of the USDA-ARS Hydrol-

ogy and Remote Sensing Lab. The micrometeorological tower data were made

available through the efforts of biological science technician Mr. Andy Russ of

the Hydrology and Remote Sensing Laboratory.

References

Bosilovich, M.G., Radakovich, J.D., da Silva, A., Tolding, R., Frances, V.

(2006). Skin temperature analysis and bias correction in a coupled land-

atmosphere data assimilation system. J. Met. Soc. Japan, in press.

Drusch, M., Wood, E.F., and Gao, H. (2005). Observation operators for the

direct assimilation of TRMM microwave imager retrieved soil moisture. Geo-

phys. Res. Letts., 32, L15403, doi:10.1029/2005GL023623.

Campbell, G.S. and Norman, J.M. (1998). An Introduction to Environmental

Geophysics. Springer-Verlag, New York, 286 pp.

Cosby, B.J., Hornberger, G.M., Clapp, R.B., and Ginn T.R. (1984). A statis-

tical exploration of the relationships of soil moisture characteristics to the

physical properties of soils. Wat. Resour. Res., 20, 682–690.

Cosgrove et al. (2003). Real-time and retrospective forcing in the North Amer-

ican Land Data Assimilation System (NLDAS) project. J. Geophys. Res.,

108(D22), 8842, doi:10.1029/2002JD003118.

Crow, W.T., Li, F., and Kustas, W.P. (2005a). Intercomparison of spatially

28



explicit models for predicting surface energy flux patterns during the 2002

SMACEX field experiment. J. Hydrometeorol., 6, 941–953.

Crow, W.T., Koster, R., and Reichle, R. (2005b). Relevance of time-

varying and time-invariant retrieval error sources on the utility of

spaceborne soil moisture products. Geophys. Res. Lett., 32, L24405,

doi:10.1029/2005GL024889.

Dee, D.P. (1995). On-line estimation of error covariance parameters for atmo-

spheric data assimilation. Mon. Wea. Rev., 123, 1128–1145.

Franks, S.W., and Beven, K.J. (1999). Conditioning a multi-patch SVAT

model using uncertain time-space estimates of latent heat fluxes as inferred

from remotely-sensed data. Water Resour. Res., 35, 2751–2761.

Foken, T., Wimmer, F., Mauder, M., Thomas, C. and Liebethal, C. (2006).

Some aspects of the energy balance closure problem. Atmospheric Chemistry

Physics Discussions, 6, 3381–3402.

Gish, T.J., Walthall, C.L., Daughtry, C.S.T., and Kung, K.-J. S. (2005). Using

soil moisture and spatial yield patterns to identify subsurface flow pathways.

J. Environ. Qual., 34, 274–286, 2005.

Houser, P.R., Shuttleworth, W.J., Famglietti, J.S, Gupta, H.V., Syed, K.H.,

and Goodrich, D.C. (1998). Integration of soil moisture remote sensing and

hydrologic modeling using data assimilation. Wat. Resour. Res., 34, 3405–

3420.

Jones, A.S., Guch I.C., and von der Haar, T.H. (1998). Data assimilation of

satellite-derived heating rates as proxy soil wetness data into a regional

atmospheric model. Part: I: Methodology. Mon. Wea. Rev., 126, 634–645.

Kaimal, J.C., and Finnigan, J.J. (1994). Atmospheric Boundary Layer Flows,

Their Structure and Measurement, Oxford University Press, New York, 289

pp.

29



Koster R.D., and Milly, P.C. (1997). The interplay between transpiration and

runoff formulations in land surface schemes used in atmospheric models. J.

Climate, 10, 1578–1591, 1997.

Kustas, W. P. and Norman, J. M. (1997). A two-source approach for estimating

turbulent fluxes using multiple angle thermal infrared observations. Wat.

Resour. Res., 33, 1495–1508.

Kustas, W.P., Zhan, X., and Schmugge, T.J. (1998). Combining optical and

microwave remote sensing for mapping energy fluxes in a semiarid water-

shed. Remote Sens. Environ., 64, 116–131.

Kustas W.P., and Norman, J.M. (1999). Evaluation of soil and vegetation heat

flux predictions using a simple two-source model with radiometric temper-

ature for partial canopy cover. Agric. For. Meteorol., 94, 13–29.

Kustas, W.P., Anderson, M.C., Norman, J.M. and Li, F. (2006). Utility of

Radiometric-Aerodynamic Temperature Relations for Heat Flux Estima-

tion. Boundary-Layer Meteorology. (In Press)

Li, F., Kustas, W.P., Prueger, J.H., Neale, C.M.U., Jackson, T.J. (2005). Util-

ity of Remote Sensing Based Two-Source Energy Balance Model Under

Low and High Vegetation Cover Conditions. Journal of Hydrometeorology,

6, 878–891.

Margulis, S.A., McLaughlin, D., Entekhabi, D., and Dunne, S. (2002). Land

data assimilation of soil moisture using measurements from the South-

ern Great Plains 1997 Field Experiment. Wat. Resour. Res., 38, 1299,

doi:10.1029/2001WR001114.

Lakshmi, V. (2000). A simple surface temperature assimilation scheme for use

in land surface models. Water Resour. Res., 36, 3687–3700.

Meijerink, A.M.J., Gieske, A.S.M., and Vekerdy, D. (2005). Surface energy

balance using satellite data for the water balance of a traditional irrigration-

30



wetland system in SW Iran, Irrigration and Drainage Systems, 19, 89–105.

Montaldo, N., Albertson, J.D., Marcini, M., and Kiely, G. (2001). Robust pre-

diction of root zone soil moisture from assimilation of surface soil moisture.

Water Resour.Res., 37, 2889–2900.

Moran, M.S. (2003). Thermal responses as indicators of biophysical system

health and integrity. In Thermal Infrared Remote Sensing in Land Surface

Properties, Quattrochi, D.A., Luvall, J.C. (Eds.), CRC Press, Washington

D.C., 257–282.

Noilhan, J.,and Planton, S. (1989). A simple parameterization of land surface

processes in meteorologic models. Mon. Weath. Rev., 117, 536–549.

Norman, J.M., Kustas, W.P., and Humes, K.S. (1995). A two-source approach

for estimating soil and vegetation energy fluxes in observations of directional

radiometric surface temperature. Agric. For. Meteorol., 77, 263–293.

Reichle, R.H., Walker, J.P., Koster, R.D. and Houser, P.R. (2002). Extended

vs. ensemble kalman filtering for land data assimilation. J. Hydrometeorol.,

3, 728–740.

Reichle, R.H. and Koster, R.D. (2005). Global assimilation of satellite sur-

face soil moisture retrievals into the NASA Catchment land surface model.

Geophys. Res. Lett., 32, L02404, doi:10.1029/2004GL021700.

Sellers, P.J., Hesier, M.D., and Hall, F.G. (1992). Relations between surface

conductance and spectral vegetation indices at intermediate (100 m2 to 15

km2) length scales. J. Geophys. Res., 97(D17), 19033–19059.

Schuurmans, J.M., Troch, P.A., Veldhuizen, A.A., Bastiaanssen, W.G.M. and

Bierkens, M.F.P. (2003). Assimilation of remotely sensed latent heat flux in

a distributed hydrological model. Adv. Water. Resour., 26, 151–159.

van den Hurk, B., Bastiaanssen, W., Pelgrum, H., and Meijgaard, E.V. (1997).

A new methodology for assimilation of initial soil moisture fields in weather

31



prediction models using Meteosat and NOAA data. J. Appl. Met., 37, 1217–

1233.

von Storch, H, and Zwiers, F.W. (2002). Statistical Analysis in Climate Re-

search. Cambridge University Press, 494 pp.

Walker, J.P., Willgoose, G.R., and Kalma, J.D. (1999). One-dimensional soil

moisture profile retrieval by assimilation of near-surface measurements: A

simplified soil moisture model and field application. J. Hydrol., 2, 356–373.

Webb, E.K., Pearman, G.I., and Leuning, R. (1980). Correction of flux mea-

surements for density effects due to heat and water vapor transfer. Quar.

Jour. Roy. Meteorol. Soc., 106, 85–100.

32



Table 1

Description of WEB-SVAT modeling Cases 1 and 2.

Case 1 Case 2

Initialization Observed θrz Default (θrz=0.20 cm3cm−3)

Parameters Calibrated (b=2.8) Default (b=4.3)

Precip. Source Local Gauge NLDAS
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Fig. 1. Observed surface radiometric temperature (TR), leaf area index LAI,
root-zone soil moisture (θrz) and evapotranspiration (ET ) at the OPE3 study site
during the 2001, 2002, 2003 and 2004 growing seasons. Plotted TR and θrz values
are based on 14 LST (19 GMT) observations. ET observations are daily totals.
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ilation of the TSM/RS-SVAT root-zone soil moisture proxy (θTSM
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Fig. 7. Case 1 and 2 (see Table 1) scatterplots of WEB-SVAT and
WEB-SVAT/EnKF θTSM

rz assimilation results for all days in the 2001, 2002, 2003
and 2004 growing seasons.
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Fig. 10. a) Sensitivity of θTSM
rz root-zone proxy skill and observation frequency to

variations in the minimum solar loading (S↓) threshold and b) the effect of this
threshold on the accuracy of Case 2 WEB-SVAT/EnKF assimilation results (ob-
tained through the assimilation of θTSM

rz ).
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Fig. 11. The effect of TR acquisition time on the accuracy of Case 2
WEB-SVAT/EnKF assimilation results (obtained through the assimilation of
θTSM
rz ).
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