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An Observation System Simulation Experiment
for the Impact of Land Surface Heterogeneity on
AMSR-E Soil Moisture Retrieval

Wade T. Crow, Matthias Drusch, and Eric F. Wood

Abstract—Using a high-resolution hydrologic model, a land least the next generation of sensors. The advanced microwave
surface microwave emission model (LSMEM), and an explicit sensing radiometer (AMSR-E) on the EOS-AQUA spacecraft is
simulation of the orbital and scanning characteristics for the expected to have a3 dB resolution of75 * 43 km? at 6.925

advanced microwave sensing radiometer (AMSR-E), an observing . . .
system simulation experiment (OSSE) is carried out to assess theGHZ [5]. Even the introduction of new radiometer technology,

impact of land surface heterogeneity on large-scale retrieval and Such as synthetic aperture radiometry, is not expected to reduce
validation of soil moisture products over the U.S. Southern Great spatial resolutions below @0 30? km? [6]. Given such coarse
Plains using the 6.925 GHz channel on the AMSR-E sensor. Land spatial resolutions, the presence of spatial heterogeneity in land
surface heterogeneity impacts soil moisture products through g, face conditions (soil wetness, snow cover, vegetation cover
the presence of nonlinearities in processes represented by the d state) introd f ' lexiti ! the retrieval and
LSMEM, as well as the fundamental inconsistency in spatial an, S a,‘ e)intro u.cesa.rangeo complexi '_es inthe re ”e}’a an
scale between gridded soil moisture imagery derived fronin situ  validation of passive microwave-based estimates of physical pa-
point-scale sampling, numerical modeling, and microwave remote rameters like soil moisture. Underlying many of these difficul-
sensing sources. Results within the 575000 KmRed-Arkansas ties are fundamental contrasts in measurement scales between
River basin show that, for surfaces with vegetation water contents soil moisture data derived from spaceborne microwave sensors
below 0.75 kg/nt, these two scale effects induce root mean squared d soil it inf tion derived f th
errors (RMSEs) of 1.7% volumetric (0.017 cm? _, . /cm? . into and soi moisture information derived from other sources
daily 60 km AMSR-E soil moisture products and RMS differences ~ Following [7], support is defined to be the spatial area over
of 3.0% (0.030cm3,,../cm3..) into 60 km comparisons of which a given measurement (or prediction technique) integrates
AMSR-E soil moisture products and in situ field-scale measure- information. The spatial support of microwave satellite data is
ments of soil moisture sampled on a fixed 25-km grid. determined by its antenna gain function and the manner in which
Index Terms—Antenna gain function, hydrological modeling, this function assigns weight to various portions of the sensor’s
passive microwave remote sensing, soil moisture. footprint. For AMSR-E and SSM/I antenna patterns, the gain
function can be approximated by an appropriately parameter-
ized two-dimensional (2-D) Gauss function [8]. As presently en-

. . ) visioned [5], the AMSR-E soil moisture validation plan relies on
L AND surface heterogeneity and its effect on modeling angmparisons between satellite derived soil moisture estimates

observing surface processes has concerned climate mgdqin situ observations, either from operational soil moisture
elers, hydrologists, and remote sensing scientists for the Iagtworks or specialized soil moisture validation networks. An
twenty years [1]-[3]. The retrieval of physical climate variablegnpiicit assumption being that point-supporiaditu soil mois-
from passive microwave remote sensors is of particular inter@gfe observations, or the weighted spatial average of a set of such
because of current antenna technology, which results in IQ§servations, can be scaled up to the footprint-sealéo km).
spatial resolution footprints at frequencies suitable for remof@e accuracy of this assumption depends on the spatial vari-
sensing of soil moisture. The special sensor mlcrowavellmagﬁﬁmy [9], [10] and autocorrelation [11] of the underlying soil

(SSM/I) sensor, for example, has-& dB resolution of69 «  mojsture field as well as the methodology applied to selecting
43 km* at 19 GHz. While such-3 dB values are often referred sampling sites [12].

is important to acknowl_edge that half of the information intesate|lite-derived parameters and the coarse (typically 10 to
grated by the antenna will actually come frombeyondtB&B 100 km) numerical grids that physics-resolving climate and
area [4]. Relatively coarsg> 507 km?) resolutions will char- weather prediction models operate on. Even when satellite

acterize spaceborne passive microwave radiometers throughaksurements are gridded onto the same computational grid
as the numerical model, the support of the “grid-averaged”
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Soil moisture values derived from microwave remote sensil
and assigned to various grids will not be uniquely determine 25 km
by microwave emission from within that grid, nor will they be ; c:‘i:"ngsPttf‘eTs Z"“'}I‘é‘g‘_tgd
derived from an equal weighting of emission occurring fror product soil moisture
all areas of the grid. product

The coarse spatial support implied by microwave gai
functions has enhanced consequences when retrieved bri Forward LSMEM
ness temperature values are processed through nonlir TBackwards LSMEM
algorithms or models. Nonlinear model physics dictate th
grid-scale model output will be sensitive to the presence,
absence, of subgrid-scale spatial variability in inputs. In a s 25 km
moisture/brightness temperature context, the issue is whet ?ﬁé‘gjgd
a footprint-scale measurement of brightness temperature brightness
adequate to estimate footprint-scale soil moisture or whett AMSR-E | {emperature
nonlinearities in microwave emission modeling dictate th: Sampling product

and Gridding

some consideration be given to subfootprint-scale heterogent
in soil moisture [13], vegetation [14], or soil properties [15].
The most promising sensor for microwave soil moisture re-
mote sensing in the near future will be the 6.925 GHz AMSR-Eg. 1. Schematic diagram of the OSSE procedure.
radiometer, currently planned for launch aboard the EOS-PM
(AQUA) satellite in late 2001. This sensor will be capable ofWW N
providing daily brightness temperature imagery for nearly € ’
locations on the globe [5]. Understanding the effects of differe
measurement supports for soil moisture fields derived from rr
crowave remote sensors, numerical models, and point-gtale
situmeasurements is critical for evaluating the quality of large
scale soil moisture products derived from microwave remo
sensors. In this paper we carry out an observing system si
ulation experiment (OSSE) for AMSR-E to evaluate the effe
of subfootprint-scale land surface heterogeneity on the retrie’
and validation of soil moisture products.

ARM-CART

Oklahoma

Il. OSSE RROCEDURE

The complete OSSE experiment consisted of the four paiw
ShOWI’]'In F|g' 1:_ a simulation of surface Cond.ItIOI”IS based .On.hlyi@. 2. Location of Red-Arkansas River basin within the U.S. Southern Great
drologic modeling, forward land surface microwave emissialains. Also shown are the ARM-CART site boundaries and SGP'97 transect.
modeling, a simulation of AMSR-E retrieval and gridding of

brightness temperature products, and backward land surface mj-. .
crowave emission modeling of the simulated AMSR-E brigh{-e{”eval and processing of AMSR-E products are represented

ness temperature products. using angled bracke} notation. To reflect current processing

. . .glans,I}, retrievals were gridded into 25-km grid-cells. The
Surface conditions were derived from 1-km: hydrologi ridded?; product retrieved by the AMSR-E sensor can be rep-
modeling of the entire Red-Arkansas River basin for the ti v P y P

period April 1, 1994 through July 31, 1994 (Fig. 2). Modeletﬁesenmd as

surface temperaturél;) and soil moisture(@) fields were .
processed through a forward land surface microwave emission {f(6.1;,2)) = (Tp). @
model (LSMEM) to produce top of the atmosphere brightne
temperature imageryZ;). Notationally, the LSMEM will be
represented by and can be summarized as

-91W, 31N

si”?‘le LSMEM represented in (1) can be inverted to convert inputs
of T} into 8

F(6,1,,7) =T, (1) UL, T, 2) = 6. ©)
where(z) stands for various land surface parameters usedThis backward LSMEM process was applied to the griddgd
the forward microwave emission process. Next, an explicit sinmagery produced using (2). Since the backward process was
ulation of AMSR-E brightness temperature sampling was pewun at the 25-km grid-scale, the land surface parameters repre-
formed on the simulate®; imagery. The simulation mimiced sented byz in (1), as well asl’, were linearly averaged up to
the orbital characteristics, scan patterns, gain function sampli2§,km. Square brackef ] are used to represent taking a simple
and gridding procedures planned for actual AMSH;Eprod- linear average. Using this notation, the grid-scale AMSR-E soil
ucts. The spatial sampling and gridding characteristics for thepisture product can be representedas((1;), [1%], [Z])-



1624 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 8, AUGUST 2001

TABLE |
NOTATION FOR VARIOUS 25-km SIL MOISTURE PRODUCTS
<ESTAR
Notation Description of Soil Moisture Product ® TOPLATS
9 Linearly averaged soil moisture E 025 1 ]
{0}, Center 1 km pixel sampled within each 25 km pixel § o Q<> L Q
{0}n Mean of 7 1 km pixels sampled within each 25 km pixel >2 <><>§
T Inversion based on AMSR-E retrieved and gridded T, %‘ 0.20 r&> > 7
F U Inversion based on linearly averaged T, é L4 * °
£ °
5o ¥ o0 *e o |
The critical issue is the degree to which this simulate ? o & o
AMSR-E soil moisture product differs from a linear aggrega &
tion of the original 1-km soil moisture imagery at (or above
the —3 dB resolution of the AMSR-E antenrfa- 60> km?). 010 69 174 179 184 189 194 199
As discussed earlier, differences between the products are Julian Day in 1997

tributable to a combination of inconsistencies in spatial support

; ; ; ; o g. 3. Modeled (TOPLATS) versus remotely sensed (ESTAR) surface
due to gain function sampling effects and nonlinearities fjj)il moisture results for the entire SGP’97 transect during the SGP’97 field

the backward LSMEM process. Replacitifi,) with a simple  campaign.
linear average[7;] eliminates error in the imagery due to
gain function sampling effects, however, unless the backwey\c_i TOPLATS Hydrologic Modeling

LSMEM processf—! is linear with respect to all inputs ] )
Noon surface (5 cm) soil moisture and surface tempera-

ture data were obtained by running the hydrological model
TOPLATS (TOPMODEL-based land-surface-atmosphere
), L), 7)) # 18] (4) transfer scheme) [16] on a 1-km grid over the entire 575000
km® Red-Arkansas River basin in the south-central United
Comparison ofd] and £ ~1([Z3], [73], [Z]) highlights the effects States (Fig. 2) from April 1, 1994 to July 31, 1994. TOPLATS
of nonlinearities in the microwave retrieval of soil moisturecalculates a full water balance for three soil layers and
While comparison of#] and £~ ({13), [T3],[Z]) reflects the incorporates TOPMODEL concepts to describe the lateral
impact of both nonlinearities in the LSMEM and antenna gawedistribution of subsurface water in response to topographic
function sampling effects. and soil texture variability [17], [18]. Using soil moisture
Two additional products{é}. and {#},,, were also con- information provided by the water balance, the model derives
structed to examine the performance of various validati@n surface temperature by numerically solving the surface
strategies. The first strategy{#}.) was based on samplingenergy balance equation. Model input was derived from a
the 1-km soil moisture pixel at the center of each 25-kmumber of high resolution data sets including 4-km WSR-88D
grid-cell in the original hydrologic model output and using thiprecipitation imagery, 1 km GOES solar radiation imagery,
sampled value to characterize the entit8 — km?* grid-cell spatially interpolated NCDC surface airways meteorology data,
area. The second set of produ¢{#},,) was based on spatialand 1-km soil and vegetation classifications. The model was
averages obtained through a random sample df-km soil calibrated using naturalized stream flow data for five subcatch-
moisture pixels within each 25-km grid-cell. The validatioments of the Red-Arkansas River basin. Initial conditions were
strategies provide an opportunity to assess the degree to whialculated by running a low-resolution version of TOPLATS
differences between the benchmark imagy and imagery over 314 subcatchments of the Red-Arkansas basin from April
derived from microwave remote sensifgt((Z3), [73],[#]) 1, 1992 to April 1, 1994.
can be quantified based on information sampled at the 1-kmBoth the water and the energy balance component of
field-scale. TOPLATS have been extensively validated at the point-scale
Analysis will focus on comparing the benchmark soifor sites within the U.S. Southern Great Plains [16], [19]. More
moisture imagery#4] to the simulated AMSR-E soil moisturerecent work has focused on validation at larger spatial scales.
products f =1 ((13), [T3], [z]) and f=([13], 23], [#]) and the Fig. 3 shows comparisons made during the 1997 Southern
simulated validation soil moisture produc{é}. and {#},. Great Plains (SGP'97) field experiment between TOPLATS
Comparisons will be made at a range of scales up to ambdeled surface soil moisture and estimated soil moisture
beyond the~ —3 dB resolution of the sensor. For conveniencdjased on ESTAR (L-band) microwave remote sensing over
Y)Y, 1], [2]) will be referred to asf~'((73)) and the SGP’97 transect shown in Fig. 2 [20]. No large-scale soil
F~Y[5), [1.),[2]) as f~Y([1;]). Notation for 25-km soil moisture data sets were available for the time period studied
moisture products is summarized in Table I. All soil moishere (1994 growing season), but the energy balance portion
ture values will be given in terms of volumetric percentagesf the model performs very well when compared to spatially
(100 % cm?_,../cm? ). The following sections will describe averaged flux tower data within tH360? — km? ARM-CART

soil

each component of the OSSE procedure in greater detail.  study site (Figs. 2 and 4).
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Fig. 4. Modeled (TOPLATS) versus situ measured (ARM-CART bowen rig 5 Dynamic range of simulated horizontally-polarized brightness

ratio towers) daily averages of latent heat flux for the entire ARM-CART doma't’émperature data at a spatial resolution of lbBtween May 1, 1994 and July

during the 1994 growing season. 31, 1994 versus soil roughness). Also shown is the dynamic range observed
for similar measurements made by the scanning multichannel microwave

B. Land Surface Microwave Emission Modeling radiometer (SMMR) at 6.6 GHz [33].

The land surface microwave emission model (LSMEM) as ) .
described in [21] was implemented to simulate brightness tef€¢ause of a temporal gap in the data archive of advanced very

peratures at the top of a canopy layer. All simulations were baddgh resolution radiometer (AVHRR) imagery during the 1994
on noontime soil moisture and surface temperature results ggewing season, NDV_I values for the region were derived from
rived from TOPLATS modeling. The dielectric constant of thdnN@gdery acquired during June 1995. The effective surface tem-
soilwas computed after [22], and the dielectric constant of watkpraturer; was derived from T_OPLATS pred|c_t|on§ of surface
was parameterized after [23]. The reflectivity of the smooth syfnd_deep soil temperature using the approximation presented
face can either be calculated using the plane stratified me[32]- For vegetation fractional coverage, baseline values of
model proposed by [24] or the two layer model published 0% for forests, 80% for tall grass/crops, an_d. §O% for s_hort
[25] and [26]. Since TOPLATS calculations provide integrategra,SS/ShrUbs areas were chosen and a sensitivity aryalyss, de-
water contents for the top 5-cm soil layer, the two layer modgf'ied in Section llI-A, was performed to assess the impact of

was used in this study, and the rough soil emissivity was tthcertainty in these values on results. The vegetation classifi-

calculated after [27]. The vegetation was taken into account f§@tion used did not distinguish between winter wheat and other

lowing [28]. The atmospheric contributions to the TOA bright_agricultural crops. To compensate, 60% of the agricultural fields

ness temperature at 6.9 GHz were found to be small [29]. Mot¥€re assumed to be winter wheat and therefore contained no

over, water vapor and cloud liquid water produce only littie var€9€tation after a harvest date of June 1.

ation at this specific frequency [29]. Therefore, no atmospheric Strface soil roughness (RMS heigh{27]) values used in
effects were considered in this study. the OSSE were derived from comparisons of LSMEM results to

The single scattering albedo and the vegetative structure ég_aceborne brightness temperature observations. Unfortunately,
efficient were held constant at 0.04 [30] and 0.0027 [21] rQo validation data set for brightness temperatures near 6.9 GHz

spectively, for all vegetation and soil texture types. Clay arﬁi('St,s for the Southern Great Rlalns region during the 1994
sand percentages and soil bulk density values were assigHEQVing season. As an alternative, LSMER results were
according to the STATSGO soil texture classification and tffMPared to scanning multichannel microwave radiometer
USDA soil triangle. One soil layer with a depth of 5 cm wa$>MMR) 6.6 GHz data from 1978 to 1987 processed at & 1.5

assumed. This is likely deeper than the true penetration deffolution [33]. The study area included sparsely vegetated
of microwave measurements made at 6.9 GHz [31]. Howev?feas in Texas as well as forested areas in Missouri. Results
computational limitations demanded that some vertical resof®! the summer months (May to August) over_thre] s'parse:ly

tion be sacrificed in order obtain the required horizontal detalf96tated area give a day-time dynamic range in horizontally

Vegetative water content (VWC) values for agricultural crogdclarized brightness temperature of 218 to 299 K (Fig. 3 in
were chosen to match those measured during the SGP'97 experl): FOr the heavily vegetated area, a dynamic range of 238

iment [6]. Values for grass and shrub areas were derived usid 28? K'was observed. Fig. 5 compares the dynamic range
the normalized difference vegetation index (NDVI)VWC rela®f 1-5 -scale brightness temperatures calculated between May
tionship presented by [6] and July 1994 using TQPLATS and the L_SMEM for a range of
o values to the dynamic range observed in 8.5 years of pooled
daytime growing-season (May to August) SMMR observations.

kg _ 2 .
vwe [m_Q} = 19134« NDVI" — 3214 » NDVL. () A o value of 0.4 cm was found to provide the best match to the
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observed dynamic range. The slightly larger range observed in
the SMMR data is probably due to a longer sampling period
(8.5 years versus 1 year) as well as the inclusion of August in
the SMMR data. Soil roughness measurements at small scale
have resulted in values up to 0.36 cm for a spectral region from
4.5 to 7.4 GHz [34], [35]. However, if the parameterization
of rough soil is simple and does not take into account the
horizontal autocorrelation length the effective soil roughness at
a 30 viewing angle was found to be larger (up to 0.8 cm) [34].
The functional dependency of the effectiweon viewing angle
and frequency is almost unknown. Given that the calibrated

f—y
LHF ki

. . . EOS-AGQLA
value of 0.4 cm falls within the theoretical range given by Track
[34], it was taken to be a representativeralue for the entire
Red-Arkansas basin. Fig. 6. Scan and-3 dB gain function patterns for a single AMSR-E overpass

superimposed on the Red-Arkansas River basin. For display purposes, only
every tenth gain function pattern in both the track and scan direction is shown.

C. Simulation of AMSR-E Orbital and Sampling

Characteristics Y1), [T.],[#])) and soil moisture based on linear aggre-

Based on the sun-synchronous orbit of the EOS-AQUA plagation of 7, (i.e., f *([Z3])). In both cases, fields of 1-km,
form and scanning characteristics of the AMSR-E 6.925 GH®il clay and sand fractions, vegetation water content (VWC),
radiometer, hypothetical AMSR-E overpasses were simulatedd fractional vegetation cover were linearly averaged up to 25
for a 60-day period starting June 1, 1994 using code providedky. Since VWC is strongly nonlinear with respectfig linear
Dr. E. Njoku of NASA's Jet Propulsion Laboratory, Pasadenaggregation will not necessarily produce the correct effective
CA. The orbital characteristics of the EOS-AQUA platform angarameter value at 25 km. The use of a more sophisticated
the scan pattern of the AMSR-E sensor produced 153 overpas¥éective VWC parameter may reduce the magnitude of errors
with at least partial coverage of the Red-Arkansas River bagitiributed to nonlinearities in the LSMEM. However, in this
during that time period. For each overpass, a new scan pattenalysis such an effect is simply considered a contributor to
was mapped for every 10 km traveled by the sensor. The siiror caused by the interaction of land surface heterogeneity
ulation simplified actual sensor behavior slightly by not increwith nonlinearities within the LSMEM.
menting satellite motion during the computation of each scanFor certain pixels, the impact of land surface heterogeneity
pattern. Within each scan, the simulation mapped the location®fstrong enough that griddef}, values could not be inverted
individual footprint locations to the surface of the earth. A fulinto a physically realistic soil moisture solution. In these cases,
AMSR-E radiometer scan will contain 196 separate footprint&/0 separate strategies were employed. In the first, soil mois-
locations. To ease the computational burden of the simulatidute values for these grid cells were set equal to a regionally av-
the location of only every tenth footprint along each scan w&saged soil moisture value based on areas of the basin Where
recorded. The remaining footprint centers were located usivglues were successfully inverted into soil moisture. The second
linear interpolation. Each footprint center was then used to ta&éategy assigned soil moisture values to be either residual (for
a weighted average of the simulated 1-Kinfield weighting unrealisticly low results) or saturation moisture levels (for un-
given by the Gauss function approximation to the 6.925 GHealisticly high results).
AMSR-E antenna gain function [4]. Scan patterns and antenna
gain function sampling geometry for a single overpass of the Ill. RESULTS

Red-Arkansas River basin are shown in Fig. 6. Any footprint lo- Fig. 7 compares imagery of: the benchmark 25-km grid-scale

cation where more than 10% of the gain function weighting fell i moisture produd#] derived from linear aggregation of the
outside of the TOPLATS domain was omitted from the analySiériginal 1-km TOPLATS field, the simulateih situ sampled

Since the sampling rate of the sensor (one sample fFekrid) o1 {6} derived from sampling the center 1-km pixel found in

. . 2 2 .
is smaller than the area of each grid-o@b™ km™), multiple o555 «m grid-cell, and the simulated AMSR-E soil moisture

footprint centers will fall within a single 25-km grid-cell. All roduct/~((Z;)) for a single day (June 30, 1994) during the
T}, retrievals whose footprint center fell within a given grid-cel 0-day simulation. Fig. 8 shows a 60-day tim,e seridgof 6}

were averaged (with equal weighting) to obtaiff;avalue for ndf~L((T3)) values for a typical 25-km grid-cell. Differences

the grid-cell. Any 25-km grid-cell that contained a footprint Io'clearly exist between the three products

cation omitted due to model domain edge effects was itself re-
moved from the analysis. A. Vegetation Effects

. Large differences betweefit ! ((7;,)) and[#] occur primarily

D. Inversion of the LSMEM in the heavily vegetated easter(r<1 a%)d extEe]me western edges of
An iterative root finder was used to numerically inverthe Red-Arkansas River basin. The interplay between vegeta-

the LSMEM and convert gridded; fields back into soil tion amount and sensitivity to land surface heterogeneity is not

moisture. Two separate fields were constructed in this way: ssilrprising due to the well known reduction in the sensitivity

moisture based on sampling of AMSR-E retrievallgf (i.e., of 7; to soil moisture over heavily vegetated regions [36] and
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Fig. 7. Sample soil moisture imagery from a single day (June 30, 1994) c 0 0.5 1 1.5
the simulation. Shown are examples of the simulatesitu {6} ., simulated 2
AMSR-E f~1({T3)), and benchmarfé] products. Also shown is the original Maximum VWC Threshold [kg/m’]
TOPLATS 1-km soil moisture image from which all three products were
derived. Fig. 9. Retrieval error {~1((T;)) versus[d]) at 50-km associated with

masking portions of the Red-Arkansas River basin with VWC levels above a
certain threshold. Also plotted are areal fractions of the basin that exceed the
50.0 VWC threshold.
- {8},
45.0 [ — @ ]
=== f(<T>)

40.0 -

35.0 r

30.0 -

===y
1780 ki

25.0

Soil Moisture [% Volumetric]

Fig. 10. Portion of the basin (in black) masked due to 100-km VWC values
exceeding the 0.75 kgfrthreshold.

20.0 -

15;1?.m7e1 T Jul‘y1 Ju1§/15 - of the basin yet reduces absolute RMS ret_rieval errors from
1994 2.4% (0.024 cr,,../cm2 ;) to 1.8% volumetric. The impacts
of lowering the VWC threshold are even more dramatic for

Fig. 8. Sample time series for a typical 25-km pixel within the Red-Arkansdfie case of setting failed retrievals to residual or saturation. To
River basin. Shown are examples of the simulateditu {¢}., simulated ensure that reported errors are not inflated by the inclusion of
AMSR-E f~*({T)), and benchmarf6] products. heavily vegetated regions, surfaces with VWC values exceeding

0.75 kg/nt are masked from all subsequent calculations. Such
the strong nonlinear relationship between VWC &pdn the masking also eliminates the sensitivity seen in Fig. 9 to the
LSMEM. Fig. 9 plots the 50-km root-mean-squared (RMSJtrategy selected for assigning values to grid-cells where soll
retrieval error §~1({1;)) versus[f]) associated with masking moisture retrieval fails. Fig. 10 shows the portion of the basin
portions of the Red-Arkansas River basin that contain vegexceeding a 100 km 0.75 kgnVWC threshold and provides
tative water content (VWC) values above a certain thresholal.sense of the spatial domain over which subsequent results
Results are taken from all imagery simulated between Junedn be considered representative. The areal fraction masked in
and July 31, 1994 and include both strategies for assigniR@. 10 appears larger than the fractions plotted in Fig. 9 since
soil moisture values to grid-cells with physically unrealisticnany of the heavily vegetation regions were already masked
retrievals (see Section I1.D). Also plotted is the fraction of thim the analysis based on their proximity to the basin boundary
basin—excluding areas masked due to edge effects—pasggee Section 1I-C).
the VWC threshold criteria. The figure suggests that removing The strong interplay between vegetation density and sensi-
a handful of heavily vegetated pixels from the analysis sigivity to surface heterogeneity also suggests that results will
nificantly reduces retrieval error. For instance, in the case lbé sensitive to the manner in which vegetation is parameter-
assigning failed retrievals to the basin soil moisture meai@ed. This is potentially problematic given the uncertainty sur-
setting the VWC threshold to be 0.75 kg/masks only 10% rounding reasonable fractional cover values for various vege-
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Fig.11. Contour plot of average RMSE in percentage volumetric soil moisture for simulated AMSR-E prbdtf®:}) at various spatial and temporal scales
of comparison.

tation types. Originally, all vegetation classifications were asdre retrieval process, the simulated AMSR-E soil moisture im-
signed to one of three broad categories: forest, tall grass/cragery is, on average, slightly drier than the benchmark imagery
and short grass/shrubland. These three vegetation types werawt$ an overall absolute bias 6f0.2% volumetric. A time se-
signed default fractional vegetation covers of 90%, 80%, amiés of daily RMSEs (not shown) demonstrates that while abso-
60%, respectively. Simulations were also performed for twate errors in soil moisture retrieval fall slightly during dry-down
other vegetation regimes during June 1994: a heavier regime tbagnts, relative errors are essentially constant over the course of
increased the fractional coverage of each classification by 1@k& simulation.

and a lighter regime with coverage percentages decreased birrors in thef =1 ((1;)) imagery are due to a combination of
10%. The percentage changes were absolute, not relative. Atghe function sampling effects and the presence of nonlinear-
50-km scale, moving from the light to heavy regime was assodies in the backward LSMEM process. Comparifig* ([7;])

ated with an increase in absolute RMS retrieval errors from 1.7#6agery, which utilizes a simple linear aggregatioriipfover

to 2.0% volumetric. Such low sensitivity over a wide range afach 25-km grid square, anfd*((73)) isolates the impact of
fractional coverage values suggests that uncertainty concerngagn function sampling effects. Likewise, differences between
the true fractional vegetation coverage for the region will indugg=*([73]) and benchmark resul{¢]) are due solely to non-

relative errors of less than 20% into results. linearities in the LSMEM. Fig. 12 plots both comparisons. Be-
tween 25 and 100 km errors associated with antenna gain func-
B. Time and Space Structure of Retrieval Errors tion sampling effects are clearly larger than those caused by non-

Differences betweef] and f~1({1;)) at various levels of linearities in the LSMEM.
aggregation in time and space are summarized in Fig. 11. At __ o
the finest time and space resolutions (1 day and 25 km), abSo- 1iMme and Space Structure of Validation Error
lute RMSEs in the simulated AMSR-E products are onthe orderThe time and space structure of differences between the
of 3.1% volumetric (0.031 cffy,,.,/cm’. ;). These errors fall as simulated AMSR-E retrieval§f 1 ((73))) and the simulated
comparisons are made at coarser spatial scales. Absolute amagery derived fromin situ sampling({f}.) are shown in
levels of 1.8% and 1.1% volumetric soil moisture are found &ig. 13. These results simulate the ability of a field-scale
50 and 100 km respectively. The effects of temporal aggregampling strategy on a fixed 25-km grid to validate AMSR-E
tion appear more muted. Summiyig* ((Z;)) imagery upto 60 results. On a daily time scale, absolute RMS differences of
days results in only a 20% relative reduction in error levels, sug-2%, 3.3%, and 1.8% were found at 25, 50, and 100 km respec-
gesting that retrieval errors are dominated by biases that pertiigly. As in Fig. 11, temporal aggregation in Fig. 13 has little
up to seasonal time scales. Due to nonlinearites in the soil maffect on the observed RMSEs. The differences seen in Fig. 13



CROW et al. OBSERVATION SYSTEM SIMULATION EXPERIMENT 1629

5.0 , . analysis domain area. This threshold is half of the.5 kg/m”
value given as a threshold for AMSR-E soil moisture retrieval
o— £'(7,]) vs. [6] (Nonlinearites in the LSMEM) [5]. The inclusion of areas up to the 1.5 kg/ievel increases
- Om-=Of(<T,>) vs.f ([T,]) (Gain Function Effects) ] retrieval errors by about 20% if nonretrievable pixels are setto a
basin mean and 100% if physically unrealistic retrievals are set
to either saturation or residual (Fig. 9). Clearly, the first strategy
y is preferable if surfaces with VWC values above 0.75 Kgare
N to be included in operational soil moisture retrievals.
~ Despite the potential underestimation of heterogeneity and
. ] relatively conservative masking of vegetation, results suggest
that land surface heterogeneity will impact the quality of
AMSR-E soil moisture products. The stated accuracy goal
for AMSR-E soil moisture retrieval is 0.06 g/ém(~ 6%
volumetric soil moisture or 0.06 ciy,../cm:,;) at scales
equivalent to the-3 dB resolution of the AMSR-E antenna
00, 50 75 00 (~ 602 km?) [5]. Fig. 11 suggests that, for daily imagery, scale
Spatial Scale of Comparison [km] effects alone will produce absolute errors of 1.7% volumetric
(0.017 cni,,.../cm2 .)) when comparisons are made at 60 km.
Fig. 12. Decomposition of total retrieval error into components due @®his error is comprised of two separate components: error
nonlinearities in the LSMEMA"([1;]) versug(6]) and antenna gain function 455qciated with obtaining gridded products from sampling het-
sampling effects{—*((T%)) versusf ~*([T3])). . . . . .
erogeneoud;, fields with nonlinear gain functions and effects
associated with the interaction of nonlinearities in LSMEM

processes with land surface heterogeneity. Fig. 12 demonstrates

versusif]) ar_1d the validatiqn errors asso_ciated with attemptin[gat the gain function sampling error is greater than the effect
to characterize a 25-km grid-cell with a single 1-km sample. 4 o nlinearities in LSMEM processes. The conclusion that the
a daily time step, Fig. 14 plots the observed differences betw%?ﬁbact of LSMEM nonlinearities is relatively minor compared

retrieval and validation products for a rangesitusampling  , gther potential error sources is consistent with results from
strategies. As the density of soil moisture sampling |ncreas§§eviouS studies [13], [15]

the total observational erroff (*({1;)) versus{#},, or {6}.)
converges onto the retrieval errgi(*({1;)) versus(t]).
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are comprised of both AMSR-E retrieval errorg=¢((73))

Fig. 13 summarizes the simulated differences between field-
scalein situ samples and AMSR-E soil moisture products. At
the —3 dB resolution-scale of the AMSR-E antenfa 60 km),

IV. DISCUSSION ANDCONCLUSIONS the observed RMS difference betweiensitu measurements,

This observation system simulation experience (OSSE) des#npled on a fixed 25-km grid, and simulated AMSR-E prod-
solely with the impact of land surface heterogeneity on the acausts is 3.0% (0.03 cfy,../cmZ. ). Validation errors can be re-
racy of soil moisture products derived from passive microwawkiced through denser sampling grids and/or the application of
remote sensing. Other potential sources of error in satellite reore sophisticated spatial statistics (i.e., interpolation or block
mote sensing products are ignored. For instance, the same kniging). However, it should be noted that the 1-km field-scale
crowave emission model and parameters are used in the forwaumgport of the simulated validation measurements compares fa-
LSMEM as are used in the backward retrieval of soil moisturgorably to the essentially point-scale samples taken within op-
The quality of the model calibration is degraded only by sca@sational soil moisture networks. In addition, the 25-km sample
effects and nonlinearities associated with averaging parametgpacing used is finer than the spacing found within the lllinois
and reapplying the model at a coarser grid-scale (25 km). In MWater Survey Network (93 km), the Oklahoma Mesonet Net-
ality, ignorance of the true radiative transfer parameterizatiovork (35 km), or the Southern Great Plains ARM-CART net-
will constitute a major source of error in microwave soil moiswork (> 50 km) [11]. Fig. 14 demonstrates the advantage of
ture retrieval at 6.9 GHz, especially over vegetated surfaces [3@@nser sampling strategies that may be feasible within special-
In addition, spatial heterogeneity in both soil roughnegsand ized soil moisture validation networks or during intensive field
the vegetation structure coefficient was not represented in thampaigns.
analysis. More detailed representations of these land surface pa@ne hope has been that validation and retrieval errors
rameters would likely enhance nonlinear effects and increaseassociated with spatial heterogeneity can be filtered through ag-
trieval errors. gregation in time. Figs. 10 and 13 suggest that up to time scales

Sensitivity to spatial heterogeneity is positively correlatedf 60 days, such a strategy will not appreciably reduce offsets
with the density of vegetation cover. Fig. 9 demonstrates tHagtween AMSR-E soil moisture products and either bench-
retrieval errors are sensitive to the choice of a threshold forark products (Fig. 10) oin situ field-scale measurements
masking densely vegetated regions and that a large portion(ig. 13). Fig. 8 shows a two-month time series[@ff {6},
the errors found within the Red-Arkansas basin are concentraged! f~1({Z})) values for a typical 25-km grid-cell. Despite
in a relatively small number of heavily vegetated grid cells. A&ampling a number of consecutive rainfall/dry-down cycles
VWC threshold of 0.75 kg/fhwas chosen as a tradeoff betweeand a range of hydrologic conditions, both the validation error
minimizing the impact of densely vegetated and maximizing ti{gé} . — [6]) and the AMSR-E retrieval errdif =* ((73)) — [6])
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Fig.13. Contour plot of average RMS difference in percentage volumetric soil moisture between the simulated viifladod AMSR-Ef —!({T%)) products
at various spatial and temporal scales of comparison.

9.0

' ‘ overpass) and dry-down/wet-up dynamics with daily to weekly

time scales is not an effective way of filtering validation and

retrieval errors associated with land surface heterogeneity.
While hampering filtering attempts, the persistence of a rela-

©
=)

0—Of(<T,>) vs. {8},
—o (<T,>) vs. {8},

7.0 |:|—|:|f_1(<Tb>) vs. {6}, 7 . . . . .
——o/'<T>)vs. {6}, tively constant bias in simulated AMSR-E retrievals suggests
6.0 OO (<T>) vs. {0}, i that spatial heterogeneity will not prevent validation and re-

A—Af"(<Tb>) vs. {8},

Fl<T>) vs. [6] | trieval products from accurately representing temporal fluctu-

ations in coarse-scale soil moisture. Such a simplistic temporal
7 error structure may lend itself to correction through either cali-
bration adjustments in the retrieval process or assimilation tech-
nigues that combine model predictions of surface soil moisture
with AMSR-E retrievals.
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