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Abstract—Using a high-resolution hydrologic model, a land
surface microwave emission model (LSMEM), and an explicit
simulation of the orbital and scanning characteristics for the
advanced microwave sensing radiometer (AMSR-E), an observing
system simulation experiment (OSSE) is carried out to assess the
impact of land surface heterogeneity on large-scale retrieval and
validation of soil moisture products over the U.S. Southern Great
Plains using the 6.925 GHz channel on the AMSR-E sensor. Land
surface heterogeneity impacts soil moisture products through
the presence of nonlinearities in processes represented by the
LSMEM, as well as the fundamental inconsistency in spatial
scale between gridded soil moisture imagery derived fromin situ
point-scale sampling, numerical modeling, and microwave remote
sensing sources. Results within the 575 000 km2 Red-Arkansas
River basin show that, for surfaces with vegetation water contents
below 0.75 kg/m2, these two scale effects induce root mean squared
errors (RMSEs) of 1.7% volumetric 0 017 cm3

water
cm3

soil
into

daily 60 km AMSR-E soil moisture products and RMS differences
of 3.0% 0 030 cm3

water
cm3

soil
into 60 km comparisons of

AMSR-E soil moisture products and in situ field-scale measure-
ments of soil moisture sampled on a fixed 25-km grid.

Index Terms—Antenna gain function, hydrological modeling,
passive microwave remote sensing, soil moisture.

I. INTRODUCTION

L AND surface heterogeneity and its effect on modeling and
observing surface processes has concerned climate mod-

elers, hydrologists, and remote sensing scientists for the last
twenty years [1]–[3]. The retrieval of physical climate variables
from passive microwave remote sensors is of particular interest
because of current antenna technology, which results in low
spatial resolution footprints at frequencies suitable for remote
sensing of soil moisture. The special sensor microwave/imager
(SSM/I) sensor, for example, has a dB resolution of

km at 19 GHz. While such dB values are often referred
to as the “effective field of view resolution” for the sensor, it
is important to acknowledge that half of the information inte-
grated by the antenna will actually come from beyond thedB
area [4]. Relatively coarse km resolutions will char-
acterize spaceborne passive microwave radiometers through at
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least the next generation of sensors. The advanced microwave
sensing radiometer (AMSR-E) on the EOS-AQUA spacecraft is
expected to have a dB resolution of km at 6.925
GHz [5]. Even the introduction of new radiometer technology,
such as synthetic aperture radiometry, is not expected to reduce
spatial resolutions below 10to 30 km [6]. Given such coarse
spatial resolutions, the presence of spatial heterogeneity in land
surface conditions (soil wetness, snow cover, vegetation cover
and state) introduces a range of complexities in the retrieval and
validation of passive microwave-based estimates of physical pa-
rameters like soil moisture. Underlying many of these difficul-
ties are fundamental contrasts in measurement scales between
soil moisture data derived from spaceborne microwave sensors
and soil moisture information derived from other sources

Following [7], support is defined to be the spatial area over
which a given measurement (or prediction technique) integrates
information. The spatial support of microwave satellite data is
determined by its antenna gain function and the manner in which
this function assigns weight to various portions of the sensor’s
footprint. For AMSR-E and SSM/I antenna patterns, the gain
function can be approximated by an appropriately parameter-
ized two-dimensional (2-D) Gauss function [8]. As presently en-
visioned [5], the AMSR-E soil moisture validation plan relies on
comparisons between satellite derived soil moisture estimates
and in situ observations, either from operational soil moisture
networks or specialized soil moisture validation networks. An
implicit assumption being that point-supportedin situsoil mois-
ture observations, or the weighted spatial average of a set of such
observations, can be scaled up to the footprint-scale km .
The accuracy of this assumption depends on the spatial vari-
ability [9], [10] and autocorrelation [11] of the underlying soil
moisture field as well as the methodology applied to selecting
sampling sites [12].

Similar contrasts exist between the spatial support of
satellite-derived parameters and the coarse (typically 10 to
100 km) numerical grids that physics-resolving climate and
weather prediction models operate on. Even when satellite
measurements are gridded onto the same computational grid
as the numerical model, the support of the “grid-averaged”
values are not consistent. The numerical model assumes that
subgrid variability is averaged with equal areal weighting,
while the satellite product is obtained through averaging by
some combination of nonlinear antenna gain functions. As a
result, there is an incompatibility between the spatial support
of numerical model input/output and the spatial support of
gridded fields obtained from microwave remote sensing [4].
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Soil moisture values derived from microwave remote sensing
and assigned to various grids will not be uniquely determined
by microwave emission from within that grid, nor will they be
derived from an equal weighting of emission occurring from
all areas of the grid.

The coarse spatial support implied by microwave gain
functions has enhanced consequences when retrieved bright-
ness temperature values are processed through nonlinear
algorithms or models. Nonlinear model physics dictate that
grid-scale model output will be sensitive to the presence, or
absence, of subgrid-scale spatial variability in inputs. In a soil
moisture/brightness temperature context, the issue is whether
a footprint-scale measurement of brightness temperature is
adequate to estimate footprint-scale soil moisture or whether
nonlinearities in microwave emission modeling dictate that
some consideration be given to subfootprint-scale heterogeneity
in soil moisture [13], vegetation [14], or soil properties [15].

The most promising sensor for microwave soil moisture re-
mote sensing in the near future will be the 6.925 GHz AMSR-E
radiometer, currently planned for launch aboard the EOS-PM
(AQUA) satellite in late 2001. This sensor will be capable of
providing daily brightness temperature imagery for nearly all
locations on the globe [5]. Understanding the effects of different
measurement supports for soil moisture fields derived from mi-
crowave remote sensors, numerical models, and point-scalein
situmeasurements is critical for evaluating the quality of large-
scale soil moisture products derived from microwave remote
sensors. In this paper we carry out an observing system sim-
ulation experiment (OSSE) for AMSR-E to evaluate the effect
of subfootprint-scale land surface heterogeneity on the retrieval
and validation of soil moisture products.

II. OSSE PROCEDURE

The complete OSSE experiment consisted of the four parts
shown in Fig. 1: a simulation of surface conditions based on hy-
drologic modeling, forward land surface microwave emission
modeling, a simulation of AMSR-E retrieval and gridding of
brightness temperature products, and backward land surface mi-
crowave emission modeling of the simulated AMSR-E bright-
ness temperature products.

Surface conditions were derived from 1-km hydrologic
modeling of the entire Red-Arkansas River basin for the time
period April 1, 1994 through July 31, 1994 (Fig. 2). Modeled
surface temperature and soil moisture fields were
processed through a forward land surface microwave emission
model (LSMEM) to produce top of the atmosphere brightness
temperature imagery . Notationally, the LSMEM will be
represented by and can be summarized as

(1)

where stands for various land surface parameters used in
the forward microwave emission process. Next, an explicit sim-
ulation of AMSR-E brightness temperature sampling was per-
formed on the simulated imagery. The simulation mimiced
the orbital characteristics, scan patterns, gain function sampling,
and gridding procedures planned for actual AMSR-Eprod-
ucts. The spatial sampling and gridding characteristics for the

Fig. 1. Schematic diagram of the OSSE procedure.

Fig. 2. Location of Red-Arkansas River basin within the U.S. Southern Great
Plains. Also shown are the ARM-CART site boundaries and SGP’97 transect.

retrieval and processing of AMSR-E products are represented
using angled bracket notation. To reflect current processing
plans, retrievals were gridded into 25-km grid-cells. The
gridded product retrieved by the AMSR-E sensor can be rep-
resented as

(2)

The LSMEM represented in (1) can be inverted to convert inputs
of into

(3)

This backward LSMEM process was applied to the gridded
imagery produced using (2). Since the backward process was
run at the 25-km grid-scale, the land surface parameters repre-
sented by in (1), as well as were linearly averaged up to
25 km. Square brackets [ ] are used to represent taking a simple
linear average. Using this notation, the grid-scale AMSR-E soil
moisture product can be represented as .
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TABLE I
NOTATION FOR VARIOUS 25-km SOIL MOISTUREPRODUCTS

The critical issue is the degree to which this simulated
AMSR-E soil moisture product differs from a linear aggrega-
tion of the original 1-km soil moisture imagery at (or above)
the dB resolution of the AMSR-E antenna km .
As discussed earlier, differences between the products are at-
tributable to a combination of inconsistencies in spatial support
due to gain function sampling effects and nonlinearities in
the backward LSMEM process. Replacing with a simple
linear average eliminates error in the imagery due to
gain function sampling effects, however, unless the backward
LSMEM process is linear with respect to all inputs

(4)

Comparison of and highlights the effects
of nonlinearities in the microwave retrieval of soil moisture.
While comparison of and reflects the
impact of both nonlinearities in the LSMEM and antenna gain
function sampling effects.

Two additional products, and , were also con-
structed to examine the performance of various validation
strategies. The first strategy was based on sampling
the 1-km soil moisture pixel at the center of each 25-km
grid-cell in the original hydrologic model output and using this
sampled value to characterize the entire km grid-cell
area. The second set of products was based on spatial
averages obtained through a random sample of1-km soil
moisture pixels within each 25-km grid-cell. The validation
strategies provide an opportunity to assess the degree to which
differences between the benchmark imagery, and imagery
derived from microwave remote sensing
can be quantified based on information sampled at the 1-km
field-scale.

Analysis will focus on comparing the benchmark soil
moisture imagery to the simulated AMSR-E soil moisture
products and and the
simulated validation soil moisture products and .
Comparisons will be made at a range of scales up to and
beyond the dB resolution of the sensor. For convenience,

will be referred to as and
as . Notation for 25-km soil

moisture products is summarized in Table I. All soil mois-
ture values will be given in terms of volumetric percentages

cm cm . The following sections will describe
each component of the OSSE procedure in greater detail.

Fig. 3. Modeled (TOPLATS) versus remotely sensed (ESTAR) surface
soil moisture results for the entire SGP’97 transect during the SGP’97 field
campaign.

A. TOPLATS Hydrologic Modeling

Noon surface (5 cm) soil moisture and surface tempera-
ture data were obtained by running the hydrological model
TOPLATS (TOPMODEL-based land-surface-atmosphere
transfer scheme) [16] on a 1-km grid over the entire 575 000
km Red-Arkansas River basin in the south-central United
States (Fig. 2) from April 1, 1994 to July 31, 1994. TOPLATS
calculates a full water balance for three soil layers and
incorporates TOPMODEL concepts to describe the lateral
redistribution of subsurface water in response to topographic
and soil texture variability [17], [18]. Using soil moisture
information provided by the water balance, the model derives
a surface temperature by numerically solving the surface
energy balance equation. Model input was derived from a
number of high resolution data sets including 4-km WSR-88D
precipitation imagery, 1 km GOES solar radiation imagery,
spatially interpolated NCDC surface airways meteorology data,
and 1-km soil and vegetation classifications. The model was
calibrated using naturalized stream flow data for five subcatch-
ments of the Red-Arkansas River basin. Initial conditions were
calculated by running a low-resolution version of TOPLATS
over 314 subcatchments of the Red-Arkansas basin from April
1, 1992 to April 1, 1994.

Both the water and the energy balance component of
TOPLATS have been extensively validated at the point-scale
for sites within the U.S. Southern Great Plains [16], [19]. More
recent work has focused on validation at larger spatial scales.
Fig. 3 shows comparisons made during the 1997 Southern
Great Plains (SGP’97) field experiment between TOPLATS
modeled surface soil moisture and estimated soil moisture
based on ESTAR (L-band) microwave remote sensing over
the SGP’97 transect shown in Fig. 2 [20]. No large-scale soil
moisture data sets were available for the time period studied
here (1994 growing season), but the energy balance portion
of the model performs very well when compared to spatially
averaged flux tower data within the km ARM-CART
study site (Figs. 2 and 4).
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Fig. 4. Modeled (TOPLATS) versusin situ measured (ARM-CART bowen
ratio towers) daily averages of latent heat flux for the entire ARM-CART domain
during the 1994 growing season.

B. Land Surface Microwave Emission Modeling

The land surface microwave emission model (LSMEM) as
described in [21] was implemented to simulate brightness tem-
peratures at the top of a canopy layer. All simulations were based
on noontime soil moisture and surface temperature results de-
rived from TOPLATS modeling. The dielectric constant of the
soil was computed after [22], and the dielectric constant of water
was parameterized after [23]. The reflectivity of the smooth sur-
face can either be calculated using the plane stratified media
model proposed by [24] or the two layer model published in
[25] and [26]. Since TOPLATS calculations provide integrated
water contents for the top 5-cm soil layer, the two layer model
was used in this study, and the rough soil emissivity was then
calculated after [27]. The vegetation was taken into account fol-
lowing [28]. The atmospheric contributions to the TOA bright-
ness temperature at 6.9 GHz were found to be small [29]. More-
over, water vapor and cloud liquid water produce only little vari-
ation at this specific frequency [29]. Therefore, no atmospheric
effects were considered in this study.

The single scattering albedo and the vegetative structure co-
efficient were held constant at 0.04 [30] and 0.0027 [21], re-
spectively, for all vegetation and soil texture types. Clay and
sand percentages and soil bulk density values were assigned
according to the STATSGO soil texture classification and the
USDA soil triangle. One soil layer with a depth of 5 cm was
assumed. This is likely deeper than the true penetration depth
of microwave measurements made at 6.9 GHz [31]. However,
computational limitations demanded that some vertical resolu-
tion be sacrificed in order obtain the required horizontal detail.

Vegetative water content (VWC) values for agricultural crops
were chosen to match those measured during the SGP’97 exper-
iment [6]. Values for grass and shrub areas were derived using
the normalized difference vegetation index (NDVI)/VWC rela-
tionship presented by [6]

Fig. 5. Dynamic range of simulated horizontally-polarized brightness
temperature data at a spatial resolution of 1.5between May 1, 1994 and July
31, 1994 versus soil roughness(�). Also shown is the dynamic range observed
for similar measurements made by the scanning multichannel microwave
radiometer (SMMR) at 6.6 GHz [33].

Because of a temporal gap in the data archive of advanced very
high resolution radiometer (AVHRR) imagery during the 1994
growing season, NDVI values for the region were derived from
imagery acquired during June 1995. The effective surface tem-
perature was derived from TOPLATS predictions of surface
and deep soil temperature using the approximation presented
by [32]. For vegetation fractional coverage, baseline values of
90% for forests, 80% for tall grass/crops, and 60% for short
grass/shrubs areas were chosen and a sensitivity analysis, de-
scribed in Section III-A, was performed to assess the impact of
uncertainty in these values on results. The vegetation classifi-
cation used did not distinguish between winter wheat and other
agricultural crops. To compensate, 60% of the agricultural fields
were assumed to be winter wheat and therefore contained no
vegetation after a harvest date of June 1.

Surface soil roughness (RMS height[27]) values used in
the OSSE were derived from comparisons of LSMEM results to
spaceborne brightness temperature observations. Unfortunately,
no validation data set for brightness temperatures near 6.9 GHz
exists for the Southern Great Plains region during the 1994
growing season. As an alternative, LSMEM results were
compared to scanning multichannel microwave radiometer
(SMMR) 6.6 GHz data from 1978 to 1987 processed at a 1.5
resolution [33]. The study area included sparsely vegetated
areas in Texas as well as forested areas in Missouri. Results
for the summer months (May to August) over the sparsely
vegetated area give a day-time dynamic range in horizontally
polarized brightness temperature of 218 to 299 K (Fig. 3 in
[33]). For the heavily vegetated area, a dynamic range of 238
to 285 K was observed. Fig. 5 compares the dynamic range
of 1.5 -scale brightness temperatures calculated between May
and July 1994 using TOPLATS and the LSMEM for a range of

values to the dynamic range observed in 8.5 years of pooled
daytime growing-season (May to August) SMMR observations.
A value of 0.4 cm was found to provide the best match to the
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observed dynamic range. The slightly larger range observed in
the SMMR data is probably due to a longer sampling period
(8.5 years versus 1 year) as well as the inclusion of August in
the SMMR data. Soil roughness measurements at small scales
have resulted in values up to 0.36 cm for a spectral region from
4.5 to 7.4 GHz [34], [35]. However, if the parameterization
of rough soil is simple and does not take into account the
horizontal autocorrelation length the effective soil roughness at
a 30 viewing angle was found to be larger (up to 0.8 cm) [34].
The functional dependency of the effectiveon viewing angle
and frequency is almost unknown. Given that the calibrated
value of 0.4 cm falls within the theoretical range given by
[34], it was taken to be a representativevalue for the entire
Red-Arkansas basin.

C. Simulation of AMSR-E Orbital and Sampling
Characteristics

Based on the sun-synchronous orbit of the EOS-AQUA plat-
form and scanning characteristics of the AMSR-E 6.925 GHz
radiometer, hypothetical AMSR-E overpasses were simulated
for a 60-day period starting June 1, 1994 using code provided by
Dr. E. Njoku of NASA’s Jet Propulsion Laboratory, Pasadena,
CA. The orbital characteristics of the EOS-AQUA platform and
the scan pattern of the AMSR-E sensor produced 153 overpasses
with at least partial coverage of the Red-Arkansas River basin
during that time period. For each overpass, a new scan pattern
was mapped for every 10 km traveled by the sensor. The sim-
ulation simplified actual sensor behavior slightly by not incre-
menting satellite motion during the computation of each scan
pattern. Within each scan, the simulation mapped the location of
individual footprint locations to the surface of the earth. A full
AMSR-E radiometer scan will contain 196 separate footprints
locations. To ease the computational burden of the simulation,
the location of only every tenth footprint along each scan was
recorded. The remaining footprint centers were located using
linear interpolation. Each footprint center was then used to take
a weighted average of the simulated 1-kmfield weighting
given by the Gauss function approximation to the 6.925 GHz
AMSR-E antenna gain function [4]. Scan patterns and antenna
gain function sampling geometry for a single overpass of the
Red-Arkansas River basin are shown in Fig. 6. Any footprint lo-
cation where more than 10% of the gain function weighting fell
outside of the TOPLATS domain was omitted from the analysis.
Since the sampling rate of the sensor (one sample per 10km )
is smaller than the area of each grid-cell km , multiple
footprint centers will fall within a single 25-km grid-cell. All

retrievals whose footprint center fell within a given grid-cell
were averaged (with equal weighting) to obtain avalue for
the grid-cell. Any 25-km grid-cell that contained a footprint lo-
cation omitted due to model domain edge effects was itself re-
moved from the analysis.

D. Inversion of the LSMEM

An iterative root finder was used to numerically invert
the LSMEM and convert gridded fields back into soil
moisture. Two separate fields were constructed in this way: soil
moisture based on sampling of AMSR-E retrieval of (i.e.,

Fig. 6. Scan and�3 dB gain function patterns for a single AMSR-E overpass
superimposed on the Red-Arkansas River basin. For display purposes, only
every tenth gain function pattern in both the track and scan direction is shown.

) and soil moisture based on linear aggre-
gation of (i.e., ). In both cases, fields of 1-km ,
soil clay and sand fractions, vegetation water content (VWC),
and fractional vegetation cover were linearly averaged up to 25
km. Since VWC is strongly nonlinear with respect to, linear
aggregation will not necessarily produce the correct effective
parameter value at 25 km. The use of a more sophisticated
effective VWC parameter may reduce the magnitude of errors
attributed to nonlinearities in the LSMEM. However, in this
analysis such an effect is simply considered a contributor to
error caused by the interaction of land surface heterogeneity
with nonlinearities within the LSMEM.

For certain pixels, the impact of land surface heterogeneity
is strong enough that gridded values could not be inverted
into a physically realistic soil moisture solution. In these cases,
two separate strategies were employed. In the first, soil mois-
ture values for these grid cells were set equal to a regionally av-
eraged soil moisture value based on areas of the basin where
values were successfully inverted into soil moisture. The second
strategy assigned soil moisture values to be either residual (for
unrealisticly low results) or saturation moisture levels (for un-
realisticly high results).

III. RESULTS

Fig. 7 compares imagery of: the benchmark 25-km grid-scale
soil moisture product derived from linear aggregation of the
original 1-km TOPLATS field, the simulatedin situ sampled
field derived from sampling the center 1-km pixel found in
each 25-km grid-cell, and the simulated AMSR-E soil moisture
product for a single day (June 30, 1994) during the
60-day simulation. Fig. 8 shows a 60-day time series of,
and values for a typical 25-km grid-cell. Differences
clearly exist between the three products.

A. Vegetation Effects

Large differences between and occur primarily
in the heavily vegetated eastern and extreme western edges of
the Red-Arkansas River basin. The interplay between vegeta-
tion amount and sensitivity to land surface heterogeneity is not
surprising due to the well known reduction in the sensitivity
of to soil moisture over heavily vegetated regions [36] and
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Fig. 7. Sample soil moisture imagery from a single day (June 30, 1994) of
the simulation. Shown are examples of the simulatedin situ f�g , simulated
AMSR-E f (hT i), and benchmark[�] products. Also shown is the original
TOPLATS 1-km soil moisture image from which all three products were
derived.

Fig. 8. Sample time series for a typical 25-km pixel within the Red-Arkansas
River basin. Shown are examples of the simulatedin situ f�g , simulated
AMSR-E f (hT i), and benchmark[�] products.

the strong nonlinear relationship between VWC andin the
LSMEM. Fig. 9 plots the 50-km root-mean-squared (RMS)
retrieval error ( versus ) associated with masking
portions of the Red-Arkansas River basin that contain vege-
tative water content (VWC) values above a certain threshold.
Results are taken from all imagery simulated between June 1
and July 31, 1994 and include both strategies for assigning
soil moisture values to grid-cells with physically unrealistic
retrievals (see Section II.D). Also plotted is the fraction of the
basin—excluding areas masked due to edge effects—passing
the VWC threshold criteria. The figure suggests that removing
a handful of heavily vegetated pixels from the analysis sig-
nificantly reduces retrieval error. For instance, in the case of
assigning failed retrievals to the basin soil moisture mean,
setting the VWC threshold to be 0.75 kg/mmasks only 10%

Fig. 9. Retrieval error (f (hT i) versus [�]) at 50-km associated with
masking portions of the Red-Arkansas River basin with VWC levels above a
certain threshold. Also plotted are areal fractions of the basin that exceed the
VWC threshold.

Fig. 10. Portion of the basin (in black) masked due to 100-km VWC values
exceeding the 0.75 kg/mthreshold.

of the basin yet reduces absolute RMS retrieval errors from
2.4% (0.024 cm cm ) to 1.8% volumetric. The impacts
of lowering the VWC threshold are even more dramatic for
the case of setting failed retrievals to residual or saturation. To
ensure that reported errors are not inflated by the inclusion of
heavily vegetated regions, surfaces with VWC values exceeding
0.75 kg/m are masked from all subsequent calculations. Such
masking also eliminates the sensitivity seen in Fig. 9 to the
strategy selected for assigning values to grid-cells where soil
moisture retrieval fails. Fig. 10 shows the portion of the basin
exceeding a 100 km 0.75 kg/mVWC threshold and provides
a sense of the spatial domain over which subsequent results
can be considered representative. The areal fraction masked in
Fig. 10 appears larger than the fractions plotted in Fig. 9 since
many of the heavily vegetation regions were already masked
in the analysis based on their proximity to the basin boundary
(see Section II-C).

The strong interplay between vegetation density and sensi-
tivity to surface heterogeneity also suggests that results will
be sensitive to the manner in which vegetation is parameter-
ized. This is potentially problematic given the uncertainty sur-
rounding reasonable fractional cover values for various vege-
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Fig. 11. Contour plot of average RMSE in percentage volumetric soil moisture for simulated AMSR-E productsf (hT i) at various spatial and temporal scales
of comparison.

tation types. Originally, all vegetation classifications were as-
signed to one of three broad categories: forest, tall grass/crop,
and short grass/shrubland. These three vegetation types were as-
signed default fractional vegetation covers of 90%, 80%, and
60%, respectively. Simulations were also performed for two
other vegetation regimes during June 1994: a heavier regime that
increased the fractional coverage of each classification by 10%
and a lighter regime with coverage percentages decreased by
10%. The percentage changes were absolute, not relative. At the
50-km scale, moving from the light to heavy regime was associ-
ated with an increase in absolute RMS retrieval errors from 1.7%
to 2.0% volumetric. Such low sensitivity over a wide range of
fractional coverage values suggests that uncertainty concerning
the true fractional vegetation coverage for the region will induce
relative errors of less than 20% into results.

B. Time and Space Structure of Retrieval Errors

Differences between and at various levels of
aggregation in time and space are summarized in Fig. 11. At
the finest time and space resolutions (1 day and 25 km), abso-
lute RMSEs in the simulated AMSR-E products are on the order
of 3.1% volumetric (0.031 cm cm ). These errors fall as
comparisons are made at coarser spatial scales. Absolute error
levels of 1.8% and 1.1% volumetric soil moisture are found at
50 and 100 km respectively. The effects of temporal aggrega-
tion appear more muted. Summing imagery up to 60
days results in only a 20% relative reduction in error levels, sug-
gesting that retrieval errors are dominated by biases that persist
up to seasonal time scales. Due to nonlinearites in the soil mois-

ture retrieval process, the simulated AMSR-E soil moisture im-
agery is, on average, slightly drier than the benchmark imagery
with an overall absolute bias of volumetric. A time se-
ries of daily RMSEs (not shown) demonstrates that while abso-
lute errors in soil moisture retrieval fall slightly during dry-down
events, relative errors are essentially constant over the course of
the simulation.

Errors in the imagery are due to a combination of
gain function sampling effects and the presence of nonlinear-
ities in the backward LSMEM process. Comparing
imagery, which utilizes a simple linear aggregation ofover
each 25-km grid square, and isolates the impact of
gain function sampling effects. Likewise, differences between

and benchmark results are due solely to non-
linearities in the LSMEM. Fig. 12 plots both comparisons. Be-
tween 25 and 100 km errors associated with antenna gain func-
tion sampling effects are clearly larger than those caused by non-
linearities in the LSMEM.

C. Time and Space Structure of Validation Error

The time and space structure of differences between the
simulated AMSR-E retrievals and the simulated
imagery derived fromin situ sampling are shown in
Fig. 13. These results simulate the ability of a field-scale
sampling strategy on a fixed 25-km grid to validate AMSR-E
results. On a daily time scale, absolute RMS differences of
7.2%, 3.3%, and 1.8% were found at 25, 50, and 100 km respec-
tively. As in Fig. 11, temporal aggregation in Fig. 13 has little
effect on the observed RMSEs. The differences seen in Fig. 13
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Fig. 12. Decomposition of total retrieval error into components due to
nonlinearities in the LSMEM (f ([T ]) versus[�]) and antenna gain function
sampling effects (f (hT i) versusf ([T ])).

are comprised of both AMSR-E retrieval errors (
versus ) and the validation errors associated with attempting
to characterize a 25-km grid-cell with a single 1-km sample. At
a daily time step, Fig. 14 plots the observed differences between
retrieval and validation products for a range ofin situ sampling
strategies. As the density of soil moisture sampling increases,
the total observational error ( versus or )
converges onto the retrieval error ( versus ).

IV. DISCUSSION ANDCONCLUSIONS

This observation system simulation experience (OSSE) deals
solely with the impact of land surface heterogeneity on the accu-
racy of soil moisture products derived from passive microwave
remote sensing. Other potential sources of error in satellite re-
mote sensing products are ignored. For instance, the same mi-
crowave emission model and parameters are used in the forward
LSMEM as are used in the backward retrieval of soil moisture.
The quality of the model calibration is degraded only by scale
effects and nonlinearities associated with averaging parameters
and reapplying the model at a coarser grid-scale (25 km). In re-
ality, ignorance of the true radiative transfer parameterization
will constitute a major source of error in microwave soil mois-
ture retrieval at 6.9 GHz, especially over vegetated surfaces [36].
In addition, spatial heterogeneity in both soil roughnessand
the vegetation structure coefficient was not represented in this
analysis. More detailed representations of these land surface pa-
rameters would likely enhance nonlinear effects and increase re-
trieval errors.

Sensitivity to spatial heterogeneity is positively correlated
with the density of vegetation cover. Fig. 9 demonstrates that
retrieval errors are sensitive to the choice of a threshold for
masking densely vegetated regions and that a large portion of
the errors found within the Red-Arkansas basin are concentrated
in a relatively small number of heavily vegetated grid cells. A
VWC threshold of 0.75 kg/mwas chosen as a tradeoff between
minimizing the impact of densely vegetated and maximizing the

analysis domain area. This threshold is half of the kg/m
value given as a threshold for AMSR-E soil moisture retrieval
[5]. The inclusion of areas up to the 1.5 kg/mlevel increases
retrieval errors by about 20% if nonretrievable pixels are set to a
basin mean and 100% if physically unrealistic retrievals are set
to either saturation or residual (Fig. 9). Clearly, the first strategy
is preferable if surfaces with VWC values above 0.75 kg/mare
to be included in operational soil moisture retrievals.

Despite the potential underestimation of heterogeneity and
relatively conservative masking of vegetation, results suggest
that land surface heterogeneity will impact the quality of
AMSR-E soil moisture products. The stated accuracy goal
for AMSR-E soil moisture retrieval is 0.06 g/cm(
volumetric soil moisture or 0.06 cm cm ) at scales
equivalent to the dB resolution of the AMSR-E antenna

km [5]. Fig. 11 suggests that, for daily imagery, scale
effects alone will produce absolute errors of 1.7% volumetric
(0.017 cm cm ) when comparisons are made at 60 km.
This error is comprised of two separate components: error
associated with obtaining gridded products from sampling het-
erogeneous fields with nonlinear gain functions and effects
associated with the interaction of nonlinearities in LSMEM
processes with land surface heterogeneity. Fig. 12 demonstrates
that the gain function sampling error is greater than the effect
of nonlinearities in LSMEM processes. The conclusion that the
impact of LSMEM nonlinearities is relatively minor compared
to other potential error sources is consistent with results from
previous studies [13], [15].

Fig. 13 summarizes the simulated differences between field-
scalein situ samples and AMSR-E soil moisture products. At
the dB resolution-scale of the AMSR-E antenna km ,
the observed RMS difference betweenin situ measurements,
sampled on a fixed 25-km grid, and simulated AMSR-E prod-
ucts is 3.0% (0.03 cm cm ). Validation errors can be re-
duced through denser sampling grids and/or the application of
more sophisticated spatial statistics (i.e., interpolation or block
kriging). However, it should be noted that the 1-km field-scale
support of the simulated validation measurements compares fa-
vorably to the essentially point-scale samples taken within op-
erational soil moisture networks. In addition, the 25-km sample
spacing used is finer than the spacing found within the Illinois
Water Survey Network (93 km), the Oklahoma Mesonet Net-
work (35 km), or the Southern Great Plains ARM-CART net-
work km [11]. Fig. 14 demonstrates the advantage of
denser sampling strategies that may be feasible within special-
ized soil moisture validation networks or during intensive field
campaigns.

One hope has been that validation and retrieval errors
associated with spatial heterogeneity can be filtered through ag-
gregation in time. Figs. 10 and 13 suggest that up to time scales
of 60 days, such a strategy will not appreciably reduce offsets
between AMSR-E soil moisture products and either bench-
mark products (Fig. 10) orin situ field-scale measurements
(Fig. 13). Fig. 8 shows a two-month time series of, ,
and values for a typical 25-km grid-cell. Despite
sampling a number of consecutive rainfall/dry-down cycles
and a range of hydrologic conditions, both the validation error

and the AMSR-E retrieval error
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Fig. 13. Contour plot of average RMS difference in percentage volumetric soil moisture between the simulated validationf�g and AMSR-Ef (hT i) products
at various spatial and temporal scales of comparison.

Fig. 14. RMS differences between simulated AMSR-E productsf (hT i)
and the validation validation productsf�g (a single 1-km sample at the center
of each 25-km pixel) andf�g (n random 1-km samples taken within each
25-km pixel) for a range ofn. For largen, the differences converge to those
associated with AMSR-E retrieval error (f (hT i) versus[�]).

generally retain the same sign throughout the entire period.
These results suggest that TOPLATS and the LSMEM attribute
a substantial portion of the land surface heterogeneity respon-
sible for these errors to heterogeneity in vegetation, soil, and
topographic forcings that vary only at seasonal time scales and
above. Sampling across the randomizing effects of AMSR-E
gain function patterns (which vary slightly from overpass to

overpass) and dry-down/wet-up dynamics with daily to weekly
time scales is not an effective way of filtering validation and
retrieval errors associated with land surface heterogeneity.

While hampering filtering attempts, the persistence of a rela-
tively constant bias in simulated AMSR-E retrievals suggests
that spatial heterogeneity will not prevent validation and re-
trieval products from accurately representing temporal fluctu-
ations in coarse-scale soil moisture. Such a simplistic temporal
error structure may lend itself to correction through either cali-
bration adjustments in the retrieval process or assimilation tech-
niques that combine model predictions of surface soil moisture
with AMSR-E retrievals.
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