

INDIANA AGRICULTURAL STATISTICS U.S. DEPARTMENT OF AGRICULTURE PURDUE UNIVERSITY 1148 AGAD BLDG, ROOM 223 WEST LAFAYETTE IN 47907-1148 Phone (765)494-8371 FAX (765)494-4315

Released: Monday, 3PM

June 23, 1997

Vol. 47, #12

West Lafayette, IN 47907

CROP REPORT FOR WEEK ENDING JUNE 22

Wheat harvest has begun in isolated areas acros central and southern Indiana, according to the Indiaa Agricultural Statistics Service. Favorable weather during the middle of the week also allowed farmers to continue planting soybeans, apply herbicides and nitrogen, ad harvest hay. Replanting of corn and soybeas continued as soil moisture allowed. The greatest need for replanting is in the southern region of the state particularly along the Ohio and Wabash Rivers.

CORN AND SOYBEANS

Corn condition is rated 54 percent good to excellent, 38 percent fair, and 12 percent poor to very poor **Soybean plantin g** is 96 percent complete. This is well ahead of 62 percent last year, and the average of **9** percent. By region, soybean planting is 99 percent complete in the north, 98 percent complete in the central, and 84 percent complete in the south **Condition** of the crop is 55 percent good to excellent 34 percent fair, and 11 percent poor to very poor.

WINTER WHEAT

Winter wheat **condition** is rated 65 percent good ϕ excellent, compared with 32 percent at this time lats year. Statewide, wheat **heading** is complete. Wheat **harvest** is 3 percent complete, compared to the4 percent average for this date. Harvest had not begun at this time last year. Ripening of the crop has bee slowed by cool, wet weather.

OTHER CROPS

Pasture condition was rated 14 percent excellent, 62 percent good, 19 percent fair, 4 percent poor and1 percent very poor. Transplanting of**tobacco** is 51 percent complete. First cutting of**alfalfa** is 58 percent complete.

DAYS SUITABLE and SOIL MOISTURE

For the week ending Friday, 3.1 days were rate suitable for fieldwork. Topsoil moisture was rated 1 percent short, 51 percent adequate and 48 percent surplus. Subsoil moisture was rated 54 percent adequate and 46 percent surplus.

CROP PROGRESS								
Crop	This	Last	Last	5-Year				
	Week	Week	Year	Avg				
		Percent						
Soybeans Planted	96	93	62	90				
Wheat Harvested	3	0	0	4				

CROP CONDITION									
Crop	Very Poor	Very Poor Poor Fa		Good	Excel- lent				
Percent									
Corn	3	9	34	47	7				
Soybeans	3	8	34	47	8				
Winter Wheat 6/22	1	5	29	52	13				
Winter Wheat 1996	7	21	40	29	3				
Pasture	1	4	19	62	14				

SOIL MOISTURE								
	This Week	Last Week	Last Year					
	Percent							
Topsoil								
Very Short	0	0	0					
Short	1	0	0					
Adequate	51	42	44					
Surplus	48	58	56					
Subsoil								
Very Short	0	0	0					
Short	0	0	0					
Adequate	54	50	40					
Surplus	46	50	60					

--Ralph W. Gann, State Statistician

--Lance Honig, Agricultural Statistician E-Mail Address: nass-in@nass.usda.gov http://info.aes.purdue.edu/agstat/nass.html

Crop Progress

Rapid Corn Growth and Nutrient Deficiency

- Environmental stress has caused mostly temporary nutrient deficiencies
- Low pH and magnesium on corn addressed
- Low pH and magnesium on soybeans addressed
- Manganese deficiency in soybeans addressed

It has finally warmed up and corn is really starting to grow in most of Indian a. Unfortunately that rapid growth is not without some problems. The root systems of many corn plants are small and shallow. This is the result of cold temperatures and we t conditions. Because of this shallow and limited rooting, the demand for nutrients to support rapid growth can't be met. Thus, many plants are suffering from temporary nutrient deficiencies and exhibitin g nutrient deficiency symptoms. Some of the common problems being seen are: zinc, manganese, iron, sulfur, and magnesium.

In many cases these problems will quickly disappear as root systems expand and explore deeper into the soil. This is especially true for nutrients such as zinc, iron, and manganese which move to the root surface by diffusion and nutrients such as sulfur and magnesium which are often found in higher concentrations in the subsoil.

The current situation is not unusual as corn at the 5 to 6 leaf stage is "shifting gears" from

dependence on the seminal or seed root system to the permanent crown or nodal root system. The demand on the root system for nutrients is normally greatest at this time. When you add the additional stress of unusually rapid growth and unusually small root systems this creates a nutrient demand that the plants roots have a difficult time filling. This is not a reflection on fertility programs and it is unlikely that these temporary problems will cause measurabl e effects on yield. However there also are some mor e serious problems which may need to be addressed.

Low pH and magnesium deficiency on corn: Many soils in Indiana are acid and in need of lime. On the low cation exchange capacity soils of norther n Indiana, and throughout southern Indiana magnesiu m deficiency symptoms begin to show up in June. Magnesium deficiency is characterized by stunting, firing of the lower leaves, striping and a red or purple cast to the fired leaf margins. The problem is generally located in patches across the field and the boundar y between deficient and normal growth can be ver y sharp. It is difficult to correct the problem in this crop year. Liming with at least one ton of dolomite lime is the most economical solution.

Low pH and magnesium deficiency on soybeans: Soybeans are very sensitive to low pH. When soil pH drops below 6, calcium and magnesium (Continued on Page 4.)

Average	Dailv	Values fo	r week	endina	Monday	mornina	June 23,	1997
,	Dung	values ie			in a contract y	i i i i i i i i i i i i i i i i i i i		. , , ,

	3		J -			- J	· · · J	- J			
	Air					Precipi	tation	Growing Degree Days			
Area	Station	Tei	mperat	ure	Past	Since	DN Since	Past	Since	DN Since	
		Max	Min	DN	Week	April 1	April 1	Week	April 1	April 1	
NW	Wanatah	84	61	+2	.57	11.55	+1.23	157	757	-93	
	Kentland	84	65	+2	.93	9.58	95	172	850	-140	
	Winamac	84	64	+3	.30	9.52	74	167	805	-147	
NC	South Bend	82	64	+3	1.19	7.24	-2.79	163	762	-112	
	Waterford Mills	s 84	62	+3	2.85	10.60	+1.25	162	777	-139	
NE	Prairie Heights	s 83	63	+5	1.55	9.14	71	165	770	-16	
	Columbia City	83	63	+4	.44	9.74	40	163	777	-90	
	Fort Wayne	83	64	+2	.36	9.69	+.22	166	790	-145	
	Bluffton	83	63	+2	2.13	12.56	+2.13	162	815	-165	
WC	West Lafayette	85	66	+5	.32	14.33	+4.00	178	868	-85	
	Lafayette	85	66	+4	.30	11.20	+.87	177	916	-38	
	Perrysville	85	65	+2	1.69	8.74	-2.87	174	906	-259	
	Crawfordsville	84	63	+3	1.23	9.76	53	168	842	-119	
	Terre Haute 8s	87	66	+4	.33	12.46	+1.44	181	983	-114	
С	Tipton	83	64	+2	.92	13.03	+2.75	164	784	-144	
	Indianapolis	83	66	+1	1.50	8.12	-2.19	172	903	-185	
	Indian Creek	85	66	+4	1.05	10.96	+.07	177	930	-109	
EC	Farmland	83	65	+4	.95	10.26	16	168	847	-49	
	Liberty	84	65	+4	1.66	11.01	20	172	891	-137	
SW	Vincennes	85	67	+2	5.91	16.13	+4.39	180	1024	-126	
	Dubois	83	66	+2	1.95	15.48	+3.24	173	972	-133	
	Evansville	85	69	+1	1.40	13.76	+2.31	187	1057	-237	
SC	Bedford	83	64	+2	1.78	14.78	+2.95	167	940	-128	
	Louisville	83	69	+2	2.48	12.31	+.85	184	1068	-188	
SE	Butlerville	82	65	+1	2.99	14.20	+3.02	169	910	-269	
DN =	departure from	norm	al.								
Grow	ing Degree Days	= da	ily mea	an – 5	50 (below	50 adjust	ed to 50, al	oove 86 a	djusted to	86.)	

Rainfall for Past 4 Weeks and Departure from Normal

Rainfall of 1 Inch or More for Past 7 Days as of Monday morning

Growing Degree Days and Departure since April 1

Deficiency (continued)

levels become inadequate to support good growth. The most sensitive step in the soybean growth appears te b nodulation. At low pH nodulation is poor and nitrogen fixation is low. Plants appear stunted and yellow, similarNto deficiency on corn. As with corn, liming is the most economical solution to this problem.

Manganese deficiency in soybeans: Many soils in northern Indiana are prone to manganese deficiency. The problem is most pronounced in higher pH sils >6.3, and is common in the Kankakee River valley. Correction is best done by foliar application of 3 to 5 pounds of manganese sulfate (1 to 2 pounds metal). Under severe deficiencies multipl applications may be required.

--Dave Mengel and Sylvie Brouder, Purdue University

The INDIANA CROP WEATHER REPORT (USPS 675-770), (ISSN 0442-817X) is issued weekly April through November by the Indiana Agricultural Statistics Service, Purdue University, 1148 AgAd Bldg, Rm 223, West Lafayette IN 47907-1148. Second Class postage paid at Lafayette IN. For information on subscribing, send request to above address. POSTMASTER: Send address change to the Indiana Agricultural Statistics Service, Purdue University, 1148 AgAd Bldg, Rm 223, West Lafayette IN 47907-1148.