Appendix I Notation The following symbols are based on those used by the original authors: | A | parameter in Ackers and White's transport
function; cross-sectional area; or soil loss in
(ton/acre)/year in the universal soil loss
equation | | |------------------------------|--|--| | A_1, A_2, B_1, B_2 | constants | | | A_c | a function used in Toffaleti's method | | | A_g | a volume of material to be degraded per unit channel width | | | A_h | reservoir area at a given elevation h | | | A_Ld | average step length | | | A_m | amplitude of sand waves | | | $A_o, A_{ijk}, B_o, B_{pqr}$ | constants used in Karim and Kennedy's equation | | | а | distance from the bed where bed-load is transported; rill width–depth ratio; or relative sediment area | | | a and a_s | thicknesses of bed layer and suspended layer, respectively | | | a' | distance from the bed to the sediment sampler inlet | | | В | roughness function or channel bottom width | | | b_f | bed form shape factor | | | С | Chezy's roughness coefficient or sediment concentration; parameter in Ackers and White's transport function; or cropping management factor in the universal soil loss equation | | | C and C _i | total sediment concentration and concentration for size <i>i</i> , respectively | | | C_b , C_s , and C_t | sediment concentrations (in ppm by weight) for
bed-load, suspended load, and total bed-
material load, respectively | | | C_D and C_L | drag and lift coefficients, respectively | | | C_f | friction coefficient; or fine sediment concentration | | | C_t | total sediment concentration, with wash load excluded (in ppm by weight) | | |---|---|--| | C_{lg} | Total gravel concentration (in ppm by weight) | | | C_{ls} | total sand concentration (in ppm by weight) | | | C_{ui} , C_{mi} , and C_{Li} | sediment concentrations for size fraction <i>i</i> in the upper, middle, and lower zones defined by Toffaleti, respectively | | | C_{ν} | sediment concentration by volume | | | C_{vy} | time-averaged sediment concentration by volume at a distance <i>y</i> above the bed | | | C_s' | measured sediment concentration in the sampled zone | | | \overline{C} and $\overline{C_a}$ | time-averaged sediment concentrations at a given cross-section and at a distance <i>a</i> above the bed, respectively | | | D | average flow depth or pipe diameter | | | D_c | critical depth required at incipient motion | | | D_g | depth of degradation | | | D_s and D_m | depths of sampled and unsampled zones, respectively | | | D_{gr} | dimensionless particle size | | | D_{v} | mean depth at a vertical where suspended sediment samples were taken | | | D' and D" | hydraulic depths for grain roughness and form roughness, respectively | | | d | sediment particle diameter | | | d_{35} , d_{50} , d_{65} , and d_{90} | sediment diameters where 35, 50, 65, and 90 percent of the materials are finer, respectively | | | d_{gr} | dimensionless grain diameter | | | E and E' | parameters used in the Einstein and modified
Einstein procedures, respectively | | | е | dimensionless coefficient | | | e_b and e_s | transport efficiency coefficients for bed-load and suspended load, respectively | | | F | dimensionless function of total reservoir sediment deposition, capacity, depth, and area | | | F_D , F_L , and F_R | drag, lift, and resisting forces acting on a | | |-----------------------------|--|--| | | sediment particle, respectively | | | F_{gr} | Ackers and White's mobility number | | | F_r | Froude number | | | f | Darcy-Weisbach friction coefficient | | | f and f_o | resistance coefficients of sediment-laden flow and clear water, respectively | | | f' and f'' | Darcy–Weisbach friction coefficients for grain and form roughness, respectively | | | f | Engelund and Hansen's transport function | | | G_{gr} | Ackers and White's sediment transport function | | | g | gravitational acceleration | | | Н | original depth of reservoir | | | h_f | friction loss | | | I, J | dimensionless parameters | | | I_1 , I_2 | parameters in Einstein's and Chang's transport functions | | | i_{BW} | percentage of bed-load by weight of size d | | | i_{bw} | number of particles available on the bed | | | J | number of rills | | | J_1, J_2 | parameters used in the modified Einstein procedure | | | K | soil erodibility factor in the universal soil loss equation | | | $K, K', K'', K_1, K_2, K_3$ | parameters or constants | | | K_r , K_s | coefficients in the Meyer-Peter and Müller formula | | | K_t | Chang, Simons, and Richardson's bed-load discharge coefficient | | | k | von Kármán–Prandtl universal constant (= 0.4); or other constant | | | k_s | equivalent sediment diameter for roughness
computation; average height; or roughness
element | | | k_1, k_2, k_3 | correction factors in Colby's approach; or parameters | | | L | slope-length factor in the universal soil loss equation; or length | | |--|--|--| | $M, N, M_1, N_1, M_2, N_2, M_3, N_3$ | dimensionless parameters | | | M_O and M_R | overturning and resisting moments, respectively | | | m | exponent in the universal soil loss equation; or parameter in Ackers and White's transport function | | | N_d and N_e | rates of number of sediment particles deposited and eroded, respectively | | | n | Manning's roughness coefficient; or transition exponent in Ackers and White's mobility number | | | P | erosion-control particle factor in the universal
soil loss equation; total power available per
unit channel width; or wetted perimeter | | | P_B | parameter used in the Einstein procedure | | | P_E | parameters used in the Einstein's transport function | | | \overline{P}_i and p | time-averaged and fluctuating part of pressure, respectively | | | P_1 , P_s , P_b , and P_2 | power expenditure per unit channel width to overcome resistance, transport suspended load, bed-load, and other causes, respectively | | | p | relative depth of reservoir measured from the bottom; porosity; or probability | | | p_c , p_m , and p_s | percentages of clay, silt, and sand, of the incoming sediment to a reservoir, respectively | | | p_i | percentage of material available in size i | | | Q | water discharge | | | QS | stream power | | | Q_s | suspended load | | | Q_{ti} | total sediment discharge for size fraction i | | | Q' | water discharge in the sampled zone | | | q, q _b , and q _s | water discharge, bed-load, and sediment discharge per unit channel width, respectively | | | q_B | bed-load discharge per unit channel width | | | q_{Bi} , q_{sli} , q_{smi} , and q_{sLi} | sediment load per unit channel width in the bed-load, upper, middle, and lower zones defined by Toffaleti, respectively | |--|---| | q_{bv} and q_{bw} | bed-load by volume and by weight per unit channel width, respectively | | q_c | critical discharge per unit channel width required at incipient motion | | q's | sediment discharge per unit channel width in the sampled zone | | q_{sv} and q_{sw} | suspended sediment load per unit channel width by volume and by weight, respectively | | q_t | total bed-material load per unit channel width | | q^2 | u_iu_i | | R | rainfall factor in the universal soil loss equation; or hydraulic radius | | R_e | Reynolds number | | R_s | parameter containing integrals I_1 and I_2 | | R' and R" | hydraulic radii due to grain roughness and form roughness, respectively | | r | sediment particle radius | | S | water surface or energy slope; or slope-
steepness factor in the universal soil loss
equation | | S_d | total reservoir sediment deposition | | S_O | energy slope of clear water | | S_p | shape factor | | S' and S'' | friction slopes due to grain roughness and form roughness, respectively | | T | time; or temperature | | t | time | | tan α | ratio of tangential to normal shear force | | \overline{U}_{l} and u_{i} | time-averaged and fluctuating part of the velocity in the <i>i</i> direction, respectively | | U_* | shear velocity | | u and v | local velocities in the x and y directions, respectively | | u_b and u_s | velocities of bed-load and suspended load | | u_x and u_y | fluctuating parts of the velocity in the <i>x</i> and <i>y</i> directions, respectively | | |--------------------------------|---|--| | $\frac{-}{u}$ | time-averaged local velocity | | | V and V_{cr} | average flow velocity and critical velocity at incipient motion, respectively | | | V_b | bottom velocity | | | VS and V _{cr} S | Yang's unit stream power and critical unit stream power required at incipient motion, respectively | | | V_y | time-averaged flow velocity at a distance <i>y</i> above the bed | | | W | unit weight of sediment deposit (in lb/ft3); channel top width; or rill shape factor | | | Wc, Wm, and Ws | initial weights of clay, silt, and sand, respectively, based on reservoir operation | | | W_O and W_T | initial and average reservoir sediment densities after <i>T</i> years of operation, respectively | | | W_s, W' | submerged weight of sediment | | | W_i^* | Parker's dimensionless bed-load | | | X | sediment concentration flux by weight in Ackers and White's transport function; or Einstein's characteristic grain size of sediment mixture | | | $X_i, X_j, X_k, X_p, X_q, X_r$ | dimensionless variables used in Karim and Kennedy's equation | | | x | Einstein's correction factor, which is a function of ks/δ | | | Y | parameter used in Shen and Hung's equation; or Einstein's lifting correction factor | | | Y_a and Y_d | thickness of armoring layer and depth of degradation, respectively | | | y | potential energy per unit weight of water | | | Z | rill or channel side slope; or ω/kU_* (a parameter in Rouse's equation) | | | Z, Z_I | parameters used in the Einstein procedure | | | α | coefficient in Ackers and White's mobility
number (=10); or longitudinal angle of
inclination of a channel | | |---|---|--| | β | angle of inclination of shear stress due to secondary motion; or coefficient | | | β_I | correction factor for non-uniform bed layer | | | γ , γ_m , γ_s , and γ_f | specific weights of water, sediment-laden flow, sediment, and fluid, respectively | | | γ1, γ2 | discrepancy ratios | | | $\Delta = k_s/x$ | Einstein's apparent roughness of bed surface | | | $\Delta = (\rho_s - \rho)/\rho$ | relative density | | | δ | boundary layer thickness | | | ε_m and ε_s | momentum diffusion coefficients for fluid and sediment, respectively | | | ζ_s | specific gravity of sediment (= 2.65) | | | η | parameter for the fluctuation of velocity | | | $\eta_1, \eta_2, \eta_3, \eta_v$ | exponents used in Toffaleti's method | | | θ | dimensionless shear stress used in Engelund and Hansen's transport function, and in Karim and Kennedy's equation; angle of slope in the universal soil loss equation; angle of inclination of channel bank; Engelund and Hansen's roughness function; or Shield's parameter | | | θ 'and θ '' | Engelund and Hansen's roughness functions for grain roughness and form roughness, respectively | | | $ heta_{cr}$ and $ heta_c$ | critical Shield's parameters for initiation of suspension and incipient motion, respectively | | | λ | slope length (in ft) in the universal soil loss equation; or porosity of bed material | | | μ | dynamic viscosity | | | μ , μ_m , and μ_r | dynamic viscosities of water, sediment-laden flow, and relative dynamic viscosity, respectively | | | v and v_m | kinematic viscosities of water and sediment-
laden flow, respectively | | | ζ | relative depth = y/D ; or Einstein's hiding correction factor | | | ρ , ρ_f , ρ_m , and ρ_s | densities of water, fluid, sediment-laden flow, and sediment, respectively | | |---|---|--| | σ | standard deviation | | | τ and τ_c | shear stress and critical shear stress at incipient motion, respectively | | | τ_o | shear stress at the bed | | | $ au_{xy}$ | turbulent shear stress | | | τ' and τ'' | shear stresses due to grain roughness and form roughness, respectively | | | τ * | Parker's reference shear stress | | | $\overline{\tau V}$ | Bagnold's stream power | | | φ | Engelund and Hansen's transport functions; angle of repose; or velocity potential | | | φ_i | Parker's dimensionless shear stress for size d_i | | | φ_* | parameters used in Einstein's transport function | | | ψ, ψ', ψ * | Einstein's transport functions | | | ω and ω_m | sediment fall velocities in clear water and sediment-laden flow, respectively | | ### Appendix II Conversion Factors | To convert | То | Multiply by | |---------------------------------------|---------------------------------------|-------------| | Length (L) | | | | inches (in.) | centimeters (cm) | 2.54 | | feet (ft) | meters (m) | 0.304 8 | | miles (miles) | kilometers (km) | 1.609 | | meters (m) | inches (in.) | 39.37 | | meters (m) | feet (ft) | 3.281 | | kilometers (km) | miles (miles) | 0.621 4 | | Area (L^2) | | | | square inches (in ²) | square centimeters (cm ²) | 6.452 | | square feet (ft ²) | square meters (m ²) | 0.092 90 | | square miles (sq miles) | square kilometers (km²) | 2.590 | | acres (acre) | square meters (m ²) | 4047 | | square centimeters (cm ²) | square inches (in ²) | 0.155 0 | | square meters (m ²) | square feet (ft ²) | 10.76 | | hectares (ha) | acres (acre) | 2.471 | | square kilometers (km²) | square miles (sq miles) | 0.3861 | | Volume (L^3) | | | | cubic inches (in ³) | cubic centimeters (cm ³) | 16.39 | | cubic feet (ft ³) | cubic meters (m³) | 0.028 32 | | cubic yards (yd³) | cubic meters (m ³) | 0.764 6 | | gallons (gal) | liters (1) | 3.785 | | cubic centimeters (cm ³) | cubic inches (in ³) | 0.061 02 | | cubic meters (m ³) | cubic feet (ft ³) | 35.31 | | liters (l) | cubic feet (ft ³) | 0.035 31 | | liters (l) | gallons (gal) | 0.264 2 | | To convert | To | Multiply by | |---|---|-------------| | Velocity (<i>L/T</i>) | | | | feet per second (ft/s) | meters per second (m/s) | 0.304 8 | | meters per second (m/s) | feet per second (ft/s) | 3.281 | | Discharge (L^3/T) | | | | cubic feet per second (ft3/s) | cubic meters per second (m³/s) | 0.028 32 | | cubic feet per second (ft3/s) | liters per second (l/s) | 28.32 | | cubic meters per second (m ³ /s) | cubic feet per second (ft ³ /s) | 35.31 | | liters per second (l/s) | cubic feet per second (ft ³ /s) | 0.035 31 | | Mass (M) | | | | pounds (lb) | kilograms (kg) | 0.453 6 | | kilograms (kg) | pounds (lb) | 2.205 | | Density (M/L^3) | | | | pounds per cubic foot (lb/ft³) | kilograms per cubic meter (kg/m³) | 16.02 | | kilograms per cubic meter (kg/m³) | pounds per cubic foot (lb/ft ³) | 0.02 43 | | kilograms per cubic meter (kg/m³) | grams per cubic centimeter (g/cm ³) | 0.001 00 | | Force $(ML/T^2)^{\dagger}$ | | | | pounds (lb) | kilograms (kg) | 0.453 6 | | pounds (lb) | newtons (N) | 4.448 | | kilograms (kg) | pounds (lb) | 2.205 | | kilograms (kg) | newtons (N) | 9.807 | | newtons (N) ‡ | kilograms (kg) | 0.102 0 | | newtons (N) | pounds (lb) | 0.224 8 | | dynes (dyn) | newtons (N) | 0.000 01 | | To convert | То | Multiply by | |--|--|-------------| | Pressure (M/LT ²) † | | | | pounds per square inch (lb/in²) | kilograms per square meter (kg/m²) | 703.1 | | pounds per square inch (lb/in²) | newtons per square meter (N/m ²) | 6895 | | pounds per square foot (lb/ft²) | kilograms per square meter (kg/m²) | 4.882 | | pounds per square foot (lb/ft²) | newtons per square meter (N/m ²) | 47.88 | | kilograms per square meter (kg/m²) | pounds per square inch (lb/in²) | 0.001 422 | | kilograms per square meter (kg/m²) | pounds per square foot (lb/ft ²) | 0.204 8 | | kilograms per square meter (kg/m²) | newtons per square meter (N/m ²) | 9.807 | | Specific weights $(M/L^2T^2)^{\dagger}$ | | | | pounds per cubic foot (lb/ft ³) | kilograms per cubic meter (kg/m³) | 16.02 | | pounds per cubic foot (lb/ft ³) | newtons per cubic meter (N/m³) | 157.1 | | kilograms per cubic meter (kg/m³) | pounds per cubic foot (lb/ft ³) | 0.062 43 | | kilograms per cubic meter (kg/m³) | newtons per cubic meter (N/m³) | 9.807 | | Kinematic viscosity (L ² /T) | | | | square feet per second (ft²/s) | square centimeters per second (cm ² /s) | 929.0 | | square feet per second (ft²/s) | square meters per second (m ² /s) | 0.092 90 | | square meters per second (m ² /s) | square feet per second (ft ² /s) | 10.76 | | square meters per second (m ² /s) | square centimeters per second (cm ² /s) | 1000 | [†] The factors relating pounds of force, kilograms of force, and newtons are based on the standard value of the gravitational acceleration, $g = 32.174 \text{ ft/s}^2 = 9.806 65 \text{ m/s}^2$. $^{^{\}ddagger}$ 1 N = 1 kg-m/s². # Appendix III Physical Properties of Water ### IMPERIAL (ENGLISH) UNITS | Temperature (°F) | Specific weight γ
(lb/ft³) | Density ρ
(slugs/ft ³) | Viscosity μ x 10 ⁵
(lb-s/ft²) | Kinematic viscosity
v x 10 ⁵
(ft ² /s) | |------------------|-------------------------------|---------------------------------------|---|--| | 32 | 62.42 | 1.940 | 3.746 | 1.931 | | 40 | 62.43 | 1.941 | 3.229 | 1.664 | | 50 | 62.41 | 1.940 | 2.735 | 1.410 | | 60 | 62.37 | 1.938 | 2.359 | 1.217 | | 70 | 62.30 | 1.936 | 2.050 | 1.059 | | 80 | 62.22 | 1.934 | 1.799 | 0.930 | | 90 | 62.11 | 1.931 | 1.595 | 0.826 | | 100 | 62.00 | 1.927 | 1.424 | 0.739 | | 110 | 61.86 | 1.923 | 1.284 | 0.667 | | 120 | 61.71 | 1.918 | 1.168 | 0.609 | | 130 | 61.55 | 1.913 | 1.069 | 0.558 | | 140 | 61.38 | 1.908 | 0.981 | 0.514 | | 150 | 61.20 | 1.902 | 0.905 | 0.476 | | 160 | 61.00 | 1.896 | 0.838 | 0.442 | | 170 | 60.80 | 1.890 | 0.780 | 0.413 | | 180 | 60.58 | 1.883 | 0.726 | 0.385 | | 190 | 60.36 | 1.876 | 0.678 | 0.362 | | 200 | 60.12 | 1.868 | 0.637 | 0.341 | | 212 | 59.83 | 1.860 | 0.593 | 0.319 | #### METRIC UNITS | Temperature (°C) | Specific weight γ
(kN/m³) | Density ρ
(kg/m³) | Viscosity $\mu \times 10^3$ (N-s/m ²) | Kinematic viscosity
v x 10 ⁶
(m²/s) | |------------------|------------------------------|----------------------|---|--| | 0 | 9.805 | 999.8 | 1.781 | 1.785 | | 5 | 9.807 | 1000.0 | 1.518 | 1.519 | | 10 | 9.804 | 999.7 | 1.307 | 1.306 | | 15 | 9.798 | 999.1 | 1.139 | 1.139 | | 20 | 9.789 | 998.2 | 1.002 | 1.003 | | 25 | 9.777 | 997.0 | 0.890 | 0.893 | | 30 | 9.764 | 995.7 | 0.789 | 0.800 | | 40 | 9.730 | 992.2 | 0.653 | 0.658 | | 50 | 9.689 | 988.0 | 0.547 | 0.553 | | 60 | 9.642 | 983.2 | 0.466 | 0.474 | | 70 | 9.589 | 977.8 | 0.404 | 0.413 | | 80 | 9.530 | 971.8 | 0.354 | 0.364 | | 90 | 9.466 | 965.3 | 0.315 | 0.326 | | 100 | 9.399 | 958.4 | 0.282 | 0.294 |