Photosynthesis Research Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Donald Ort Lab
Archie Portis Lab
Lisa Ainsworth Lab
Steven Huber Lab
 

Research Project: IDENTIFYING AND MANIPULATING DETERMINANTS OF PHOTOSYNTHATE PRODUCTION AND PARTITIONING

Location: Photosynthesis Research Unit

Title: Functional genomics and field ecology: mechanistic insights from microarray analysis of soybean responses to elevated [CO2]

Authors
item Leakey, Adb - UNIVERSITY OF ILLINOIS
item Xu, F - UNIVERSITY OF ILLINOIS
item Gillespie, K - UNIVERSITY OF ILLINOIS
item Ainsworth, Elizabeth
item Long, S - UNIVERSITY OF ILLINOIS
item Ort, Donald

Submitted to: Ecological Society of America Abstracts
Publication Type: Abstract
Publication Acceptance Date: April 1, 2007
Publication Date: August 5, 2007
Reprint URL: http://eco.confex.com/eco/2007/techprogram/P1275.HTM
Citation: Leakey, A., Xu, F., Gillespie, K.M., Ainsworth, E.A., Long, S.P., Ort, D.R. 2007. Functional genomics and field ecology: mechanistic insights from microarray analysis of soybean responses to elevated [CO2]. Ecological Society of America Abstracts. Paper No. 11-6.

Technical Abstract: Atmospheric [CO2] is rising, with significant consequences for plant function in natural and managed ecosystems. Currently we cannot fully explain the effects of elevated [CO2] on vegetation under field conditions, where interactions with abiotic and biotic factors are important. To better understand plant responses to elevated [CO2] we have combined genomic, biochemical, physiological and ecological investigation of soybean grown in the field at the SOYbean Free-Air Concentration Enrichment (SOYFACE) facility at the University of Illinois. Soybean was grown in four plots at ambient [CO2] (~380 ppm) and four plots at elevated [CO2] (~550 ppm), from sowing until harvest. This provided a model system, where low genetic and environmental variability between experimental units increased the ability to detect subtle treatment effects. The impact of elevated [CO2] on dark respiration is a controversial subject, with prior studies variously reporting stimulation, inhibition or no change in CO2 efflux. The principal molecular response of soybean to elevated [CO2] was increased gene expression for many components of respiratory metabolism, including glycolysis, the TCA cycle and mitochondrial electron transport. These molecular responses were reflected in greater pool sizes of key carbon metabolites and greater rates of respiratory oxygen uptake and carbon efflux. The integrated genomic, biochemical and physiological responses provide unique evidence for stimulated respiration at elevated [CO2]. Greater respiration will partially offset the stimulation of photosynthesis by elevated [CO2] at whole-plant and ecosystem scales, while also generating additional energy and carbon-skeletons. Gene expression for some associated biosynthetic pathways was altered. Gene expression for cellulose synthesis was greater at elevated [CO2], but gene expression for lignin synthesis did not change. Greater cellulose to lignin ratios can alter the rate of leaf litter decomposition. In summary, microarray analysis revealed previously unknown changes in gene expression which underlie key physiological and ecological responses of soybean to elevated [CO2].

   

 
Project Team
Ort, Donald
Huber, Steven
Ainsworth, Elizabeth - Lisa
 
Publications
   Publications
 
Related National Programs
  Plant Biological and Molecular Processes (302)
  Global Change (204)
 
Related Projects
   OXIDATIVE STRESS AT ELEVATED CO2 AND IMPACT ON PROTEIN PHOSPHORYLATION
   SOYFACE GLOBAL CHANGE RESEARCH
   GENETIC DETERMINANTS OF SEED PROTEIN AND OIL: CONTENT AND COMPOSITION
   IMPACT OF METHIONINE OXIDATION ON PROTEIN PHOSPHORYLATION
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House