MAKING CONNECTIONS

A curriculum and activity guide to Mammoth Cave National Park

Gr 6-8

Acknowledgements Page 4
$6^{\text {th }}$ Grade Program of Studies Page 5
$7^{\text {th }}$ Grade Program of Studies Page 9
$8^{\text {th }}$ Grade Program of Studies Page 13
Protect and Provide Page 17
Soda Sink Page 25
Secret Sink Page 31
Mammoth Math Page 39
Back to the Past Page 49
It's All Greek (and Latin) to Me! Page 55
That's My Tree! Page 67
Do or Die. Page 73
Making Headlines Page 79
Sum(it)-Up Page 89

ACKNOWLEDGEMENTS

Appreciation Is Extended To:

Tom Foster
Western Kentucky University

Professor M. Gretel Smith and students
Angie M. Anderson
Sundeigh H. Plesko
Waynesburg College

Sherry Wheeler
Austin Tracy Elementary School
Funding for this project binder and binder illustration was provided in part by the American Cave Conservation Association and by a grant from the U.S. Environmental Protection Agency through the Kentucky Division of Water, Nonpoint Source Section, and the Kentucky Division of Conservation, to the American Cave Conservation Association as authorized by the Clean Water Act Amendments of 1987, Section 319(h), Grant \#C9994659-95.

Funding for the development of this curriculum was funded through a Parks as Classrooms ${ }^{\text {SM }}$ grant. Parks as Classrooms ${ }^{\text {SM }}$ is an educational initiative of the National Park Service in partnership with the National Park Foundation.

6TH GRADE PROGRAM OF STUDIES

		$\begin{aligned} & \frac{4}{c} \\ & \frac{1}{6} \\ & \frac{\pi}{8} \\ & 6 \end{aligned}$			$\begin{aligned} & \underline{y} \\ & 9 \\ & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{gathered} \underline{y} \\ \hline 1 \\ \hline 0 \\ 0 \\ 0 \end{gathered}$		
Social Studies [Grade 6]										
Historical Perspective										
Students Will										
*Examine how human and phys ical geography influencepast decisiors and event.	X			X						
+A nalyze the influence of geographic factors on past decisions andevents.	X			X						
+Evaluatepest, cuntent, and future issuer of tand use (eg., presenva tion, development, modifoation) fromgeographic perspectives.	X		X	X						
Geography										
Students Will										
+ Examine pa tterrs on Earth's surface, using geographic took (e.g., maps, globes) o identify where things (e.g., pecple, places, andmarks) are, how they are a manged, and why they a re in particula r bocations.			X		X					
+A nalyze the physical and humben characteristios of places and regiore.		X	X	X	X				X	X
- Evaluate the impact of humb nisettlementand the interaction of humans with their environments.	X	X	X	X	X				X	
+ Use the five themes of geograpty, 'ibcation, phace, regions, movement and rebtions hips within places) o orga nize intormation about vanious regions in the modem world.					X					
Science [Grade 6]										
Scientific Ways of Thinling \& Working										
Students Will										
trontify and refire questions thatcanbe arawered through scientific investigations combined with scientific information.	X	X	X				X			X
- Use approp inteequipment (eg., bincoulars), bot (e.g., beakers), techniques (e.g., ondering), Echnology (e.g., cal ulators), and mathematics inscientifo investigs tions.	X	X		X			X			
- Use evidence (eg., onderings, organizations), bgic, and scientific knowledge o develop scientific explanations.	X	X	X				X			
+ Design and conductdifferent kinds of scientific investigations b arswer different kinds of questions.		X	X	X			X			
+Communicate (eg., spea k, write) des igre, procedures, a nd result of scientific innestigations.	X	X	X				X			
+Review and analyze scientific investiga tors and explanations of other students.	X	X	X				X	X		

6TH GRADE PROGRAM OF STUDIES

| | | | | n | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6TH GRADE PROGRAM OF STUDIES

| | | | | n | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6TH GRADE PROGRAM OF STUDIES

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

7TH GRADE PROGRAM OF STUDIES

								$\begin{aligned} & \underline{9} \\ & \vdots \\ & \vdots \\ & \mathbf{o} \end{aligned}$		$\begin{aligned} & \text { 옹 } \\ & \\ & \hline \end{aligned}$
+ Useevidence (eg., meas urement), bgic, and scientific knowledge to derelop scientific explanations.	X	X	X				X			
+ Design and conduct different kinds of scientific investigations b answer different kinds of questors.		X	X	X			x			
+Communicate (eg. write) desigs, procedures, and result of scientific inestigations.							X			
- Review and analyzescientific investiga tions and explanations of other students.	X	χ	x				X	X		
Life Science [Grade 7]										
Diversity \& Adaptation of Organisms										
Students Will										
+1rvestag t unity amongorganisms.								X		X
+ InNestiga e biological actaptation and extinction.								X	X	X
Arts \& Humanities [Grade 7]										
Visual Arts										
Elements of Art \& Principles of Design										
Students Will										
+ Make art for specific purposes using elements of artand priciples of design.		x	X		X		X			
Processes and Media										
Stuctents Will										
- Usea variety of artmedia, processes, and sujject matter to communicate ideas, teelinge, and experisnces.		X	X		X		X			
English/Language Arts [Grache 7] Reading										
Stuctents Will										
- Identify the meaning of a variety of reading materials, making cornections o students' lives, o he real word, andior tocurentevents.	X			x	X			X	X	
* Fespond bandanalize meaning, lierary Edriquas leg., figurative langage, tonshadowing, chanceritationj, and elsments E.g, characer, seting, conflict/issolution, teme, rovet, essys, stortstris, poery, dama.	X					X			X	
+ Respond to and analyze transactive reading materises (informational, practicaliworkplace, and pers uasive) through raising and addressing questions, making predictions, drawing conclusions, sok ing problems, and summarizing informa tion (additional supporting Academic Expectation 5.1).	X			x				X	X	
+ Interpret and apply information in a variety of transactive reading matrists to complete autientic tasks.	X			x				X	X	
* Identifity authors' positions, main ideas, and Ectriques of support in persua sive materis.	X								X	
+Employ reading strategiss (e.g., *mming, scarning to beateand apply intoma tion in variedpintandnorprint ie.g., compuers, media, interviews) resounes to inquiry project and ohera uthertic tasks.	χ				X			X	χ	
+ Use vocabulary andcomprehersion strategies, as well as tectrology, to understand text.	X				X	x			X	

7TH GRADE PROGRAM OF STUDIES

| | | | | n | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	$\begin{aligned} & \frac{\pi}{1} \\ & \stackrel{10}{0} \\ & \frac{0}{8} \frac{\pi}{3} \\ & \frac{0}{2} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{4}{5} \\ & \frac{5}{6} \\ & \frac{\pi}{8} \\ & 0 \end{aligned}$						$\begin{gathered} \underline{9} \\ \hline \mathbf{O} \\ \mathbf{o} \\ 9 \end{gathered}$		号
Algebraic Ideas										
Students Will										
+Reognime, ceate, and oortivepateme and generalive the pattem by giving the rule for ary Em.	X			X						
+Represent, interpret, and descibe functional relationships through tbles, graphs, and vertal rulse (inputbuputi.				X						
- Uniderstand the concopt of equatiore and requalites usinguaribles as they relate to exeryday situations.	X			X						
+ Usea variety of metods and representations - create and solve singlevanible equations tat may be applied to everydy situations.	X			X						
+ Organize dota int tables and pbt points onto all four qua drants of a coordinate (Cartesian) systemignid and intepret resulting patems or trencs.				X						
* Intepret rebticrships betreen tbles, graphs, vebal rules, and equatiors.				X						
Physical Education [Grade 7]										
Lifetime Activity										
Students Will										
+ Apply nules and fair play in games and sports.						X				X
+Practice bachieve consistency in games and sport.	X					X				X

8TH GRADE PROGRAM OF STUDIES

		$\begin{aligned} & \text { 高 } \\ & \text { (} \\ & \frac{\pi}{8} \\ & 8 \end{aligned}$					That's My Tree!			$\frac{\stackrel{n}{7}}{\frac{1}{c}}$
Social Studies [Grade 8]										
Historical Perspective										
Students Will										
- Usea vanisty of tot (e.g., primary and secondary souree, data, a tifact) bexplore the intepretive rature how perceptions of pecple and passing of time influence accounts of his orical events) of United States history.	X		X		X				X	
- Develop a chronological understanding of the early history of the United States (early irhabitants to Recorstructioni.					X					
+Analyze the social, politieal, and economic characteristics of eras in American history to Feconstruction (Land and Pecplebebre Columbus, Age of Exploration, Colonization, War for hdependence, Young Pepublic, Westwa rd Exparsion, Industrialism, O ivil Wan.					x					
*Recognize the significance of geographical settings and natural resources on historical perspectives and event inearty United States history.	X		X		X					
Geography										
Students Will										
+Explore reasore behind pateme of human settementacross the Uhied States that resuled in the diverse cultures of the Unied States.					X					
+ Examine how earty Uhited States history was influenced by the physical erwimment ie.g. ratural bariers, natural diasters, ratural resourey.			X		X					
+ livestiga e how Americans used tectrobogy', expecia lly in earty American histry, to modify te erwimment					X					
Economics										
Stucknts Will										
- Recognize that govemment regubtion impacts the economy indecisions aboutproductive resouree (e.g., ratural, human, human-made).	X								X	
Science [Grade 8]										
Scientific Ways of Thinking \& Working										
Students Will										
- ldontify and refre questions ta tcanbe arawered through scientific investigations combined with scientific infomation.	X	x	X				X			
+ Use approp riste equipment (eg., ba rometers), took (e.g., meersticks), Ectriques (e.g. omputer skilks), tectrology' (e.g., computers) and ma tiematios in scientific investigations.	χ	x		x			X			
+ Useeviderce (eg., computer modek), bgic, and scientific knowledge to develop scientific explarations.	X	x	X				X			
+Desig and conduct different kinds of soistitio investigations 0 answer differentkinds of questions.		x	X	x			X			
+Communicat (eg., wite, graphi) desige, procedures, and results of scientific investigations.	X	x	X				X			
-Review and analyze scientific rivestoga bons and explanations of otter students.	X	X	X				X	X		

8TH GRADE PROGRAM OF STUDIES

| | | | | n | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8TH GRADE PROGRAM OF STUDIES

| | | | | n | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8TH GRADE PROGRAM OF STUDIES

| | | | | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SUBJECTS: Science, Social Studies, Math, English/
Language Arts, Health, Consumerism
GRADES: 6-8
DURATION: One class period of 40 to 60 minutes
GROUP SIZE: One or two classes of 10-30 students

SETTING: Indoors

KEY VOCABULARY: Balance, protect, provide, Organic Act, mission

ANTICIPATORY SET: Trying to organize issues and ideas can be challenging. Trying to keep issues in balance can be even more difficult.

OBJECTIVES: The students will be able to: 1) work productively in small groups to create a balance and demonstrate the complexity of keeping the environment in order; 2) make observations demonstrating the complex situations that occur in making decisions that affect the environment.

MATERIALS: Each group will need the following items: two small paper cups, a yardstick, masking tape, stapler or similar object (to create a fulcrum), 30 objects of equal weight (such as pennies or 1 gram cubes), a pencil, three Situation Cards, a copy of the Protect and Provide Activity Sheet.

BACKGROUND: On August 25, 1916, legislation creating the National Park Service was adopted. This legislation, referred to by National Park Service employees as the Organic Act, is the basis for determining how the service manages its natural and cultural resources. A section of the law reads:
"The service thus established shall promote and regulate the use of the Federal areas known as national parks, monuments, and reservations, as provided by law, which purpose is to conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations."

This law states that the National Park Service is to accomplish two things:

1. To conserve (protect) the scenery, natural and historical objects, and the wildlife.
2. To provide enjoyment of these same resources.

It is not an easy task to keep both areas in balance. A great deal of complex decision making goes into determining how to handle a situation to meet both missions.

PROTECT AND PROVIDE

PROCEDURE:

1. The teacher passes out a copy of the Protect and Provide Activity Sheet to each student. The students read the portion of the Organic Act at the top of the page. The teacher explains that there are two major goals stated in the law and asks the students to identify and list them on the activity sheet.
2. The class should be able to respond with conserving (protecting) the scenery, natural and historical objects, and the wildlife; and providing for the enjoyment of these resources.
3. The teacher asks if the class thinks it would be an easy task to follow both missions and be fair and equal in meeting each goal. The teacher then explains that they will do an experiment to demonstrate how to keep everything in balance.
4. The teacher divides the class into groups of three or four students and explains that each group will create their own balance and make decisions affecting whether the balance stays level.
5. The teacher distributes cups, yardsticks, and masking tape to be used to create the balances. The next section of the activity sheet, entitled "Keeping the Mission in Balance", describes how to do this. Each group follows the instructions to create their model.
6. After building their balance, the students place ten pennies or similar items in each cup. Once each group places the items in their cup they then balance the yardstick on the fulcrum (stapler or other similar item).
7. Each group receives any three of the Situation Cards. The group can read them in any order. After reading, discussing, and filling in the Setting the Scene Work Sheet for the first Situation Card, the students adjust their balance accordingly by adding to or removing objects from the cups. For each beneficial change, add one penny (or other object) to the appropriate cup. For each harmful change, take one penny (or other object) out of the appropriate cup. Do not add or subtract if the situation is unchanged.
8. After adjusting their balance for the first Situation Card, the group brainstorms ways to rectify the situation to bring it back into balance, thus maintaining the "protect" and "provide" goals of the Organic Act.
9. The students follow the same procedure for the second Situation Card; and again for the third.
10. The teacher asks if any students would like to share their situations and how it affected their balance. The class discusses whether it was easy to keep their scale in balance. The teacher asks questions such as, "What could be done to assure all is in balance? Is there one part of your situation you see as more of a problem than another? Why? Does everyone in your group agree?"

CLOSURE: We have taken a look at the mission of the National Park Service and how easily outside factors can make this mission difficult to achieve. When choices are made about what can be done in a situation, many viewpoints need to be considered before a decision is made. People making these decisions also have to stay within the limits of laws such as the Organic Act.

EVALUATION: The teacher is able to evaluate the students as they work in groups, through class discussion, and by reviewing their activity sheets.

EXTENSIONS:

1. The students can choose a "situation" to research and then provide an oral or written report on their findings.
2. A speaker from a conservation agency could be invited to speak to the class about various issues that impact their job and/or their organization's mission. They could address an issue that is a challenge in meeting the mission/missions of their agency.
3. The students could choose an environmental issue related to their community and brainstorm various ways this issue could both positively and negatively affect the community.

PROTECT AND PROVIDE ACTIVITY SHEET

Please read the following paragraph taken from the "Organic Act" of 1916.

"The service thus established shall promote and regulate the use of the Federal areas known as national parks, monuments, and reservations, as provided by law, which purpose is to conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations."

This act is the law that must be obeyed whenever the National Park Service makes decisions.

List the two main ideas or missions in the Organic Act.
1.

2 \qquad

Keeping the Mission in Balance:

Materials: two small paper cups, tape, a pencil, a yardstick, a stapler or other heavy object (to serve as the fulcrum for the balance), and 30 objects of equal weight (pennies, cubes, etc.).

1. Place the fulcrum (stapler or other heavy object) on a level area.
2. Tape one cup to each end of the yardstick. Write "Protect" on one cup and "Provide" on the second cup.
3. Place 10 items (pennies, cubes, etc.) in each cup. Then place the yardstick on the fulcrum so that it is balanced and the yardstick is level.
4. As a group, read your situation cards one at a time and fill out the Setting the Scene Work Sheet for each card.

PROTECT AND PROVIDE
 SITUATION CARDS

Situation Card A

It is a warm spring day. Many people have come to enjoy the great outdoors in their favorite national park. There are so many people, that cars are parking in an open field.

Situation Card C

A carload of friends pulls up to the entrance gate to visit a national park. They are welcomed and told they will have to wait for a car to exit the park before they can enter.

Situation Card E

There are deer gathered along a roadside in a national park feeding on nuts and plants. Three cars pull over to take pictures. One person takes out an apple and starts over to feed the deer.

Situation Card B

There is a family on a trail in a national park. They are having a wonderful time identifying and picking wildflowers to press later.

Situation Card D

There is a group hiking along a trail in a national park. They discover arrowheads and pottery. The group looks at the artifacts without touching them. As everyone walks away the last person figures it won't hurt if they take just one.

Situation Card F

A couple is out walking on a nature trail in a national park. They come to a tree and see that others have left initials on the tree. The couple decides to add their initials and a heart. They begin to carve into the bark.

PROTECT AND PROVIDE

SETTING THE SCENE WORKSHEET

Choose one of the situation cards and read it aloud to your group.

As a group decide:

1. Does this situation affect the Protect mission, the Provide mission, or both?
2. Is it beneficial, harmful or leave things unchanged? (Check or circle your answer.) Why?
3. How can the situation be corrected?

Answer the questions in the boxes below for each of the three situations.

CARD	PROTECT	PROVIDE
	\square Beneficial \square Unchanged \square Harmful Why: Corrective Measure:	\square Beneficial Unchanged Harmful Why: Corrective Measure:
	\square Beneficial Unchanged Harmful Why: Corrective Measure:	\square Beneficial Unchanged Harmful Why: Corrective Measure:
	\square Beneficial Unchanged Harmful Why: Corrective Measure:	\square Beneficial Unchanged Harmful Why: Corrective Measure:

For each situation, adjust your balance by adding to or by removing objects from the appropriate cup.
Is it easy to keep the balance level?
Is the job of upholding the missions of the Organic Act easily done?

PROTECT AND PROVIDE

CORE CONTENT

MA-M-4.3.2 How the change in one variable affects the change in another variable (e.g., if rate remains constant, an increase in time results in an increase in distance).
MA-M-4.3.1 How everyday situations, tables, graphs, patterns, verbal rules, and equations relate to each other.
MA-M-4.2.6 Write and solve equations that represent everyday situations.
MA-M-4.2.3 Model equations and inequalities concretely (e.g., algebra tiles or blocks), pictorially (e.g., graphs, tables), and abstractly (e.g., equations).
MA-M-3.2.5 Make predictions and draw conclusions from statistical data and probability experiments.
MA-M-3.2.1 Organize, represent, analyze, and interpret sets of data.
MA-M-1.2.1 Add, subtract, multiply, and divide rational numbers (fractions, decimals, percents, integers) to solve problems.
PL-M-3.3.2 Improving environmental conditions (e.g., air and water quality) and preserving natural resources impact personal and community health.
PL-M-3.3.1 A range of resources and services are provided by community agencies such as: public health department, fire department, police department, family resource centers, hospitals, and nonprofit organizations (e.g., American Heart Association, American Red Cross, American Cancer Society).

PL-M-3.1.5 Environmental issues (e.g., pollution) should be considered when making consumer decisions (e.g., recycling, reducing, reusing).
PL-M-1.8.4 Using appropriate coping strategies (e.g., realistic goal-setting, effective time management, decisionmaking processes) promotes mental and emotional health.
PL-M-1.8.1 The use of appropriate strategies (e.g., assertiveness, refusal skills, decision-making techniques) are positive ways to cope with peer pressure.
RD-H-x.0.7 Formulate opinions in response to a reading passage.
RD-H-x.0.1 Locate, evaluate, and apply information for a realistic purpose.
RD-H-4.0.8 Identify essential information needed to accomplish a task.
RD-H-2.0.13 Analyze the content as it applies to students' lives and/or real world issues.
RD-H-2.0.12 Make predictions and draw conclusions based on what is read.
RD-M-x.0.10 Connect information from a passage to students' lives and/or real world issues.
RD-M-x.0.9 Reflect on and evaluate what is read.
RD-M-x.0.8 Make predictions, draw conclusions, and make generalizations about what is read.
RD-M-x.0.7 Skim to get the general meaning of a passage.
RD-M-4.0.14 Interpret the meaning of specialized vocabulary.
RD-M-4.0.11 Locate and apply information for a specific purpose (e.g., following directions, completing a task).
RD-M-3.0.15 Identify the argument and supporting evidence.
RD-M-2.0.14 Summarize information from a passage.

PROTECT AND PROVIDE

CORE CONTENT

RD-M-2.0.13 Identify supporting details and explain their importance in a passage.
RD-M-2.0.12 Apply knowledge of organizational patterns (e.g., cause and effect, comparison, contrast, sequence) to understand a passage.
SC-M-3.5.4 The number of organisms an ecosystem can support depends on the resources available and abiotic factors (e.g., quantity of light and water, range of temperatures, soil composition). Given adequate biotic and abiotic resources and no diseases or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.
SC-M-3.5.2 Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some microorganisms are producers because they make their own food. All animals, including humans, are consumers, and obtain their food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

SC-M-3.5.1 A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
SC-M-3.4.1 Biological change over time accounts for the diversity of species developed through gradual processes over many generations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

SS-M-4.4.4 Individual perspectives impact the use of natural resources (e.g., watering lawns, planting gardens, recycling paper).
SS-M-4.4.3 The natural resources of a place or region impact its political, social, and economic development.
SS-M-4.4.2 The physical environment both promotes and limits human activities (e.g., exploration, migration, trade).

SS-M-4.2.2 Places and regions change over time as new technologies, resources, and knowledge become available.

SS-M-4.2.1 Places can be made distinctive by human activities (e.g., building houses, stores, roads, railroads, irrigation) that alter physical features.
WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

SUBJECTS: Science, Social Studies, English/Language Arts, Arts and Humanities, Health, Physical Education, Consumerism

GRADES: 6-8
DURATION: One 20-30 minute period
GROUP SIZE: One classroom of 25-35 students (or less)

SETTING: Indoors or outside at a table or flat surface
KEY VOCABULARY: Sinkholes, pollution, groundwater, karst, watershed, water table

ANTICIPATORY SET: We are going to look at a karst area and a non-karst area. Does anyone know the features of a karst area? How does a karst area differ from a non-karst area?

OBJECTIVES: The students will be able to: 1) conceptualize the differences between a karst area and a nonkarst area after watching the demonstration; 2) make decisions and solve problems related to a karst area and its threats of pollution.

MATERIALS: Four plastic 2-liter bottles, two pieces of $1 / 2 "$ PVC pipe (7" long), soil, gravel, pickle relish (rinsed), red food coloring, spoon, Soda Sink Activity Sheet.

SODA SINK

BACKGROUND: Karst is a geologic term that describes special areas with unique concerns. Karst areas are noted for their abundance of relatively pure layers of limestone rock. These limestone layers are protected by a cap rock that can repel water and protect the more soluble underlying limestone layers. This cap rock must be thick enough to prevent water from reaching and dissolving all the softer limestone layers, but must be thin enough to form cracks and fissions as the earth's crust shifts and moves. In south-central Kentucky, the cap rock is $50-60$ feet thick and is formed of sandstone and shale.

A watershed is an area of land that collects rainwater and melted snow. Following the properties of gravity, water that falls on a hill or plateau will drain downward to the lowest point. Water collects at the lowest point as a river, lake, or ocean. This is the water table. In the Mammoth Cave area the lowest point is the Green River Valley. The water table is at the level of the Green River.

In a non-karst area, water travels as a surface river or stream for long distances until it eventually empties into a larger river, lake, or ocean found at the water table. However, in a karst area this water more frequently disappears into the earth by flowing into depressions called sinkholes. Sinkholes are landforms that develop when underlying rock layers collapse inward, causing the upper layers to develop cracks and collapse. These cracks and newly formed holes will speed the drainage of the surrounding area. Thus, karst areas are noted for having a dramatic lack of surface water.

Falling rainwater absorbs carbon dioxide from decaying surface vegetation. The absorbed carbon dioxide produces an acidic water (carbonic acid) that can dissolve limestone. This acidic water flows across the earth's surface until it finds a crack or a sinkhole. The water then drains vertically until it reaches the water table. On its downward journey through the layers of rock, the water can begin to seep into cracks located between layers of limestone rock. As the water begins to flow horizontally it dissolves holes in the limestone. These horizontal holes are referred to as caves. The vertical holes are called vertical shafts, or domes and pits.

Water that flows underground must eventually have an outlet. In a karst area, groundwater sometimes travels many miles before exiting as a spring that then flows into a surface river or lake.

All land uses can dramatically affect an area. This is particularly true in a karst area where the abundance of sinkholes can funnel not only surface water but also all types of pollution into the groundwater. A rainstorm within a karst region can swiftly wash soils, agricultural chemicals (fertilizers, insecticides, etc.), oil and gas from roads and railways, animal waste from farms, and sewage from poorly performing sewer/septic systems into the underlying water table. On the way to its outlet, this underground water can be intercepted by residential wells where the waters are collected and consumed without any filtration or cleansing. In a karst area, rainwater is often available for re-use within a matter of hours.

In a non-karst area, the same types of pollution can also be carried by surface streams to the controlling waterways, but water that seeps underground does not have the benefit of caves and cracks to speed it along. In a non-karst area water particles must seep around the molecules making up the soil and solid rock on its way to an underground stream or aquifer. Under normal conditions, this groundwater becomes naturally filtered and emerges in a cleansed state. It takes a long time for water to travel through solid rock layers and it is not unusual for groundwater to take 300 years or more to reach the water table.

In a karst area, groundwater movement is measured in miles per hour. In a non-karst area, groundwater movement is measured in centimeters per year!

SODA SINK

PROCEDURE:

1. A few days before teaching this exercise the teacher will need to make the karst and non-karst watersheds by following directions found in this lesson. The teacher will also need to prepare the "pollution". To make the "pollution", rinse the oils off 1/8 cup of pickle relish. Add several drops of red food coloring and 1/8 cup water to the rinsed pickle relish. Refrigerate until ready to use.
2. The teacher shows the students the model karst watershed and model non-karst watershed, identifying the ground, rock, and water table. After looking at the models the teacher asks the students to predict what will happen when it rains.
3. The teacher then simulates rain by pouring an equal amount of water on the karst watershed and the nonkarst watershed, (about 1/4 cup of water on each). After the "rain" is poured over each model the class discusses what happened.
4. After talking about how quickly water traveled to the water table in the karst model the teacher asks what other things may get into the groundwater. The teacher gets out the "pollution" (the colored pickle relish) and puts about 1 tablespoon of "pollution" on the "ground" of each of the two models. The teacher asks the students to predict what will happen during the next rainstorm. The teacher may also ask questions like, "Will the karst watershed or the non-karst watershed become more polluted?"
5. The teacher makes it rain again. The students observe what happens. The class discusses what happened after the second rain
6. The students now break up into small groups with their activity sheets. After they have answered their questions, the class gathers together to discuss their answers.

CLOSURE: We have seen how easy it is for water or pollution to get into the groundwater in a karst area. We might think about things we can do to help protect groundwater, since it is the water all of us use every day.

EVALUATION: The teacher is able to evaluate the students during the class discussions and from information written on their activity sheets.

EXTENSIONS:

1. Find newspaper articles that address water pollution in your area. How is the water becoming polluted and what can be done to correct the problem?
2. Plan a class trip to a sinkhole. View it and clean up any pollution you might find in the sink.
3. Discuss sinkholes in your area. Are they polluted? What would be an "action plan" to protect your groundwater?

Note: The plans to create the karst watershed and non-karst watershed were taken from Waste: a Hidden Resource in Kentucky written for the Kentucky Department of Environmental Protection, 1992.

SODA SINK

ACTIVITY SHEET

Name: \qquad
Date: \qquad

1. Draw and label the major features of a karst watershed.
2. Draw and label the major features of a non-karst watershed.
3. What are the differences between a karst and non-karst watershed?
4. List at least four sources of groundwater pollution.
(1.) \qquad
(2.) \qquad
(3.) \qquad
(4.) \qquad
(3.) \qquad
(4.)
5. For each type of pollution listed in question four, give a way to either clean up the groundwater or prevent it from becoming polluted.
(1.) \qquad
(2.) \qquad
\qquad

SODA SINK
 ASSEMBLY INSTRUCTIONS

For "Soda Sink" you will need to construct two simulated environments as demonstration columns.

Materials:

- 4 plastic 2-liter bottles, empty, caps removed
- Two $1 / 2$ " PVC pipes (7 inches long)
- Sod
- Soil
- Gravel

Step 3: Prepare Non-Karst Watershed

Insert 7-inch PVC pipe into the neck of bottle 1 , then plug the top of the pipe with clay or cover with a flat stone.

Pack stones into Bottle 1 as shown, higher at the edges and lower in the center.

Add a layer of soil, slightly packed down, higher at the edges and lower in the center.

Lay sod on top, as shown.
Insert Bottle 1 into Bottle 2 as illustrated.

SODA SINK

CORE CONTENT

AH-M-4.1.41 Create art for specific purposes using the elements of art and principles of design to communicate ideas. [PE] (1.13, 2.22)

PL-M-1.8.4 Using appropriate coping strategies (e.g., realistic goal-setting, effective time management, decisionmaking processes) promotes mental and emotional health.

PL-M-1.1.1 Individuals have personal rights and responsibilities (e.g., cooperation, communication, patience) when dealing with others (e.g., families, classmates, teams).

PL-M-2.3.2 Rules of behavior and fair play (e.g., accepting authoritative decisions, assessing one's own performance level, accepting skills and abilities of others through verbal and nonverbal actions for spectators and/or participants) during games are necessary.

PL-M-3.3.2 Improving environmental conditions (e.g., air and water quality) and preserving natural resources impact personal and community health.

PL-M-3.1.5 Environmental issues (e.g., pollution) should be considered when making consumer decisions (e.g., recycling, reducing, reusing).

SC-M-2.1.5 Water, which covers the majority of the Earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the water cycle. Water dissolves minerals and gases and may carry them to the oceans.

SS-M-4.4.4 Individual perspectives impact the use of natural resources (e.g., watering lawns, planting gardens, recycling paper).

SS-M-4.4.2 The physical environment both promotes and limits human activities (e.g., exploration, migration, trade).

WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

SUBJECTS: Science, Social Studies, English/Language Arts, Health, Physical Education, Consumerism

GRADES: 6-8
DURATION: One to three 45-60 minute periods
GROUP SIZE: 20-30 students working in small groups
SETTING: Indoors or outside at tables
KEY VOCABULARY: Karst, sinkholes, groundwater, spring, run-off, pollution, community

ANTICIPATORY SET: Today we are going to look at a place called Secret Sink and develop a community around it. What kinds of things do we find in a community? How can all aspects of a community work together to create a healthy, productive place to live and work?

OBJECTIVES: The students will be able to: 1) develop and express rights and responsibilities for themselves and others; 2) investigate alternative perspectives; 3) work together in a decision making and problem solving situation by applying multiple perspectives.

MATERIALS: Scissors; masking tape; glue; surface map that includes a river, spring, and sinkhole (one per group); Secret Sink Community Sheet (one per group).

SECRET SINK

BACKGROUND: All land use can dramatically affect an area. This is particularly true in a karst area. A karst area is distinguishable by the lack of surface streams and an abundance of sinkholes and springs. Following the properties of gravity, water consistently travels to the lowest point, the water table. In most areas of the United States the water travels along the surface as a stream or river. But in a karst area the water is more likely to sink underground to form sub-surface streams or rivers. Underground water may travel many miles before exiting as a spring near or along a surface river.

In a karst landscape, water drains underground by flowing into depressions called sinkholes. Sinkholes are areas where underlying rock layers have given way, causing the upper layers of rock to develop cracks and collapse. Karst terrain is very susceptible to groundwater pollution due to the many sinkholes on the surface that quickly drain water into underground rivers.

When discussing land development in a karst region numerous issues should be addressed. All uses for land can dramatically affect an area, but the problems of groundwater pollution and an increasing human population have the most dramatic impacts on a given area. This is particularly true in a karst area where the abundance of sinkholes can funnel not only surface water but also all types of pollution into the groundwater. This run-off, or drainage of water and water carried pollution, can create major community problems. Because of its numerous surface cracks and holes, a rainstorm within a karst terrain can swiftly wash soils, farming chemicals (including fertilizers, insecticides, pesticides, etc.), or animal waste from adjacent farm land into the underground waterways. Oil and gas residues can wash off area roadways or railway lines. Broken sewage or septic lines can carry human wastes into the underlying water table. If a residential well intercepts these underground streams, the polluted waters can be brought into area homes without the necessary filtration or cleansing. This affects the health and well being of the community.

A community's greatest challenge is to develop a relationship with its surroundings so both can thrive. Planning is the key to a successful partnership with the land. By understanding the workings of a karst terrain and the vital role that water plays in this environment people can make informed decisions to insure that pre-existing plant and animal communities are not greatly disturbed. In the Secret Sink Community industry, agriculture, and general services must all work together to produce a sustainable environment.

SECRET SINK

PROCEDURE:

1. Tell the students that they are responsible for planning a new community in the Secret Sink region. All components of the community must be arranged so that it maximizes the usefulness of this region. The teacher reviews what needs to be developed and the importance of not leaving out any aspects of the community.
2. Divide the class into groups of three to five students. Each group represents a town planning committee. Working together as a team, their job is to plan the "perfect" community -- a community which provides a clean, healthy environment for all its residents as well as the pre-existing plant and animal life.
3. Review the components of the community*:

Residents - live in the area
Farmers - use the land to raise tobacco and livestock
Industry - uses the land for economic growth and trade Small Businesses - provide local services
National Park - preserves and protects the unique environment
Transportation Department - insures appropriate transportation throughout the community. This can include highways, railroads and/or water transportation
Environmental Groups - protect the sinkholes under any circumstances
*Other groups can be added.
4. Before the students cut out the materials, "brainstorm" the pros and cons of land use in the Secret Sink community. Record the pros and cons on the board. The table below shows a few examples:
5. Pass out the surface maps, scissors, glue, and the Secret Sink Community Sheets. The surface maps will serve as a base for each group's community. Explain that the group will need to use all the building cutouts provided. These cutouts can be made smaller or they can include more land, but all pieces must be used. The students may also develop other land uses. Do not paste items down at this time.
6. Have students work in their groups and begin to develop their ideal community. While doing this,
keep in mind the priorities of each community group. Remember no land use is to be excluded, all community buildings must be used, plant and animal habitats need to be preserved, and everyone in your group should agree. Once all community members agree to the best layout, the pieces should be pasted or taped in place.
7. After each land use plan has been completed, each group now shares their "ideal" community with the rest of the class. During each presentation, community members should explain why they chose the placement of each component of their community. They should also explain how the placement of individual components helps protect, preserve, and maintain the health and well being of other community components.
8. As each presentation is completed, the teacher should tape or hang each completed community along the board or wall of the classroom. Place communities side by side until each group has completed their presentations. Next, have the class focus on the string of communities found along the river. Point out that each represents a town, city, or farming community found along the Green River. Individual components of any one community may protect other components within its town limits, but how do they affect the next community downstream? Did the individual planning committees think about other communities while working on the layout of their own town? Are there different choices that would have made a difference to neighboring communities?

NOTE: There is no "perfect" community. Every community will affect the plant and animal habitats around it, but proper planning can help to alleviate many environmental consequences.
9. To show that our Secret Sink community is not isolated, the teacher uses a U.S. map to show that the Green River flows into the Ohio River which flows into the Mississippi River which flows into the Gulf of Mexico. Now, as we look at our community, how are we affecting other communities down river and around the world?

SECRET SINK

CLOSURE: Secret Sink is a special community.
All communities have differences that make them unique. As community planners we need to take these special attributes into consideration. No community is an island. Each has its impact on many environments.

EVALUATION: The teacher is able to evaluate the students by observing how the students interact with each other in their groups. Through the students' presentations and discussions the teacher will be able to evaluate their problem solving skills and how well they adapt to different perspectives.

EXTENSIONS:

1. Relate Secret Sink to a sinkhole or other potentially hazardous area in or near your community. How is it being used? What kinds of connections can you make?
2. Find articles in local newspapers relating to sinkholes. What problems, concerns, and/or solutions are being discussed?
3. Attend a town meeting to see how your community discusses and plans for your area's development.
4. Brainstorm some changes that could be made within your school community. Prepare your ideas and present then to your school's student council.

SECRET SINK
COMMUNITY SHEET

GROCERY	GAS STATION	DRY CLEANERS	DINER

FARM
FEED LOT
HOUSE HOUSE
HOUSE \quad HOUSE \quad HOUSE
TOBACCO FIELD
BLEACH FACTORY
FIREHOUSE
NATIONAL PARK

SECRET SINK

CORE CONTENT

PL-M-3.3.2 Improving environmental conditions (e.g., air and water quality) and preserving natural resources impact personal and community health.

PL-M-3.3.1 A range of resources and services are provided by community agencies such as: public health department, fire department, police department, family resource centers, hospitals, and nonprofit organizations (e.g., American Heart Association, American Red Cross, American Cancer Society).

PL-M-3.1.5 Environmental issues (e.g., pollution) should be considered when making consumer decisions (e.g., recycling, reducing, reusing).

PL-M-2.3.2 Rules of behavior and fair play (e.g., accepting authoritative decisions, assessing one's own performance level, accepting skills and abilities of others through verbal and nonverbal actions for spectators and/or participants) during games are necessary.

PL-M-1.8.4 Using appropriate coping strategies (e.g., realistic goal-setting, effective time management, decisionmaking processes) promotes mental and emotional health.

PL-M-1.8.3 Strategies (e.g., walking away, communication skills, conflict resolution) for preventing violence vary with the situation.

PL-M-1.8.1 The use of appropriate strategies (e.g., assertiveness, refusal skills, decision-making techniques) are positive ways to cope with peer pressure.

PL-M-1.1.1 Individuals have personal rights and responsibilities (e.g., cooperation, communication, patience) when dealing with others (e.g., families, classmates, teams).

SC-M-3.5.4 The number of organisms an ecosystem can support depends on the resources available and abiotic factors (e.g., quantity of light and water, range of temperatures, soil composition). Given adequate biotic and abiotic resources and no diseases or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

SC-M-3.5.2 Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some microorganisms are producers because they make their own food. All animals, including humans, are consumers, and obtain their food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

SC-M-3.5.1 A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

SC-M-3.4.1 Biological change over time accounts for the diversity of species developed through gradual processes over many generations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

SC-M-2.1.5 Water, which covers the majority of the Earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the water cycle. Water dissolves minerals and gases and may carry them to the oceans.

SECRET SINK

CORE CONTENT

SS-M-4.4.4 Individual perspectives impact the use of natural resources (e.g., watering lawns, planting gardens, recycling paper).

SS-M-4.4.3 The natural resources of a place or region impact its political, social, and economic development.
SS-M-4.4.2 The physical environment both promotes and limits human activities (e.g., exploration, migration, trade).

SS-M-4.2.2 Places and regions change over time as new technologies, resources, and knowledge become available.

SS-M-4.2.1 Places can be made distinctive by human activities (e.g., building houses, stores, roads, railroads, irrigation) that alter physical features.

SS-M-4.1.2 Different factors (e.g., rivers, dams, developments) affect where human activities are located and how land is used in urban, rural, and suburban areas.

SS-M-2.4.2 Compromise and cooperation are possible choices for positive social interaction and resolution of conflict.

SS-M-2.3.1 Various human needs are met through interaction in and among social institutions and groups (e.g., family, schools, teams, clubs, religious groups, governments).

WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

MAMMOTH MATH

SUBJECTS: Social Studies, Government, Math
GRADES: 6-8
DURATION: One class period of 40-60 minutes
GROUP SIZE: One or two classrooms (15-60 students)

SETTING: Indoors

KEY VOCABULARY: Visitation, line graph, x-axis, y-axis, fiscal year, calendar year, peak season, capacity

ANTICIPATORY SET: Can someone explain the word capacity? How can this word be applied to the number of visitors to an area?

OBJECTIVE: The students will be able to: 1) develop and graph visitation statistics over a fifty-five year period;
2) interpret other line graphs to gather information;
3) read graphs and draw conclusions about visitation trends.

MATERIALS: One copy per student of the Mammoth Math Visitation Graph; Park And Cave Visitation Statistics (for 1941-1997); Mammoth Math Worksheets; pencils; rulers.

MAMMOTH MATH

BACKGROUND: For years statistics have been kept on the number of people visiting Mammoth Cave National Park. These statistics include the number of visitors to the park and the number of people who tour the cave. The number of park visitors is an estimate based on the number of cars that pass over a traffic counter. That number is then multiplied by what is known as a multiplier, or the average number of people per vehicle. This number has changed over the years. The number of people that go into the cave is based on the total number of cave tour tickets sold.

National events brought about some drastic changes in visitation numbers. In the early 1940's visitation dropped dramatically. This was due to the United States' involvement in World War II. During the war years almost everything was rationed (gas, tires, food items), men were off fighting the war, women were working in defense factories or on the family farm, and there was little time to travel. Even if people had time to travel during the World War II era they could not buy gas or tires, making travel extremely difficult. In the mid-1970's visitors flocked to national parks to experience their heritage and roots during our nation's bicentennial. In the early-1980's visitation dropped off due to a fuel crisis, which included a gas shortage, high gasoline prices, and in many areas the inability to purchase gas on certain days of the week. These national influences had a dramatic effect on the number of people visiting Mammoth Cave National Park.

Capacity is the total number an object or resource can accommodate. For example, a bus only has 24 seats and can only carry a designated number of passengers safely and comfortably. That bus has a total capacity, or number, of passengers it can carry. In a cave the capacity is the total number of people that a cave tour can accommodate. For safety, a quality visitor experience, and resource protection only a pre-determined number of visitors are allowed on a tour. The average limit on tours in Mammoth Cave is one hundred people. On some cave tours, such as the Wild Cave tour and the Introduction to Caving tour, the capacity is much lower. On the graphs provided in this lesson you will notice the visitation exceeds the capacity. This can happen because of the addition of a half-mile Discovery tour. On the Discovery tour visitors walk the cave passage at their own pace and stop and talk to the rangers stationed in various areas versus being guided through the cave.

On very busy days and holiday weekends this tour is offered to provide visitors a chance to view a portion of Mammoth Cave when the other guided tours are sold out-- or have reached capacity!

One question on the worksheet asks which time of year the students would like to visit and why. They will need to remember these graphs do not give the full story. While some might choose to come in the winter when there are not as many visitors, there is the trade-off of not having the variety of cave tours that are available in the summer. Some years the park has had the luxury of adding specialty tours to the Fall schedule. These tours have smaller tour limits and go into parts of the cave that are not visited as often. Although graphs give us some information, they can not tell the entire story.

PROCEDURES:

1. The teacher passes out copies of an information sheet entitled Park and Cave Visitation Statistics. The teacher asks the students what the difference between park visitation and cave visitation might be? The teacher then explains that the class is going to look at the cave visitation statistics and plot them to create a line graph.
2. The teacher passes out a blank Mammoth Math Visitation Graph. The teacher explains that the y-axis is on the left side of the graph. It is read from bottom to top. Starting at zero, students are to label this section in thousands, from 0 to 750,000 in increments of 25,000 . The first line will be worth 0 , the next 25,000 , then 50,000 and so forth. Since the margin has the word "thousands" students can leave off the zeros and label the graph $25,50,75$ and so forth.
3. The teacher explains that the x-axis moves from left to right across the bottom of the graph. The x-axis will be your time line (or years) starting in 1941 and moving across until 1996. It is to be labeled in 5-year increments, 1941, 1946, 1951, etc.
4. Once the graph is labeled the teacher will have the students plot the number of cave visitors for each year. After the years are plotted a line is drawn from dot to dot to connect the years.
5. After plotting the points the teacher asks the class to discuss the possible reasons for the highs and lows. The students will then locate the year with the highest visitation and the year with the lowest. Then the teacher asks the students: What was happening nationally around 1973 that would cause that year to have higher numbers of visitors? What about our lowest years, 1942-45 and 1983? What was happening in the nation at that time?
6. Work Sheet \# 1 includes cave visitation for three fiscal years. (Fiscal year is abbreviated as FY). The teacher asks the students what fiscal year means. In this case the calendar for the National Park Service begins in October and ends in September. October through September is the government's financial, or fiscal, year. The students review the graph and then answer the questions. The class discusses the answers. Notice that question number five is a matter of opinion. (Remember, information that is not seen in the graph could alter this answer!)
7. The teacher asks the students the meaning of the word capacity. Can the longest cave system in the world have a capacity? Yes! The capacity is the number of people that can go on the scheduled guided cave tours.
8. Using Work Sheet \# 2 the class will now look at monthly cave visitation for two fiscal years (FY'92 and FY'93). The teacher asks the students if they notice anything unusual about these graphs. How can visitation be higher than capacity? The class discusses some possibilities.
9. The students review the graphs and answer the accompanying questions. The class discusses the answers.

CLOSURE: Today we have looked at graphs as a way to compare information, determine trends, and draw conclusions from the information given. Graphs are a way to organize and present information in a visual display. We were able to visualize the visitation at Mammoth Cave National Park for over fifty years.

EVALUATION: The teacher is able to evaluate the students through class participation, their graphs, and the answers found on their worksheets.

EXTENSIONS:

1. Students could interview people in their community who lived during the hardships of World War II and/or the gas crisis of 1983. These community members could be invited to class to talk about what is was like to live during these difficult times.
2. The class could graph the attendance record for several months from their school. They could then review the dates to answer various question such as: Are there certain months when more students are absent? Why?
3. The class could research various ways to graph information, such as pie charts and bar graphs. How do these differ? The data from this activity could be converted to another type of graph to help illustrate the relationship of capacity and visitation or to show monthly and yearly trends.

MAMMOTH MATH PARK AND CAVE VISITATION STATISTICS

Year 1997	Park Visitation 2.089,911	Cave Visitation 467,239
1996	1,989,082	480,177
1995	1,935,700	517,129
1994	2,101,188 (change in multiplier)	526,247
1993	2,569,300 (1,937,089 by new multiplier)	(ilier) 531,769
1992	2,565,946	563,811
1991	2,331,283	547,035
1990	2,097,626	500,745
1989	1,845,928	495,500
1988	1,908,698	504,413
1987	1,809,428	463,025
1986	1,819,761	443,965
1985	1,681,027	426,086
1984	1,674,538	416,576
1983	1,671,591	402,383
1982	1,699,764	450,747
1981	1,577,405	447,371
1980	1,668,875	434,905
1979	1,557,998	411,538
1978	1,813,776	514,396
1977	1,979,351	575,829
1976	1,922,010	606,273
1975	1,853,770	615,838
1974	1,739,957	596,268
1973	1,927,547	675,167
1972	1,872,870	661,136
1971	1,745,016	625,364
1970	1,726,494	610,964
1969	1,299,695	541,168
1968	1,540,191	527,036
1967	1,282,754	479,130
1966	1,143,794	464,444
1965	872,210	388,015
1964	793,424	348,895
1963	636,094	303,996
1962	569,319	284,025
1961	519,274	258,850
1960	519,144	248,411
1959	490,268	232,491
1958	479,530	209,538
1957	450,181	215,380
1956	466,126	208,283
1955	447,828	194,570
1954	439,752	196,889
1953	499,362	220,634
1952	438,030	217,615
1951	364,216	229,876
1950	254,187	198,827
1949	211,792	171,542
1948	180,621	163,262
1947	192,803	143,720
1946	180,081	133,248
1945	84,335	63,883
1944	50,862	45,687
1943	46,812	45,687
1942	87,155	78,874
1941	165,966	70,382

Name:
Date:

MAMMOTH MATH VISITATION GRAPH

Number the x-axis in 5-year intervals starting with 1941 when
Mammoth Cave became a National Park.

Number the y-axis, starting with 0 in intervals of 25,000 (0; 25,000; 50,000; 75,000; $100,000)$ etc., up to 750,000

MAMMOTH MATH WORK SHEET NO. 1

Monthly Cave Visitation: FY '92 vs FY '93 vs FY '94

1. Which year has the highest total visitation? \qquad Explain how you came to this determination.
2. For all three years, when is the peak season? \qquad
3. Looking at all three years, which month has the greatest difference in visitation? \qquad
4. Which month has the least visitation in FY'94? \qquad
5. As a visitor, what time of year would you most like to visit and why?

MAMMOTH MATH

WORK SHEET NO. 2

Using Monthly Cave Visitation Graphs for FY'92 and FY'93 answer the following questions:

1. In each year visitation is higher than capacity from March to September. In which year is visitation closer to capacity during this period?
2. Why do you think visitation is so high in April?
\qquad
\qquad
\qquad
3. What does capacity mean?
\qquad
\qquad
\qquad
4. What can you suggest managers do when visitation is higher than capacity?
\qquad
\qquad
\qquad
\qquad
\qquad

FY'92

FY'93

MAMMOTH MATH CORE CONTENT

MA-M-4.3.1 How everyday situations, tables, graphs, patterns, verbal rules, and equations relate to each other.
MA-M-4.2.3 Model equations and inequalities concretely (e.g., algebra tiles or blocks), pictorially (e.g., graphs, tables), and abstractly (e.g., equations).

MA-M-4.1.3 Rectangular (Cartesian) coordinate system/grid and ordered pairs.
MA-M-3.3.4 How probability and statistics are used to make predictions and/or draw conclusions.
MA-M-3.3.3 How data gathering, bias issues, faulty data analysis, and misleading representations affect interpretations and conclusions about data (e.g., changing the scale on a graph, polling only a specific group of people, using limited or extremely small sample size).

MA-M-3.3.1 How different representations of data (e.g., tables, graphs, diagrams, plots) are related.
MA-M-3.2.2 Construct and interpret displays of data (e.g., table, circle graph, line plot, stem-and-leaf plot, box-and-whiskers plot).

MA-M-3.2.1 Organize, represent, analyze, and interpret sets of data.
MA-M-3.1.3 Characteristics and appropriateness of graphs (e.g., bar, line, circle), and plots (e.g., line, stem-andleaf, box-and-whiskers, scatter).

MA-M-1.2.2 Compute (e.g., estimate, use pencil and paper, use calculator, round, use mental math) large and small quantities and check for reasonable and appropriate computational results.

MA-M-1.2.1 Add, subtract, multiply, and divide rational numbers (fractions, decimals, percents, integers) to solve problems.

PL-M-1.8.4 Using appropriate coping strategies (e.g., realistic goal-setting, effective time management, decisionmaking processes) promotes mental and emotional health.

PL-M-1.1.1 Individuals have personal rights and responsibilities (e.g., cooperation, communication, patience) when dealing with others (e.g., families, classmates, teams).

SS-M-4.4.3 The natural resources of a place or region impact its political, social, and economic development.
SS-M-4.4.2 The physical environment both promotes and limits human activities (e.g., exploration, migration, trade).

MAMMOTH MATH

CORE CONTENT

WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

SUBJECTS: Social Studies, Math, English/Language Arts, Arts and Humanities, Health, Physical Education

GRADES: 6-8
DURATION: One 3 to 3 1/2 hour time period
GROUP SIZE: One classroom of $25-35$ students (or less)

SETTING: Outdoors

KEY VOCABULARY: Community, headstones, footstones, tombstones, epitaph, veteran

ANTICIPATORY SET: Today we are going to explore one of the cemeteries located in Mammoth Cave National Park. What information can we collect from a cemetery? Note: This lesson could also take place in a cemetery located in the community where your school is located.

OBJECTIVES: The students will be able to: 1) work productively in small groups to survey tombstones; 2) analyze the data collected from the tombstones and draw conclusions about the people who once lived in the community.

MATERIALS: Cemetery Survey Activity Sheets, clipboards, pencils/pens.

BACKGROUND: Within the park boundaries, there are over 100 cemeteries scattered across the land. Today these cemeteries hold valuable information about the communities and families who lived on the land that is now Mammoth Cave National Park. When we think of a cemetery we usually picture it near a church or in a specific place in a community. But if there are over 100 cemeteries, obviously they could not all be connected to a church or a community. Many of these graveyards are small family cemeteries ranging from as few as two graves to a hundred or more grave sites.

There are three church buildings that still exist within the park boundaries. The three churches are Joppa Missionary Baptist Church established in 1862, Mammoth Cave Baptist Church established in 1827, and Good Spring United Baptist Church established in 1842. These churches were the center of community life until the 1930's when several thousand acres of land was acquired to form Mammoth Cave National Park. Today, these churches are still used on occasion by local citizens for celebrations including weddings, funerals, family reunions, and Decoration Day*. All three churches are on the National Register of Historic Places and are maintained by the National Park Service and church members. There are still burials in these cemeteries on a regular basis.

BACK TO THE PAST

PROCEDURE:

1. The class reviews and discusses proper behavior when entering a cemetery. The teacher reminds the students that they are in a special place. They need to show respect for the people buried and for the families represented in the cemetery.
2. The class travels to one of the cemeteries in the park or to a cemetery located within their school community.
3. The teacher places the students in small groups (2-4 students). Each group is given a Cemetery Survey Activity Sheet.
4. The groups are given five to ten minutes to locate a gravesite that catches their interest.
5. After completing the Cemetery Survey Activity Sheet, the groups gather and discuss their answers.

CLOSURE: We have visited a cemetery and collected information about people who once made up a community. This lesson has given us clues to the past. We also have a greater understanding of the hardships that some of our ancestors had to endure to survive the harsh conditions of early settlements in this part of Kentucky.

EVALUATION: The teacher is able to evaluate the students during the activity, class discussions, and by reading their activity sheets.

EXTENSIONS:

1. Have students write a story about the life of the person buried at the site they visited.
2. Invite someone from your local historical society to visit your classroom and talk to the students about the early settlement of your community.
3. Have students investigate their own family tree or visit where their ancestors are buried.

BACK TO THE PAST

CEMETERY SURVEY ACTIVITY

Name of Cemetery:

Headstone Information

First Name: \qquad Middle Name: \qquad Last Name: \qquad

Date Born: \qquad

Date of Death: \qquad

Epitaph(s) or Inscription(s) on Headstone:
If more than one inscription please number each one.

Is there a symbol or etching on the headstone? Describe and/or draw the symbol or etching here:

BACK TO THE PAST

CEMETERY SURVEY ACTIVITY (PAGE 2)

Age at death: \qquad

Is this person still alive? Yes] Nol
Were they a veteran? Yes $\square \quad \mathrm{No} \square$
Can you tell from the tombstone if they were in the military during a war? Yes \square No \square If so, which war?

Is their military rank evident and if so what was it?
Was this person married? Yes $\quad \mathrm{NoD}$
Does the inscription indicate how long the person was married and/or when they were married?
Did they or their spouse die first?
Did they have children? Yes Nol If so, can you distinguish how many?
Did they or their child (children) die first?
Can you tell from the inscription or etching anything about their occupation or hobbies?

Are there other interesting facts? If so, please describe below.

Do their families still visit the grave site? Yes Nol How can you tell?

From the information on this headstone, what do you know about this person's life? Tell how you came to the conclusion you did about this person.

BACK TO THE PAST CORE CONTENT

MA-M-1.3.3 How operations (addition and subtraction; multiplication and division; squaring and taking the square root of a number) are inversely related.

MA-M-1.2.2 Compute (e.g., estimate, use pencil and paper, use calculator, round, use mental math) large and small quantities and check for reasonable and appropriate computational results.

MA-M-1.2.1 Add, subtract, multiply, and divide rational numbers (fractions, decimals, percents, integers) to solve problems.

PL-M-2.3.2 Rules of behavior and fair play (e.g., accepting authoritative decisions, assessing one's own performance level, accepting skills and abilities of others through verbal and nonverbal actions for spectators and/or participants) during games are necessary.

SS-M-4.4.3 The natural resources of a place or region impact its political, social, and economic development.
SS-M-4.3.2 Human populations may change and/or migrate because of factors such as war, famine, disease, economic opportunity, and technology.

SS-M-4.3.1 Human settlement develops in different ways based on the culture and needs of settlers.
SS-M-4.2.2 Places and regions change over time as new technologies, resources, and knowledge become available.

SS-M-4.2.1 Places can be made distinctive by human activities (e.g., building houses, stores, roads, railroads, irrigation) that alter physical features.

SS-M-4.1.2 Different factors (e.g., rivers, dams, developments) affect where human activities are located and how land is used in urban, rural, and suburban areas.

SS-M-2.3.1 Various human needs are met through interaction in and among social institutions and groups (e.g., family, schools, teams, clubs, religious groups, governments).

WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

SUBJECTS: English/Language Arts, Science, Health,
Foreign Languages
GRADES: 6-8
DURATION: One class period
GROUP SIZE: One classroom of 25-30 students
SETTING: Indoors
KEY VOCABULARY: Greek, Latin, prefix, suffix, root word, etymology

ANTICIPATORY SET: When learning new words are you ever curious about what they mean and where they originated? Today we will learn how to decode the meaning of words without looking in a dictionary.

OBJECTIVES: Students will be able to use Latin root words, suffixes and prefixes in order to: 1) match word parts with their meanings; 2) combine word parts to create scientific terms; 3) create new words by using learned root words, suffixes, and prefixes; and 4) use scientific and newly invented words in creative writing situations.

MATERIALS: One set of Memory Cards for each group of 2-4 students, one Key to Roots, Prefixes and Suffixes for each group, paper, pencil.

BACKGROUND: Many Mammoth Cave organisms are described using scientific terms. These terms are usually derived from Greek or Latin root words, prefixes, or suffixes. Latin and Greek words are used predominantly in science and medicine because the words and their meanings do not change. If you are familiar with the meanings of these root words, you can easily decode new and old scientific terms.

At different times, Greece and Rome were world powers with the Romans eventually conquering the Greeks.
Roman rule spread, extending far outside Italy -- into Asia to the East and westward to the British Isles. Conquered peoples had to become familiar with the language of their rulers. As a result, Greek and Latin were at different times considered universal languages.

As languages are used, they constantly change and evolve. The Romans "borrowed" many Greek words. Roman words were absorbed into other local languages. Like Greece, Rome eventually lost its position as a world power and the Roman language, Latin, was no longer spoken. This meant that Latin, as a language, stopped evolving or changing. Today, many English words are derived, or borrowed, from original Greek and Latin vocabularies.

In the mid-1800's scientists began using a two-word descriptor to name new species of plants and animals. By this time, Latin was no longer in daily usage. Because the meanings of its words were no longer changing, scientists decided to use early Greek and Latin prefixes, root words, and suffixes to provide these new descriptive (scientific) names. Today, scientists can understand a great deal about a species by simply translating its name! By agreeing to use this system of a common scientific language, scientists from around the world can now share their knowledge and discoveries without the need to translate from or into many individual languages.

IT'S ALL GREEK (AND LATIN) TO ME!

PROCEDURE:

1. The teacher explains the difference between a root word, a prefix and a suffix. The teacher further explains that these word parts can be combined to form scientific words that are regularly used at Mammoth Cave National Park and by scientists in other locations around the world. For example, "herba" is a root word meaning "grass" (or plants). A prefix or suffix can be added to "herba" in order to change the meaning. For example the suffix "cida" means "killer". Combining herba and cida gives you the new word "herbicide", or plant killer. The suffix "vorus" means "eating". Combining herba and vorus gives you the new word "herbivore", or plant eater. You can see this root (herba) used in other words such as herbs, herbarium, or herbaceous. Point out that while the connecting vowel is often changed to make the word easier to pronounce, it is still fairly easy to see the various root words being used!
2. Divide the class into small groups of $2-4$ students each. Give each group a set of Memory Cards and one copy of Key to Roots, Prefixes, and Suffixes.
3. The teacher tells the students that they will be using Greek and Latin words to play a basic "Memory" game in which they memorize the location of matching cards.
4. The teacher instructs each group to shuffle their cards and lay them face down on a flat surface (table or floor). Students take turns turning the cards over to match a word with its correct definition. If the definition is not found, they turn the cards back facedown. The next student uses his/her memory to locate the correct cards. Students pick up and keep any matching cards they find. Play continues until there are no cards left on the table. The winner is the student with the most matching cards. Students may use the Key to Roots, Prefixes, and Suffixes to check their choices.
5. The teacher tells the students they will now be using the Greek and Latin words from their memory game to form scientific terms that could be used by scientists at Mammoth Cave National Park. Each group should record all the words they were able to make by combining their Latin/Greek prefixes, root words and suffixes in various ways, grouping all real terms together and all newly created terms together. Students should provide the meaning of each word created.

CLOSURE: Etymology is the study of the history and origin of words. Today you have learned to break apart a word in order to understand its meaning. You learned to use prefixes, root words, and suffixes to create new words that describe new ideas, species, objects or discoveries.

EVALUATION: The teacher is able to evaluate the students through their group participation and their list of scientific words and definitions.

IT'S ALL GREEK (AND LATIN) TO ME!

EXTENSIONS:

1. Have students collect scientific terms and names found in their school literature -- from their science books, literature books, or library readings. Each student could keep a journal or notebook of new terms they find.
2. Using the Key to Roots, Prefixes, and Suffixes, instruct students to create a list of as many descriptive words as they can by combining prefixes, suffixes and root words found in the list. Have each student write a story about a cave creature using as many of the real terms and new terms as possible from their list. "Real" terms (such as subterranean or microscopic) should be underlined. "New" terms (such as transterranean or terreaneanphile) should be circled.
3. Can students identify the various Greek/Latin stems found within words? Have students use a dictionary to look up the identifying root, prefix, or suffix within the following list of words. The first two have been done for you. Add new words to this list.

Can you find the origins of: school, bisect, insect, botanical, zoologist, cave, mammal, geology, gypsum, river, student, or science? (choose any 8)

IT'S ALL GREEK (AND LATIN) TO ME!

4. Give each student a copy of the Key to Roots, Prefixes, and Suffixes. The teacher writes one of the word segments on the board. Students are given three minutes to form as many words as possible using the indicated word segment. For example, if the teacher writes the prefix "un-", students attach root words and suffixes to "un-" to form new words. If the teacher writes the root word "locate", students can use prefixes and suffixes to form words such as "echolocation" and "relocated". Students may use the word segments found in the Key to Roots, Prefixes, and Suffixes or they may use others. When time is up, students take turns reading their list of words. As a word is read, any students with the same word should cross out or place a checkmark next to that word to show it is a duplicate. Students score one point for each unique word left on their list. In case of doubt, the unique words 1) must be found in the dictionary or 2) if the teacher is willing to accept creativity, the author must be able to offer a logical definition. The winner gets to choose and write the next word segment on the board. How many unique words were created by class members?
5. Have students print root words, prefixes, and suffixes on 3 " $x 5$ " index cards, one word or word segment per card. Put the root words on one pile and punch a hole through the top of the cards. Secure the cards with a book ring. Follow the same procedure for the prefixes and for the suffixes. Lay the card piles in order (prefix-root word-suffix). Students work individually to form as many words as they can by flipping prefixes, root words and/or suffixes. The student records the words they have formed. After each student has had time to record their lists, they exchange lists and check the words in a dictionary to be certain the words are correct.

IT'S ALL GREEK (AND LATIN) TO ME!
KEY TO GREEK AND LATIN - ROOTS, PREFIXES AND SUFFIXES

BASE WYORD	WORD ORIGIN	ORIGINAL MEANING OF THE BASE WORD
-al	from Latin -alis	of, relating to, characterized by, process
anthrop-	from Latin anthropo-	human being
aqua	from Latin aqua	water
arte	from Latin arte	by skill (human)
arthr- (or arthro-)	from Greek arthron	joint
aut- (or auto-)	from Greek autos	same, -self, self
bi-	from Latin bi-	two
bi- (or bio-)	from Greek bios	mode of life, life
carn-	from Latin carn-	flesh
centi-	from Latin centi- for centum)	hundred, hundredth part
-cidal	from Latin -cidails (or cida)	killing, having the power to kill
cide	from Latin cida (or caedere)	to cut, to kill
de-	from Latin de- (or dis-)	to remove, away, from
deca- (dec-, deka-or dek)	from Latin deka-	ten
-dyte	from Greek -dutai (or dyein)	enter, to enter
echo-	from Greek eche- (or echo-)	sound
-er	from Latin -arius	added to verbs to form a noun (ie, baker from bake)
-fact	from Latin factum (or factus)	to do (made)
fauna	from Latin Fauna, sister of Faunus, the Roman god of animals	animal life
flora	from Latin fior- (or flos) meaning flowers; and Fbra, the Roman goddess of flowers	plant life
herb	from Latin herba	grass
hyper-	from Latin and Greek hyper-	over, to exceed, surpass, more than normal
hypo- (or hyp-)	from Latin and Greek hypo-	under, beneath, below or less than normal
icthy- (or ichtyo-)	from Latin ichthys	fish
is- (or iso-)	from Latin and Greek isos	equal, uniform
-ist	from Latin -ista (or -istes)	someone who performs, makes, or specializes in
bocate	from Latin locatus (or bocare)	to find or fix the place
-logy	from Latin -logia (or -ogy)	collecting, to gather, the study of
lucent	from Latin lucere	to shine through
micr- (or micro-)	from Latin and Greek mikr(or miko-)	small, short, minute
milli-	from Latin mimij-	thousand, one thousandth
meter	from Latin metrum	measure, meter
-nomous (or -nomy)	from Greek nomos	law (govern, rule)
-onta (or -onto-)	from Greek onta	existing things
$\begin{gathered} \text { paleo- (or pale-, palae- } \\ \text { palaeo-) } \end{gathered}$	from Greek palai- (palaio-)	ancient, long ago

IT'S ALL GREEK (AND LATIN) TO ME!

KEY TO GREEK AND LATIN - ROOTS, PREFIXES AND SUFFIXES

BASE WORD	WORD ORIGIN	ORIGINAL MEANING OF THE BASE WORD
pest	from Latin pestis	a plant or animal detrimental to man, to pester or annoy
phil- (or philo-)	from Greek phios	dear, friendly, loving
-phil (or -phile)	From Greek -philos	lover, loving
photo-	from Greek phot- (or phos)	light
-pod	from Greek pod' (or podos)	foot
prot- (or proto-)	from Latin proto- and Greek prot- (proto- or pro)	before, for, ahead, forward
-scope	from Latin -scopium and Greek -skopion (or -scopos)	to watch, look at, spy
-sect	from Latin sectus	to cut, to divide
spele-	from Latin speleum (or spelunca) and Greek speijnx (or spelaion)	cave
stalactite	from Latin stalactites and from Greek stalaktos (or stalassein)	dripping, to let drip
stalagmite	from Latin stalagmites and from Greek stalagma (or stalagmos)	drop, dripping
sub-	from Latin sub	under, close to
sui-	from Latin sui (or suus)	of oneself; one's own
syn- (or sym-)	from Latin or Greek syn	with, together with
synthesis	from Greek syntithenai	to put together
terra	from Latin terra (terrestris or terrenum)	land, earth, ground
-them	from Greek therma	deposit
therm- (or thermo-)	from Greek therme (or thermos)	heat, hot
-theses	from Greek tithenai	to put, to place
trans-	from Latin trans- (or tra-)	Across, beyond, through, so as to change, cross over
troglo-	from Greek trogle	hole, cave
-vore (or -vour)	from Latin vorac- (-vorus, -vorous, or vorare)	to devour, to eat
xen (xene or xeno)	from Greek xenos	stranger, guest, host, foreigner
-zoa	from Latin-zoa or Greek zoia	animals

IT'S ALL GREEK (AND LATIN) TO ME!

COMMON TERMS IN MAMMOTH CAVE LITERATURE

HERB	GRASS, PLANT (LATIN)
-IST	SOMEONE WHO PERFRMS, MAKES, ORSPECIALIZES IN (LATIN)
MILLI	THOUSAND, THOUANDTH (LATIN)
-LOGY	COLLECTINC, TO CATHER, THE STUDYOF (LATIN)

SUB	UNDER, CLOSE TO (LATIN)
TERRA	LAND (LATIN)
THERM	HEAT, HOT (GREEK)
TROGLO	HOLE, CAVE (CREEK)

IT'S ALL GREEK (AND LATIN) TO ME!

CORE CONTENT

PL-M-1.1.3 Communication, cooperation, rules, and respect are important to the effective functioning of groups.
PL-M-1.1.1 Individuals have personal rights and responsibilities (e.g., cooperation, communication, patience) when dealing with others (e.g., families, classmates, teams).

RD-H-4.0.12 Interpret the meaning of specialized vocabulary.
RD-M-x.0.4 Know the meanings of common prefixes and suffixes to comprehend unfamiliar words.
RD-M-x.0.3 Identify words that have multiple meanings and select the appropriate meaning for the context.
RD-M-4.0.14 Interpret the meaning of specialized vocabulary.
WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose
- effective conclusions.

MY TREE!

SUBJECTS: Science, Math, English/Language Arts, Health, Consumerism

GRADES: 6-8
DURATION: Two one-hour class periods
GROUP SIZE: One classroom of 20-25 students (or less)

SETTING: Outdoors and indoors
KEY VOCABULARY: Field guide, field notebook, scientific notebook, scientific research, observations, data, science conference

ANTICIPATORY SET: We have been studying various aspects of Mammoth Cave recently. Today, we are going to be scientists and make a field notebook.

OBJECTIVES: Students will be able to: 1) create a field notebook; 2) recognize and distinguish the various characteristics of trees within a study area.

THAT'S MY TREE!

BACKGROUND: A field notebook (also called a scientific notebook) is an essential component of every scientist's research life. Scientists use their notebooks every time they conduct research and each time they make observations in the laboratory or in the field.

Certain rules govern entries in a field notebook. A pen should always be used when writing in a field notebook, as pencil markings may become rubbed out or fade over time. Notes and observations are never erased or scratched out. If the written material is thought to be wrong, one line should be drawn through the word(s). (Ex: Field Notebook). This allows the scientist to go back at a later date to take a second look at his or her thoughts and findings. What was thought to be wrong at one time - and therefore crossed out - may actually be correct. If only one line was drawn through the words it will still be legible for future references.

The students will use a field notebook to record information about trees. Oak and hickory trees primarily dominate the forests in and around Mammoth Cave National Park. Numerous other species can easily be found, including poplar, papaw, maple, sycamore, dogwood, and redbud trees. Variety is good in a forest. It helps to ensure that vegetation (and therefore habitat and food sources) will always be available. If only one species of tree is present, disease, blight, or fungus can wipe out acres of vegetation in a very short time. This could seriously affect a local ecosystem.

We don't have to look far for examples of widespread tree disease. The chestnut blight (Endothia parasitica) wiped out most of our American chestnut trees in the early 1900's. First noticed in the 1980's, a fungus disease called dogwood anthracnose attacked and killed flowering dogwood trees from New England south into the Appalachian Mountains. Butternut canker is an annual fungus introduced into the United States about 30 years ago. It inhibits the tree's reproduction and has affected butternut trees throughout the state of Kentucky. The balsam woolly adelgid was introduced from Europe and has impacted Fraser fir trees in the Great Smoky Mountains National Park and has spread into Eastern Kentucky. Dutch elm disease is another European import that has spread to American, slippery, and winged elms by the elm bark beetle as it feeds in the tree canopy. To protect itself, a healthy forest will have a variety of species.

Students will look at the forest variety found within Mammoth Cave National Park, or other selected study area, by recording observations in their field notebook. Students will be looking at and listing several different characteristics of trees observed. There are several ways to identify a tree. A tree can be categorized by its bark, twigs, leaves, the colors displayed during various seasons, its flowers, and its fruit. The leaves provide excellent clues as each tree has leaves of a distinctive size, venation, shape, and seasonal coloration. The fruit of a tree is a good indicator as each tree has its own unique fruit. Flowers are another factor in the identification of trees. Of course, flowers and fruits can only be used during the tree's flowering/fruiting seasons.

THAT'S MY TREE!

PROCEDURE:

1. The teacher gives, or has each student make, a field notebook. Notebooks should have several sheets of paper stapled or bound together. Cardboard covers can provide a firm writing surface. Each student should have a pen.
2. The teacher divides the class into groups of three or four students each. Give each group a tape measure and one copy of *Kentucky Forest Trees: How to Know Them (FOR-1), or any other tree field guide.
3. The students will go into a wooded area and choose one tree to observe and identify in their notebooks. The teacher should instruct students to stay within pre-selected boundaries. Indicate boundaries that allow the instructor to see and assist each group.
4. The students are to work as a group to collect their information and observations, but each student needs to record data individually. Instruct students to complete the following activities at their tree:

- Make a bark rubbing
- Draw the leaf
- Draw the fruit (if present)
- Draw the flower (if present)
- Measure and record circumference of tree
- Record evidence of and number of birds found in the tree
- List animals seen or clues of animal activity discovered around the tree. (Clues may include nut remnants; footprints; guano piles; rubbed, drilled or eaten bark; enlarged cavities; oak galls; holes or leaf-miner designs on leaves; descriptions of old or new bird/squirrel nests; size and color of egg shells, etc.)
- Write the scientific and common name of the tree obtained from their field guide book

5. After every student has completed their research and recorded their data into their field notebook, the teacher instructs each group to move to a new and different tree. Continue as before until the group has researched and recorded three different trees (or as many trees as time permits).
6. If sufficient field guides are not available in the forest, provide time in the classroom or library for students to use a field guide to identify their trees.
7. After identifying their trees, the teacher should explain that information has no value to the scientific community if it is kept secret. For this reason, scientists hold conferences to share their knowledge. The teacher tells the class they will now participate in a science conference.
8. Have each group present and discuss their findings to the class. The teacher explains that scientist like to really understand not only what was discovered but also how it was discovered. They like to ask questions. At their conferences, scientist will question each other about methodology, data collection techniques, and recording methods, as well as findings. Encourage questions during and after each presentation.

THAT'S MY TREE!

CLOSURE: Today we had a glimpse of what it is like to be a scientist. We used field guides and our senses to make accurate observations of selected trees. We learned how to keep a scientific notebook and how to share this knowledge with others. Through these methods we learned about some of the trees found in and around Mammoth Cave National Park.

EVALUATION: Teachers are able to evaluate each student's involvement and participation within their individual group and during the class science conference. Teachers are able to evaluate each student's ability to follow directions and complete all components of the assignment by looking at the completeness of their scientific notebooks.

EXTENSIONS:

1. Perform a forest density study.
2. Approximate the height of the trees studied.
3. Create a scientific notebook of trees found around your school or home.
4. Create a scientific notebook of plants found around your school or home.
*NOTE: Kentucky Forest Trees: How to Know Them (FOR-1) by Dr. Deborah B. Hill and Diana L. Olszowy can be obtained from the University of Kentucky, College of Agriculture, Cooperative Extension Service, Lexington, Kentucky for a nominal fee.

THAT'S MY TREE!

CORE CONTENT

PL-M-3.3.2 Improving environmental conditions (e.g., air and water quality) and preserving natural resources impact personal and community health.

PL-M-3.1.5 Environmental issues (e.g., pollution) should be considered when making consumer decisions (e.g., recycling, reducing, reusing).

SC-M-3.5.3 For most ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

SC-M-3.5.2 Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some microorganisms are producers because they make their own food. All animals, including humans, are consumers, and obtain their food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

SC-M-3.5.1 A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

SC-M-3.4.1 Biological change over time accounts for the diversity of species developed through gradual processes over many generations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

SC-M-3.2.1 All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

SUBJECTS: Science, English/Language Arts, Health
GRADES: 6-8
DURATION: 2-3 class periods
GROUP SIZE: One class of 25-30 students (or less)

SETTING: Indoors

KEY VOCABULARY: adaptation, trogloxene, troglobite, trolophile

ANTICIPATORY SET: Today we are going to learn how cave animals adapt to the environment in which they live.

OBJECTIVES: The students will be able to: 1) list what they already know about a specific cave animal; 2) list what they want to know about a specific cave animal; 3) list what they learned, after conducting research, about a specific cave animal.

MATERIALS: pen or pencil, KWL Chart Worksheet.

BACKGROUND: From the beginning, thousands of animals and plants have evolved, lived, reproduced and died. Species disappear if they are not able to adapt to our ever-changing world. Fire, flood, drought, earthquakes or changes in climate may alter an environment. If plants and animals are not able to adjust or flee the area in which the hazard is taking place they may eventually disappear or become extinct.

When change occurs in the environment, individual characteristics of a species may help or hinder the survival of an entire population. If a characteristic is beneficial, the species survives the changing situation and passes on the genetic code to assure the survival of its offspring. If the plant or animal is hindered by a particular characteristic, the species must either change or face possible extinction. The best known example of a species that was not able to adapt to a changing world is the dinosaur. Organisms able to cope with stress over time are the ones that tend to survive.

Adaptations to a changing environment can take varying amounts of time to occur. Some adaptations happen quickly. The immunity of insects to pesticides is one example. Other adaptations can take thousands of generations or even millions of years to occur. The loss of eyes by true cave dwellers (troglobites) is an example of a slow adaptation.

Cave animals are masters of adaptation. Some species living deep within a cave are often white or pink and blind or eyeless. These cave-adapted species have been isolated from the surface environment for many thousands of years. They have lost the ability to produce pigment in their skin or outer layer of the body, as well as the ability to produce eyes.

Cave animals often have intriguing differences in their biology. Sensory structures (other than eyes) often are more developed in true cave animals than in similar species that have never lived in a cave habitat. Often their antennae and legs are much longer than their above ground counterparts and their metabolism has slowed down considerably as an adaptation to the extremely nutrient-poor environment of a cave.

DO OR DIE

PROCEDURE:

1. The teacher explains that there are three categories of animals that live in caves. They are troglobites, troglophiles, and trogloxenes.

Troglobites are true cave dwellers. These animals live their entire lives in caves. They are found nowhere else! They usually lack skin pigment and are blind or eyeless. In the Mammoth Cave area, troglobites include the eyeless crayfish (Orconectes pellucidus), the northern cavefish (Amblyopsis spelaea), the southern cavefish (Typhlichthys subterraneus), the Kentucky Cave Shrimp (Palaemonias ganteri Hay), an aquatic isopod (Asellus stygius), amphipods (like Stygobromus exilis or S. vitreus), blind cave beetles (Neaphaenops tellkampfi), and the blind cave harvestman (Phalangodes armata), among others.

Troglophiles are called cave lovers. These animals live in caves or in places on the surface that are dark and damp like caves. These animals are able to
complete their entire life cycle in a cave or in suitable habitats on the surface.
 Examples include the cave salamander (Eurycea lucifuga), a surface crayfish (Cambarus bartoni), some amphipods (Crangonyx sp.), sculpins (Cottus carolinae), and the spring cavefish (Chologaster agassizi).

Trogloxenes are cave visitors. These animals live only a part of their lives
in caves. Most trogloxenes leave the cave to find their food. All trogloxenes have eyes and use them to spot predators and to locate food. Bats (including the big and little brown bats, Indiana bat, gray bat, eastern pipistrelle), camel crickets (Ceuthophilus gracilipes), the common cave cricket (Hadenoecus subterraneus), and pack rats (Neotoma pennsy/vanica), are found in Mammoth Cave National Park.

DO OR DIE

2. The teacher explains to the students that the class will be divided into three groups. Group one will investigate an animal from the troglobite classification, group two will investigate an animal from the troglophile classification and group three will investigate an animal from the trogloxene classification.
3. The investigation will begin by making a KWL chart. See example below for bats.
4. Each group of students will decide which animal in their classification they will investigate. Note: Teachers may want to divide the class into six groups instead of three if they feel the groups are too large.
5. Using the chart, each group will list what they know about their animal choice. One person will need to act as the recorder.
6. Using the chart, each group will make a list of questions about what they want to know about their animal choice.
7. Students will use various reference books, science text books, the internet and other reference tools to answer questions and gain knowledge with regard to their animal choice. Using the chart, information learned is recorded in the What We Learned column.
8. Each group will appoint a spokesperson (or persons) to report to the entire class what they learned about their chosen animal.

CLOSURE: Today we have taken a close look at cave animals and their ability to adapt to the harsh environment of the totally dark world of a cave. By conducting this investigation we have learned that if an animal is not able to change it stands a good chance of becoming extinct. Only those animals that are able to adapt or adjust to the ever-changing world are able to survive.

EVALUATION: The teacher is able to evaluate the students through participation within their small groups, by looking at their charts, and by listening to group discussions and reports.

EXTENSIONS:

1. Using information learned from this lesson students could create an imaginary animal that possessed the same or similar adaptations as cave animals.
2. Use the same KWL chart method to investigate other animals or plants.

K - What we know	W - What we want to know	L - What we learned

DO OR DIE
 CORE CONTENT

SC-M-3.5.4 The number of organisms an ecosystem can support depends on the resources available and abiotic factors (e.g., quantity of light and water, range of temperatures, soil composition). Given adequate biotic and abiotic resources and no diseases or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

SC-M-3.5.3 For most ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

SC-M-3.4.2 Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Extinction of species is common; most of the species that have lived on Earth no longer exist.

SC-M-3.4.1 Biological change over time accounts for the diversity of species developed through gradual processes over many generations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

RD-H-4.0.10 Follow the sequence of information.
RD-H-4.0.9 Apply the information contained in practical/workplace materials.
RD-H-4.0.8 Identify essential information needed to accomplish a task.
RD-H-2.0.13 Analyze the content as it applies to students' lives and/or real-world issues.
RD-H-x.0.6 Paraphrase important parts of a passage.
RD-H-x.0.1 Locate, evaluate, and apply information for a realistic purpose.
RD-M-4.0.13 Explain how organizational patterns and/or text features (e.g., pictures, charts, graphs, format) relate to the content of a practical/workplace passage.

RD-M-4.0.12 Identify the sequence of activities needed to carry out a procedure.
RD-M-4.0.11 Locate and apply information for a specific purpose (e.g., following directions, completing a task).
RD-M-2.0.14 Summarize information from a passage.
RD-M-2.0.13 Identify supporting details and explain their importance in a passage.
RD-M-2.0.12 Apply knowledge of organizational patterns (e.g., cause and effect, comparison, contrast, sequence) to understand a passage.

RD-M-2.0.11 Use text features (e.g., lists, charts, graphs, tables of contents, indexes, glossaries, captions, diagrams, headings) to understand a passage.

RD-M-x.0.10 Connect information from a passage to students' lives and/or real-world issues.
RD-M-x.0.9 Reflect on and evaluate what is read.

DO OR DIE

 CORE CONTENTRD-M-x.0.7 Skim to get the general meaning of a passage.
RD-M-x.0.6 Scan to find key information.
WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms such as the following:

- letters
- speeches
- editorials
- articles in magazines, academic journals, newspapers
- proposals
- brochures
- other kinds of practical/workplace writing.

Characteristics of transactive writing may include :

- text and language features of the selected form
- information to engage/orient the reader to clarify and justify purposes
- ideas which communicate the specific purpose for the intended audience
- explanation and support to help the reader understand the author's purpose
- well-organized idea development and support (e.g., facts, examples, reasons, comparisons, anecdotes, descriptive detail, charts, diagrams, photos/pictures) to accomplish a specific purpose - effective conclusions.

SUBJECT: Science, Social Studies, Government, English/Language Arts, Health, Physical Education, Consumerism

GRADES: 6-8
DURATION: One class period of 40-60 minutes
GROUP SIZE: One class of 25-35 students
SETTING: Indoors
KEY VOCABULARY: Headline, fact, opinion, editorial, speleothem

ANTICIPATORY SET: Headlines are written to catch the reader's attention and to develop an interest in the article it is describing. Today we are going to review several articles and their headlines to determine what is fact and what is opinion!

OBJECTIVES: The students will be able to: 1) review several newspaper articles and determine whether information is based on fact or opinion; 2) write a statement in defense of or against a view using information given in the articles; 3) develop an editorial based on the articles read in this lesson.

MATERIALS: Copies of three newspaper articles and one editorial for each group, Fact or Opinion Activity Sheet, For or Against Cards, pen or pencil.

BACKGROUND: Newspapers are excellent teaching tools. They often provide information on real life situations leading to interesting discussions in the classroom. For this lesson we have selected four articles from spring and early summer of 1996 that relate to the break-in and damage of speleothems in Floyd Collins' Crystal Cave. (Speleothem is the collective term for all cave for-mations-stalactites, stalagmites, gypsum, etc.) Crystal Cave is one of many caves in Mammoth Cave National Park that is no longer used for commercial cave tours. It is located several miles from any of the main roads. In 1996, three vandals broke into the cave on several occasions removing hundreds of pounds of speleothems, rocks, and a few artifacts. This was a serious federal offense. The men were arrested and tried in federal court where they pled guilty. This break-in encouraged local authorities to up-hold a 1988 Kentucky law stating it was illegal to sell cave formations. This case focused on many local rock shops and influenced the way they continue to conduct business.

Readers expect newspaper reporters to give the facts needed to understand the events taking place around them. Facts answer the questions: who, what, when, where, why and how. Opinions are based on and involve our emotions. Opinions can include words such as good or bad, may include complaints or praise, or may focus on the way we feel about a situation, person, event or word. Opinions may be based on a fact, but opinions add more than the information concerning who, what, when, where, why, or how the situation unfolded. Facts are expected in newspaper articles and opinions are often expressed in editorials and/or commentary columns. Is this always true?

With the articles included in this lesson, it is hoped that students will be able to distinguish between what is a factual statement and what is opinion. Because these articles are dealing with natural resources that are irreplaceable and difficult to price in dollar amounts, they tend to include information from both realms.

MAKING HEADLINES

PROCEDURE:

1. The students are divided into groups of three. The teacher gives each student a copy of the Fact or Opinion Activity Sheet and gives each group one set of the three newspaper articles. The teacher instructs each student within the group to read one of the articles and complete the first part of their activity sheet.
2. Students summarize and discuss each article within their group.
3. The teacher cuts the "For" and "Against" cards apart (cards are included in the lesson) and places them in a small container, making certain there is at least one card for each student.
4. The teacher has each student select a card from the container. If the student draws a "For" card he/she will write a statement supporting the sale of cave formations in local rock shops. If they draw an "Against" card they will write a statement in support of banning the sale of cave formations in local rock shops. Students should use information from the articles to support their assigned viewpoint.
5. Class members can share their statements if they choose to do so. The teacher asks the students to find a classmate with the opposite opinion. These two students then compare their statements. Is the statement they wrote a fact or an opinion? Is their statement based on facts or opinions?
6. The teacher may ask the students to think, but not voice, a response to the following questions: Do you agree with the card you drew? Did that make it harder or easier for you to compose your statement? If you were a lawyer and it was your assignment to take this to court, could you defend your position or would you turn down the case?
7. The teacher passes out copies of the editorial. The students read the entry. Does this article have any common themes with the earlier articles? What are they? The class lists the common themes on the board. The teacher asks the students to finish their activity sheet by writing an editorial using the title, "Placing a Price on Our Nation's Natural Resources." Do they agree that someone can place a value on air, water, rocks, plants and animals? Why or why not?
8. The students are invited to share their editorials.

CLOSURE: What often makes news is an event that provokes the feeling of being either for or against a situation. Because we have the ability to feel and think, opinions often mix with fact in many news events. This causes us to become involved in the issue. As a good reporter our goal is to be as objective as possible concerning the information we are reporting. Editorials are a different story. The writer of an editorial will purposely draw in people's emotions to sway their opinion.

EVALUATION: The teacher is able to evaluate the students by reviewing activity sheets, class discussion, and student editorials.

EXTENSIONS:

1. As a follow-up activity the students could write an editorial on a topic affecting their school at the current time. This topic might also be a resource-related issue.
2. Have the students watch a half-hour news program and record the number of facts and opinions stated in a ten minute period. For the remainder of the broadcast the students could note how many of the stories were presented to get people emotionally or intellectually involved.
3. The students could research how another environmental issue is reported in a newspaper or magazine. They could answer the same questions about these articles as they did for the cave articles.

MAKING HEADLINES

FACT OR OPINION ACTIVITY SHEET

1. Statement:

a. Using the information found in your article, write a statement expressing your point of view. (Use a separate piece of paper or the back of this page if necessary.)
b. Identify the statements from your article and label them as either "fact" or "opinion".

2. Write an editorial:

Write an editorial using the title, Placing a Price on Our Nation's Natural Resources. (Use a separate piece of paper or the back of this page if necessary.)

MAKING HEADLINES

ARTICLES

THE COURIER-JOURNAL • - SUNDAY, NOVEMBER 30, 1997

EDITORIALS

Getting serious

TWO FEDERAL decisions last week can be counted as breakthroughs in the effort to preserve our natural heritage.

One, announced by Interior Secretary Bruce Babbitt, will ban most cars from Yosemite, Zion, and Grand Canyon national parks, where visitors will be brought to the natural wonders by bus and/or light rail.

The other, made by the Federal Energy Reg. ulatory Commission, will force the removal of a private, 160 -yearold hydroelectric dam, so that striped bass; sturgeon, Atlantic salmon and herring can spawn in a 17 mile stretch of Maine's Kennebec River.
The Clinton Administration is on the right track. The compromise of America's most cherished places by processions of fume-belching autos, pick-ups and RVs can't be tolerated forever. And the private appropriation of public streams shouldn't be treated as a permanent right.

The public's attitude in such matters is easy to predict. Few will complain about the elimination of car exhaust from our most sensitive parklands. And while Edwards Manufacturing Co: will challenge the dam decision in court, New England's environmentalists are elated. They've wanted the thing torn down for years.

Both decisions have broader implications.
In the next 15 years, the energy commission will be able to reconsider the licensing of 550 dams across the country..Naturally, the private interests will
bray, as they always do, about the government's "taking" of assets. And, given our tradition of placing property rights before community concerns, it's likely that some of them will be entitled to relief. In the meantime, though, it's good to see the public win one for a change, up there in Maine.
The prospect is even better for progress against overcrowding, vandalism, polluted air and dirty water in the 367 units of our national park system.

Higher entry fees and new user charges. which we have cautiously endorsed, are not enough, as the Clinton Administration is tacitly acknowledging. Nothing short of an outright auto ban will prevent the most popular parks from suffocating.
It's not a question of plants and rocks being more important than people. It's a matter of preserving the experience that draws people to the parks in the first place.
Each site is unique. More than 15 million come to Golden Gate National Recreation Area each year, to see the spectacular Pacific headlands that are within sight of downtown San Francisco. The challenge there is somewhat different from the one that park offlcials confront at Big Cypress swamp in Florida, which only a couple of hundred thousand visitors manage to find every year.
There is no one solution. But all of these public assets must be managed pro-actively, and wisely.
For Kentuckians and Hoosiers, the issue is not just the fate of places like Mammoth Cave and the Indiana Dunes. All of the nation's parks belong to all of us.

Copyright © 2001 CourierJournal \& Louisville Times Co. Reprinted with permission.

MAKING HEADLINES

 33 8 HL 20 S

 pounds of＂cave rocks＂in duffebags．Baseball bats were their tools an entrance gate and hauled out 800

 zz кеw jog jas sem zupuazuas

 20ef mou surymer pue splouixy

 wail ueap paddeus salyoulpu dovi

 soupd mof e uasuq sey pure＇syjou ouif

 ter，who criticized the National Park
Service for being slow to install a

 Related to stalactites and stalag：
mites，the familiar cave＂icicles，

 ed they damaged roughly a mile in

 2ч1 pannosoud oym kawope sers
 ן品

 sploukay 201045 neano zais ab ant tyis
合曷

uols

[^0]Crys national park service bought it．
the
 ［EISSij pase pues se umoux mou s！

 I 8 aged mouf panu｜fuoy әбецирр әлрэ ！！шре әәІЧL

Stemming thefts of Kentucky cave treasures

Fick Gisos, a Marnoph Cave Natonal Fakk ranger, asmined ceve formasions fiat weot thoupht to have been danaged by thieves in Fiojd Colins' Crystal Cave.

Rock formations became easy souvenirs despite law

By ANDREW MELNMWOVCH Siaff Writer

MMMMOTH CAVE NATIONAL PARK. Ky. - Sproling belictios biame fock foenatiefs that bok bibe pernited pasta from Floyd Collmi Cyytal Cave is mo simph task.
I requires walsing a mile bown grivel toed in Mannoh Cave Na tonal Park deikending al fight of theep and slippery stase stains, banseling upder a soet gate and thes ventiring aeary a mile ino the cave tself, poing up and down water grouad hill and dite.
Then there's the business of vilag hammen, hatctets ind tare hafes to break the fommanise into nusrapeathe pieces. And firally, the tramen trip this time hasing ont the heswy louds "hiy wiuld ampone go to al Bat roche?
For noney. The thieves have been vandationg Gemation wherranean teribazt and selling the gilem pircei in fokk stops on the ford from Cave Ciy to the naticonal park
Thus is where three nee who re celved feleral prisan terima lau masih foe ransacking Foyd Colliss Crystal Cowe found seady lueyers for the telicties and oher formutions fory siour - fonaxions bat wok nil-

This contacaled cave reck was for avip in a souvasir ahop.
lens of geans mo creas aral only see$\rightarrow 0$
If there werem a markyt, there
 Manmsth Cave Natianal Park Super.
Sellig cave formatuas has teen i-
kgat in Neatarky since 190k. Bet the pen tobte is care fommatises wern unchochod until the past two wexks when the Kenscky Sate Police opered an irnestgytion one roch. thap outer has boen ctargnd wilh nolatint siale law
"This al could have bom inowed complowely if the liw had been Litech from the very begitnirg." Cavel Col firs sad. Ste is married to a aephex of farsed cave esplerer Fbod Collins wha dereloped the cave baa bears his name.
The desmactian in Flagd Collim Cypral Cave has forued amention on a langulanding proakm in Fien nowh's cave country, vistorn hive bexn tenoving fommaits from cares ind layng gratid betand for searly ow cestuncs. Orily in at pers 40 or 30 years has that contur seen bas sidered vendalse
Neventheless the destruation of caves cerlituch Those that are net thar protecied mithin Mannoult Case Nasional lack mee cparaiod in the alely ran tounse atractorn bour ite eunk of the abuses sad Dave fouser. exuculive divector af the Arencas Cave Conservaita Associyion.

Fage 5 cal a disisition

Copyright © 2001 CourierJournal \& Louisville Times Co. Reprinted with permission.

MAKING HEADLINES

Thieves stole cave treasures

Cartiand frum Puge Bi

May ber ben loued for their
 lan in put that, "Fautr iald. Thereh a bek of zwarpunt itat than are irIrdartalif remarce:

 Ien Heri of Hidna Bier Cue, ind
 the nushe Thit rove are irgle plate dearvirt protelian
Thai will requre changing themati.

 and

Caus whil Mannoth cwe hase Esen randaliud lachers. There wer sexral highty puhliratd cases in ter

 Figd callm' Groul Cue thregh andher carares

Bet the sination is 者r wors ile the maty inppobded cies on prove
 hope of profering ail then rem seured in ith erion " he sald "We"be going to do what we cat willin the kutaris of the path 10 pra ind a crpersitith carrple.

Eut park officils hace ofre under

 In a Flod coline Eryal Cant Shee IGil: whon the Natoul Park Barwle tougtr in oun the fonily itat purchused if from the Cellm fanly in mernill
 F soure. Coll ns sith "Wur 1 think ihry mild how tone lane:"

Fark roigers rutinet patrid enty Ihe main nede and arfy vendie to 3ond the lacked pie where in pisw mad io Flapd Collis Cryial Cres

 fote litir min wis deavied.

Duriat she of Leose vise a park rarem Hw tire tar parkd At the gite lie rited the larme nember but did now Imespate furthr.
Finding a pathet tar wet and Lrmual STiter sath uthindice the

 barkup in bur evorit al iruble.
 pot of budgen outhons on the rahanal pata. Ta Forer, the nexthe Is ite pare int pulling people int ite fots when the are mot neded
 vatialith hape ciand poid coust of the deiruman af lop balle" Crosinl Cug mhudig minter low agane the she of owe formonem. Hent enluctmen of engine luss and a hitwleted wathes of the

-We cont pat ine dinimel foriz.

 up rill avd rake iure it dorat hipperianan:

Copyright © 2001 CourierJournal \& Louisville Times Co. Reprinted with permission.

MAKING HEADLINES

Cave-rock crackdown ends inaction

 Still 'rier

CAE GTY. CH - Farly lut nath antay coutd wolk in He Sint'i ar buthes = feo rack stogs enar Manndh Crim Mationil Pate and therm fran a semthas of cove farmations poid openly in wilation of gien Low.
 oudy Sote Pilie. there was nat suladile sultprite of hatie to be tord is ciller the
Bui cive cutarviandes arent raism the cricholom. Therere

Farmin County Amury Bee Rec ter shan for iechues proweulite vidares of thy gin lue that the in

 was fuch in clvioud problem nules me wadk why notedy hud war thed a confluit.
pawd Fager exachave direace of the Amerran Cure Comervilin As. modstion, kedquirind in Howe Cow sid, Moc peoplo think it illegil, the pollee and persours

hataral parle dials and cave
 cim moki - ind falue to erome
 nearer - were drving foes bethind lat yelr's botice of hoy Codres Eryal Crat Fematers iaten fron
 ind Dathers and loter were confa. cride as matere ie he foteral cose ugirsi the thre levin.
Tersel hape were mat chugel in the diet lectule feteral prowention add rat blive ther wold prove the
 taben from the niturin park
On May bur sperera ill ball bilpe. and fules cheres unhestitingh iesulfied

 tral gedrofic
One siter af cher formations phaded imonsit of the lies.

 Were not mimitali rogig is do wenting illazal
Fanlin lat labn dow whising "ewie rocks and gis "Wen rat ping wid them no
 mpors cant tan Mrgm if yans 45
Fowns drid buying roda ton bol coyes, and be pid mone whe moky turn from Flod Colies' Cy: wilCre us recoued frem thinta

Gwor ipuinory in the cioc indcales thar the worn wald two bairhers a dematies if Fanaras shap

 Mives
Detue Fuave who mans DotHins with ter lushat, Dunt, would
 Fisnowe war ctarged fiter an atb palier dro ting butd 143 ene gect werb in the step My 2

MAKING HEADLINES

CORE CONTENT

PL-M-1.1.3 Communication, cooperation, rules, and respect are important to the effective functioning of groups.
PL-M-2.3.2 Rules of behavior and fair play (e.g., accepting authoritative decisions, assessing one's own performance level, accepting skills and abilities of others through verbal and nonverbal actions for spectators and/or participants) during games are necessary.

PL-M-3.3.2 Improving environmental conditions (e.g., air and water quality) and preserving natural resources impact personal and community health.

RD-H-x.0.7 Formulate opinions in response to a reading passage.
RD-H-x.0.6 Paraphrase important parts of a passage.
RD-H-x.0.1 Locate, evaluate, and apply information for a realistic purpose.
RD-H-4.0.8 Identify essential information needed to accomplish a task.
RD-H-2.0.13 Analyze the content as it applies to students' lives and/or real world issues.
RD-M-x.0.10 Connect information from a passage to students' lives and/or real world issues.
RD-M-x.0.9 Reflect on and evaluate what is read.
RD-M-x.0.8 Make predictions, draw conclusions, and make generalizations about what is read.
RD-M-x.0.7 Skim to get the general meaning of a passage.
RD-M-x.0.6 Scan to find key information.
RD-M-x.0.1 Identify an author's purpose in literary, informational, persuasive, and practical/workplace materials.
RD-M-4.0.11 Locate and apply information for a specific purpose (e.g., following directions, completing a task).
RD-M-3.0.17 Identify bias and/or misinformation.
RD-M-3.0.15 Identify the argument and supporting evidence.
RD-M-3.0.14 Distinguish between fact and opinion.
RD-M-3.0.13 Apply knowledge of organizational patterns (e.g., cause and effect, comparison, contrast, sequence) to understand a passage.

RD-M-3.0.12 Identify an author's opinion about a subject.
RD-M-2.0.13 Identify supporting details and explain their importance in a passage.
RD-M-2.0.12 Apply knowledge of organizational patterns (e.g., cause and effect, comparison, contrast, sequence) to understand a passage.

SS-M-4.4.3 The natural resources of a place or region impact its political, social, and economic development.
WR-M-1.4 Transactive writing is informative/persuasive writing that presents ideas and information for authentic audiences to accomplish realistic purposes like those students will encounter in their lives. In transactive writing, students will write in a variety of forms.

SUBJECTS: Science, Social Studies, Math, English/ Language Arts, Foreign Language

GRADES: 6-8
DURATION: One class session
GROUP SIZE: One classroom of 25-30 students

SETTING: Indoors

KEY VOCABULARY: Organic Act, mandate, protect, provide, aquatic, groundwater, watershed, runoff, tributary, spring, sinkhole, karst, Sinkhole Plain, pit, dome, vertical shaft, carbonic acid, pollution, scientific investigation, science conference, natural resources, canopy, adaptation, subterranean, troglobite, troglophile, trogloxene, herbicide, biologist, centipede, prefix, suffix, limestone, sandstone, historic, cemetery, carrying capacity

ANTICIPATORY SET: We have been studying about Mammoth Cave and the unique karst region of southcentral Kentucky. Today, as a review, we are going to have a quiz game competition. How many of you have ever watched, or are familiar with, the game show "Jeopardy"?

OBJECTIVES: The students will be able to answer questions on a variety of topics from Mammoth Cave curriculum activities, culminating with one final question.

MATERIALS: Chalk or dry erase markers, Category Cards, Question Cards, Questions \& Answers

SUM(IT)-UP

BACKGROUND: Previous material from the Mammoth Cave curriculum has focused on the protect and provide mandates of the National Park Service and on ways that a balance between these two concepts is constantly juggled at Mammoth Cave National Park. Protection of the groundwater resources depends upon understanding the unique Karst geology found within the Sinkhole Plain area of south-central Kentucky. This unique geology presents special challenges to some of the life forms found in the region, especially to those creatures living all or part of their lives in caves. An understanding of these natural resources and possible hazards can assist community planners in making the best decisions in regard to expansion. This understanding can help officials (city council members, magistrates, etc) as well as citizens protect natural and cultural resources and still provide for the economic, social, health needs and other concerns of its residents and visitors.

In order to understand their resources, community leaders and scientists must first learn as much as possible about the plants, animals, and geology of their region. Students practiced various scientific methods of investigation for both natural resources (That's My Tree!) and for historical research (Back to the Past) as they worked with this curriculum. They learned the basis for scientific expressions and realized that the Greek and Latin root words used in science could help them with their scientific research and with their native language skills (It's All Greek (and Latin) to Me!).

The caves that draw visitors from around the world can create conflicts for national park and community managers as they attempt to protect the special features that lure visitors - sometimes beyond the capacity of the resource! In the lesson, Mammoth Math, students
 learned the importance of using statistical data in making these decisions. And from Making Headlines, students learned to gather their information carefully as they practiced sorting facts from opinions.

sUM(IT)-UP

PROCEDURE:

1. Prior to class the teacher should choose any five Sum(it)-Up Category Cards. These should be taped in a line across the top of the board or other area easily seen by the students. Tape five numbered cards, in numerical order from one to five, under each category. The teacher may wish to tape or write the question on the back of the card prior to hanging or they may elect to simply read the corresponding question as the students choose the category. Note: Additional questions and/or categories may be added if the class has more then 25 students.
2. The teacher asks: Are you familiar with the game show "Jeopardy?" After dividing into teams, team members will take turns answering questions on topics they have studied. These topics focus on caves and the south-central Kentucky area.
3. Divide the class into three teams. Station each group in separate areas of the room.
4. The teacher explains that each team will send one student at a time to the front of the room to write their answer on the board. In order to score, students must write their answer in the form of a question.
5. Send the first rotation to the board and have the three student contestants pick up a piece of chalk or a dry erase marker. Team one picks the category. The first question is read. (Questions and answers for each category are found on the Questions \& Answers Sheet. Some alternate, correct answers are also given.) The first of the three "contestants" to correctly write the answer in the form of a question, put the chalk/marker down, and turn around and face the class gets the points.
6. The next player from each team now goes to the board for the second question.
7. This process is continued until all the questions are answered. Like the television program, the winning team selects the next category. But in this version, contestants do not select the level of the question. They will just answer each question in order.
8. All questions are worth the same point value (100 points) but questions will increase in difficulty as the category progresses.
9. After all the questions are exhausted, the final Sum(it)-Up topic will be read. Teams vote on a final Sum(it)-Up representative. Each team will decide on the number of points to wager. Use the same procedure as above in asking the question, but this round is worth double points for correct answers.

CLOSURE: We have reviewed the topics we have been working on. Prizes include -- Mammoth Cave knowledge, the challenge of competition, and the thrill of victory!

EVALUATION: The teacher is able to evaluate the students through observation, points earned, and each student's participation.

EXTENSIONS:

Have the students create questions to use in a second game.

QUESTIONS \& ANSWERS

CATEGORY: CAVE LIFE: "Location, Location, Location"

1. In the darkness of a cave, animals can not rely on their sense of sight. Name three other senses these animals might rely upon.

What are touch [feeling], smell, and hearing?
2. These are elongated to assist animals in dark caves to "feel".

What are antennas?
3. Bats aren't blind, but they use this to "see" in the dark.

What is sonar? [echolocation]
4. These aquatic cave animals have no eyes. Their name reflects this inability to see.

What are blind cavefish? [eyeless crayfish]
5. These creatures live their entire life in a cave. They are true cave dwellers.

What is a "troglobite?"
6. As a cave visitor, people and bats would be classified as this.

What is a "trogloxene"?

CATEGORY: GEOLOGY: "Rock-n-Roll"

1. This stone was deposited by an ancient sea.

What is limestone?
2. This rock forms the protective "roof" over Mammoth Cave.

What is sandstone?
3. These are found where underlying rock layers have collapsed to form depressions.

What are sinkholes?
4. This is the name of the rolling plain found in southcentral Kentucky, near Mammoth Cave National Park.

What is the Sinkhole Plain? [Karst; karst topography]
5. Caves are formed when the carbonic acid found in water does this to limestone rock.

What is dissolves?
6. This is an area of land that collects rainwater and melted snow as it drains to the lowest point. HINT: Don't shed a tear if you're wrong.

What is a watershed?

sUM(IT)-UP

QUESTIONS \& ANSWERS

CATEGORY: POTPOURRI: "In the 'C'"

1. A subterranean cavity full of life, history, and wonder. What is a cave? [Mammoth Cave]
2. An insect commonly found in a cave.

Where are cave crickets? [cave beetle]
3. The living visit this place to honor and learn about the people who lived before.

What is a cemetery?
4. A meeting of scientists where they present and discuss new research.

What is a (science) conference?
5. They are found deep within the cave in an aquatic habitat.

What are blind cavefish? [eyeless crayfish]
6. Created by tree tops competing for sunlight.

What is a canopy?
7. The maximum number of people that can go in the cave each day.

What is capacity?
8. To preserve, to protect, to avoid destructive use of natural resources, to maintain a constant environment.

What is conserve?

CATEGORY: WATER: "Water, Water Everywhere"

1. Underground it's the Echo River. Above ground it's called this.

What is the Green River? [Echo River Spring]
2. This finds holes and cracks in the rock as it moves over the ground.

What is water?
3. It carries toxins from farms, highways, and the railroad to the ground water.

What is runoff? [water; sinkhole]
4. When this floods it carries needed nutrients to underground organisms for food.

What is the Green River?
5. These are mini rivers that feed into larger ones.

What are tributaries? [anastomosis]
6. This is the spot where water comes out of the ground to empty into a surface stream or river.

What is a spring?
7. Water quickly travels down these "directional" paths to the water table

What is a vertical shaft? [dome; pit]

SUM(IT)-UP
 QUESTIONS \& ANSWERS

CATEGORY: VEGETATION: "Make Like a Tree"

1. Below ground it was made into pipes that carried water. Above ground it has tulip shaped blossoms. It is very straight and tall. HINT: The Kentucky state tree.

What is a Tulip Poplar tree?
2. The dominate trees in the forest of Mammoth Cave National Park.

What are the oak and hickory trees?
3. The journey of these fallen parts provides nutrients for underground microbes.

What are leaves? [decaying vegetation]
4. This is created by tree tops competing for sunlight.

What is a canopy?
5. A good variety of this is necessary to have a healthy forest.

What are tree species? [vegetation]
6. Decaying leaves and water combined to create this chemical responsible for dissolving limestone.

What is carbonic acid?

CATEGORY: GREEK \& LATIN: "Getting to the Root of it all"

1. This is a root word that means "cave".

What is "troglo" "[speleo]"?
2. The location of something (like a cave or ant nest) that is under the ground.

What is "subterranean"?
3. To the cave I am a true lover.

What is a "troglophile?"
4. In places other than national parks, I'm used to kill pesky plants.

What is "herbicide"?
5. A person who studies living things.

Who is a "biologist"?
6. Using your Latin, name a surface creature with 100 feet.

What is a "centipede"?
7. Life that is dependent upon water.

What is "aquatic"?

SUM(IT)-UP

QUESTIONS \& ANSWERS

CATEGORY: MIND YOUR P's \& Q's: "'P' is the Word"

1. This is a segment found at the beginning of a word.

What is a prefix?
2. A Latin word meaning "before".

What is "pre-"?
3. In the United States, these can find their ancestors in cemeteries.

What are people?
4. The two missions of the National Park Service.

What are to "protect" and to "provide"?
5. This has a negative affect on the water quality.

What is pollution?
6. An educated guess about the outcome of an experiment, based on data already collected.

What is a prediction?

CATEGORY: Reaching the Summit
TOPIC \#1 - IT RULES
QUESTION: The Act that established the National Park Service.

ANSWER: What is the Organic Act?

TOPIC \#2 - NEIGHBORHOOD NEEDS
QUESTION: The source of drinking water in south-central Kentucky.

ANSWER: What is groundwater?

TOPIC \#3 - DOWN THE DRAIN
QUESTION: The bowl-shaped depression that swiftly carries water under ground.

ANSWER: What is a sinkhole?

TOPIC \#4- A LITTLE CHANGE
QUESTION: This change over time helps an animal to survive.

ANSWER: What is adaptation?

TOPIC \#5 - SCIENTIFIC RESEARCH
QUESTION: To be certain they really understand, scientists ask a lot of these.

ANSWER: What are questions?

LOCATION, LOCATION, LOCATION

WATER, WATER
EVERYWHERE

MAKE LIKE A

TREE

> GETTING TO THE
> ROOT OF IT ALL

"P" IS THE WORD

SUM(IT)-UP

CORE CONTENT

SC-M-3.5.4 The number of organisms an ecosystem can support depends on the resources available and abiotic factors (e.g., quantity of light and water, range of temperatures, soil composition). Given adequate biotic and abiotic resources and no diseases or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

SC-M-3.5.3 For most ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

SC-M-3.5.2 Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some microorganisms are producers because they make their own food. All animals, including humans, are consumers, and obtain their food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

SC-M-3.5.1 A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

SC-M-3.4.2 Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Extinction of species is common; most of the species that have lived on Earth no longer exist.

SC-M-3.4.1 Biological change over time accounts for the diversity of species developed through gradual processes over many generations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

SC-M-2.3.4 The Sun is the major source of energy for Earth. The water cycle, winds, ocean currents, and growth of plants are affected by the Sun's energy. Seasons result from variations in the amount of the Sun's energy hitting Earth's surface.

SC-M-2.2.1 The Earth's processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. Earth's history is also influenced by occasional catastrophes such as the impact of an asteroid or comet.

SC-M-2.1.7 Global patterns of atmospheric movement influence local weather. Oceans have a major effect on climate, because water in the oceans holds a large amount of heat.

SC-M-2.1.5 Water, which covers the majority of the Earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the water cycle. Water dissolves minerals and gases and may carry them to the oceans.

SS-M-4.4.4 Individual perspectives impact the use of natural resources (e.g., watering lawns, planting gardens, recycling paper).

SS-M-4.4.3 The natural resources of a place or region impact its political, social, and economic development.
SS-M-4.4.2 The physical environment both promotes and limits human activities (e.g., exploration, migration, trade).

[^0]:

