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BACKGROUND

Our society places great importance on the education 
system and its schools, and has a tremendous investment 
in current and future schools. Currently, approximately 

53 million kindergarten to grade 12 (K-12) students attend over 
92,000 public schools and it is estimated that the public student 
population will have reached 54.3 million by 20041; to this figure 
must be added the substantial population of private school stu-
dents. The sizes of these school facilities range from one-room 
rural schoolhouses to citywide and mega schools that house 5,000 
or more students. The school is both a place of learning and an 
important community resource and center.

This publication is concerned with the protection of schools and 
their occupants against natural hazards. These hazards must be 
recognized as part of the natural environment and as extensions 
of phenomena that designers have always considered. Natural haz-
ards can be reduced to extreme phenomena related to the four 
elements (i.e., earth, water, wind, and fire). Earthquakes are highly 
accelerated and exaggerated forms of motion that are always occur-
ring in the earth and floods occur when rivers overflow or the wind 
stirs up the ocean along coastal waters. High winds and tornadoes 
are an extreme form of the beneficial breezes that freshen the air. 
Fire has been a threat to buildings for centuries and was one of the 
first threats to be the subject of regulation. Because of its familiarity 
and the extensive provisions for fire protection in building codes, it 
is not a subject for detailed consideration in this publication. How-
ever, some considerations relating to the fire protection of schools 
are presented in Chapter 3, Section 3.4. 

Architects and engineers deal with these natural elements all the 
time; building codes always have provisions for protection against 
fire and wind and the local building code (if adopted by the com-

1   U.S. Department of Education, National Center for Education Statistics, Baby Boom Echo Report, 2000.
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munity) will also dictate whether earthquakes or floods must be 
considered as design parameters. However, the major decisions in 
reducing flood damage may be in site selection and layout, not in 
building design. 

This manual introduces two core concepts: multihazard design 
and performance-based design. Neither is revolutionary, but rep-
resents an evolution in design thinking that is in tune with the 
increasing complexity of today’s buildings and also takes advan-
tage of developments and innovations in building technology:

❍ The concept of multihazard design is that designers need to 
understand the fundamental characteristics of hazards and 
how they interact, so that design for protection becomes 
integrated with all the other design demands.

❍ Performance-based design suggests that, rather than relying 
on the building code for protection against hazards, a more 
systematic investigation is conducted to ensure that the 
specific concerns of building owners and occupants are 
addressed. Building codes focus on providing life safety and 
property protection is secondary: performance-based design 
provides additional levels of protection that cover property 
damage and functional interruption within a financially 
feasible context. 

This publication stresses that identification of hazards and their 
frequency and careful consideration of design against hazards 
must be integrated with all other design issues, and be present 
from the inception of the site selection and building design 
process. Although the basic issues to be considered in planning 
a school construction program are more or less common to all 
school districts, the processes used differ greatly, because each 
school district has its own approach. Districts vary in size, from 
a rural district responsible for only a few elementary schools, to 
a city district or statewide system overseeing a complex program 
of all school types and sizes, including new design and con-
struction, renovations, and additions. A district may have had a 
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long-term program of school construction and be familiar with 
programming, financing, hiring designers, bidding procedures, 
contract administration, and commissioning a new building, but 
another district may not have constructed a new school for de-
cades, and have no staff members familiar with the process.

SCOPE 

This publication is intended to provide design guidance for the 
protection of school buildings and their occupants against natural 
hazards, and concentrates on grade schools (K-12); the focus is on 
the design of new schools, but the repair, renovation, and exten-
sion of existing schools is also addressed. It is intended as the first 
of a series of publications in which hospitals, higher education 
buildings, multifamily dwellings, commercial buildings, and light 
industrial facilities will be addressed. 

The focus of this publication is on the safety of school buildings 
and their occupants, and the economic losses and social disrup-
tion caused by building damage and destruction. The volume 
covers three main natural hazards that have the potential to result 
in unacceptable risk and loss: earthquakes, floods, and high winds. 
A companion volume, Primer to Design Safe School Projects in Case of 
Terrorist Attacks (FEMA 428), covers the manmade hazards of phys-
ical, chemical, biological, and radiological attacks.

The intended audience for this manual includes design 
professionals and school officials involved in the technical and 
financial decisions of school construction, repair, and renovations. 
A short brochure based on this manual will also be available for 
school district and school board decision-makers.

ORGANIZATION AND CONTENT OF THE MANUAL

Chapters 1-3 present issues and background information that are 
common to all hazards. Chapters 4-6 cover the development of 
specific risk management measures for each of the three main 
natural hazards.
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Chapter 1 opens with a brief outline of the past, present, and 
future of school design. Past school design is important because 
many of these older, and even historic, schools are still in use and 
their occupants must be protected. 

Chapter 2 introduces the concepts of performance-based design 
in order to obtain required performance from a new or retrofitted 
facility. Chapter 3 introduces the concept of multihazard design 
and presents a general description and comparison of the haz-
ards, including charts that show where design against each hazard 
interacts with design for other hazards. This latter section includes 
fire and building security in its considerations.

Chapters 4, 5, and 6 outline the steps necessary in the creation 
of design to address risk management concerns for protection 
against earthquakes, floods, and high winds, respectively. Informa-
tion is presented on the nature of each hazard and its effect on 
vulnerability and consequences of building exposure. Procedures 
for risk assessment are outlined, followed by descriptions of cur-
rent methods of reducing the effects of each hazard. These vary, 
depending on the hazard under consideration. A guide to the 
determination of acceptable risk and realistic performance objec-
tives is followed by a discussion to establish the effectiveness of 
current codes to achieve acceptable performance.

Appendix A contains a list of acronyms that appear in this manual.

The information presented in this publication provides a compre-
hensive survey of the methods and processes necessary to create 
a safe school, but is necessarily limited. It is not expected that the 
reader will be able to use the information directly to develop plans 
and specifications. The information is intended to help designers 
and facility decision-makers, who may be unfamiliar with the con-
cepts involved, to understand fundamental approaches to risk 
mitigation planning and design. By so doing, they can move on to 
the implementation phase of detailed planning, involving consul-
tants, procurement personnel, and project administration, from a 
firm basis of understanding. 
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	Figure 6-17 This newly-constructed gymnasium had a structural metal roof panel (3-inch trapezoidal ribs at 24 inches on center) applied over metal purlins. The panels detached from their concealed clips. A massive quantity of water entered the school and buckled the w
	Figure 6-18 A portion of the roof structure blew off of this school, and a portion of it collapsed into classrooms. Because of extensive water damage, a school such as this can be out of operation for a considerable period of time.
	Figure 6-19 The HVAC unit in the parking lot in the photo’s lower right corner blew off the curb during a storm that had wind speeds that were less than the design wind speed. A substantial amount of water entered the building before a temporary covering could be plac
	Figure 6-20 This figure illustrates load path continuity of the structural system. Members are sized to accommodate the design loads and connections are designed to transfer uplift loads applied to the roof, and the positive and negative loads applied to the exterior 
	Figure 6-21 View of a steel joist after the metal decking blew away. The decking was attached with puddle welds. However, at most of the welds, there was only superficial bonding of the metal deck to the joist, as illustrated at this weld. Only a small portion of the 
	Figure 6-22 View of another weld near the weld shown in Figure 6-21. At this weld, the deck was well bonded to the joist. When the decking blew off due to failure of nearby weak welds, at this location the metal decking tore and a portion of it remained attached to th
	Figure 6-23 Portions of this waffled precast concrete roof deck were blown off. Bolts had been installed to provide uplift resistance; however, anchor plates and nuts had not been installed. Without the anchor plates, the dead load of the deck was inadequate to resist
	Figure 6-24 Several of the precast twin-Tee roof and wall panels collapsed. The connection between the roof and wall panels provided very little uplift load resistance. This roof panel lifted because of combined effects of wind uplift and pretension.
	Figure 6-25 Door sill pan flashing with end dams, rear leg, and turned-down front leg
	Figure 6-26 Drip at door head and drip with hook at head
	Figure 6-27 Door shoe with drip and vinyl seal 
	Figure 6-28 Neoprene door bottom sweep
	Figure 6-29 Automatic door bottom
	Figure 6-30 Interlocking threshold with drain pan 
	Figure 6-31 Threshold with stop and seal 
	Figure 6-32 	Adjustable jamb/head weatherstripping
	Figure 6-33 This suspended metal soffit was not designed for upward-acting wind pressure. Depending upon wind direction, soffits can experience either positive or negative pressure. Besides the cost of repairing damaged soffits, wind-borne soffit debris can cause prop
	Figure 6-34 The interior walls of this classroom wing were constructed of unreinforced CMU. To avoid occupant injury, it is recommended that masonry walls adjacent to student areas be designed to resist wind loads as discussed in Section 6.11.1.
	Figure 6-35 Failure of brick veneer
	Figure 6-36 EIFS blow-off near a wall corner. At one area, the metal fascia was also blown in.
	Figure 6-37 The metal edge flashing on this modified bitumen membrane roof was installed underneath the membrane, rather than on top of it and then stripped in. In this location, the edge flashing is unable to clamp the membrane down. At one area, the membrane was not
	Figure 6-38 This metal edge flashing had a continuous cleat, but the flashing disengaged from the cleat and the vertical flange lifted up. However, the horizontal flange of the flashing did not lift. When a vertical flange disengages and lifts up, the edge flashing an
	Figure 6-39 This coping was attached with ¼-inch diameter stainless steel concrete spikes at 12 inches on center. Use of exposed fasteners to attach the vertical flanges of copings and edge flashings has been found to be a very effective and reliable method. When the 
	Figure 6-40 Continuous bar near the edge of edge flashing or coping. If the edge flashing or coping is blown off, the bar may prevent a catastrophic progressive failure.
	Figure 6-41 On this school, the fastener rows of the mechanically attached single-ply membrane ran parallel to the top flange of the steel deck. Hence, essentially all of the row’s uplift load was transmitted to only two deck fasteners at each joist (as illustrated in
	Figure 6-42 View of the underside of a steel deck. The mechanically attached single-ply membrane fastener rows ran parallel to the top flange of the steel deck. The flange with the membrane fasteners carries essentially all of the uplift load because of the deck’s ina
	Figure 6-43 The parapet on this school was sheathed with metal wall panels. The panels were fastened at 2 feet on center along their bottom edge, which was inadequate to resist the wind load. For mechanically attached parapet coverings, it is imperative to calculate s
	Figure 6-44 This air terminal (“lightning rod”) was dislodged and whipped around during a windstorm. The single-ply membrane was punctured by the sharp tip in several locations. During prolonged high winds, repeated slashing of the membrane by loose conductors (“cable
	Figure 6-45 Two complete windows, including their frames, blew out. The frames were attached with an inadequate number of fasteners, which were somewhat corroded. It is important to specify an adequate load path and to check its continuity during submittal review.
	Figure 6-46 View of a typical window sill pan flashing with end dams and rear legs. Windows that do not have nailing flanges should typically be installed over a pan flashing.
	Figure 6-48 The rooftop mechanical equipment on this school was blown over. The displaced equipment can puncture the roof membrane and, as in this case, rain can enter the school through the large opening that is no longer protected by the equipment. 
	Figure 6-49 This HVAC equipment had two supplemental securement straps. Both straps are still on this unit, but some of the other units on the roof had broken straps. The supplemental attachment was marginal; the straps were too light and the fasteners used to secure 
	Figure 6-50 The communications mast on this school was pulled out of the deck, resulting in a progressive peeling failure of the fully adhered single-ply membrane. There are several exhaust fans in the background that were blown off their curbs, but were retained on t
	Figure 6-51 To overcome blow-off of the fan cowling, which is a common problem, this cowling was attached to the curb with cables. The curb needs to be adequately attached to carry the wind load exerted on the fan.
	Figure 6-52 These wire-tied tiles were installed over a concrete deck. They were attached with stainless steel clips at the perimeter rows and all of the tiles had tail hooks. Adhesive was also used between the tail and head of the tiles. Wind-borne debris from heavy 
	Figure 6-53 At this school, a missile struck the fully adhered low-sloped roof (see arrow) and slid into the steep-sloped reinforced mechanically attached single-ply membrane. A large area of the mechanically attached membrane was blown away due to progressive membran
	Figure 6-54 This fully adhered single-ply membrane was struck by a large number of missiles during a hurricane. Although a fully adhered system is not as vulnerable to progressive failure after debris impact as are mechanically attached and air-pressure equalized syst
	Figure 6-55 View of a metal shutter designed to provide missile protection for windows. A metal track was permanently mounted to the wall above and below the window frame. Upon notification of an approaching hurricane, the metal shutter panels were inserted into the f
	Figure 6-56 A violent tornado passed by this high school and showered the roof with missiles. The missile sticking out of the roof in the foreground is a double 2-inch by 6-inch. The portion sticking out of the roof is 13 feet long. It penetrated a ballasted EPDM memb
	Figure 6-57 View of an elementary school corridor after passage of a violent tornado. Although corridors sometimes offer protection, they can be death traps as illustrated in this figure (fortunately the school was not occupied when it was struck). Schools in tornado-
	Figure 6-58 This school had a cementitious wood-fiber deck (commonly referred to by the proprietary name “Tectum”). These two deck panels blew away because their attachment to the roof structure was inadequate. An SPF roof covering was over the panels; because of the 





