

Risk Management Series Primer for Design Professionals

Communicating with Owners and Managers of New Buildings on Earthquake Risk

January 2004

RISK MANAGEMENT SERIES

Primer for Design Professionals: Communicating with Owners and Managers of New Buildings on Earthquake Risk

PROVIDING PROTECTION TO PEOPLE AND BUILDINGS

TABLE OF CONTENTS

LIST	OF FI	GURES	vii
LIST	OF TA	ABLES	xi
1	intr 1.1	ODUCTION Impetus for Updating the Prior Documents in the	1-1
	1.2 1.3 1.4	FEMA Seismic Considerations Series Objectives and Scope of this Document Document Contents and Organization Document Formatting and Icons	1-3 1-5 1-6 1-8
2	SEIS/ 2.1 2.2	MIC RISK MANAGEMENT Seismic Risk: An Overview Seismic Risk Management: A Holistic Approach for Reducing Earthquake Impacts	2-1 2-1
	2.3	Evaluating Seismic Risk Consequences as a Basis for Developing a Risk Management Plan	2-4
	2.4	First Cost or Design Strategies	2-9
	2.5	Operating Cost or Business Strategies	2-13
	2.6	Event Response Strategies	2-16
	2.7	Choosing an Optimal Combination of Risk Reduction	0 1 0
	2.8	Example Implementation of a Risk Management Program	2-18
	2.9	Seismic Risk Management Advocacy	2-22
3	IDEN RELA 3.1	ITIFYING AND ASSESSING EARTHQUAKE- ITED HAZARDS Introduction	3-1
	3.3 3.4 3.5	Collateral Seismic Hazards Other Collateral Hazards	3-8 3-10
	3.6	Guidance for Assessing Earthquake-Related Hazards References and Further Reading	3-16 3-21
4	3.6 PERF	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING:	3-16 3-21
4	3.6 PERF AN I	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN	3-16 3-21 4-1
4	3.6 PERF AN 1 4.1	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes	3-16 3-21 4-1 4-1
4	3.6 PERF AN 1 4.1 4.2	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes Expected Performance when Designing to Current	3-16 3-21 4-1 4-1
4	3.6 PERF AN I 4.1 4.2 4.3	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes Expected Performance when Designing to Current Codes Current Specifications for Performance-Based Seismic Design	3-16 3-21 4-1 4-1 4-3 4-6
4	3.6 PERF AN 1 4.1 4.2 4.3 4.4	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes Expected Performance when Designing to Current Codes Current Specifications for Performance-Based Seismic Design Impact of Performance-Based Strategies on Future Design Codes	3-16 3-21 4-1 4-3 4-3 4-6 4-18
4	3.6 PERF AN I 4.1 4.2 4.3 4.4 4.5 4.6	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes Expected Performance when Designing to Current Codes Current Specifications for Performance-Based Seismic Design Impact of Performance-Based Strategies on Future Design Codes Guidance for Design Professionals References and Further Reading	3-16 3-21 4-1 4-3 4-3 4-6 4-18 4-23 4-24
4	3.6 PERF AN I 4.1 4.2 4.3 4.4 4.5 4.6 IMPR	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes Expected Performance when Designing to Current Codes Current Specifications for Performance-Based Seismic Design Impact of Performance-Based Strategies on Future Design Codes Guidance for Design Professionals References and Further Reading	3-16 3-21 4-1 4-3 4-3 4-6 4-18 4-23 4-24
4	3.6 PERF AN I 4.1 4.2 4.3 4.4 4.5 4.6 IMPR SEIS	Guidance for Assessing Earthquake-Related Hazards References and Further Reading ORMANCE-BASED ENGINEERING: EMERGING CONCEPT IN SEISMIC DESIGN Seismic Design Provisions in Building Codes Expected Performance when Designing to Current Codes Current Specifications for Performance-Based Seismic Design Impact of Performance-Based Strategies on Future Design Codes Guidance for Design Professionals References and Further Reading ROVING PERFORMANCE TO REDUCE MIC RISK	3-16 3-21 4-1 4-3 4-3 4-6 4-18 4-23 4-24 5-1

	5.2	Selection of Structural Materials and Systems	5-2
	5.3	Selection of the Architectural Configuration	5-5
	э.4	Consideration of Nonstructural Component Performance	5.6
	5.5	Quantifying the Benefits of Improved Performance	
	5.6	Costs of Improved Performance	5-19
	5.7	Case Studies of Cost and Performance	
		Considerations	5-23
	5.8	Quality Control During the Construction Process	5-30
	5.9	Recommendations for Improving Seismic Performance	5-31
6	DESI	gn and performance issues relating	
	TO C	COMMERCIAL OFFICE BUILDINGS	6-1
	6.1	Introduction	6-1
	6.2	Ownership, Financing, and Procurement	6-2
	6.3	Performance of Office Buildings in Past Earthquakes .	6-2
	6.4 4 5	Performance Expectations and Requirements	6-5
	0.5	Seismic Design issues	0-5
7	DESI	GN AND PERFORMANCE ISSUES RELATING	
	IO R		/-
	/.l 7.2	Introduction	-/ 7 2
	7.Z	Performance of Commercial Retail Eacilities in	/-Z
	/ .0	Past Earthquakes	7-3
	7.4	Performance Expectations and Requirements	7-4
	7.5	Seismic Design Issues	7-4
8	DESI	gn and performance issues relating to	
	LIGH	T MANUFACTURING FACILITIES	8-1
	8.1	Introduction	8-1
	8.2	Ownership, Financing and Procurement	8-2
	8.3	Performance of light Manufacturing Facilities in	0.0
	0 1	Past Earthquakes	8-3
	0.4 8 5	Seismic Design Issues	0-4 8_1
			0 4
9		GN AND PERFORMANCE ISSUES RELATING	0.1
	10 F	Introduction	9-1 Q_1
	9.2	Ownership, Financing, and Procurement	
	9.3	Performance of Healthcare Facilities in Past	
		Earthquakes	9-3
	9.4	Performance Expectations and Requirements	9-5
	9.5	Seismic Design Issues	9-6
10	DESI	gn and performance issues relating	
	to l	OCAL SCHOOLS (K-12)	10-1
	10.1	Introduction	10-1
	10.2	Ownership, Financing, and Procurement	10-2
	10.3	rerrormance of Local Schools in Past Earthquakes	10-2

	10.4 Performance Expectations and Requirements10-310.5 Seismic Design Issues10-4
"	DESIGN AND PERFORMANCE ISSUES RELATINGTO HIGHER EDUCATION FACILITIES (UNIVERSITIES)11.111.2Ownership, Financing, and Procurement11.3Performance of Higher Education Facilities (Universities) in Past Earthquakes11.411.5Seismic Design Issues
12	RESPONSIBILITIES FOR SEISMIC CONSIDERATIONS WITHIN THE DESIGN TEAM 12-1 12.1 Responsibilities of the Structural Engineer, Architect, and MEP Engineer 12-1 12.2 Developing a Unified Approach Within the Design Team 12-1 12.3 Engineering Services for Added Value of Risk Management 12-2
	 12.4 Communicating Seismic Considerations Issues to the Building Owner
REFE	RENCES
PROJ	IECT PARTICIPANTS

LIST OF FIGURES

2-1	Seismic risk, expressed graphically as a function of
	likelihood of damage and consequences given the
	ccurrence of the damage 2-3
2-2	Illustration of risk of experiencing catastrophic earthquake
	losses
2-3	Illustration of reduction in risk of catastrophic earthquake
	losses
2-4	Flow chart for identifying, evaluating, and selecting risk-
	reduction strategies to develop a risk management plan 2-10
3-1	Six-story concrete-moment-frame medical building
	that was severely damaged by the magnitude-6.8
	Northridge, California, earthquake of January 17, 1994 3-2
3-2	Eight-story reinforced-concrete-frame office building in
	Kobe, Japan that partially collapsed during the
	magnitude-7.8 earthquake of January 17, 1995 3-2
3-3	Older tive-story reinforced concrete trame building in
	Managua, Nicaragua, that had inadequate seismic
	resistance and collapsed during the magnitude-6.2
• •	earthquake of December 23, 1972 3-3
3-4	Preseismic-code ten-story reinforced-concrete-trame
	building in Bucharest, Romania, that partially collapsed
	45 miles north of Pusharoot
2-5	Typical acceleration time history of strong around shaking 3.4
3-5	Probabilistic solution fille fisiony of showing ground shaking 5-4
3-0	shaking hazard zones in the contiguous United States 3.5
3.7	Hazard curves for selected U.S. cities 3-6
3.8	Example of surface fault rupture: 1971 San Fernando
•••	California earthquake (a thrust fault earthquake) 3-9
3-9	Aerial view of leaning apartment houses resulting from
	soil liquefaction and the behavior of liquefiable soil
	foundations, Niigata, Japan, earthquake of
	June 16, 1964 3-10
3-10	Government Hill School, Anchorage, destroyed by
	landslide during the magnitude-8.4 Alaska earthquake
	of 1964
3-11	Overturned lighthouse at Aonae, Okushiri, from the
	tsunami following the 1993 Hokkaido-Nansei-Oki
	earthquake
3-12	Photo showing damage caused by the pounding of a
	10-story steel-trame building (with masonry intill walls)
	against a seven-story building. Most of the cracking
	damage to the piers of the taller building was at the root
	line of the shorter building
3-13	Photo showing tallen parapets from an earthquake-
	damaged unreinforced masonry building 3-15

3-14	Photo showing the burning of the Tokyo Police Station following the magnitude-8.3 Tokyo/Kanto earthquake	
	of 1923	-16
3-15	Site evaluation check list	-18
4-1	Photo of lights set into a fixed celling system that shook	
	conduite	15
4-2	Photo of nino flango failuro causad by parthauako lateral	4-J
	forces	1.6
4-3	Graphic illustration of Operational Immediate Occupancy	4-0
	Life-Safety and Collapse Prevention Performance Levels 4	-11
4-4	Expected building performance	
5-1	Example design solutions for addressing soft story	
•••	condition	5-7
5-2	Elevation views of building with short columns between	
	first and second floors	-10
5-3	Nonsymmetric loading of book stacks in library building5	-11
5-4	Relationship between cost and performance for	
	hypothetical example5	-21
5-5	Site of facilities for computer graphics equipment maker	
	in Salt Lake City, Utah5	-23
5-7	Sample new school building design in Salt Lake City K-12	
	School District	-25
5-6	Sample existing school building in Salt Lake City K-12	
	School District	-25
5-8	Site hazard curve for Salt Lake City K-12 School District	~ ~ /
	seismic risk study	-26
5-9	New bioengineering laboratory building designed for	200
E 10	Comparison of future losses for two different structured	-29
5-10	comparison of future losses for two different silucional	30
5-11	Comparison of benefit to cost of using a buckling	-30
3-11	retrained braced frame instead of a conventional	
	concentric braced frame, for new LIC Berkeley laboratory	
	building. Cost equals cost differential	-31
6-1	Typical earthquake damage to contents and nonstructural	• ·
	components in a modern office building	6-3
6-2	Exterior view of medical office building severely damaged	
	by the 1994 Northridge earthquake	6-4
6-3	Partially collapsed end-wall in 5-story office building	
	caused by severe earthquake ground shaking	6-4
7-1	Severe damage to a department store severely shaken by	
	the 1994 Northridge earthquake. Shear failure between	
	the wattle slabs and columns caused the collapse of	
	several floors	7-3
8-1	Root and wall collapse of tilt-up building during the 1994	~ ~
• •	Northridge earthquake	8-3
y-1	Exterior view of Holy Cross Medical Center, which was	
	evacuated after the 1994 Northridge earthquake due to	0 1
		7-4

9-2	Aerial view of Olive View Hospital, which sustained no structural damage during the 1994 Northridge earthquake, but was closed for a short while after the earthquake	
	because of water leakage from broken sprinklers and waterlines	-1
9-3	Sketch showing typical interstitial space for nonstructural components and systems in new hospitals	-7
10-1	Nonstructural damage at Northridge Junior High where	
	lights tell onto desks during the 1994 Northridge	~
	earthquake10	-3
11-1	Fractured 4-inch-thick steel base plate, university building,	_
	Northridge, 1994 11-	-3
12-1	Checklist for seismic expectations	-6
12-2	Checklist for Architect/Engineer Interaction	-8
12-3	Checklist for defining project responsibilities	-9
12-4	Example of completed checklist shown in Figure 12-3 12-1	1
12-5	Checklist for responsibility of nonstructural component	
	design 12-1	2

LIST OF TABLES

4-1	Performance Objectives (Adapted from FEMA 356
	(ASCE, 2000))
4-2	Target Building Performance Levels and Ranges
	(ASCE, 2000) 4-13
4-3	Structural Performance Levels and Damage—Horizontal
	Elements (From FEMA 356) 4-14
4-4	Structural Performance Levels and Damage1—Vertical
	Elements (from FEMA 356) 4-15
4-5	Nonstructural Performance Levels and Damage—
	Architectural Components (from FEMA 356) 4-19
4-6	Nonstructural Performance Levels and Damage—
	Mechanical, Electrical, and Plumbing Systems/
	Components (from FEMA 356) 4-20
4-7	Nonstructural Performance Levels and Damage—
	Contents (from FEMA 356) 4-21
5-1	Seismic Performance of Structural Systems (adapted
	from Elsesser, 1992)
5-2	Structural Systems for Site Conditions and Occupancy
	Types (from Elsesser, 1992) 5-4
5-3	Vertical Irregularities, Resulting Failure Patterns, and
	Performance Implications 5-8
5-4	Plan Irregularities, Resulting Failure Patterns, and
	Performance Implications
5-5	Summary of Benetits and Costs for Hypothetical
	Manufacturing Facility Example
5-6	Comparison of Costs for Design to SBCCI and IBC
	Kequirements 5-28