Genetics & Breeding Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
 

Research Project: RESOURCE DEVELOPMENT FACILITATING BOVINE GENOME SEQUENCE USE TO IMPROVE CATTLE PRODUCTION EFFICIENCY, PRODUCT QUALITY & ENVIRONMENTAL IMPACT

Location: Genetics & Breeding Research

Title: MicroRNA: mechanism of gene regulation and application to livestock

Author

Submitted to: Journal of Animal Science
Publication Type: Review Article
Publication Acceptance Date: September 6, 2008
Publication Date: N/A

Interpretive Summary: MicroRNA are a class of small RNAs that regulate gene expression. As a result, a single microRNA can target numerous distinct messenger RNA for decreased translation. The microRNA sequences are highly conserved among species as diverse as nematodes and mammals, supporting the hypothesis that they are of central importance to biology and developmental decisions. Implication of microRNA in such a wide array of cellular processes has increased interest in evaluating the specific mechanisms by which microRNA regulate translation. Therefore, three leading theories will be addressed in the current review including: messenger RNA degradation, blocking of initiation, and translocation to P-bodies. Additionally, the potential role of microRNA in livestock will be addressed including areas of growing interest: skeletal muscle, adipose tissue, reproduction, and feed efficiency.

Technical Abstract: MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through activation of a specific cellular pathway. The small RNA classified as miR are short sequences of 18-26 nucleotide long, encoded by nuclear genes with distinctive properties that comprise 1-5% of known genes. During processing from the primary transcript, the mature miR sequence is loaded into an RNA:protein complex known as the ¿RNA induced silencing complex¿. The sequence of the miR loaded in the complex targets the RNA induced silencing complex to specific binding sites in the 3¿ untranslated region of messenger RNA (mRNA) transcripts, resulting in degradation of the miR:mRNA complex, blocking of initiation, or translocation to processing bodies. In each case, association of RNA induced silencing complex with mRNA causes decreased translation of the targeted gene product. Approximately 40% of genes have transcripts that are potential targets for miR, suggesting that miR play an important role in multiple cellular processes. A single miR can target numerous distinct mRNA for decreased translation, and as a result miR appear to be intimately involved in developmental decisions. Implication in such a wide array of cellular processes has increased interest in evaluating miR in multiple biological models including production livestock.

   

 
Project Team
Smith, Timothy - Tim
Bennett, Gary
Keele, John
Allan, Mark
Harhay, Gregory
McDaneld, Tara
Nienaber, John - Jack
Snelling, Warren
Casas, Eduardo
 
Publications
   Publications
 
Related National Programs
  Food Animal Production (101)
 
Related Projects
   BOVINE MICRORNA TRANSCRIPTOME ANALYSES: DISCOVERY, TISSUE-SPECIFIC EXPRESSION PROFILE, AND TARGET GENE PREDICTION
   GENETIC SUSCEPTIBILITY TO BOVINE RESPIRATORY DISEASE
   RESEARCH TO IMPROVE PRODUCTION EFFICIENCY/MEAT QUALITY, REDUCE FOOD SAFETY PATHOGENS, & MINIMIZE IMPACT OF ANIMAL AGRICULTURE ON ENVIRONMENT
 
 
Last Modified: 11/09/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House