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Human Genome Epidemiology
Network (HuGENet)

e Global collaboration of
Individuals and
organizations to assess
population impact of
genomics and how it can
be used to Improve
health and prevent
disease
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- Epldemlology

=]
o
[ L -
e - o -

e e ] — '.T:,—;' g
SO s - BOIGTS,S <
B - I -3 L - -
5 " T | ALY
e o o o - i, h @ i
= S " o = | '__|_{ 1

[ T

“Systematic application of epidemiologic
methods and approaches to assess the
Impact of human genetic variation on
health and disease”

Khoury, Little and Burke, HUGE 2004

- Genotype prevalence HUGE problem:
: .. 25,000 genes, their
- Gene - disease association combinations and
- Gene - gene interactions Interactions with risk
factors

- Gene - environment interactions
- Assessment of Genetic tests



From Genetics to Genomics

Genetic Disorders
Mendelian Disorders
Disease burden: 5%
Mutations/One Gene
High Disease Risk
Environment +/-

“Genetic Services”

Genetic Information
All Diseases

Disease Burden: 95%
Variants/MultiGenes
Low Disease Risk
Environment +++

General Practice



Human genome epidemiology:
major challenges and evolving status

Small sample sizes: e Can solve with consortia
Small effect sizes: « Have to live with it

Large number of biological factors: o Better with current platforms
Interactions of genes: o Still difficult/impossible
Questionable replication: « We are doing better (no?)
Genuine variability across populations:  « Interesting to learn about
Old-epidemiology problems - o Still with us, but design and
confounding (population stratification), reporting are hopefully
misclassification Improving

Modifiable environment: « Working on it



Sample sizes

o Genetic epidemiology has evolved within a
decade from a discipline of case series or
case control studies of a few dozen
participants to the accrual of large-scale
teams and consortia of many teams
Including many thousands of participants



HuGENet “Network of Networks”
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A road map for efficient and reliable human
genome epidemiology

Metworks of investigators have begun sharing best prac s, tools and metheds for analysis of a: ions between
and common diseases. A Network of In ator Metworks has been set up t e process




Some examples of consortia

Disease

Parkinson
Osteoporosis
Osteoarthritis
Preterm birth
Lymphoma
Lung cancer
Head & Neck
Melanoma
Pancreatic Ca

Consortium  Teams
GEO-PD 18
GEFOS 40

TREAT-OA 20
PREGENIA 10
INTERLYMPH 15
ILLCO 30
INHANCE 13
GENOMEL 12
PACGENE 10

Participants

10,000
133,000
30,000
20,000
20,000
51,000
28,000
3,000
5,000



Challenges In setting up consortia

e Assembling teams

e QOverall project design

e Harmonization vs standardization

e Qutcome definitions and ascertainment
 Risk factor definitions and ascertainment

» (Gene selection and measurement of genotypes
 Other biological markers

 [ntegrating and understanding the environmental
variables

Seminara et al. Epidemiology 2007




Percentage (%)

Genetic risks: quanta of small effects

1.5

2

Odds ratio in meta—analysis

loannidis, Trikalinos, and Khoury, Am J Epidemi

FTo

PPARG

CDKALI

SLC3048

CDKN2B

HHEX

KCNJI1

IGF2BP2

CDKN2B

ICF7L2

Polymorphism

rs9300039°
1s8050136
rs1801282
1510946398"
1513266634
1564398
1s5015480-
rs1 111875
rs5215°
154402960
1s10811661

rs7901695¢

Fixed effects

OR (95% CI)

1.25 (1.15-1.37)
1.17 (1.12-1.22)
1.14 (1.08-1.20)
1.12 (1.08-1.16)
1.12 (1.07-1.16)
1.12 (1.07-1.17)

1.13 (1.08-1.17)

1.14 (1.10-1.19)
1.14 (1.10-1.18)
1.20 (1.14-1.25)

1.37 (1.31-1.43)

2006 and Zeggini et al. Science 2007



Large number of biological risk factors:
Counting fish in the sea of gene-disease associations

Multiplier Parameter
>10000000 Gene variants
>1000 Diseases

>10 Outcomes

>10 Subgroups

>10 Genetic contrasts
>10 Investigators

1 quadrillion Candidate analyses

loannidis, Trends Mol Med 2003



How many variants are we after?

e Assuming at least 1000 diseases/phenotypes
Involved

« Estimating typically 20-100 variants for each
disease (range 1 to 500)

* Allowing for some genetic-phenotypic overlap
(e.g. common variants for many autoimmune
diseases), probably we aim for approximately
20,000-50,000 variants in an encyclopedia of
common genetic variants for common
diseases/phenotypes

 We have covered about 1% so far



Interactions between genes: not a
task for computers beyond the basics

12,000,000 interacting variants in all

possible combinations means... 10298
analyses

If so, “genome-wide” statistical significance
should be claimed at p=10-2%8/



Questionable replication: bias or
genuine variability

A research finding cannot reach credibility over 50% unless

U<R

I.e. bias must be less than the pre-study odds

loannidis, PLoS Med 2005




Non-replicated diminishing effects

DISEASE/GENE

© Nephropathy/ACE
Alcoholism/DRD2
HTN/Angiotensinogen
Parkinson/CYP2D6

o  Lung cancer/GSTM1

o Schizophrenia/DRD3

Down dementia/APOE
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o Lung cancer/CYP2D6

300 500 2000 4000 10000
50 200 400 1000 3000 5000

Total genetic information (subjects or alleles)

loannidis et al, Nature Genetics 2001




Breast cancer meta-analyses of
common variants on candidate genes
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Fig. 1. Meta-analyse andidate gene wvariants and regr
to the null. The 16 hypo ene—disease associations listed in Tabl
shown. For each association. a line co s the results of the first published
study (odds ratio [OR] as a function of sample size) with the summary results

loannidis, JNCI 2006 and Pharoah et al. INCI 2006




Odds Ratio from Cumulative Meta-Analyses

. Heterogeneous meta-
NN analyses with excess
= of statistically

significant single

= studies In

Alzheimer’s disease
genetics:
genuine

1

0506 0.8

2 4 6 8 heterogeneity or
Years since publication of the first study bias’?

—— TFCP2 (3 UTR) —%— BDNF (C270T)

VLDLR (CGG-repeat (5" UTR)) SLCEA4 (HTTLPR)
—*— AZM (V1000! (rs669)) —*— ESRA1 (Xbal)

ACE (intron 16 (ins/del}) —®— BLMH (rs1010159)

PSEN1 {rs165932 (intron 8)) NOS3 (rs1799923 (E208D))
—— LAP1 (rs1 799986 (exon 3)) —#— |L—1a (rs1800587)
—— |L-6 (rs1800795) IL—10 (rs1800871 (—819))

IL-10 (rs1200872 (—592)) IL—10 (rs1800896 (—1082))
—#— BCHE (rs1803274 (K—variant)) —®— MPO (rs2333227)
—%— BDNF (rs6265 (VEEM)) —®%—— CYP48 (rsT54203(2i))

ESR1 (Pwull) PLAU (rs2227564)




a Meural tube defect - MTHFR (677C/T), mother. TT vs. CT + CC

1295 i

1298 &

1297 L

1998 »
1098 o

| Succession of

early extremes:
the Proteus
phenomenon

[T

1 ;;: »
e

1 o oo .

Publication year

B 2 4 & 8 10

4

W

priotesction suscaptibility

Odds ratio

b lg& nephropathy - ACE (insertion/deletion): DD vs, OF + i
1995 &

1995 -
1995 -

1996 * loannidis and Trikalinos, J Clin
Epidemiol 2005

1297 =

Publication year

2 R 2 4 8

=

'

protection susceptibility

Odds ratio




Proteus phenomenon in the GWA era:

13 SNPs proposed for Parkinson’s disease in 2-stage GWA

@ Replication studies
O LEAPS tier 2

each of the 13 SNPs.

Elbaz et al, Lancet Neurology 2006




GWA, early replication, and late replication

Definition of replication, non-replication and inconsistency based on meta-analysis

considerations

MA including all data Without early replication data Status of evidence

Effect Heterogeneity Effect Heterogeneity

Replication

Replication with winner’s curse
Inconsistency

Non-replication

Non-replication

Non-replication or inconsistency
Non-replication

Non-replication with winner’s curse

Non-replication or inconsistency

loannidis, Human Heredity 2007




Assoclations: existing or not, found or not

ASSOCIATIONS

EXxist Don t exist

T

Found in GWA Missed in GWA GWA finds nothlnq GWA false-positive

Appropriately Falsely non- Falsely Appropriately
replicated replicated replicated refuted



Potential reasons for genuinely inconsistent findings

TagSNP with variable linkage disequilibrium across populations
Individual- and population-specific genetic effects
Independent of other genetic variants and environmental exposures
Due to epistasis (gene-gene interactions)
Due to gene-environment interactions
Exchangeable genetic variants and multi-gene signatures thereof

Functional pathways

Gene ontology

Other known or unknown common denominator for genes




[ Candidate gene era variants
[ ] GWA for type 2 diabetes
| GWA for breast cancer

eterogeneity
In candidate
gene era and

GWA era
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Mooneshinghe, et al. PNAS 2008




Uncertainty of 1% estimates of
heterogeneity In meta-analyses
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Heterogeneity in Meta-Analyses of Genome-Wide
Association Investigations

John P. A. loannidis"'*3*, Nikolaos A. Patsopoulos', Evangelos Evangelou'

1 Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of loannina School of Medicine, loannina, Greece,
2 Biomedical Research Institute, Foundation for Research and Technology-Hellas, loannina, Greece, 3 Department of Medicine, Tufts University School
of Medicine, Boston, Massachusetts, United States of America

Background. Meta-analysis is the systematic and quantitative synthesis of effect sizes and the exploration of their
diversity across different studies. Meta-analyses are increasingly applied to synthesize data from genome-wide association
(GWA) studies and from other teams that try to replicate the genetic variants that emerge from such investigations.
Between-study heterogeneity is important to document and may point to interesting leads. Methodology/Principal
Findings. To exemplify these issues, we used data from three GWA studies on type 2 diabetes and their replication
efforts where meta-analyses of all data using fixed effects methods (not incorporating between-study heterogeneity)
have already been published. We considered 11 polymorphisms that at least one of the three teams has suggested as
susceptibility loci for type 2 diabetes. The I* inconsistency metric (measuring the amount of heterogeneity not due to
chance) was different from 0 (no detectable heterogeneity) for 6 of the 11 genetic variants; inconsistency was moderate
to very large (I?=32-77%) for 5 of them. For these 5 polymorphisms, random effects calculations incorporating between-
study heterogeneity revealed more conservative p-values for the summary effects compared with the fixed effects
calculations. These 5 associations were perused in detail to highlight potential explanations for between-study
heterogeneity. These include identification of a marker for a correlated phenotype (e.g. FTO rs8050136 being associated
with type 2 diabetes through its effect on obesity); differential linkage disequilibrium across studies of the identified
genetic markers with the respective culprit polymorphisms (e.g., possibly the case for CDKALT polymorphisms or for
rs9300039 and markers in linkage disequilibrium, as shown by additional studies); and potential bias. Results were largely
similar, when we treated the discovery and replication data from each GWA investigation as separate studies.
Significance. Between-study heterogeneity is useful to document in the synthesis of data from GWA investigations and
can offer valuable insights for further clarification of gene-disease associations.

Citation: loannidis JPA, Patsopoulos NA, Evangelou E (2007) Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations. PLoS
ONE 2(9): e841. doi:10.1371/journal.pone.0000841




Table 1. Between-study heterogeneity and random versus fixed effects calculations for polymorphisms that were considered

"confirmed”

Polymorphism

Q(p)

12 (95% Cl)

Random effects OR

(95% Cl)

Fixed effects OR
(95% Cl)

Random effects
p-value

Fixed effects
p-value

PPARG
CDKAL1
SLC30A8
CDKN2B
HHEX

KCNJTT
IGF2BP2
CDKN2B
TCF7L2

159300039
58050136
51801282
510946398
1513266634
5564398

rs5015480-
rs1111875

rs5215°
54402960
rs10811661
1s7901695

7.98 (0.019)
862 (0.013)
3.80(0.15)
373 (0.16)
292 (0.23)
148 (0.48)
045 (0.80)

0.56 (0.76)
265 (0.27)
0.03 (0.99)
0.24 (0.89)

75% (0-90)
77% (0-91)
47% (0-84)
46% (0-84)
32% (0-81)
0% (0-73)

0% (0-73)

0% (0-73)
25% (0-79)
0% (0-73)
0% (0-73)

1.25 (1.04-1.50)
1.13 (1.02-1.25)
1.16 (1.07-1.25)
112 (1.07-1.17)
1.12 (1.07-1.18)
112 (1.07-1.17)
1.13 (1.08-1.17)

1.14 (1.10-1.19)
1.15 (1.10-1.19)
1.20 (1.14-1.25)
1.37 (1.31-1.43)

1.25 (1.15-1.37)
117 (112-1.22)
1.14 (1.08-1.20)
1.12 (1.08-1.16)
1.12 (1.07-1.16)
112 (1.07-1.17)
1.13 (1.08-1.17)

1.14 (1.10-1.19)
1.14 (1.10-1.18)
1.20 (1.14-1.25)
137 (1.31-1.43)

0.015
0.015
0.0003
32x10
87x10
1.2x10
57x10

5x10 "

65%x10 "
78%x10 "
1.0x10°%

43x10-7
13x10° "
17x10°°
41x10
53x10
12x10
57x10

5%10 "

86x10 '
78x10° "
1.0x10™%

Additive models are presented, as in the main analyses of the original papers. Fixed effects calculations are Mantel-Haenszel estimates as in the original papers. Random
effects calculations use the DerSimonian and Laird estimators for the between-study variance.

Cl: confidence interval; OR: odds ratio
“multi-marker tag in DGI and rs1514823 in the UK study
®rs7754840 in FUSION

rs5219 in FUSION and DGl
957903146 in FUSION and DG
doi:10.1371/journal.pone.0000841.t001




An Inconsistent association
mirroring a different association:
FTO, type 2 diabetes, and obesity

UK 1.23 (1.18, 1.32)

DGI 1.03 (0.91, 1.17)

FUSION 1.11 (1.02, 1.20)

Random effects 1.13 (1.02, 1.25)

Fixed effects 1. 17 (112, 1.22)

loannidis, Patsopoulos, Evangelou, PLoS ONE 2007



A rs3761847/rs10818488/rs10118357

Odds ratio
Study (95% CI)
NAR'?‘%_1 1.43 (1.26, 1.63)
rs3761847

NARAC-2 1.40 (1.21, 1.63)

r$3761847

1.27 (1.09, 1.49)
A 1.10 (0.93, 1.30)
Neth 1.45(1.13, 1.87)

rs108

Neth 1.26 (1.01, 1.57)

_ An Inconsistency for
> ( 1.01(0.93, 1.09) y
rs10118357
Fixed effects 1.20 (1.14, 1.26)

rheumatoid arthritis:

.9 14 18

Odés e 1°=80% (95% Cl: 56-88%) b i aS ] L D Or We Sti I I

B: rs2900180/rs1930780

don’t know what

(95% Cl)
+ 1.50 (1.32,1.71) = ,)
B wl P disease we are after
+ 1.25 (1.07, 1.46)
1.11 (0.94, 1.32)
1.34 (1.04, 1.73)
0.99 (0.90, 1.07)

Fixed effects 1.17 (1.11, 1.24)

Random effects 1.24 (1.06, 1.46)

9 14 16

12=86% (95% CI: 67-91%)

1
Odds ratio




Inconsistency and non-replicability
threshold

Inconsistency may be due to either bias or genuine
between-study heterogeneity

Beyond a given threshold of inconsistency, no
matter how large studies we conduct, we may
never have enough power to replicate an
association (non-replicability threshold)

This means that we need to decrease bias to a
minimum so that we have to face only the genuine

heterogeneity

The main question is shifting from whether chance
can create an association to whether bias of
whatever kind can create an association of the
observed magnitude



OR=1.05, threshold for 12=0.0006

Sample Size
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fi for a metaanalysis of 10 equally large

Mooneshinghe, Khoury, Liu and loannidis PNAS 2008




Editorial

[ American Journal of Epidemioclogy
M © The Author 2007. Published by the Johns Hopkins Bloomberg School of Public Health.

All rights reserved. For permissions, please e-mail: joumals.permissions @ oxfordjournals.org

Vol. 166, No. 8
DOIl: 10.1093/aje/kwm248
Advance Access publication September 5, 2007

Turning the Pump Handle: Evolving Methods for Integrating the Evidence on

Gene-Disease Association

Julian P. T. Higgins’, Julian Little®, John P. A. loannidis®®, Molly S. Bray?, Teri A. Manolio®, Liam
Smeeth’, Jonathan A. Sterne®, Betsy Anagnostelis®, Adam S. Butterworth'?, John Danesh°,
Carol Dezateux'?, John E. Gallacher'?, Marta Gwinn'3, Sarah J. Lewis®, Cosetta Minelli'?, Paul D.
Pharoah'®, Georgia Salanti®, Simon Sanderson’®, Lesley A. Smith'®, Emanuela Taioli'’, John R.
Thompson'®, Simon G. Thompson', Neil Walker'?, Ron L. Zimmern?°, and Muin J. Khoury'?

T MRC Biostatistics Unit, Cambridge, United Kingdom.

2 Department of Epidemiology and Community Medicine,
University of Ottawa, Ottawa, Ontario, Canada.

% Department of Hygiene and Epidemiology,

University of loannina School of Medicine, loannina,
Greece.

4 Center for Human Genetics, Institute of Molecular
Medicine and School of Public Health, University of Texas,
Houston, TX.

5> Department of Medicine, Tufts University School of
Medicine, Boston, MA.

€ National Human Genome Research Institute, National
Institutes of Health, Bethesda, MD.

7 Department of Epidemiology and Population Health,
London School of Hygiene and Tropical Medicine, London,
United Kingdom.

8 Department of Social Medicine, University of Bristol,
Bristol, United Kingdom.

® Royal Free Hospital Medical Library, University College
London, London, United Kingdom.

10 Department of Public Health and Primary Care, University

of Cambridge, Cambridge, United Kingdom.

11 Centre for Paediatric Epidemiology and Biostatistics,
Institute of Child Health, University College London, London,
United Kingdom.

12 Degpartment of Epidemiology, Cardiff University, Cardiff,
Wales, United Kingdom.

13 National Office of Public Health Genomics, Centers for
Disease Control and Prevention, Atlanta, GA.

'* National Heart and Lung Institute, Imperial College,
London, United Kingdom.

15 Cancer Research UK Human Cancer Genetics Group,
Department of Oncology, University of Cambridge,
Cambridge, United Kingdom.

18 5chool of Health and Social Care, Oxford Brookes
University, Oxford, United Kingdom.

17 University of Pittsburgh Medical Center, Pittsburgh, PA.
LE Department of Health Sciences, University of Leicester,
Leicester, United Kingdom.

12 Juvenile Diabetes Research Foundation/Wellcome Trust
Diabetes and Inflammation Laboratory, Cambridge Institute
for Medical Research, University of Cambridge, Cambridge,
United Kingdom.

20 PHG Foundation, Cambridge, United Kingdom.

Received for publication July 2, 2007; accepted for publication August 1, 2007.




Measurement error: insight from a
collaborative analysis

e (Of 18 teams of investigators participating in the
collaborative analysis of alpha-synuclein REP-I
variation and Parkinson’s disease risk, we found
that 7 had to be excluded from the main analyses
because of laboratory error exceeding 10% and/or
overt violation of HWE in the controls

e Two other teams who had published an inverse
assoclation apparently had miscoded the alleles In
their databases.

Maraganore et al, JAMA 2006



Language bias and global science
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Pan et al. PLoS Med 2005




Defining and harmonizing multifarious
phenotypes: the Lernean Hydra bias

-Hercules, | think we have a serious multiplicity problem!!!




Endpoint
type

Studies on Argl16Gly (ref)

Studies on GIn27GIu (ref)

17 27 Z1 15 10 28 19 12 29 26 18 22 23 24 25 16 30 31 13 20 32

17 2F 21 15 10 28 19 12 29 26 18 22 23 24 25 16 30 31 12 20 32

12

Contonoulos-loannidis et al Pharmacoaenetics and Genomics 2006



Talking about sex and other

Interesting subgroups

Claims of Sex Differences

An Empirical Assessment in Genetic Associations

Nikolaos A. Patsopoulos. MDD

Athina Tatsioni, MD

John P. A, loannidis. MDD

EX 1S A FACTOR THAT HAS BEEN

invoked extensively in the past

as a modulator of effects in clini-

cal research. However, empiri-
cal data from randomized trials sug-
gest that many claimed subgroup
differences based on sex have heen spu-
rious and led to serious misconcep-
tions.! For example, aspirin was be-
lieved to be ineffective in secondary
prevention of stroke in women for more
than 10 vears based on an underpow-
ered subgroup analysis.?

In the human genome era, for many
common diseases, published research
has often considered that some com-
mon gene variants may have different
effects in men vs women. Many dis-
eases or traits with strong genetic back-
grounds have different prevalence in the
2 sexes. For example, autoimmune dis-
eases, endocrinopathies, and longev-
ity are more common in women, while
coronary artery disease, ischemic
stroke, and high cholesterol levels are
more common in men.? These obser-
vations do not necessarily mean that a
specific gene variant should also have
a different effect in men vs women. For
most phenotypes, many common gene
variants are likely to be responsible for
determining susceptibility to disease.?
Among autosomal variants, only some

Context Many studies try to probe for differences in risks between men and women,
and this is a major challenge in the expanding literature of associations between ge-
netic variants and common diseases or traits.

Objective To evaluate whether prominently claimed sex differences for genetic ef-
fects have sufficient internal and external validity.

Data Sources ‘We searched PubMed through July 6, 2007, for genetic association
studies claiming sex-related differences in the articles’ titles. Titles and abstracts and,
if necessary, the full text of the article were assessed for eligibility.

Study Selection Two hundred fifteen articles were retrieved by the search. We con-
sidered eligible all retrieved association studies that claimed different genetic effects
across sexes of 1 or more gene variants for any human disease or phenotype. \We con-
sidered both biallelic and multiallelic markers (including haplotypes) and both binary
and continuous phenotypes and traits. We excluded non—-English-language studies;
studies evaluating only 1 sex; studies in which sex was treated only as an independent
predictor of disease; studies that did not address any association of the investigated
genetic variant with a disease or trait; studies not involving humans; and studies in
which the authors did not claim any sex difference.

Data Extraction Two evaluators independently extracted data with a third evalu-
ator arbitrating their discrepancies. Data evaluation included whether analyses were
stated to have been specified a priori; whether sex effects were evaluated in the
whole study or subgroups thereof; and whether the claims were appropriately
documented, insufficiently documented, or spurious. For appropriately and insuffi-
ciently documented claims we performed the calculations for gene-sex interaction
whenever raw data were available. Finally, we compared the sex-difference claims
with the best internal validity against the results of other studies addressing the
same interaction.

Results We appraised 432 sex-difference claims in 77 eligible articles. Authors stated
that sex comparisons were decided a priori for 286 claims (66.2%), while the entire
sample size was used in 210 (48.6%) claims. Appropriate documentation of gene-sex
interaction was recorded in 55 claims (12.7 %); documentation was insufficient for 303
claims and spurious for the other 74. Data for reanalysis of claims were available for
188 comparisons. Of these, 83 (44.1%) were nominally statistically significant at a
P=.05 threshold, and more than half of them (n=44) had modest P values between
.01 and .05. Of 60 claims with seemingly the best internal validity, only 1 was con-
sistently replicated in at least 2 other studies.

Conclusion In this sample of highly prominent claims of sex-related differences in
genetic associations, most claims were insufficiently documented or spurious, and claims
with documented good internal and external validity were uncommon.

JAMA. 2007,;298(8):880-893 WMWY JAITIAL COIT

Patsopoulos et al. JAMA 2007




Calibration of credibility

B = \/(1+ (m/n,) exp[(—zé)/(2(1+ (n, /m)]

N, = 20° I(z60;) = 2mvar(0) (76}

n, /m=2var@)/(=d;)

loannidis, Am J Epidemiol (in press) and Am J Med Genet (in press)




Calibration of credibility: genetic
meta-analyses




Evolving credibility in genetic meta-

Earlier M-A
(author
and year)

No substantial
support

Boekholdt 2001

Maraganore 2004

Kosmas 2004

Burzotta 2004

Jonsson 2003

Combarros 2003

Gene (variant); Contrast

FGB/FGB promoter (455G/A); AA vs

GG

UCH-L1 (S18Y); SIS vs. other

MTHFR (677C/T); TT vs. other

F2 (20210G/A); other vs. GG

DRD3 (Ser9Gly) SerSer vs. other

IL1A (-889); 2/2 vs. Other

analyses

Disease

MI

Parkinson

Preeclampsia

Ml

Schizophrenia

Alzheimer

OR (95% CI)
in M-A

1.46 (1.00,
2.13)

1.20 (1.02,
)

1.21 (1.0,
1.45)

1.32 (1.01,
1.72)

1.10 (1.01,
1.21)

2.35 (1.03,
5.37)

OR (95% ClI)
M-A2

1.12 (0.90,
1.41)

0.96 (0.86,
)

1.01 (0.79,
1.29)

1.25 (1.05,
)

1.05 (0.97,
k)

1.08 (0.98,
1.18)

M-A2 (author
and year)

Smith 2005

Healy 2006

Lin 2005

Ye 2006

Jonsson 2004

Bertram 2007

Differences

Allele/wider

None/None

None/None

Allelle

None/None

Allele/wider

Bayes

0.48/NP

0.48/NP

0.60/NP

0.51/0.28

0.98/NP

0.49/NP



There Is certainly great news

he replication process Is accelerating



Early genetic epi: forlorn replication
In search for complexity

e Nature 1994

¢ TN FA [ | Qata on different
assoclates with o pocases and genes
cerebral malaria o poease oy
. . ene onl
e >800 citations e
B Replications
tO'date B Review, editorial,

letter, news

Pie chart analysis of the first 100 citations to the Nature paper

loannidis Eur J Clin Invest 2007




Discovery claims are a rapidly
spreading Infectious disease

Within the first 100 citations to the Nature paper, 19 probed
associations of TNFA genetic variability with various other
conditions and phenotypes with 12 of these 19 studies proposing
significant associations.

In all 800 citations, more than 100 new associations were
proposed.

The proposing team subsequently also published on a different
TNFA polymorphism that would modulate malarial outcomes,
and also claimed that different alleles conferred susceptibility to
severe anemia from malaria vs. cerebral malaria.

Independent teams recently found no association with the
original proposed polymorphism with either cerebral malaria or
severe anemia — in much larger studies.

What was probably a false-positive finding, not only got
entrenched in the literature, but it also lent citation support for
probably over 100 other proposed associations, many/most of
which are likely to be also spurious.



Shifting attention to replication

(b) Genome-wide association findings for Parkinson disease

B Data on different
diseases and genes

O Data on same
disease only

O Data on same
gene only

O Methods

B Replications

B Review, editorial,
letter, news




Ultrafast replication as a sine qua non

doi:10.1038/ nature05887

ARTICLES

Genome-wide association study identifies
novel breast cancer susceptibility loci

Douglas F. Easton',_ Karen A. Pooley?, Alison M. Dunning?, Paul D. P. Pharoah?, Deborah Thompson', B
Dennis G. Ballinger?, Jeffery P. Struewing?, Jonathan Morrison?, Helen Field?, Robert Luben®, Nicholas War_eham’,
Shahana Ahmed?, Catherine S. Healey”, Richard Bowman®, the SEARCH collaborators?*, Kerstin B. Meyer”,
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Grading the evidence: the Venice criteria (I1JE, 2007)

. ABA | Aca
AAB | ABB | ACB
AAC | ABC | ACC

First letter = amount

Second letter = replication
Third letter = protection from bias

BAA | BBA | BCA
BAB | BBB | BCB
BAC | BBC | BCC

Bl Strong evidence

Moderate evidence
Weak evidence

CAA | CBA | CCA
CAB | CBB | CCB
CAC | CBC | CCC




et us add the environment
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Figure 2 | Number of cases needed to detect a range of multiplicative interactions,
according to allele prevalence. The model assumes the following: a dominant genetic model,
a dichotomous exposure prevalence of 10%, a relative risk for a genotype of 1.5, a relative risk for
exposure of 1.5 and a 1:1 case:control ratio. As the graph shows, thousands of cases and
controls are needed to detect interactions with relative risks of 1.5 and 2. Calculations were
carried out using Quanto Beta version O.5 (REF. 13).

Hunter D. Nat Rev Genet 2005




Single teams

/ Single studies \

A

Feedback | Reporting
;N T
Field-wid HUGENet Published and
s;?no;)vglese ______________ SIS g ungublﬁsr?edagata
Networks
Grading Synthesis

\

\ Systematic reviews /

Meta-analyses

Figure 1 Framework for risk evaluation in genetic association studies.



SzGene synopsis: 1179 publications of common genetic
variants and schizophrenia (including two GWA studies)

. Cases vs. controls o
Gene Polymorphism Model (# independent samples) OR (95% CI)t P-value

APOE APOE (£2/3/4) E4 vs. E3 | E4 vs. E3, Caucasian® 1500 vs. 2702 (15) 1.16
COMT rs165599 G vs. A, all ethnicities 2628 vs. 7340 (6) 1.1
COoOMT rs737865 C vs. T, Caucasian® 1605 vs. 4021 (3) 1.13
DAO rs4623951 Cvs. T, all ethnicities 1509 vs. 1521 (4) 0.88
DRD1 rs4532 (DRD1_48A/G) G vs. A, all ethnicities 725 vs. 1075 (5) 1.18
DRD2 rs1801028 (Ser311Cys) G vs. C, Caucasian® 2299 vs. 3777 (13) 1.52
DRD2 rs6277 (Pro319Pro) C vs. T, Caucasian® 473 vs. 896 (3) 1.45
DRD4 rs1800955 (521T/C) Cvs. T, all ethnicities 2002 vs. 1986 (6) 1.15
DRD4 120-bp TR S vs. L, all ethnicities 1236 vs. 1199 (4) 0.81
DTNBP1 rs1011313 (P1325) T vs. C, Caucasian® 2696 vs, 2849 (8) 1.23

1.00-1.34
1.02-1.21
1.01-1.28
0.79-0.98
1.01-1.38
1.09-2.12
1.21-1.73
1.05-1.26

) 0.043

) 0.019

) 0.039

) 0.026

) 0.037

) 0.013

) | <0.00004

) 0.003
0.70-0.94) 0.005

)

)

)

)

)

)

)

1.07-1.40 0.003
0.002
0.002
0.048

GABRB2 rs1816072 C vs. T, Caucasian® 1129 vs. 995 (4) 0.82 (0.72-0.93
GABRB2 rs1816071 G vs. A, Caucasian® 1133 vs. 993 (4) 0.82
GABRB2 rs194072 Cvs. T, Caucasian® 1137 vs. 991 (

GABRB2 rs6556547 T vs. G, Caucasian® 774 vs. 820 (3) 0.70 (0.52-0.95 0.022
GRINZ2B rs7301328 (366G/C) G vs. C, all ethnicities 903 vs. 810 (4) 1.16 (1.01-1.33 0.034
GRINZB rs1019385 (200T/G) G vs. T, all ethnicities 502 vs. 466 (4) 1.45 (1.14-1.85 0.003
HP Hp1/2 1 vs. 2, all ethnicities 1346 vs. 2018 (6) 0.88 (0.80-0.98) 0.016
IL1B rs16944 (C511T) T vs. C, Caucasian” 819 vs. 1302 (5) 0.78 (0.65-0.93) 0.006
MTHFR rs1801133 (CE77T) T vs. C, all ethnicities 3327 vs. 4093 (14) 1.16 (1.05-1.30) 0.005
MTHFR rs1801131 (A1298C) C vs. A, Caucasian” 1211 vs. 1729 (5) 1.19 (1.07-1.34) 0.002
PLXNAZ2 rs752016 C vs. T, all ethnicities 1122 vs. 1211 (6) 0.82 (0.69-0.99) 0.037
SLC6A4 S5-HTTVNTR 10 vs. 12, all ethnicities 2335 vs. 2688 (11) 0.86 (0.74-0.99) 0.036
TP53 rs1042522 C vs. G, all ethnicities 1418 vs. 1410 (5) 1.13 (1.01-1.26) 0.029
TPH1 rs1800532 (218A/C) Avs. C, all ethnicities 829 vs. 1268 (5) 1.31(1.15-1.51) | <0.00008

0.72-0.93
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Human genome epidemiology

Human genome epidemiology has made major
progress in the last decade

The pace of discovery and replication has
accelerated a lot

Methods and awareness of caveats has been
heightened and solutions have been proposed for
many of the problems of the early years

The best Is yet to come
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