Genomic Variation and Disease

David Altshuler MD, PhD

Harvard Medical School Massachusetts General Hospital Broad Institute of Harvard and MIT

Observation: disease clusters in families

If you have type 2 diabetes, what is the risk to: Your neighbor (unrelated)? ≈10% Your sibling? ≈30% Your identical twin? >80%

Variation in DNA sequence influences risk

What are the pathways responsible?

Why study *inheritance* of disease?

To discover and validate pathways (in my mind, uniquely powerful)

> To predict disease risk (one of many factors)

Why Drugs Fail: 1992 - 2002*

Projects Terminated in Clinical Phases I - 3, n=73

*Schuster *et al.*, Curr Pharm Des. 2005;11(27):3545-59; Thanks to Robert Gould

CDC | David Altshuler | January 23, 2008 | Slide 4

PCSK9, LDL and coronary artery disease

CETP, HDL and coronary heart disease

Torcetrapib

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Effects of an Inhibitor of Cholesteryl Ester Transfer Protein on HDL Cholesterol

Margaret E. Brousseau, Ph.D., Ernst J. Schaefer, M.D., Megan L. Wolfe, B.S., LeAnne T. Bloedon, M.S., R.D., Andres G. Digenio, M.D., Ph.D., Ronald W. Clark, M.S., James P. Mancuso, Ph.D., and Daniel J. Rader, M.D.

Goals (a personal list)

- Identify mechanisms whereby in vivo perturbation in humans alters risk of disease
 - Phenotype-driven genome screening
 - Mendelian randomization to establish causality
- Exploit this information to illuminate disease pathophysiology and therapeutic potential
- Evaluate genetic testing for utility in clinical care

Systematic association testing of common human genetic variation

- Databases of common sequence variants
 - SNPs, haplotypes
 - Copy number variants
- Laboratory tools to test comprehensively
- Analytical methods to interpret the results

Progress identifying common variants that influence risk of common diseases

Chole Obesi Myoc QT in Atrial Type Proste Breas Color Heigh Uric A	esterol ity cardial infarc terval Fibrilliation 2 Diabetes ate cancer ate cancer ectal cancer ectal cancer	Ag Cl tion Ty Sy As Cl As Cl Cl Cl	ge Related rohns Dised ype I Diab ystemic Lup sthma estless leg s allstone dis allstone dis alls	Macular D ase etes ous Erythem syndrome ease rosis arthritis	egeneratio natosus	NOSIAP IFIHI PCSK9	8q24 CDKN2B/A 8q24 (n=6) ATG16L1 5p13 10q21 IRGM NKX2-3 IL12B 3p21 1q24 PTPN2 TCF2	GRIN3A MEISI BXCOF BTBD9 C3 8q24 ORMDL 4q25 TCF2 GCKR FTO CI 2orf3 ERBB3	HMPG CRACI XJAZFI CDCI23 ADAMTS9 THADA 3VVSFI LOXLI GLUT9 L7R TRAFI/C5 0STAT4 4q27
ΡΡΑΓγ	IBD5 NOD2	CTLA4	KCNJI I	PTPN22	CD25 IRF5 PCSK9 CFH	СГБ/С2 LOC387715 8q24 IL23R TCF7L2	CDKN2B/A IGF2BP2 CDKALI HHEX SLC30A8	KIAA035 CD226 16p13 PTPN2 SH2B3	OABCG8 MLXIPL GALNT2 PSRC1 NCAN
2000	2001	2002	2003	2004	2005	2006		2007	

TBL2 ITGAM

LSP1 ANGLPT3GDF5-UQ(C

TRIBI BLK

MAP3KI KCTDI0HMGA2

FGFR2

TNRC9

Whole genome association study T2D, 18 cardiovascular risk factors

1,464 participants with T2D 1,467 euglycemic controls

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek^{1,2,4}, Ghislain Rocheleau^{1*}, Johan Rung^{4*}, Christian Dina^{5*}, Lishuang Shen¹, David Serre¹, Philippe Boutin⁵, Daniel Vincent⁴, Alexandre Belisle⁴, Samy Hadjadj⁶, Beverley Balkau⁷, Barbara Heude⁷, Guillaume Charpentier⁸, Thomas J. Hudson^{4,9}, Alexandre Montpetit⁴, Alexey V. Pshezhetsky¹⁰, Marc Prentki^{10,11}, Barry I. Posner^{2,12}, David J. Balding¹³, David Meyre⁵, Constantin Polychronakos^{1,3} & Philippe Froguel^{5,14}

A variant in *CDKAL1* influences insulin response and risk of type 2 diabetes

Valgerdur Steinthorsdottir^{1,15}, Gudmar Thorleifsson^{1,15}, Inga Revnisdottir¹, Rafn Benediktsson^{2,3}, Thorbjorg Jonsdottir¹, G Bragi Walters¹, Unnur Styrkarsdottir¹, Solveig Gretarsdottir¹, Valur Emilsson¹, Shyamali Ghosh¹, Adam Baker¹, Steinunn Snorradottir¹, Hjordis Bjarnason¹, Maggie C Y Ng⁴, Torben Hansen⁵, Yu Bagger⁶, Robert L Wilensky⁷, Muredach P Reilly⁷, Adebowale Adeyemo⁸, Yuanxiu Chen⁸, Jie Zhou⁸, Vilmundur Gudnason³, Guanije Chen⁸, Hanxia Huang⁸, Kerrie Lashlev⁸, Avo Doumatev⁸, Wing-Yee So⁴, Ronald CY Ma⁴, Gitte Andersen⁵, Knut Borch-Johnsen^{5,9,10}, Torben Jorgensen¹⁰, Jana V van Vliet-Ostaptchouk¹¹, Marten H Hofker^{11,12}, Cisca Wijmenga^{13,14}, Claus Christiansen⁶, Daniel J Rader⁷, Charles Rotimi⁸, Mark Gurney¹, Juliana C N Chan⁴, Oluf Pedersen^{5,9}, Gunnar Sigurdsson^{2,3}, Jeffrey R Gulcher¹, Unnur Thorsteinsdottir¹, Augustine Kong¹ & Kari Stefansson¹

Genome-Wide Association Analysis **Identifies Loci for Type 2 Diabetes** and Triglyceride Levels

and Novartis Institutes for BioMedical Research*+

Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University,

CDC | David Altshuler | January 23, 2008 | Slide 12

Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini,^{1,2}* Michael N. Weedon,^{3,4}* Cecilia M. Lindgren,^{1,2}* Timothy M. Frayling,^{3,4}* Katherine S. Elliott,² Hana Lango,^{3,4} Nicholas J. Timpson,^{2,5} John R. B. Perry,^{3,4} Nigel W. Rayner,^{1,2} Rachel M. Freathy,^{3,4} Jeffrey C. Barrett,² Beverley Shields,⁴ Andrew P. Morris,² Sian Ellard,^{4,6} Christopher J. Groves,¹ Lorna W. Harries,⁴ Jonathan L. Marchini,⁷ Katharine R. Owen,¹ Beatrice Knight,⁴ Lon R. Cardon,² Mark Walker,⁸ Graham A. Hitman,⁹ Andrew D. Morris,¹⁰ Alex S. F. Doney,¹⁰ The Wellcome Trust Case Control Consortium (WTCCC), † Mark I. McCarthy, ^{1,2}±§ Andrew T. Hattersley^{3,4}±

A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects **Multiple Susceptibility Variants**

Laura]. Scott,¹ Karen L. Mohlke,² Lori L. Bonnycastle,³ Cristen J. Willer,¹ Yun Li,¹ William L. Duren,¹ Michael R. Erdos,³ Heather M. Stringham,¹ Peter S. Chines,³ Anne U. Jackson,¹ Ludmila Prokunina-Olsson,³ Chia-Jen Ding,¹ Amy J. Swift,³ Narisu Narisu,³ Tianle Hu,¹ Randall Pruim,⁴ Rui Xiao,¹ Xiao-Yi Li,¹ Karen N. Conneely,¹ Nancy L. Riebow,³ Andrew G. Sprau,³ Maurine Tong,³ Peggy P. White,¹ Kurt N. Hetrick,⁵ Michael W. Barnhart,⁵ Craig W. Bark,⁵ Janet L. Goldstein,⁵ Lee Watkins,⁵ Fang Xiang,¹ Jouko Saramies,⁶ Thomas A. Buchanan,⁷ Richard M. Watanabe,^{8,9} Timo T. Valle,¹⁰ Leena Kinnunen,^{10,11} Gonçalo R. Abecasis,¹ Elizabeth W. Pugh,⁵ Kimberly F. Doheny,⁵ Richard N. Bergman,⁹ Jaakko Tuomilehto,^{10,11,12} Francis S. Collins,³* Michael Boehnke¹*

Example: common SNP at 9p21 125-kb from CDKN2B/A

"Associated" with T2D, or "influencing" T2D?

Association is locus-specific and phenotype-dependent

CDC | David Altshuler | January 23, 2008 | Slide 14

"Associated" with T2D, or "influencing" T2D?

Genotypes are assigned at conception unaltered by the disease process and follow a null distribution

T2D P-value distribution: expected vs. observed

T2D P-value distribution: expected vs. observed

Stringent quality control, appropriate statistical thresholds, and strong replication are absolutely required in any genome-scale screen

Ten confirmed loci at which common variants associate with risk of type 2 diabetes

18 additional traits examined for association

- Insulin/Glucose:
 - Fasting glucose
 - Insulinogenic index
 - HOMA-IR
- Anthropometric:
 - BMI
 - Weight
 - Height
 - Waist hip ratio
 - Waist circumference

- Cardiovascular:
 - Systolic blood pressure
 - Diastolic blood pressure
 - Hypertension
 - LDL cholesterol
 - HDL cholesterol
 - Triglycerides
 - Triglyceride/HDL ratio
 - ApoAl
 - ApoA2
 - АроВ

Lipid loci exceeding genome-wide significance in the DGI study

LDL ^[]	HDL	ΤG
APOE cluster	CETP	GCKR

CDC | David Altshuler | January 23, 2008 | Slide 21

GCKR is a novel locus for triglyceride levels

Replication in 5,217 Swedish individuals from Malmö Diet and Cancer –Cardiovascular Cohort: $P = 8.7 \times 10^{-8}$

Combined $P < 10^{-13}$

Glucokinase (GCK) and GCKR Dihydroxyacetone Η H-C=OH-C-OH phosphate н-с-он ATP ADP ATP ADP H-C-OH HO-C HO-C-H HO-C Triose Η Fructosephosphate bisphosphate OH Hexokinase Phosphofructo H QH H isomerase H-C-OHO- Phosphoglucose isomerase H-C-OHO- kinase aldoseHO H-C-OHO-H-C н он H-C-O-p=0 2=0 н H-C-OHO-Glyceraldehyde Glucose 6-phosphate Fructose 6-phosphate Fructose 1, 6-bisphosphate Glucose 3-phosphate H-C Ĥ NAD + P Glyceraldehyde3-phosphate GLYCOLYSIS dehydrogenase NADH + H2X ATP ATP ADP ADP 0 0 H-C-OHO H-C=O H-C-OHO pyruvate phosphoglycerateH-C phosphoglycerate Enolase ·Þ=O H-C-H kinase mutase kinase Ĥ н Phosphoenolpyruvate 2-Phosphoglycerate 3-Phosphoglycerate Pyruvate 1,3-Bisphosphoglycerate (PEP)

In liver, GCK activity regulated by GCKR binding

CDC | David Altshuler | January 23, 2008 | Slide 23

Lessons from epidemiology and physiology

CDC | David Altshuler | January 23, 2008 | Slide 24

Type 2 diabetes and heart attack: 9p21

T2D and prostate cancer: TCF2

See also Bonnycastle et al., Diabetes (2006)

Mendelian and common T2D variants also decrease insulin secretion

Kir6.2 and TCF7L2: reduced insulin secretion, but no increase in insulin resistance

K_{ir}6.2 E23K

Florez et al. (2004) Diabetes

Florez et al. (2006) NEJM

	Ν	P value
Insulin secretion measures		
Insulinogenic Index	995	0.0030
Disposition index	995	0.0044
AUCins / AUCgluc	721	0.0023
Insulin resistance measures		
Fasting insulin	995	0.3423
HOMA-IR	995	0.2561

Saxena et al (2006) Diabetes

CDKAL1, SLC30A8, HHEX and CDKN2A/B: reduced insulin secretion in non-diabetics

Steinthorsdottir *et al., Nat Genet* 2007

Grarup et al., Diabetes online 9/7/2007 In some cases, associations to known pathways: eg, complement in AMD, autophagy in Crohns, TNF signaling in RA, interferon in SLE, etc But the vast majority of associated loci are novel, highlighting the importance of unbiased approaches

New biological clues, and a lot of work to do

Nearly all of the new associations are common (this is to be expected, given the design), and each has a very modest association to disease risk

In aggregate, they explain only a small fraction (5%) of the inherited risk of T2D

What about the rest of the heritability?

For each disease, only a small fraction of the causal <u>loci</u>

At each locus, an incomplete survey for causal <u>mutations</u>

CDC | David Altshuler | January 23, 2008 | Slide 33

For each disease, only a small fraction of the causal <u>loci</u>

At each locus, an incomplete survey for causal <u>mutations</u>

CDC | David Altshuler | January 23, 2008 | Slide 34

Unpublished: T2D meta-analysis

		Genotyping	N _{effective}	N
Stage	Study	platform	Samples	SNPs
	FUSION	Illumina 300K		
*	WTCCC	Affymetrix 500K	9,562	2,205,727
	DGI	Affymetrix 500K		
	FUSION	Sequenom		
2	UKT2DGC	KASPar/TaqMan	21,461	58
	DGI	Sequenom		
3	deCODE, Steno	Illumina 300K/	19.044	
	KORA, HUNT	Nanogen, Sequenom	10,000	

Zeggini, Scott, Saxena, Voigt for DIAGRAM, In review

Effect of increasing sample size on signal vs noise distribution

Zeggini, Scott, Saxena, Voigt for DIAGRAM, In review

Four more T2D loci with P<5 x 10⁻⁸

	Stage 1 N=9,562		Stage 2 N=21,461		Stage 3 N=18,066		
SNP	OR	р	OR	р	OR	р	Nearest gene
rs864745	1.14	1E-04	1.08	8E-05	1.13	2E-05	JAZF1
rs12779790	1.15	4E-04	1.11	5E-05	1.09	0.009	CDC123/CAMK1D
rs4607103	1.25	5E-04	1.10	1E-04	1.09	0.007	ADAMTS9
rs7578597	1.25	1E-04	1.15	.001	1.16	0.004	THADA

Five other loci with p values between 10^{-6} and 5×10^{-8}

Zeggini, Scott, Saxena, Voigt for DIAGRAM, In press

CDC | David Altshuler | January 23, 2008 | Slide 37

Fourteen confirmed loci at which common variants associate with risk of type 2 diabetes

JAZFI CDCI23/CA MKID ADAMTS9 THADA TCF2 WSF1 CDKN2B/A IGF2BP2 CDKAL1 HHEX TCF7L2 SLC30A8 2006 2007

KCNJ11

PPARG

2000

DGI + literature: 9 lipid loci with validated common variants

LDL]	HDL	TG
APOE cluster	CETP	APOA5
APOB	LPL	GCKR
PCSK9	LIPC	
	ABCAI	

Increasing power for discovery

18 loci affecting blood lipids at P<5×10⁻⁸

	LDL-C	HDL-C	TG
	APOE cluster	CETP	APOA5
	APOB	LPL	GCKR
	LDLR	LIPC	MLXIPL
	SORTI	ABCAI	TRIBI
	CSPG3/PBX4/CILP2	GALNT2	ANGPTL3
	PCSK9	LIPG	
	HMGCR		
CDC	David Altshuler January 23, 2008 Slie	de 41	Kathiresan et al, Nature Genetics, online 1/13/08

Genetic variation in HMGCR

The frequency and effect size of genetic variation bears no clear relationship to the size of the population or therapeutic impact of of mechanism-driven intervention

Novel locus on chromosome 1: same SNP associated to heart attack

Table 5. Additional Ever Associated with coronary Artery Disease from combined Analysis of Data from the Wreece and German with anny Studies	Table 3. Additional Loci Associated with Coronary Artery Disease from Combined Analysis of Data from the WT	CCC and German MI Family Studies
--	---	----------------------------------

с	hromosome	Lead SNP	Minor Allele in Controls	Risk Allele	wtco	C Study	Germa	n Study	Combined Analysis	
					Frequency of Minor Allele among Controls	Odds Ratio for Risk Allele (95% Cl)	Frequency of Minor Allele among Controls	Odds Ratio for Risk Allele (95% CI)	Odds Ratio for Risk Allele (95% Cl)	P Value
	1	rs599839	G	А	0.23	1.24 (1.12–1.38)	0.22	1.39 (1.19–1.63)	1.29 (1.18–1.40)	4.05×10 ⁻⁹
	1	rs17465637	А	С	0.29	1.23 (1.12–1.34)	0.26	1.15 (1.01–1.32)	1.20 (1.12–1.30)	1.27×10 ⁻⁶
	10	rs501120	С	Т	0.13	1.24 (1.09–1.41)	0.16	1.54 (1.28–1.86)	1.33 (1.20–1.48)	9.46×10 ⁻⁸
	15	rs17228212	С	С	0.30	1.19 (1.09–1.30)	0.26	1.26 (1.11–1.44)	1.21 (1.13–1.30)	1.98×10 ⁻⁷

Samani, N Engl J Med 2007

For each disease, only a small fraction of the causal <u>loci</u>

At each locus, an incomplete survey for causal <u>mutations</u>

CDC | David Altshuler | January 23, 2008 | Slide 44

The frequency spectrum of mutations influencing disease

Mutations are very likely to be rare

mutations can become common

mutations can become fixed

We've only identified the alleles at each locus that are of small enough effect to become very common

CDC | David Altshuler | January 23, 2008 | Slide 45

Nine of 18 lipid loci found by GWAS have known Mendelian mutations

Many T2D genes with both common variants and rare mutations (Kir6.2, TCF2, WSF1, etc)

We need to identify causal mutations (both common and rare) at each locus newly identified by GWAS before we can begin to estimate the overall effect on disease

Prior to working out the biology, can prediction inform clinical medicine?

CDC | David Altshuler | January 23, 2008 | Slide 48

Diabetes Prevention Program

- 3234 subjects with IGT
- Randomized to placebo, lifestyle or metformin
- 585 additional patients initially randomized to troglitazone
- Followed for 4 years
- DNA collected

DPP Research Group *NEJM* 346:393-403, 2002

Risk reduction: 58% lifestyle 31% metformin

Implementing the lessons of the DPP

- The lifestyle intervention is highly effective
- Realizing this benefit requires expense and dedication by patient and caregivers
- While it might be good for everyone, we can't afford as a society to provide it

TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program

Jose C. Florez, M.D., Ph.D., Kathleen A. Jablonski, Ph.D., Nick Bayley, B.A., Toni I. Pollin, Ph.D., Paul I.W. de Bakker, Ph.D., Alan R. Shuldiner, M.D., William C. Knowler, M.D., Dr.P.H., David M. Nathan, M.D., and David Altshuler, M.D., Ph.D., for the Diabetes Prevention Program Research Group

TCF7L2 and risk of T2D in Diabetes Prevention Program

Florez et al, New England Journal of Medicine, 355 pp. 241-50 (2006)

TCF7L2 and risk of T2D in Diabetes Prevention Program

Florez et al, New England Journal of Medicine, 355 pp. 241-50 (2006)

June, 2007: \$500 clinical test for TCF7L2

diagnostics home I deCODE T2™ | For physicians | For individuals | About deCODE

deCODE T2™

deCODE genetics – a global leader in applying human genetics to create better healthcare – offers deCODE $T2^{TM}$, a DNA-based test to help physicians assess the genetic risk of type 2 diabetes in their patients, and to enable lifestyle and therapeutic strategies that may reduce the risk of developing diabetes in the future.

Clinical trials of genetic information?

- Need to validate prediction in prospective studies
- Even valid predictive information does not guarantee improved outcome, and can harm
 - T2D: will patients with high risk genotype improve lifestyle more than low risk genotype worsen?
- Genetic determinism need be counterbalanced by hard data on beneficial interventions

"After my son tested positive for MODY, he continued to eat the same - wasn't going to let his genes stop him. My other son, who tested negative (but is overweight), was reassured by the test. He thinks that he can eat whatever he wants, since he doesn't have the gene."

— MODY patient and mother, presenting to students at a recent Harvard genetics class

By November, multiple companies offering genome-wide SNP data for ≈\$1,000

Coverage on the front page of NYT

"My risk of breast cancer was no higher than average, as was my chance of developing Alzheimer's. I was 23 percent less likely to get Type 2 diabetes than most people. And my chance of being paralyzed by multiple sclerosis, almost nil...

I was in remarkably good genetic health, and I hadn't even been to the gym in months!"

Amy Harmon, NYT, 11/17/07

Why study *inheritance* of disease?

To discover and validate pathways (in my mind, uniquely powerful)

> To predict disease risk (one of many factors)

To my mind, the frequency and effect of a genetic variant bears little relationship to the potential impact of intervention (which will not be genetic!)

This may be different than environmental / behavioral risk factors, where the intervention is directly aimed at the exposure (rather than the underlying biology) For the first time, progress identifying inherited contributors to common human diseases

Long-term benefit will come from biological understanding and development of interventions

Typing of new genes variants (and the hyping of their potential value) will start immediately

Special thanks to...

Special thanks to...

Novartis Institutes for Biomedical Research American Diabetes Association Pinnacle Award

BMS "Freedom to Discover" award Doris Duke Charitable Foundation National Institutes of Health NHGRI, NIDDK, NCRR, NHLBI, NIAID, NCI Charles E. Culpeper Scholarship Burroughs Wellcome Fund

Study participants who made this work possible

In many cases, associated SNPs are far from any coding region

ENCODE Consortium, Nature 2007

CDC | David Altshuler | January 23, 2008 | Slide 64