Chapter 8 State Indicators

Introduction 8-6
Chapter Overview 8-6
Types of Indicators 8-6
Data Sources and Considerations 8-6
Key Elements for Indicators 8-7
Elementary/Secondary Education
Fourth Grade Mathematics Performance 8-8
Fourth Grade Mathematics Proficiency 8-10
Fourth Grade Science Performance 8-12
Fourth Grade Science Proficiency 8-14
Eighth Grade Mathematics Performance 8-16
Eighth Grade Mathematics Proficiency 8-18
Eighth Grade Science Performance 8-20
Eighth Grade Science Proficiency 8-22
Public School Teacher Salaries 8-24
Elementary and Secondary Public School Current Expenditures as Share of Gross Domestic Product 8-26
Current Expenditures per Pupil for Elementary and Secondary
Public Schools 8-28
Share of Public High School Students Taking Advanced Placement Exams 8-30
Share of Public High School Students Scoring 3 or Higher on at Least One Advanced Placement Exam 8-32
High School Graduates or Higher Among Individuals 25-44 Years Old 8-34
Higher Education
Bachelor's Degrees Conferred per 1,000 Individuals 18-24 Years Old 8-36
Bachelor's Degrees in Natural Sciences and Engineering Conferred per 1,000 Individuals 18-24 Years Old 8-38
S\&E Degrees as Share of Higher Education Degrees Conferred 8-40
S\&E Graduate Students per 1,000 Individuals 25-34 Years Old 8-42
Advanced S\&E Degrees as Share of S\&E Degrees Conferred. 8-44
Average Undergraduate Charge at Public 4-Year Institutions 8-46
Average Undergraduate Charge at Public 4-Year Institutions as Share of Disposable Personal Income 8-48
State Expenditures on Student Aid per Full-Time Undergraduate Student 8-50
Associate's Degree Holders or Higher Among Individuals 25-44 Years Old 8-52
Bachelor's Degree Holders or Higher Among Individuals 25-44 Years Old 8-54

Workforce

Bachelor's Degree Holders Potentially in the Workforce 8-56
Individuals in S\&E Occupations as Share of Workforce 8-58
Employed S\&E Doctorate Holders as Share of Workforce 8-60
Engineers as Share of Workforce 8-62
Life and Physical Scientists as Share of Workforce 8-64
Computer Specialists as Share of Workforce 8-66
Financial Research and Development Inputs
R\&D as Share of Gross Domestic Product. 8-68
Federal R\&D Obligations per Civilian Worker 8-70
Federal R\&D Obligations per Individual in S\&E Occupation 8-72
R\&D Outputs
Industry-Performed R\&D as Share of Private-Industry Output 8-74
Academic R\&D per \$1,000 of Gross Domestic Product 8-76
S\&E Doctorates Conferred per 1,000 S\&E Doctorate Holders 8-78
Academic Article Output per 1,000 S\&E Doctorate Holders in Academia 8-80
Academic Article Output per $\$ 1$ Million of Academic R\&D 8-82
Academic Patents Awarded per 1,000 S\&E Doctorate Holders in Academia 8-84
Patents Awarded per 1,000 Individuals in S\&E Occupations 8-86
Science and Technology in the Economy
High-Technology Share of All Business Establishments 8-88
Net High-Technology Business Formations as Share of All Business Establishments. 8-90
Employment in High-Technology Establishments as Share of Total Employment 8-92
SBIR Average Annual Federal Funding per \$1 Million of Gross Domestic Product 8-94
Venture Capital Disbursed per \$1,000 of Gross Domestic Product 8-96
Venture Capital Deals as Share of High-Technology Business Establishments 8-98
Venture Capital Disbursed per Venture Capital Deal 8-100
Technical Note: Defining High-Technology Industries 8-102
Reference 8-103
List of Tables
Table 8-1. Fourth grade mathematics performance, by state: 2000, 2003, and 2005 8-9
Table 8-2. Fourth grade mathematics proficiency, by state: 2000, 2003, and 2005 8-11
Table 8-3. Fourth grade science performance, by state: 2000 and 2005 8-13
Table 8-4. Fourth grade science proficiency, by state: 2000 and 2005 8-15
Table 8-5. Eighth grade mathematics performance, by state: 2000, 2003, and 2005 8-17
Table 8-6. Eighth grade mathematics proficiency, by state: 2000, 2003, and 2005 8-19
Table 8-7. Eighth grade science performance, by state: 2000 and 2005 8-21
Table 8-8. Eighth grade science proficiency, by state: 2000 and 2005 8-23
Table 8-9. Public school teacher salaries, by state: 1995, 2000, and 2005 8-25
Table 8-10. Elementary and secondary public school current expenditures as share of gross domestic product, by state: 1995, 2000, and 2005 8-27
Table 8-11. Current expenditures per pupil for elementary and secondary public schools, by state: 1995, 2000, and 2005 8-29
Table 8-12. Share of public high school students taking Advanced Placement Exams, by state: 2000, 2004, and 2006 8-31
Table 8-13. Share of public high school students scoring 3 or higher on at least one Advanced Placement Exam, by state: 2000, 2004, and 2006 8-33
Table 8-14. High school graduates or higher among individuals $25-44$ years old, by state: 2000, 2003, and 2005 8-35
Table 8-15. Bachelor's degrees conferred per 1,000 individuals 18-24 years old, by state: 1996, 2001, and 2005 8-37
Table 8-16. Bachelor's degrees in natural sciences and engineering conferred per 1,000 individuals 18-24 years old, by state: 1996, 2001, and 2005 8-39
Table 8-17. S\&E degrees as share of higher education degrees conferred, by state: 1996, 2001, and 2005 8-41
Table 8-18. S\&E graduate students per 1,000 individuals 25-34 years old, by state: 1996, 2001, and 2005 8-43
Table 8-19. Advanced S\&E degrees as share of S\&E degrees conferred, by state: 1996, 2001, and 2005 8-45
Table 8-20. Average undergraduate charge at public 4-year institutions, by state: 1996, 2001, and 2006 8-47
Table 8-21. Average undergraduate charge at public 4 -year institutions as share of disposable personal income, by state: 1996, 2001, and 2006 8-49
Table 8-22. State expenditures on student aid per full-time undergraduate student, by state: 1996, 2001, and 2006 8-51
Table 8-23. Associate's degree holders or higher among individuals $25-44$ years old, by state: 2000, 2003, and 2005 8-53
Table 8-24. Bachelor's degree holders or higher among individuals 25-44 years old, by state: 2000, 2003, and 2005 $.8-55$
Table 8-25. Bachelor's degree holders potentially in the workforce, by state: 2000, 2003, and 2005 8-57
Table 8-26. Individuals in S\&E occupations as share of workforce, by state: 2004 and 2006 8-59
Table 8-27. Employed S\&E doctorate holders as share of workforce, by state: 1997, 2001, and 2006 8-61
Table 8-28. Engineers as share of workforce, by state: 2004 and 2006 8-63
Table 8-29. Life and physical scientists as share of workforce, by state: 2004 and 2006 8-65
Table 8-30. Computer specialists as share of workforce, by state: 2004 and 2006 8-67
Table 8-31. R\&D as share of gross domestic product, by state: 1998, 2001, and 2004 8-69
Table 8-32. Federal R\&D obligations per civilian worker, by state: 1995, 2000, and 2005 8-71
Table 8-33. Federal R\&D obligations per individual in S\&E occupation, by state: 2003 and 2005 8-73
Table 8-34. Industry-performed R\&D as share of private-industry output, by state: 1998, 2002, and 2005 8-75
Table 8-35. Academic R\&D per $\$ 1,000$ of gross domestic product, by state: 1995, 2000, and 2005 8-77
Table 8-36. S\&E doctorates conferred per 1,000 S\&E doctorate holders, by state: 1997, 2001, 2005, and 2006 8-79
Table 8-37. Academic article output per 1,000 S\&E doctorate holders in academia, by state: 1997, 2001, 2005, and 2006 8-81
Table 8-38. Academic article output per $\$ 1$ million of academic R\&D, by state: 1995, 2000, and 2005 8-83
Table 8-39. Academic patents awarded per 1,000 S\&E doctorate holders in academia, by state: 1997, 2001, 2005, and 2006 8-85
Table 8-40. Patents awarded per 1,000 individuals in S\&E occupations, by state: 2004 and 2006 8-87
Table 8-41. High-technology share of all business establishments, by state: 2003 and 2004 8-89
Table 8-42. Net high-technology business formations as share of all business establishments, by state: 2004 8-91
Table 8-43. Employment in high-technology establishments as share of all employment, by state: 2003 and 2004 8-93
Table 8-44. Average annual federal SBIR funding per $\$ 1$ million of gross domestic product, by state: 1995-97, 1999-2001, and 2003-05 8-95
Table $8-45$. Venture capital disbursed per $\$ 1,000$ of gross domestic product, by state: 1996, 2001, and 2006 8-97
Table 8-46. Venture capital deals as share of high-technology business establishments, by state: 2003 and 2004 8-99
Table 8-47. Venture capital disbursed per venture capital deal, by state: 1996, 2001, and 2006 8-101
Table 8-48. 2002 NAICS codes that constitute high-technology industries. 8-102
List of Figures
Figure 8-1. Fourth grade mathematics performance: 2005 8-8
Figure 8-2. Fourth grade mathematics proficiency: 2005 8-10
Figure 8-3. Fourth grade science performance: 2005 8-12
Figure 8-4. Fourth grade science proficiency: 2005 8-14
Figure 8-5. Eighth grade mathematics performance: 2005 8-16
Figure 8-6. Eighth grade mathematics proficiency: 2005 8-18
Figure 8-7. Eighth grade science performance: 2005 8-20
Figure 8-8. Eighth grade science proficiency: 2005 8-22
Figure 8-9. Public school teacher salaries: 2005 8-24
Figure 8-10. Elementary and secondary public school current expenditures as share of gross domestic product: 2005 $.8-26$
Figure 8-11. Current expenditures per pupil for elementary and secondary public schools: 2005 8-28
Figure 8-12. Share of public high school students taking Advanced Placement Exams: 2006 8-30
Figure 8-13. Share of public high school students scoring 3 or higher on at least one Advanced Placement Exam: 2006 8-32
Figure 8-14. High school graduates or higher among individuals 25-44 years old: 2005 8-34
Figure 8-15. Bachelor's degrees conferred per 1,000 individuals 18-24 years old: 2005 8-36
Figure 8-16. Bachelor's degrees in natural sciences and engineering conferred per 1,000 individuals 18-24 years old: 2005 8-38
Figure 8-17. S\&E degrees as share of higher education degrees conferred: 2005 8-40
Figure 8-18. S\&E graduate students per 1,000 individuals 25-34 years old: 2005 8-42
Figure 8-19. Advanced S\&E degrees as share of S\&E degrees conferred: 2005 8-44
Figure 8-20. Average undergraduate charge at public 4-year institutions: 2006 8-46
Figure 8-21. Average undergraduate charge at public 4-year institutions as share of disposable personal income: 2006 8-48
Figure 8-22. State expenditures on student aid per full-time undergraduate student: 2006 8-50

Figure 8-23. Associate's degree holders or higher among individuals 25-44 years
old: 2005 8-52
Figure 8-24. Bachelor's degree holders or higher among individuals 25-44 years old: 2005 8-54
Figure 8-25. Bachelor's degree holders potentially in the workforce: 2005 8-56
Figure 8-26. Individuals in S\&E occupations as share of workforce: 2006 8-58
Figure 8-27. Employed S\&E doctorate holders as share of workforce: 2006 8-60
Figure 8-28. Engineers as share of workforce, by state: 2006 8-62
Figure 8-29. Life and physical scientists as share of workforce: 2006. 8-64
Figure 8-30. Computer specialists as share of workforce: 2006. 8-66
Figure 8-31. R\&D as share of gross domestic product: 2004 8-68
Figure 8-32. Federal R\&D obligations per civilian worker: 2005 8-70
Figure 8-33. Federal R\&D obligations per individual in S\&E occupation: 2005 8-72
Figure 8-34. Industry-performed R\&D as share of private-industry output: 2005 8-74
Figure 8-35. Academic R\&D per \$1,000 of gross domestic product: 2005 8-76
Figure 8-36. S\&E Doctorates Conferred per 1,000 S\&E Doctorate Holders: 2005 and 2006 8-78
Figure 8-37. Academic article output per 1,000 S\&E doctorate holders in academia: 2005 and 2006. 8-80
Figure 8-38. Academic article output per \$1 million of academic R\&D: 2005 8-82
Figure 8-39. Academic patents awarded per 1,000 S\&E doctorate holders in academia: 2005 and 2006. 8-84
Figure 8-40. Patents awarded per 1,000 individuals in S\&E occupations: 2006. 8-86
Figure 8-41. High-technology share of all business establishments: 2004 8-88
Figure 8-42. Net high-technology business formations as share of all business establishments: 2004 8-90
Figure 8-43. Employment in high-technology establishments as share of all employment: 2004. 8-92
Figure 8-44. Average annual federal SBIR funding per $\$ 1$ million of gross domestic product: 2003-05 8-94
Figure 8-45. Venture capital disbursed per \$1,000 of gross domestic product: 2006 8-96
Figure 8-46. Venture capital deals as share of high-technology business establishments: 2004. 8-98
Figure 8-47. Venture capital disbursed per venture capital deal: 2006 8-100
U.S. Map and List of Abbreviations 8-7

Introduction

Chapter Overview

In response to increasing interest in both the policy and research communities about the role of science and technology (S\&T) in state and regional economic development, a new chapter devoted to the subject was introduced in the 2004 edition of Science and Engineering Indicators. The chapter focuses on the S\&T indicators for individual states and the District of Columbia. It has been expanded in the 2008 edition from the original 24 state indicators to 47.

The reader is cautioned that all of the indicators are broad measures, and several rely on sample estimates that have a margin of error that may be substantial for some states; this is called out in appropriate places. In any case, small differences in state values generally carry no useful information.

The indicators are designed to present information about various aspects of state $\mathrm{S} \& \mathrm{~T}$ infrastructure and to stimulate discussion about appropriate uses of state-level S\&T indicators. The data used to calculate the indicators were gathered from both public and private sources. Whenever possible, data covering a 10-year span are provided to identify meaningful trends. However, because consistent data were not always available for the 10-year period, data for certain indicators are given only for the years in which comparisons are appropriate.

Ready access to accurate and timely information is an important tool for formulating effective S\&T policies at the state level. By studying the programs and performance of their peers, state policymakers may be able to better assess and enhance their own programs and performance. The tables are intended to give the user a convenient listing of some of the quantitative data that may be relevant to technologybased economic development. In addition to describing the behavior of an indicator, the "Findings" section frequently presents an interpretation of the behavior's relevance and meaning. The interpretation is sometimes speculative, with the objective of motivating further thought and discussion.

Types of Indicators

Forty-seven indicators are included in this chapter and grouped into the following areas:

- Elementary and secondary education
- Higher education
- Workforce
- Financial research and development inputs
- Research and development outputs
- S\&T in the economy

The first two areas address state educational attainment. In this edition of Indicators, emphasis has been increased on the science and mathematics skills students develop at the elementary and middle school levels. Additional information on gender and racial/ethnic performance has been added in appendix tables 8-1 through 8-12 for those indicators reporting mathematics and science results for fourth and eighth graders. Student achievement is expressed in terms of performance, which refers to the average state score on a standardized test, and proficiency, which is expressed as the percentage of students who have achieved at least the expected level of competence on the standardized test.

Comparable state-level performance data are not available for high school students. Instead, mastery of collegelevel material through performance on Advanced Placement Exams has been included as a measure of the skills being developed by the top-performing high school students. Other indicators in education focus on state spending, teacher salaries, student costs, and undergraduate and graduate degrees in S\&E. Three new indicators have been added to measure the level of education in the population of individual states.

Workforce indicators focus on the level of S\&E training in the employed labor force. These indicators reflect the higher education level of the labor force and the degree of specialization in S\&E disciplines and occupations.

Financial indicators address the sources and level of funding for R\&D. They show how much R\&D is being performed relative to the size of a state's business base. Comparison of these indicators illustrates the extent to which R\&D is conducted by industrial or academic performers.

The Experimental Program to Stimulate Competitive Research (EPSCoR program) is a federal program aimed at building R\&D capacity in states that have historically been less competitive in receiving federal $\mathrm{R} \& \mathrm{D}$ funding. Because this program does not cover all states and is basically focused on academic institutions, it is covered in chapter 5, Academic Research and Development, in the sidebar, "EPSCoR-the Experimental Program to Stimulate Competitive Research."

The final two sections provide measures of outputs. The first focuses on the work products of the academic community and includes the production of new doctorate holders, the publication of academic articles, and patent activity both from the academic community and from all sources in the state.

The second section of output indicators examines the robustness of a region's S\&T activity. These indicators include venture capital activity, Small Business Innovation Research awards, and high-technology business activity. Although data that adequately address both the quantity and quality of $R \& D$ results are difficult to find, these indicators offer a reasonable information base.

Data Sources and Considerations

Raw data for each indicator are presented in the tables. The first entry in each table represents the average value for the states. For most indicators, the state average was calculated by summing the values for the 50 states and the District of Columbia for both the numerator and the denominator and then dividing the two. Any alternate approach is indicated in the notes at the bottom of the table.

The values for most indicators are expressed as ratios or percentages to remove the effect of state size and facilitate comparison between large and small states or heavily and sparsely populated states. For example, an indicator of higher education achievement is not defined as the absolute number of degrees conferred in a state because sparsely populated states are neither likely to have nor need as extensive a higher education system as states with larger populations. Instead, the indicator is defined as the number of degrees per number of residents in the college-age cohort, which measures the intensity of educational services relative to the size of the resident population.

No official list of high-technology industries or sanctioned methodology to identify the most technology-intensive industries exists in the United States. The definition used here was developed by the Bureau of Labor Statistics and is based on the percentage of employment in technology-oriented occupations. See "Technical Note: Defining High-Technology Industries."

Although data for Puerto Rico are reported whenever available, they frequently were collected by a different source, making it unclear whether the methodology used for data collection and analysis is comparable with that used for the states. For this reason, Puerto Rico was neither ranked with the states nor assigned a quartile value that could be displayed on the maps. Including data for U.S. territories and protectorates, such as American Samoa, Guam, Northern Mariana Islands, and Virgin Islands, was considered; however, data for these areas were available only on a sporadic basis and for fewer than one-quarter of the indicators, so they were not included.

Key Elements for Indicators

Six key elements are provided for each indicator. The first element is a map that is color-coded to show in which quartile each state placed on that indicator for the latest year that data were available. This helps the reader quickly grasp geographic patterns. The sample map below shows the outline of each state. On the indicator maps, the darkest color indicates states
ranking in the first or highest quartile, and white indicates states ranking in the fourth or lowest quartile. Cross-hatching indicates states for which no data are available.

The second element is a quartiles table. States are listed alphabetically by quartile. The range of indicator values for that quartile is shown at the top of the column. Ties at quartile breaks were resolved by moving the tied states into one quartile. Differences in states at the margins of adjacent quartiles will often not be substantively meaningful.

The third element, at the bottom of the map box, is a short citation for the data source. The full citation appears under the table on the facing page.

The fourth element, in a shaded box on the lower left side of the page, is a summary of findings that includes the national average and comments on trends and patterns for the particular indicator. Although most of the findings are directly related to the data, some represent interpretations that are meant to stimulate further investigation and discussion.

The fifth element, on the lower right side of the page, is a description of the indicator, a brief note about the nature of the data, and other information pertaining to the data.

The final element is the data table that appears on the facing page. Up to 3 years of data and the calculated values of the indicator are presented for each state, the District of Columbia, and Puerto Rico. Puerto Rico is included in the data table only when data are available.
U.S. Map and List of Abbreviations

Fourth Grade Mathematics Performance

Figure 8-1
Fourth grade mathematics performance: 2005

Findings

- In 2005, the nationwide average mathematics score of fourth grade public school students was 237, a significant increase from 224 in 2000.
- For the 41 jurisdictions that participated in both the 2000 and 2005 mathematics assessments, the average score for public school fourth graders showed a statistically significant increase between 2000 and 2005. Only the District of Columbia reported a 2005 average score below the 2000 national average of 224.
- The entire fourth grade student sample, including students performing at the 10th, 25th, 50th, 75th, and 90th percentiles, demonstrated statistically significant gains in mathematics scores between 2000 and 2005.
- The gaps in mathematics scores between white fourth graders and black or Hispanic fourth graders narrowed between 2000 and 2005. The fourth grade gender gap in mathematics scores, although much smaller, decreased slightly between 2000 and 2005.

This indicator reports each state's average score on the National Assessment of Educational Progress (NAEP) in mathematics for its fourth grade students in public schools. High scores indicate that fourth graders are demonstrating a solid foundation for adult mathematics competency. The NAEP mathematics assessment is a federally authorized assessment of student performance in which all 50 states and the District of Columbia participated in 2005. Student performance is described in terms of average scores on a scale from 0 to 500 .

Several recent changes to the NAEP methodology affect yearly
comparisons. Beginning in 2002, NAEP obtained a national sample by aggregating the samples from each state rather than by selecting it independently; the increased national sample size makes smaller differences statistically significant. In 2005, NAEP included in the definition of the national sample all international Department of Defense schools.

NAEP allows students with disabilities or limited English proficiency to use certain accommodations (e.g., extended time, individual testing, or small group testing). All data presented here represent scores from tests taken with accommodations offered.

Table 8-1
Fourth grade mathematics performance, by state: 2000, 2003, and 2005 (Score)

State	2000	2003	2005
United States.	224	234	237
Alabama.	217	223	225
Alaska	NA	233	236
Arizona.	219	229	230
Arkansas	216	229	236
California.	213	227	230
Colorado ..	NA	235	239
Connecticut	234	241	242
Delaware..	NA	236	240
District of Columbia.	192	205	211
Florida..	NA	234	239
Georgia	219	230	234
Hawaii .	216	227	230
Idaho..	224	235	242
Illinois.	223	233	233
Indiana	233	238	240
lowa.	231	238	240
Kansas.	232	242	246
Kentucky..	219	229	231
Louisiana..	218	226	230
Maine ...	230	238	241
Maryland ..	222	233	238
Massachusetts.	233	242	247
Michigan .	229	236	238
Minnesota.	234	242	246
Mississippi.	211	223	227
Missouri.	228	235	235
Montana.	228	236	241
Nebraska..	225	236	238
Nevada..	220	228	230
New Hampshire	NA	243	246
New Jersey..	NA	239	244
New Mexico.	213	223	224
New York..	225	236	238
North Carolina.	230	242	241
North Dakota	230	238	243
Ohio.	230	238	242
Oklahoma..	224	229	234
Oregon...	224	236	238
Pennsylvania.	NA	236	241
Rhode Island..	224	230	233
South Carolina	220	236	238
South Dakota.	NA	237	242
Tennessee..	220	228	232
Texas.	231	237	242
Utah	227	235	239
Vermont.	232	242	244
Virginia ..	230	239	240
Washington..	NA	238	242
West Virginia	223	231	231
Wisconsin	NA	237	241
Wyoming..	229	241	243
Puerto Rico ...	NA	NA	NA

NA = not available
NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 4 mathematics scores for public schools only.
SOURCE: National Center for Education Statistics, NAEP (various years).

Fourth Grade Mathematics Proficiency

Figure 8-2
Fourth grade mathematics proficiency: 2005

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (various years). See table 8-2.

Findings

- In 2005 nationwide, 35\% of fourth grade public school students performed at or above the proficient level in mathematics, which represents a significant increase from 22% in 2000
- Of the 41 jurisdictions that participated in both the 2000 and 2005 assessments, all showed increases in mathematics proficiency levels for public school fourth graders in 2005. In 2005, only 3 states and the District of Columbia had mathematics proficiency percentages below the 2000 national average of 22% compared with 20 jurisdictions below 22\% in 2000.
- Substantial differences in mathematics proficiency exist between racial/ethnic groups of fourth graders. The gaps increased between 2000 and 2005 as blacks and Hispanics failed to match the gains made in mathematics proficiency by whites. The gender gap in proficiency among fourth graders is much smaller and remained unchanged between 2000 and 2005

This indicator is the proportion of a state's fourth grade students in public schools that have achieved proficiency in mathematics. High indicator values show that a high percentage of a state's fourth graders has demonstrated a solid foundation for adult mathematics competency. Proficiency is based on achievement levels in the National Assessment of Educational Progress (NAEP) that reflect performance standards set by the National Assessment Governing Board to provide a context for interpreting student performance on NAEP. Approximately 172,000
fourth grade students in 8,700 schools participated in the 2005 NAEP mathematics assessment.

For the fourth grade, the basic level (scores of 214-248) denotes partial mastery of knowledge and skills that are prerequisite for proficient work. The proficient level (249-281) represents solid academic performance and demonstrates competency over challenging subject matter knowledge, its application to real-world situations, and mastery of appropriate analytical skills. The advanced level (282-500) signifies superior performance.

Table 8-2
Fourth grade mathematics proficiency, by state: 2000, 2003, and 2005
(Percent)

State	2000	2003	2005
United States......................................	22	31	35
Alabama..	13	19	21
Alaska .	NA	30	34
Arizona...	16	25	28
Arkansas	14	26	34
California..	13	25	28
Colorado	NA	34	39
Connecticut	31	41	43
Delaware...	NA	31	36
District of Columbia	5	7	9
Florida...	NA	31	36
Georgia ..	17	27	30
Hawaii ...	14	23	27
Idaho...	20	31	41
Illinois.	20	32	32
Indiana	30	35	38
lowa.	26	36	37
Kansas.	29	41	47
Kentucky ..	17	22	27
Louisiana...	14	21	24
Maine	23	34	39
Maryland ..	21	31	38
Massachusetts.	31	41	49
Michigan ...	28	34	37
Minnesota	33	42	47
Mississippi..	9	17	19
Missouri	23	30	31
Montana...	24	31	39
Nebraska...	24	34	36
Nevada....	16	23	26
New Hampshire	NA	43	47
New Jersey ...	NA	39	46
New Mexico...	12	17	19
New York.......	21	33	36
North Carolina.	25	41	40
North Dakota	25	34	41
Ohio	25	36	43
Oklahoma.......................................	16	23	28
Oregon.........	23	33	37
Pennsylvania...................................	NA	36	41
Rhode Island...	22	28	31
South Carolina	18	32	36
South Dakota.	NA	34	40
Tennessee.......................................	18	24	28
Texas...	25	33	40
Utah ..	23	31	37
Vermont.	29	42	43
Virginia .	24	36	40
Washington.....................................	NA	36	42
West Virginia	17	24	26
Wisconsin	NA	35	40
Wyoming...	25	39	42
Puerto Rico	NA	NA	NA

NA = not available
NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 4 mathematics scores for public schools only.
SOURCE: National Center for Education Statistics, NAEP (various years).

Fourth Grade Science Performance

Figure 8-3
Fourth grade science performance: 2005

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (various years). See table 8-3.

Findings

- In 2005, the nationwide average science score of fourth grade public school students was 149, an increase from 145 in 2000.
- Of the 36 states that participated in both the 2000 and 2005 science assessments, 20 reported numerical increases in average scores of their public school fourth graders, but only 9 of these increases were statistically significant. Likewise, although 11 states reported lower scores in 2005, none of these declines was statistically significant, resulting in no states with lower average scores in 2005 than in 2000.
- Students performing at the 10th, 25th, and 50th percentiles demonstrated gains in science scores between 2000 and 2005, whereas students performing at the 75th and 90th percentiles showed no statistically significant change in average score.
- The gaps in science scores between white fourth graders and black or Hispanic fourth graders narrowed significantly between 2000 and 2005. The fourth grade gender gap in science scores, although much smaller, remained unchanged between 2000 and 2005.

This indicator reports each state's average score on the National Assessment of Educational Progress (NAEP) in science for its fourth grade students in public schools. High scores indicate that fourth graders are demonstrating a solid foundation for adult science competency. The NAEP science assessment is a federally authorized assessment of student performance in which 44 states participated in 2005. Student performance is described in terms of average scores on a scale from 0 to 300 .

Several recent changes to the NAEP methodology affect yearly comparisons. Beginning
in 2002, NAEP obtained the national sample by aggregating the samples from each state rather than by selecting it independently; the increased national sample size makes smaller differences statistically significant. In 2005, NAEP included in the definition of the national sample all international Department of Defense schools.

NAEP allows students with disabilities or limited English proficiency to use certain accommodations (e.g., extended time, individual testing, or small group testing). All data presented here represent scores from tests taken with accommodations offered.

Table 8-3
Fourth grade science performance, by state: 2000 and 2005 (Score)

State	2000	2005
United States	145	149
Alabama..	143	142
Alaska	NA	NA

Arizona..	140	139
Arkansas	145	147

Colorado	NA	155
Connecticu	156	155
Delaware	NA	152

District of Columbia	NA	NA

Georgia ...	132	148
Hawaii	152	152
Idaho.......		

Illinois ...	150	148
Indiana	154	152

| Kansas .. NA | 152 | 158 |
| :--- | ---: | ---: | ---: |
| Kentucky......... | | |

Louisiana..	139	161	160
Maine			

Maryland ... 145 149
$\begin{array}{llll}\text { Massachusetts... } & 161 & 152 & 152 \\ \text { Michigan }\end{array}$

Minnesota	157	156
	13	133

| Montana.. | 160 | 160 |
| :--- | :--- | :--- | :--- |
| Nebraska........ | 150 | NA |
| Nevada | | |

| Nevada... | 142 | 140 |
| :--- | :--- | :--- | :--- |
| New Hampshire | 161 | |

| New Jersey .. | 140 | 141 |
| :--- | :--- | ---: | :--- |
| New Mexico.......... | | |

New York... 148 NA

North Carolina...	147	160
North Dakota	160	

Ohio ... 155 157
Oklahoma... 151 150

Oregon...	148	151
Pennsylvania...	NA	NA

	N	,
Rhode Island..	148	146
South Carolina	140	148
South Dakota.	NA	158
Tennessee.	145	150
Texas...	145	150
Utah .	154	155
Vermont.,	160	160
Virginia	155	161
Washington..	NA	153
West Virginia	149	151
Wisconsin.	NA	158
Wyoming...	156	157
Puerto Rico ...	NA	NA

NA = not available

NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 4 science scores for public schools only. In 2000, California, Georgia, Hawaii, Kentucky, Maryland, South Carolina, Tennessee, Texas, and Virginia significantly different from 2005 when only one jurisdiction or the nation is examined. In 2005, Alaska, District of Columbia, Iowa, Kansas, Nebraska, New York, and Pennsylvania did not participate.
SOURCE: National Center for Education Statistics, NAEP (various years).

Fourth Grade Science Proficiency

Figure 8-4
Fourth grade science proficiency: 2005

1st quartile (40\%-35\%)	2nd quartile (33\%-27\%)	3rd quartile (26\%-25\%)	4th quartile (24\%-12\%)	No data
Kentucky	Colorado	Florida	Alabama	Alaska
Maine	Connecticut	Georgia	District of Columbia	
Massachusetts	Delaware	North Carolina	Arizona	Cowa
Missouri	Idaho	Oklahoma	Calassas	Nebraska
Montana	Illinois	Oregon	New	York
New Hampshire	Indiana	South Carolina	Hawaii	Pennsylvania
North Dakota	Maryland	Tennessee		
Ohio	Michigan	Texas	Mississippi	
South Dakota	Minnesota		Nevada	New Mexico
Vermont	New Jersey		Rhode Island	
Virginia	Utah		West Virginia	
Wisconsin	Washington			

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (various years). See table 8-4.

Findings

- In 2005 nationwide, 27% of fourth grade public school students performed at or above the proficient level in science, which showed little change from 26\% in 2000.
- Of the 36 states that participated in both the 2000 and 2005 science assessments, 18 states showed numerical increases in science proficiency for public school fourth graders in 2005, although only 4 of these increases were statistically significant. Likewise, although 13 states showed numerical decreases in 2005, none of these declines was statistically significant.
- Among fourth graders in public schools in 2005, proficiency in mathematics was more widespread than in science, a reversal of the 2000 results.
- Substantial differences in science proficiency exist between racial/ethnic groups of fourth graders, but these narrowed between 2000 and 2005. The gender gap is much smaller and remained unchanged between 2000 and 2005.

This indicator is the proportion of a state's fourth grade students in public schools that have achieved proficiency in science. High indicator values show that a high percentage of a state's fourth graders has demonstrated a solid foundation for adult science competency. Proficiency is based on achievement levels in the National Assessment of Educational Progress (NAEP) that reflect performance standards set by the National Assessment Governing Board to provide a context for interpreting student performance on NAEP. A National Academy of Sciences panel evaluated the process used to establish the achievement levels for the science assessment
and urged that they be considered developmental and interpreted with caution. Approximately 147,700 fourth grade students in 8,500 schools participated in the 2005 NAEP science assessment.

For the fourth grade, the basic level (scores of 138-169) denotes partial mastery of knowledge and skills that are prerequisite for proficient work. The proficient level (170-204) represents solid academic performance and demonstrates competency over challenging subject matter knowledge, its application to real-world situations, and mastery of appropriate analytical skills. The advanced level (205-300) signifies superior performance.

Table 8-4
Fourth grade science proficiency, by state: 2000 and 2005
(Percent)

State	2000	2005
United States..	26	27
Alabama..	22	21
Alaska ..	NA	NA
Arizona...	22	18
Arkansas.	23	24
California...	13	17
Colorado..	NA	32
Connecticut	35	33
Delaware....	NA	27
District of Columbia	NA	NA
Florida.	NA	26
Georgia	23	25
Hawaii..	16	19
Idaho..	29	29
Illinois..	31	27
Indiana .	32	27
lowa .	36	NA
Kansas...	NA	NA
Kentucky..	28	36
Louisiana..	18	20
Maine .	37	36
Maryland ..	24	27
Massachusetts.	42	38
Michigan ...	32	30
Minnesota	34	33
Mississippi.	13	12
Missouri.	34	36
Montana...	36	37
Nebraska...	26	NA
Nevada...	19	17
New Hampshire	NA	37
New Jersey ...	NA	32
New Mexico..	17	18
New York...	24	NA
North Carolina.	23	25
North Dakota	36	36
Ohio ...	31	35
Oklahoma..	26	25
Oregon.....	27	26
Pennsylvania.	NA	NA
Rhode Island.	25	23
South Carolina	20	25
South Dakota.	NA	35
Tennessee..	24	26
Texas..........	23	25
Utah ..	31	33
Vermont.	38	38
Virginia ...	32	40
Washington..	NA	28
West Virginia .	24	24
Wisconsin.	NA	35
Wyoming...	31	32
Puerto Rico ...	NA	NA

$\mathrm{NA}=$ not available
NOTE: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 4 science scores for public schools only. In 2000, California, Georgia, Hawaii, Kentucky, Maryland, South Carolina, Tennessee, Texas, and Virginia significantly different from 2005 when only one jurisdiction or the nation is examined. In 2005, Alaska, District of Columbia, lowa, Kansas, Nebraska, New York, and Pennsylvania did not participate.
SOURCE: National Center for Education Statistics, NAEP (various years).
Science \& Engineering Indicators 2008

Eighth Grade Mathematics Performance

Figure 8-5
Eighth grade mathematics performance: 2005

Findings

- In 2005, the nationwide average mathematics score of eighth grade public school students was 278, an increase from 272 in 2000.
- Of the 41 jurisdictions that participated in both the 2000 and 2005 mathematics assessments, 37 reported increases in the average score for public school eighth graders, but only 28 of these increases were statistically significant. A single state reported a decline in test scores between 2000 and 2005 for public school eighth graders, but this decline was not statistically significant, meaning that no state showed a statistically significant decline in test scores during this period.
- The entire eighth grade student sample, including students performing at the 10th, 25th, 50th, 75th, and 90th percentiles, demonstrated statistically significant gains in mathematics scores between 2000 and 2005.
- The gaps in mathematics scores between white eighth graders and black or Hispanic eighth graders narrowed significantly between 2000 and 2005. The eighth grade gender gap in mathematics scores, although much smaller, remained unchanged between 2000 and 2005.

This indicator reports each state's average score on the National Assessment of Educational Progress (NAEP) in mathematics for its eighth grade students in public schools. High scores indicate that eighth graders are demonstrating a solid foundation for adult mathematics competency. The NAEP mathematics assessment is a federally authorized assessment of student performance in which all 50 states and the District of Columbia participated in 2005. Student performance is described in terms of average scores on a scale from 0 to 500 .

Several recent changes to the NAEP methodology affect yearly comparisons. Beginning
in 2002, NAEP obtained the national sample by aggregating the samples from each state rather than by selecting it independently; the increased national sample size makes smaller differences statistically significant. In 2005, NAEP included in the definition of the national sample all international Department of Defense schools.

NAEP allows students with disabilities or limited English proficiency to use certain accommodations (e.g., extended time, individual testing, or small group testing). All data presented here represent scores from tests taken with accommodations offered.

Table 8-5
Eighth grade mathematics performance, by state: 2000, 2003, and 2005 (Score)

State	2000	2003	2005
United States.....................................	272	276	278
Alabama...	264	262	262
Alaska ..	NA	279	279
Arizona..	269	271	274
Arkansas .	257	266	272
California..	260	267	269
Colorado	NA	283	281
Connecticut	281	284	281
Delaware ..	NA	277	281
District of Columbia	235	243	245
Florida..	NA	271	274
Georgia ..	265	270	272
Hawaii	262	266	266

Idaho.	277	280
Illinois.	275	277
Indiana	281	281

lowa	NA	284
Kansas.	283	284
Kentucky	270	274

Nebraska.	280	282	284
Nevada.	265	268	270
New Ha	NA	28	28

North Carolina..	276	281	282
North Dakota	2	287	287

Ohio ..	281	280	272	283
Oklahoma.....	281			

Oregon.	280	281	282
Pennsylvania	NA	279	281
Rhode Island	269	272	272

South Carolina ...	265	277	281
South Dakota.......	NA	285	287

Tennessee... 262 268 271

Vermont...	281	286	287
Virginia	275	282	284

Washington.. NA 281 285

West Virginia	266	271	269
Wisconsin	NA	284	285

NA = not available
NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 8 mathematics scores for public schools only.

SOURCE: National Center for Education Statistics, NAEP (various years).

Eighth Grade Mathematics Proficiency

Figure 8-6
Eighth grade mathematics proficiency: 2005

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (various years). See table 8-6.

Findings

- In 2005 nationwide, 29\% of eighth grade public school students performed at or above the proficient level in mathematics, which represents a significant increase from 25\% in 2000.
- Of the 39 states that participated in both the 2000 and 2005 assessments, 35 showed increases in mathematics proficiency among public school eighth graders in 2005. In 2005, 14 states and the District of Columbia had mathematics proficiency percentages below the 2000 national average of 25% compared with 21 jurisdictions in 2000.
- In 2005, all states showed higher proficiency in mathematics among fourth grade public school students than among eighth grade public school students.
- Substantial differences in mathematics proficiency exist between racial/ethnic groups of eighth graders, but these remained unchanged between 2000 and 2005. The gender gap in proficiency among eighth graders is much smaller and also remained unchanged between 2000 and 2005.

This indicator is the proportion of a state's eighth grade students in public schools that have achieved proficiency in mathematics. High indicator values show that a high percentage of a state's eighth graders has demonstrated a solid foundation for adult mathematics competency. Proficiency is based on achievement levels in the National Assessment of Educational Progress (NAEP) that reflect performance standards set by the National Assessment Governing Board to provide a context for interpreting student performance on NAEP. Approximately 161,600
eighth graders in 6,500 schools participated in the 2005 NAEP mathematics assessment.

For the eighth grade, the basic level (scores of 262-298) denotes partial mastery of knowledge and skills that are prerequisite for proficient work. The proficient level (299-332) represents solid academic performance and demonstrates competency over challenging subject matter knowledge, its application to real-world situations, and mastery of appropriate analytical skills. The advanced level (333-500) signifies superior performance.

Table 8-6
Eighth grade mathematics proficiency, by state: 2000, 2003, and 2005 (Percent)

State	2000	2003	2005
United States..	25	27	29
Alabama.	16	16	15
Alaska .	NA	30	29
Arizona.	20	21	26
Arkansas .	13	19	22
California..	17	22	22
Colorado.	NA	34	32
Connecticut	33	35	35
Delaware.	NA	26	30
District of Columbia.	6	6	7
Florida.	NA	23	26
Georgia	19	22	23
Hawaii..	16	17	18
Idaho..	26	28	30
Illinois.	26	29	28
Indiana.	29	31	30
Iowa ...	NA	33	34
Kansas ...	34	34	34
Kentucky...	20	24	22

Louisiana.	11	17	16
	30	29	

Maryland ... $27 \quad 30$
Massachusetts... 30 38 43
Minnesota ... 3943

| Mississippi .. | 9 | 12 | 13 |
| :--- | ---: | ---: | ---: | ---: |
| Missouri | 21 | 28 | 26 |

Montana... 36

| Nebraska.. | 30 | 32 | 35 |
| :--- | :--- | :--- | :--- | :--- |
| Nevada | 18 | 20 | 21 |

New Hampshire ... NA 35 35

New Jersey.	NA	33	36
	12	15	

New York... $34 \quad 32$ 32
North Carolina.. 37 32
North Dakota .. 30 36 35

| Ohio...$~$ | 30 | 30 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Oklahoma | 18 | 20 | 20 |

Oregon.. 31 32 33

Pennsylvania.	NA	30	31
	22	24	23

South Carolina .. $17 \quad 36$

South Dakota.	NA	35	36
Tenn	16	21	21

Texas.. 24
Utah .. $35 \quad 31$

Vermont.. 3138
Virginia ... $35 \quad 31$
Washington .. NA 32
$\begin{array}{llrl}\text { West Virginia } . ~ & 17 & 20 & 17 \\ \text { Wisconsin ... } & \text { NA } & 35 & 36\end{array}$
Wyoming... 23.29
Puerto Rico ... NA NA NA
NA = not available
NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 8 mathematics scores for public schools only.
SOURCE: National Center for Education Statistics, NAEP (various years).

Eighth Grade Science Performance

Figure 8-7
Eighth grade science performance: 2005

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (various years). See table 8-7.

Findings

- In 2005, the nationwide average science score of eighth grade public school students was 147, a decrease from 148 in 2000.
- Of the 36 states that participated in both the 2000 and 2005 science assessments, 13 reported higher average scores for public school eighth graders in 2005, and 10 of these increases were statistically significant. Lower average scores were reported by 16 states in 2005, 4 of which were statistically significant.
- The gaps in science scores between white eighth graders and black or Hispanic eighth graders did not increase between 2000 and 2005 .

This indicator reports each state's average score on the National Assessment of Educational Progress (NAEP) in science for its eighth grade students in public schools. High scores indicate that eighth graders are demonstrating a solid foundation for adult science competency. The NAEP science assessment is a federally authorized assessment of student performance in which 44 states participated in 2005. Student performance is described in terms of average scores on a scale from 0 to 300 .

Several recent changes to the NAEP methodology affect yearly comparisons. Beginning in 2002, NAEP obtained a na-
tional sample by aggregating the samples from each state rather than by selecting it independently; the increased national sample size makes smaller differences statistically significant. In 2005, NAEP included in the definition of the national sample all international Department of Defense schools.

NAEP allows students with disabilities or limited English proficiency to use certain accommodations (e.g., extended time, individual testing, or small group testing). All data presented here represent scores from tests taken with accommodations offered.

Table 8-7
Eighth grade science performance, by state: 2000 and 2005 (Score)

State	2000	2005
United States.	148	147
Alabama.	143	138
Alaska	NA	NA
Arizona.	145	140
Arkansas	142	144
California.	129	136
Colorado	NA	155
Connecticut	153	152
Delaware	NA	152
District of Columbia .	NA	NA
Florida	NA	141
Georgia	142	144
Hawaii.	130	136
Idaho.	158	158
Illinois.	148	148
Indiana	154	150
lowa.	NA	NA
Kansas.	NA	NA

Kentucky ...	150	153
Louisiana..	134	138

Maine ... 158

Maryland..	146	158
Massachusetts......	168	161

Michigan .. 155155
Minnesota ... 159

Mississippi ..	134	132
Missouri ...	154	154

Montana..	164	162
Nebraska.	158	NA

Nevada... 141 138
New Hampshire ... NA NA 162

New Jersey .	NA	153
New Mexico	139	138

New York..	145
North Carolina	

North Dakota	159
Ohio	159

Oklahoma.. 149

Oregon.	154	153
Pennsylvania.	NA	NA

Rhode Island... 148 146
South Carolina ... 140
South Dakota... NA 161
Tennessee... 145 145 145
Texas... 143 143
Utah .. 154154

Vermont... 159162
Virginia ... 151
Washington .. NA 154
West Virginia ... 146

Wisconsin .. NA 158
Wyoming.. 156
Puerto Rico .. NA NA

[^0]SOURCE: National Center for Education Statistics, NAEP (various years).

Eighth Grade Science Proficiency

Figure 8-8
Eighth grade science proficiency: 2005

1st quartile (43\%-35\%)	2nd quartile (34\%-31\%)	3rd quartile (29\%-23\%)	4th quartile (22\%-14\%)	No data
Colorado	Connecticut	Arkansas	Alaska	
Idaho	Kentucky	Delaware	Alabama	District of Columbia
Massachusetts	Maine	Georgia	Arizona	Cana
Michigan	Missouri	Illinois	California	Nebas
Minnesota	New Jersey	Indiana	Neraska	
Montana	Oregon	Maryland	Hork	Pennsylvania
New Hampshire	Utah	Oklahoma	Louisiana	
North Dakota	Whode Island	Mississippi	Nevada	
Ohio	South Carolina	New Mexico		
South Dakota		Tennessee	North Carolina	
Vermont	Texas			
Virginia	West Virginia			
Wisconsin				
Wyoming				

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (various years). See table 8-8.

Findings

- In 2005 nationwide, 27\% of eighth grade public school students performed at or above the proficient level in science, a decline from 29% in 2000.
- Of the 36 states that participated in both the 2000 and 2005 science assessments, 13 showed increases in science proficiency for public school eighth graders in 2005, 4 of which were statistically significant. Nineteen states showed numerical declines in science proficiency among public school eighth graders in 2005, although none of the declines was statistically significant.
- Among eighth graders in public schools in 2005, proficiency in mathematics was more widespread than proficiency in science, a reversal of the 2000 results.
- The nationwide percentage of students who performed at or above the proficient level in science was identical for fourth and eighth graders in 2005.

This indicator is the proportion of a state's eighth grade students in public schools that have achieved proficiency in science. High indicator values show that a high percentage of a state's eighth graders has demonstrated a solid foundation for adult science competency. Proficiency is based on achievement levels in the National Assessment of Educational Progress (NAEP) that reflect performance standards set by the National Assessment Governing Board to provide a context for interpreting student performance on NAEP. A National Academy of Sciences panel evaluated the process used to establish the achievement levels for the science assessment and urged that they be con-
sidered developmental and interpreted with caution. Approximately 143,400 eighth grade students in 6,400 schools participated in the 2005 NAEP science assessment.

For the eighth grade, the basic level (scores of 143-169) denotes partial mastery of knowledge and skills that are prerequisite for proficient work. The proficient level (170-207) represents solid academic performance and demonstrates competency over challenging subject matter knowledge, its application to real-world situations, and mastery of appropriate analytical skills. The advanced level (208-300) signifies superior performance.

Table 8-8
Eighth grade science proficiency, by state: 2000 and 2005
(Percent)

State	2000	2005
United States...	29	27
Alabama.	23	19
Alaska	NA	NA
Arizona...	23	20
Arkansas ...	22	23
California..	14	18
Colorado ..	NA	35
Connecticut	35	33
Delaware...	NA	29
District of Columbia	NA	NA
Florida...	NA	21
Georgia .	23	25
Hawaii.	14	15
Idaho..	37	36
Illinois..	29	27
Indiana	33	29
lowa ..	NA	NA
Kansas..	NA	NA
Kentucky...	28	31
Louisiana..	18	19
Maine ..	35	34
Maryland ..	27	26
Massachusetts.	39	41
Michigan ..	35	35
Minnesota	41	39
Mississippi	15	14
Missouri ...	33	33
Montana..	44	42
Nebraska..	38	NA
Nevada..	22	19
New Hampshire	NA	41
New Jersey ...	NA	33
New Mexico...	20	18
New York...	28	NA
North Carolina..	25	22
North Dakota	38	43
Ohio	39	35
Oklahoma..	25	25
Oregon.....	34	32
Pennsylvania.	NA	NA
Rhode Island...	27	26
South Carolina	20	23
South Dakota.	NA	41
Tennessee..	24	25
Texas...	23	23
Utah ..	34	33
Vermont.	39	41
Virginia .	29	35
Washington.	NA	33
West Virginia	24	23
Wisconsin ..	NA	39
Wyoming ..	34	37
Puerto Rico ...	NA	NA

[^1]SOURCE: National Center for Education Statistics, NAEP (various years).

Public School Teacher Salaries

Figure 8-9
Public school teacher salaries: 2005

1st quartile (\$58,688-\$50,869)	2nd quartile (\$50,790-\$43,394)	3rd quartile $\mathbf{(\$ 4 3 , 3 1 3 - \$ 3 9 , 9 6 5) ~}$	4th quartile (\$39,456-\$34,040)
Alaska	Colorado	Arizona	Alabama
California	Georgia	Arkansas	Kansas
Connecticut	Hawaii	Florida	Ldaho
Delaware	lowa	Missians	
District of Columbia	Kndiana	Kentucky	
Illinois	Minnesota	Maine	Missouri
Maryland	Nevada	North Carolina	Montana
Massachusetts	New Hampshire	South Carolina	Nebraska
Michigan	Ohio	Tennessee	New Mexico
New Jersey	Oregon	Texas	North Dakota
New York	Vermont	Wyoming	Oklahoma
Pennsylvania	Virginia	Washington	Wisconsin

SOURCE: National Center for Education Statistics, Digest of Education Statistics (various years). See table 8-9.

Findings

- During the 2004-05 academic year, salaries for public school teachers nationwide averaged $\$ 47,750$, ranging from a state high of $\$ 58,688$ to a low of $\$ 34,040$.
- Over the past decade, average teacher salaries across the nation rose by 30% in terms of current dollars. Average teacher salaries remained essentially flat when expressed in constant dollars based on the Consumer Price Index.
- California and Illinois moved into the upper ranks of teacher salaries with increases of more than 40\% between 1995 and 2005.
- High salaries for public school teachers do not necessarily correspond to high student achievement scores on the NAEP mathematics and science tests.

This indicator measures the income public school teachers receive for their work. The average salary represents the average base salary of all full-time public school teachers. Figures are given in current dollars. The year is the latter date of the academic year. The average includes both recent college graduates and seasoned veterans. Their educational credentials may encompass provisional certification through bachelor's, master's, or doctoral degrees.

Public school teacher salaries may reflect a range of factors, including the value placed on primary and secondary education, a state's cost of living, the experience and educational attainment of the teachers, and the local supply and demand in the job market. Relatively low teacher salaries may hinder recruitment into the teaching profession.

Table 8-9
Public school teacher salaries, by state: 1995, 2000, and 2005 (Dollars)

State	1995	2000	2005
United States..	36,685	41,807	47,750
Alabama..	31,144	36,689	38,863
Alaska	47,951	46,462	52,424
Arizona.	32,574	36,902	42,905
Arkansas.	28,934	33,386	40,495
California..	41,078	47,680	57,876
Colorado.	34,571	38,163	44,161
Connecticut	50,045	51,780	58,688
Delaware..	39,076	44,435	50,869
District of Columbia	43,700	47,076	58,456
Florida.	32,588	36,722	41,081
Georgia	32,291	41,023	46,526
Hawaii.	38,518	40,578	44,273
Idaho...	29,783	35,547	42,122
Illinois..	39,431	46,486	55,629
Indiana.	36,785	41,850	46,851
lowa.	31,511	35,678	40,347
Kansas.	34,652	34,981	39,190
Kentucky..	32,257	36,380	41,002
Louisiana.	26,461	33,109	38,880
Maine .	31,972	35,561	40,940
Maryland.	40,661	44,048	52,331
Massachusetts..	40,718	46,580	54,596
Michigan.	41,895	49,044	55,693
Minnesota	35,948	39,802	46,906
Mississippi	26,818	31,857	36,590
Missouri	31,189	35,656	38,971
Montana..	28,785	32,121	38,485
Nebraska.	30,922	33,237	39,456
Nevada.	34,836	39,390	43,394
New Hampshire	34,720	37,734	43,941
New Jersey..	47,038	52,015	56,600
New Mexico.	28,493	32,554	39,328
New York..	47,612	51,020	56,200
North Carolina.	30,793	39,404	43,313
North Dakota	26,327	29,863	36,449
Ohio.	36,802	41,436	48,692
Oklahoma..	28,172	31,298	37,141
Oregon...	38,555	42,336	50,790
Pennsylvania.	44,510	48,321	52,700
Rhode Island..	40,729	47,041	53,473
South Carolina	30,279	36,081	42,207
South Dakota.	25,994	29,071	34,040
Tennessee..	32,477	36,328	41,527
Texas.	31,223	37,567	41,009
Utah ..	29,082	34,946	39,965
Vermont.	35,406	37,758	44,535
Virginia	33,987	38,744	44,763
Washington.	36,151	41,043	45,712
West Virginia .	31,944	35,009	38,360
Wisconsin ...	37,746	41,153	43,466
Wyoming.	31,285	34,127	40,392
Puerto Rico ...	NA	NA	NA

[^2]NOTES: National average for United States is reported value in Digest of Education Statistics. Average salaries reported in current dollars.
SOURCE: National Center for Education Statistics, Digest of Education Statistics (various years).

Elementary and Secondary Public School Current Expenditures as Share of Gross Domestic Product

Figure 8-10
Elementary and secondary public school current expenditures as share of gross domestic product: 2005

Findings

- The 2005 national average for spending on elementary and secondary education was 3.43% of the GDP, a slight increase from 3.37% in 1995.
- Among individual states, the value for this indicator ranged from 2.29\% to 5.11\% of the state's GDP in 2005, indicating that some states were directing a much higher percentage of their resources toward elementary and secondary education. The District of Columbia was an outlier at 1.24%.
- States spending the highest percentage of their GDP on elementary and secondary education tended to have relatively small student populations $(100,000-$ 300,000 students), indicating that some level of state spending may be required regardless of the size of the student population or the GDP.
- Spending for elementary and secondary current expenditures as a share of the state's GDP decreased in 24 states and the District of Columbia during the 1995-2005 period as spending for primary and secondary education failed to keep pace with growth in the local economy.

This indicator measures the relative amount of resources that local, state, and federal governments direct toward public education in prekindergarten through grade 12. It is calculated by dividing the current expenditures of elementary and secondary public schools by the gross domestic product (GDP). Current expenditures include instruction and instruction-related costs, student support services, administration, and operations and exclude funds for school construction and other capital outlays, debt services, and programs outside of public elementary and secondary education. State and local support represent the largest sources of revenue for elementary and secondary education.

Financial data on public elementary and secondary education are reported by the National Center for Educational Statistics, Department of Education. These data are part of the National Public Education Financial Survey and are included in the Common Core of Data, a comprehensive annual national statistical database covering approximately 94,000 public elementary and secondary schools and 14,000 school districts. Current expenditures are expressed in actual dollars. The year is the latter date of the academic year. For example, data for 2005 represent costs for the 2004-05 academic year. The District of Columbia and Hawaii each have only one school district; therefore, data for these two jurisdictions are not comparable to other states.

Table 8-10
Elementary and secondary public school current expenditures as share of gross domestic product, by state: 1995, 2000, and 2005

	Public school expenditures (\$thousands)			State GDP (\$millions)			School expenditures/ GDP (\%)		
State	1995	2000	2005	1995	2000	2005	1995	2000	2005
United States	243,877,582	323,888,508	424,562,096	7,232,723	9,749,104	12,372,847	3.37	3.32	3.43
Alabama.	3,026,287	4,176,082	5,164,406	94,021	114,576	151,342	3.22	3.64	3.41
Alaska	1,020,675	1,183,499	1,442,269	24,805	27,034	39,394	4.11	4.38	3.66
Arizona.	3,144,540	4,288,739	6,451,870	104,036	158,533	212,312	3.02	2.71	3.04
Arkansas	1,873,595	2,380,331	3,546,999	53,303	66,801	87,004	3.51	3.56	4.08
California.	25,949,033	38,129,479	50,918,654	908,963	1,287,145	1,616,351	2.85	2.96	3.15
Colorado	3,232,976	4,401,010	5,994,440	108,043	171,862	214,337	2.99	2.56	2.80
Connecticut	4,247,328	5,402,836	7,080,396	120,800	160,436	193,496	3.52	3.37	3.66
Delaware....	694,473	937,630	1,299,349	27,507	41,472	56,731	2.52	2.26	2.29
District of Columbia	666,938	780,192	1,023,952	47,123	58,699	82,628	1.42	1.33	1.24
Florida.......................	11,019,735	13,885,988	19,042,877	340,501	471,316	666,639	3.24	2.95	2.86
Georgia	6,136,689	9,158,624	12,528,856	199,138	290,887	358,365	3.08	3.15	3.50
Hawaii.	1,028,729	1,213,695	1,648,086	36,572	40,202	54,773	2.81	3.02	3.01
Idaho..	951,350	1,302,817	1,618,215	27,099	34,989	45,891	3.51	3.72	3.53
Illinois.	10,640,279	14,462,773	18,658,428	359,723	464,194	555,599	2.96	3.12	3.36
Indiana	5,243,761	7,110,930	9,108,931	147,984	194,419	236,357	3.54	3.66	3.85
lowa.	2,622,510	3,264,336	3,808,200	71,905	90,186	117,635	3.65	3.62	3.24
Kansas	2,406,580	2,971,814	3,718,153	63,699	82,812	105,228	3.78	3.59	3.53
Kentucky..	2,988,892	3,837,794	4,812,591	90,459	111,900	138,616	3.30	3.43	3.47
Louisiana.	3,475,926	4,391,189	5,554,766	109,153	131,520	180,336	3.18	3.34	3.08
Maine .	1,281,706	1,604,438	2,056,266	27,648	35,542	44,906	4.64	4.51	4.58
Maryland.	5,083,380	6,545,135	8,682,586	137,391	180,367	244,447	3.70	3.63	3.55
Massachusetts	6,062,303	8,564,039	11,357,857	195,277	274,949	320,050	3.10	3.11	3.55
Michigan	10,440,206	13,994,294	16,353,921	251,017	337,235	372,148	4.16	4.15	4.39
Minnesota	4,622,930	6,140,442	7,310,284	131,357	185,093	231,437	3.52	3.32	3.16
Mississippi.	1,921,480	2,510,376	3,243,888	53,816	64,266	79,786	3.57	3.91	4.07
Missouri	4,275,217	5,655,531	7,115,207	137,528	176,708	215,073	3.11	3.20	3.31
Montana.	844,257	994,770	1,193,182	17,393	21,366	29,915	4.85	4.66	3.99
Nebraska.	1,594,928	1,926,500	2,512,914	44,505	55,478	72,242	3.58	3.47	3.48
Nevada..	1,186,132	1,875,467	2,722,264	48,974	73,719	110,158	2.42	2.54	2.47
New Hampshire	1,053,966	1,418,503	2,021,144	32,149	43,518	54,119	3.28	3.26	3.73
New Jersey ...	10,776,982	13,327,645	19,669,576	266,724	344,824	427,654	4.04	3.87	4.60
New Mexico.	1,441,078	1,890,274	2,554,638	41,459	50,725	69,692	3.48	3.73	3.67
New York.........	22,989,629	28,433,240	38,866,853	594,444	777,157	961,385	3.87	3.66	4.04
North Carolina.	5,440,426	7,713,293	9,567,000	191,579	273,698	350,700	2.84	2.82	2.73
North Dakota	534,632	638,946	786,870	14,515	17,752	24,935	3.68	3.60	3.16
Ohio	10,030,956	12,974,575	17,167,866	293,260	372,006	442,243	3.42	3.49	3.88
Oklahoma..	2,763,721	3,382,581	4,161,024	69,580	89,757	121,558	3.97	3.77	3.42
Oregon..	2,948,539	3,896,287	4,458,028	80,099	112,438	141,831	3.68	3.47	3.14
Pennsylvania.	11,587,027	14,120,112	18,711,100	314,504	389,619	486,139	3.68	3.62	3.85
Rhode Island.	1,050,969	1,393,143	1,825,900	25,666	33,609	43,623	4.09	4.15	4.19
South Carolina	2,920,230	4,087,355	5,312,739	86,053	112,514	140,088	3.39	3.63	3.79
South Dakota.	612,825	737,998	916,563	17,807	23,099	30,541	3.44	3.19	3.00
Tennessee..	3,540,682	4,931,734	6,446,691	135,655	174,851	224,995	2.61	2.82	2.87
Texas...	17,572,269	25,098,703	31,919,107	507,441	727,233	989,333	3.46	3.45	3.23
Utah ..	1,618,047	2,102,655	2,627,022	46,303	67,568	88,364	3.49	3.11	2.97
Vermont.	665,559	870,198	1,177,478	13,892	17,782	23,056	4.79	4.89	5.11
Virginia	5,750,318	7,757,598	10,705,162	185,490	260,743	350,692	3.10	2.98	3.05
Washington.	5,138,928	6,399,885	7,870,979	151,338	221,961	271,381	3.40	2.88	2.90
West Virginia	1,758,557	2,086,937	2,527,767	36,362	41,476	53,091	4.84	5.03	4.76
Wisconsin	5,422,264	6,852,178	8,435,359	134,096	175,737	216,985	4.04	3.90	3.89
Wyoming.........	577,144	683,918	863,423	14,567	17,331	27,246	3.96	3.95	3.17
Puerto Rico ...	1,501,485	2,086,414	2,865,945	42,647	61,702	82,650	3.52	3.38	3.47

GDP = gross domestic product
NOTES: Public school expenditures for Missouri, Tennessee, and Washington for 2005 affected by redistribution of reported values to correct for missing data items. GDP reported in current dollars.
SOURCES: National Center for Education Statistics (NCES), NCES Common Core of Data, National Public Education Financial Survey (various years); Bureau of Economic Analysis, Gross Domestic Product data (various years); and Government of Puerto Rico, Office of the Governor (various years).

Current Expenditures per Pupil for Elementary and Secondary Public Schools

Figure 8-11
Current expenditures per pupil for elementary and secondary public schools: 2005

1st quartile (\$14,117-\$10,031)	2nd quartile $\mathbf{(\$ 9 , 7 7 1 - \$ 8 , 0 7 1)}$	3rd quartile $\mathbf{(\$ 8 , 0 6 5 - \$ 7 , 4 6 4)}$	4th quartile $\mathbf{(\$ 7 , 2 4 6 - \$ 5 , 2 1 6) ~}$
Alaska	Hawaii	Arkansas	Alabama
Connecticut	Illinois	California	Arizona
Delaware	Indiana	Colorado	Feorgia
District of Columbia	Michigan	lowa	ldaho
Maine	Minnesota	Kansas	Kentucky
Maryland	Montana	Louisiana	Mississippi
Massachusetts	Nebraska	Missouri	Nevada
New Jersey	New Hampshire	New Mexico	North Carolina
New York	Ohio	North Dakota	Oklahoma
Pennsylvania	Oregon	South Carolina	Tennessee
Rhode Island	Virginia	Wauth Dakota	Texas
Vermont	West Virginia	Wisconsington	Utah

SOURCES: National Center for Education Statistics (NCES), NCES Common Core of Data, State Nonfiscal Survey of Public Elementary/Secondary Education (various years); and National Public Education Financial Survey (various years). See table 8-11.

Findings

- Per-pupil spending on day-to-day operations grew nationwide from $\$ 5,529$ in 1995 to $\$ 8,701$ in 2005, an increase of 57% in unadjusted dollars.
- In 2005, all states showed substantial increases in per-pupil spending relative to 1995, and only 1 state failed to exceed the 1995 national average of $\$ 5,529$ compared with 28 states in 1995.
- Per-pupil spending in individual states varied widely, ranging from a high of $\$ 14,117$ to a low of $\$ 5,216$ in 2005.
- There is no direct correlation between spending and academic performance. In fact, several states that ranked in the lower two quartiles of this indicator ranked in the upper quartiles of the National Assessment of Educational Progress indicators.

This indicator measures the investment by local, state, and federal governments in elementary and secondary education, adjusted for the size of the student body. It is calculated by dividing the current expenditures over the entire academic year for prekindergarten through grade 12 by the number of students in those grades in public schools. Current expenditures represent amounts expended for the day-to-day operations of schools and school districts. They include expenditures for instruction and instruction-related costs, student support services, administration, and operations and exclude funds for school construction and other capital outlays,
debt services, and programs outside of public elementary and secondary education. During the 2004-05 school year, 65.9% of current expenses were used for instructional costs, 5.2% for student support services, 11.0% for administrative costs, and 17.8% for operational costs.

The number of pupils enrolled in prekindergarten through grade 12 is determined during the fall of the academic year. All figures represent actual spending and have not been adjusted for inflation. The year is the latter date of the academic year. For example, data for 2005 represent costs for the 2004-05 academic year.

Table 8-11
Current expenditures per pupil for elementary and secondary public schools, by state: 1995, 2000, and 2005

State	Public school expenditures (\$thousands)			Student enrollment			Per-pupil expenditures (\$)		
	1995	2000	2005	1995	2000	2005	1995	2000	2005
United States	243,877,582	323,888,508	424,562,096	44,111,482	46,857,149	48,794,911	5,529	6,912	8,701
Alabama	3,026,287	4,176,082	5,164,406	736,531	740,732	730,140	4,109	5,638	7,073
Alaska	1,020,675	1,183,499	1,442,269	127,057	134,391	132,970	8,033	8,806	10,847
Arizona.	3,144,540	4,288,739	6,451,870	737,424	852,612	1,043,298	4,264	5,030	6,18
Arkansas	1,873,595	2,380,331	3,546,999	447,565	451,034	463,115	4,186	5,277	7,659
California.	25,949,033	38,129,479	50,918,654	5,407,475	6,038,590	6,441,557	4,799	6,314	7,905
Colorado .	3,232,976	4,401,010	5,994,440	640,521	708,109	765,976	5,047	6,215	7,826
Connecticut	4,247,328	5,402,836	7,080,396	506,824	553,993	577,390	8,380	9,753	12,263
Delaware.	694,473	937,630	1,299,349	106,813	112,836	119,091	6,502	8,310	10,911
District of Columbia ...	666,938	780,192	1,023,952	80,450	77,194	76,714	8,290	10,107	13,348
Florida.	11,019,735	13,885,988	19,042,877	2,111,188	2,381,396	2,639,336	5,220	5,831	7,215
Georgia	6,136,689	9,158,624	12,528,856	1,270,948	1,422,762	1,553,437	4,828	6,437	8,065
Hawaii .	1,028,729	1,213,695	1,648,086	183,795	185,860	183,185	5,597	6,530	8,997
Idaho	951,350	1,302,817	1,618,215	240,448	245,136	256,084	3,957	5,315	6,319
Illinois.	10,640,279	14,462,773	18,658,428	1,916,172	2,027,600	2,097,503	5,553	7,133	8,896
Indiana	5,243,761	7,110,930	9,108,931	969,022	988,702	1,021,348	5,411	7,192	8,919
lowa	2,622,510	3,264,336	3,808,200	500,440	497,301	478,319	5,240	6,564	7,962
Kansas	2,406,580	2,971,814	3,718,153	460,838	472,188	469,136	5,222	6,294	7,926
Kentucky.	2,988,892	3,837,794	4,812,591	657,642	648,180	674,796	4,545	5,921	7,132
Louisiana.	3,475,926	4,391,189	5,554,766	797,933	756,579	724,281	4,356	5,804	7,669
Maine .	1,281,706	1,604,438	2,056,266	212,601	209,253	198,820	6,029	7,667	10,342
Maryland	5,083,380	6,545,135	8,682,586	790,938	846,582	865,561	6,427	7,731	10,031
Massachusetts.	6,062,303	8,564,039	11,357,857	893,727	971,425	975,574	6,783	8,816	11,642
Michigan .	10,440,206	13,994,294	16,353,921	1,614,784	1,725,639	1,750,919	6,465	8,110	9,340
Minnesota	4,622,930	6,140,442	7,310,284	821,693	854,034	838,503	5,626	7,190	8,718
Mississippi.	1,921,480	2,510,376	3,243,888	505,962	500,716	495,376	3,798	5,014	6,548
Missouri	4,275,217	5,655,531	7,115,207	878,541	914,110	905,449	4,866	6,187	7,858
Montana..	844,257	994,770	1,193,182	164,341	157,556	146,705	5,137	6,314	8,133
Nebraska.	1,594,928	1,926,500	2,512,914	287,100	288,261	285,761	5,555	6,683	8,794
Nevada.	1,186,132	1,875,467	2,722,264	250,747	325,610	400,083	4,730	5,760	6,804
New Hampshire	1,053,966	1,418,503	2,021,144	189,319	206,783	206,852	5,567	6,860	9,771
New Jersey ...	10,776,982	13,327,645	19,669,576	1,174,206	1,289,256	1,393,347	9,178	10,337	14,117
New Mexico.	1,441,078	1,890,274	2,554,638	327,248	324,495	326,102	4,404	5,825	7,834
New York.	22,989,629	28,433,240	38,866,853	2,766,208	2,887,776	2,836,337	8,311	9,846	13,703
North Carolina..	5,440,426	7,713,293	9,567,000	1,156,767	1,275,925	1,385,754	4,703	6,045	6,904
North Dakota	534,632	638,946	786,870	119,288	112,751	100,513	4,482	5,667	9
Ohio .	10,030,956	12,974,575	17,167,866	1,814,290	1,836,554	1,840,032	5,529	7,065	9,330
Oklahoma..	2,763,721	3,382,581	4,161,024	609,718	627,032	629,476	4,533	5,395	6,610
Oregon...	2,948,539	3,896,287	4,458,028	521,945	545,033	552,322	5,649	7,149	8,071
Pennsylvania.	11,587,027	14,120,112	18,711,100	1,764,946	1,816,716	1,828,089	6,565	7,772	10,235
Rhode Island.	1,050,969	1,393,143	1,825,900	147,487	156,454	156,498	7,126	8,904	11,667
South Carolina	2,920,230	4,087,355	5,312,739	648,725	666,780	703,736	4,501	6,130	7,549
South Dakota.	612,825	737,998	916,563	143,482	131,037	122,798	4,271	5,632	7,464
Tennessee	3,540,682	4,931,734	6,446,691	881,425	916,202	941,091	4,017	5,383	6,850
Texas.	17,572,269	25,098,703	31,919,107	3,677,171	3,991,783	4,405,215	4,779	6,288	7,246
Utah	1,618,047	2,102,655	2,627,022	474,675	480,255	503,607	3,409	4,378	5,216
Vermont.	665,559	870,198	1,177,478	104,533	104,559	98,352	6,367	8,323	11,972
Virginia	5,750,318	7,757,598	10,705,162	1,060,809	1,133,994	1,204,739	5,421	6,841	8,886
Washington..	5,138,928	6,399,885	7,870,979	938,314	1,003,714	1,020,005	5,477	6,376	7,717
West Virginia .	1,758,557	2,086,937	2,527,767	310,511	291,811	280,129	5,663	7,152	9,024
Wisconsin ..	5,422,264	6,852,178	8,435,359	860,581	877,753	864,757	6,301	7,806	9,755
Wyoming....	577,144	683,918	863,423	100,314	92,105	84,733	5,753	7,425	10,190
Puerto Rico	1,501,485	2,086,414	2,865,945	621,121	613,019	575,648	2,417	3,404	4,979

NOTES: Public school expenditures for Missouri, Tennessee, and Washington for 2005 affected by redistribution of reported values to correct for missing data items. Public school expenditures reported in current dollars. 2005 prekindergarten student membership for California was imputed, affecting the total student count and per pupil expenditures calculation.

SOURCES: National Center for Education Statistics (NCES), NCES Common Core of Data, State Nonfiscal Survey of Public Elementary/Secondary Education (various years); and National Public Education Financial Survey (various years).

Share of Public High School Students Taking Advanced Placement Exams

Figure 8-12
Share of public high school students taking Advanced Placement Exams: 2006

SOURCE: College Board, Advanced Placement Report to the Nation (various years). See table 8-12.

Findings

- Nationwide, the percent of public school students who took an AP Exam rose from 15.9% of the class of 2000 to 24.2% of the class of 2006.
- The percentage of public school students taking an AP Exam varied greatly among states and ranged from 5.1% to 36.4% of the class of 2006. Thirty-five states and the District of Columbia exceeded the 2000 national average in 2006, compared with 15 states and the District of Columbia that exceeded the national average in 2000.
- AP participation levels were higher for all jurisdictions in 2006 than in 2000. Arkansas and the District of Columbia showed the largest increases; class of 2006 members in these jurisdictions exceeded the participation of the class of 2000 by 22.5 and 16.4 percentage points, respectively.

Participation in the Advanced Placement (AP) program provides a measure of the extent to which a rigorous curriculum is available to and utilized by high school students. This indicator measures the percentage of students in the graduating class who have taken one or more AP Exams. It is calculated by dividing the number of students in the graduating class who have taken at least one AP Exam by the total number of students in the graduating class.

Throughout the United States, more than 660,000 public school students from the class of 2006 took nearly 1.7 million AP Exams during their high school careers. Generally, students who take AP Exams have
completed a rigorous course of study in a specific subject area in high school with the expectation of obtaining college credit or advanced placement. AP Exams were taken most frequently in U.S. history, English literature and composition, English language and composition, calculus AB , and U.S. government and politics. In the 50 states and the District of Columbia, 12,037 public schools participated in the AP program in 2006. This represented over 65% of the public schools in the United States that offer a secondary curriculum. These schools make available an average of eight different AP courses to their students.

Table 8-12
Share of public high school students taking Advanced Placement Exams, by state: 2000, 2004, and 2006
(Percent)

State	2000	2004	2006
United States.......................................	15.9	20.9	24.2
Alabama...	7.2	8.8	10.2
Alaska .	15.4	16.7	20.0
Arizona.......................................	11.3	12.9	15.8
Arkansas .	8.1	13.0	30.6
California.	22.2	28.5	31.3
Colorado	18.6	25.3	28.9
Connecticut	19.1	24.6	26.7
Delaware.	13.3	19.6	27.7
District of Columbia.	17.3	23.1	33.7
Florida.	22.7	33.5	36.4
Georgia .	17.2	21.5	27.2
Hawaii.	10.6	14.8	15.9
Idaho...	9.6	12.5	16.0
Illinois..	13.4	18.6	21.7
Indiana ..	11.9	15.5	18.8
lowa ..	6.9	10.0	11.8
Kansas.	7.0	9.2	12.2
Kentucky...	10.6	15.5	18.9
Louisiana..	3.2	5.0	5.1
Maine ...	14.8	19.9	23.6
Maryland.	20.2	29.2	33.5
Massachusetts..................................	19.6	25.3	27.7
Michigan ..	13.9	16.8	18.7
Minnesota	13.4	16.4	19.2
Mississippi	5.6	7.0	10.6
Missouri	5.5	8.1	9.8
Montana.	10.1	13.0	15.1
Nebraska.	5.0	6.3	9.3
Nevada..	15.1	19.8	23.1
New Hampshire	13.3	16.0	19.4
New Jersey ...	17.9	21.3	23.5
New Mexico	11.1	17.0	19.1
New York...	27.3	32.4	35.4
North Carolina..	19.7	26.9	31.7
North Dakota	5.9	8.4	9.6
Ohio .	11.3	15.2	17.2
Oklahoma..	9.5	17.0	20.4
Oregon...	10.5	13.6	17.0
Pennsylvania.	12.4	14.9	16.6
Rhode Island..	10.7	12.1	13.0
South Carolina.	17.7	19.2	22.0
South Dakota..	9.6	13.5	15.8
Tennessee.	10.4	13.6	16.8
Texas...	16.6	23.2	27.0
Utah ...	24.5	27.6	30.6
Vermont.	16.6	21.2	24.8
Virginia	25.0	28.1	32.9
Washington.....................................	11.5	18.5	23.5
West Virginia .	8.4	13.0	13.6
Wisconsin ..	15.2	20.0	23.0
Wyoming..	6.1	11.2	13.2
Puerto Rico	NA	NA	NA

NA = not available
NOTE: National average for United States is reported value in Advanced Placement Report to the Nation.

SOURCE: College Board, Advanced Placement Report to the Nation (various years).

Share of Public High School Students Scoring 3 or Higher on at Least One Advanced Placement Exam

Figure 8-13
Share of public high school students scoring 3 or higher on at least one Advanced Placement Exam: 2006

SOURCE: College Board, Advanced Placement Report to the Nation (various years). See table 8-13.

Findings

- Nationally, 14.8% of public school students in the class of 2006 demonstrated the ability to do college-level work by obtaining a score of 3 or higher on at least one AP Exam, a significant increase over the 10.2% achieved by the class of 2000 .
- Students from all states demonstrated greater success on AP Exams in 2006 than in 2000, but this success was not uniformly distributed. In 2006, 21 states and the District of Columbia had percentages below the national average of 10.2% compared with 38 jurisdictions in 2000.
- The percentage of students who are successful on AP Exams varies widely among states; state indicator values for public school students in the class of 2006 ranged from a low of 2.3% to a high of 22.7%. This wide range indicates that opportunities for advanced work are more readily available to students in certain states, and that these students are demonstrating college-level skills through successful completion of their AP programs.
- Values of this indicator were higher for all states in 2006 than in 2000. Maryland, Delaware, North Carolina, Washington, and Florida showed the largest increases; class of 2006 members in these states exceeded the performance of class of 2000 participants by more than 6 percentage points.

This indicator provides a measure of the extent to which high school students are successfully demonstrating their mastery of collegelevel material. It is defined as the percentage of U.S. public high school graduates who have scored 3 or higher on at least one Advanced Placement (AP) Exam. A high value on this indicator shows the extent to which students have been offered access to a rigorous curriculum and successfully mastered these requirements.

A total of 37 different AP Exams are offered each spring by the College Board. The exams are scored on a scale of 1 to 5 , with 3 representing
a range of work equivalent to midlevel B to midlevel C performance in college. To prepare for the AP Exam in a subject area, most students enroll in an AP class that employs a curriculum of high academic intensity. Scoring a 3 or higher indicates that the student has mastered the content of at least one such course of rigorous academic intensity at a level that would be acceptable in college. Performance on AP Exams is considered by many colleges and universities to be one of the best predictors of success in college. Many colleges and universities grant college credit or advanced placement for AP Exam grades of 3 or higher.

Table 8-13
Share of public high school students scoring 3 or higher on at least one Advanced Placement Exam, by state: 2000, 2004, and 2006
(Percent)

NA = not available
NOTE: National average for United States is reported value in Advanced Placement Report to the Nation.
SOURCE: College Board, Advanced Placement Report to the Nation (various years).

High School Graduates or Higher Among Individuals 25-44 Years Old

Figure 8-14
High school graduates or higher among individuals 25-44 years old: 2005

SOURCES: Census Bureau, 2000 Decennial Census; Population Estimates Program (various years); and American Community Survey (various years) See Table 8-14

Findings

- Nationwide, 84.8% of the early- to midcareer population had at least a high school credential in 2005, which is nearly identical with 85.0% in 2000.
- Only 21 states and the District of Columbia showed an increase in the percentage of their early- to mid-career population with at least a high school credential between 2000 and 2005. Thirteen states had 2005 values below the 2000 national average of 85.0% compared with 17 states and the District of Columbia in 2000.
- In 2005, the early- to mid-career population with at least a high school credential varied greatly among states, ranging from 77.0% to 99.4%. States in close proximity to the southern border tended to rank lowest on this indicator.

This indicator represents the percentage of the early- to mid-career population that has earned at least a high school credential. The indicator represents where high school graduates have chosen to live and work rather than where they were educated. The 25-44-year-old cohort was selected because it is likely to capture both high school diplomas and equivalency degrees. High values indicate a resident population and potential workforce with widespread basic education credentials.

Estimates of educational attainment are developed by the Census Bureau based on the 2000 Decennial Census and the American Community Survey
(ACS). The census is conducted every 10 years, but the ACS provides annually updated data on the characteristics of population and housing. In 2005, ACS became the largest household survey in the United States, with an annual sample size of about 3 million addresses. Estimates of population are developed by the Census Bureau through the Population Estimates Program, which is also based on the 2000 Decennial Census. The value of this indicator may be imprecise for jurisdictions with small populations because both its numerator and denominator are based on estimates.

Table 8-14
High school graduates or higher among individuals 25-44 years old, by state: 2000, 2003, and 2005

State	Graduates 25-44 years old			Population 25-44 years old			Graduates/population 25-44 years old (\%)		
	2000	2003	2005	2000	2003	2005	2000	2003	2005
United States	72,241,876	71,684,426	71,215,646	85,040,251	84,216,990	84,010,639	85.0	85.1	84.8
Alabama.	1,064,945	1,027,964	1,035,193	1,288,527	1,241,184	1,234,729	82.6	82.8	83.8
Alaska	186,160	167,805	162,669	203,522	194,823	194,890	91.5	86.1	83.5
Arizona	1,232,818	1,286,915	1,367,583	1,511,469	1,599,029	1,694,572	81.6	80.5	80.7
Arkansas	622,698	608,116	633,557	750,972	738,579	750,229	82.9	82.3	84.4
California.	8,286,071	8,529,909	8,316,850	10,714,403	10,832,873	10,794,860	77.3	78.7	77.0
Colorado	1,242,919	1,239,272	1,240,697	1,400,850	1,417,501	1,421,418	88.7	87.4	87.3
Connecticut	926,614	903,677	852,932	1,032,689	999,800	968,330	89.7	90.4	88.1
Delaware....	207,799	204,842	206,583	236,441	233,356	233,683	87.9	87.8	88.4
District of Columbia ..	157,077	160,782	163,027	189,439	188,758	189,675	82.9	85.2	86.0
Florida.	3,840,710	3,924,625	4,000,762	4,569,347	4,676,558	4,812,867	84.1	83.9	83.1
Georgia	2,238,995	2,280,061	2,368,999	2,652,764	2,723,720	2,784,441	84.4	83.7	85.1
Hawaii...	333,762	316,491	308,637	362,336	352,806	355,620	92.1	89.7	86.8
Idaho.	316,815	323,260	327,870	362,401	370,690	387,620	87.4	87.2	84.6
Illinois.	3,265,416	3,267,787	3,200,557	3,795,544	3,727,314	3,672,713	86.0	87.7	87.1
Indiana	1,567,100	1,494,212	1,500,650	1,791,828	1,748,331	1,741,859	87.5	85.5	86.2
lowa	740,397	709,299	713,525	808,259	775,320	764,399	91.6	91.5	93.3
Kansas.	687,268	675,316	656,920	769,204	743,961	732,886	89.3	90.8	89.6
Kentucky.	1,009,246	1,013,026	993,094	1,210,773	1,182,970	1,187,091	83.4	85.6	83.7
Louisiana..	1,044,255	1,014,054	1,026,229	1,293,128	1,230,819	1,217,481	80.8	82.4	84.3
Maine .	339,227	325,208	317,653	370,597	358,691	350,196	91.5	90.7	90.7
Maryland.	1,487,216	1,454,663	1,399,879	1,664,677	1,641,907	1,615,367	89.3	88.6	86.7
Massachusetts.	1,795,438	1,763,262	1,690,234	1,989,783	1,922,446	1,848,998	90.2	91.7	91.4
Michigan ..	2,630,713	2,551,652	2,455,339	2,960,544	2,840,435	2,772,896	88.9	89.8	88.5
Minnesota	1,395,170	1,374,938	1,345,742	1,497,320	1,465,370	1,443,493	93.2	93.8	93.2
Mississippi.	650,242	645,671	648,458	807,170	782,327	778,254	80.6	82.5	83.3
Missouri.	1,426,806	1,399,485	1,378,001	1,626,302	1,587,931	1,585,316	87.7	88.1	86.9
Montana..	225,105	213,382	216,509	245,220	232,735	232,383	91.8	91.7	93.2
Nebraska.	441,527	432,446	421,008	487,107	471,024	464,556	90.6	91.8	90.6
Nevada..	508,173	538,622	585,942	628,572	679,392	729,594	80.8	79.3	80.3
New Hampshire	350,744	340,140	330,926	381,240	373,644	364,731	92.0	91.0	90.7
New Jersey ...	2,313,820	2,254,281	2,165,296	2,624,146	2,578,072	2,510,115	88.2	87.4	86.3
New Mexico..	425,745	400,847	411,608	516,100	506,956	511,007	82.5	79.1	80.5
New York..	4,926,064	4,912,059	4,786,794	5,831,622	5,667,484	5,501,929	84.5	86.7	87.0
North Carolina.	2,117,289	2,096,022	2,148,501	2,500,535	2,507,025	2,523,658	84.7	83.6	85.1
North Dakota ..	164,893	157,062	155,297	174,891	160,522	156,178	94.3	97.8	99.4
Ohio	2,965,744	2,840,789	2,759,770	3,325,210	3,172,294	3,105,980	89.2	89.5	88.9
Oklahoma.	836,030	796,708	807,209	975,169	946,358	944,171	85.7	84.2	85.5
Oregon...	861,602	880,905	872,276	997,269	1,003,698	1,015,644	86.4	87.8	85.9
Pennsylvania.	3,136,195	2,966,827	2,908,593	3,508,562	3,343,434	3,255,635	89.4	88.7	89.3
Rhode Island..	265,033	262,340	264,154	310,636	306,459	296,717	85.3	85.6	89.0
South Carolina	990,207	1,002,730	999,627	1,185,955	1,167,347	1,171,573	83.5	85.9	85.3
South Dakota..	188,052	182,643	180,013	206,399	197,386	195,213	91.1	92.5	92.2
Tennessee.	1,439,729	1,446,735	1,459,559	1,718,428	1,684,796	1,698,611	83.8	85.9	85.9
Texas.	5,115,457	5,136,496	5,248,281	6,484,321	6,644,003	6,762,605	78.9	77.3	77.6
Utah ..	555,513	602,199	646,632	626,600	648,111	695,736	88.7	92.9	92.9
Vermont.	162,109	153,679	150,073	176,456	168,392	163,707	91.9	91.3	91.7
Virginia	1,962,040	1,911,347	1,896,614	2,237,655	2,227,978	2,228,610	87.7	85.8	85.1
Washington.	1,617,766	1,607,576	1,592,550	1,816,217	1,803,610	1,820,192	89.1	89.1	87.5
West Virginia	420,900	400,998	411,155	501,343	479,781	478,383	84.0	83.6	85.9
Wisconsin	1,429,331	1,369,084	1,367,667	1,581,690	1,537,180	1,517,725	90.4	89.1	90.1
Wyoming......	126,931	116,217	117,952	138,619	131,810	132,103	91.6	88.2	89.3
Puerto Rico	794,579	NA	868,650	1,049,995	1,069,617	1,077,981	75.7	NA	80.6

$\mathrm{NA}=$ not available

SOURCES: Census Bureau, 2000 Decennial Census; Population Estimates Program (various years); and American Community Survey (various years).

Bachelor's Degrees Conferred per 1,000 Individuals 18-24 Years Old

Figure 8-15
Bachelor's degrees conferred per 1,000 individuals 18-24 years old: 2005

SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years); Census Bureau, 2000 Decennial Census; and Population Estimates Program (various years). See Table 8-15.

Findings

- In 2005, 1.42 million bachelor's degrees were conferred nationally in all fields, up from 1.17 million in 1996.
- Over the past decade, the ratio of bachelor's degrees conferred to the 18-24-year-old population has remained essentially constant.
- In 2005, there was great variability among states in undergraduate educational opportunities relative to the size of their youthful population. Across the states, a range of 20.3 to 84.4 bachelor's degrees were conferred per 1,000 18-24-year-olds; the District of Columbia was nearly 131 (an outlier reflecting a large concentration of academic institutions relative to the size of the resident population).
- In 18 states, the number of bachelor's degrees conferred per 1,000 18-24-year-olds decreased between 1996 and 2005

Earning a bachelor's degree gives people greater opportunities to work in higher-paying jobs than are generally available to those with less education; it also prepares them for advanced education. In addition, the capacity to produce degrees may generate resources for the state. The ratio of bachelor's degrees awarded to a state's 18-24-year-old population is a broad measure of a state's relative success in producing degrees at this level. The 18-24-year-old cohort was chosen to approximate the age range of most students who are pursuing an undergraduate degree.

Although the number of bachelor's degrees awarded is based on an actual count, the population of 18 -24-year-olds is an estimate de-
veloped by the Census Bureau in the Population Estimates Program, which relies on the Decennial Census. This estimate may make the value of this indicator imprecise for jurisdictions with small populations.

A high value for this indicator may suggest the successful provision of educational opportunity at this level. Student and graduate mobility after graduation, however, may make this indicator less meaningful in predicting the qualifications of a state's future workforce. The indicator's value may also be high when a higher education system draws a large percentage of out-of-state students, a situation that sometimes occurs in states with small resident populations and the District of Columbia.

Table 8-15
Bachelor's degrees conferred per 1,000 individuals 18-24 years old, by state: 1996, 2001, and 2005

State	Bachelor's degrees			Population 18-24 years old			Degrees/1,000 individuals 18-24 years old		
	1996	2001	2005	1996	2001	2005	1996	2001	2005
United States.	1,165,138	1,241,507	1,420,043	24,842,610	27,998,931	29,333,266	46.9	44.3	48.4
Alabama.....	20,133	20,654	21,388	437,421	448,725	448,894	46.0	46.0	47.6
Alaska .	1,497	1,343	1,427	64,682	60,394	70,429	23.1	22.2	20.3
Arizona..	18,822	25,509	34,915	417,142	536,708	576,725	45.1	47.5	60.5
Arkansas.	9,099	9,628	11,186	247,651	268,747	270,471	36.7	35.8	41.4
California...	108,604	118,552	139,417	2,982,515	3,487,649	3,726,736	36.4	34.0	37.4
Colorado	20,043	21,698	24,936	354,247	449,661	459,040	56.6	48.3	54.3
Connecticut	13,814	14,249	16,835	261,580	282,433	313,202	52.8	50.5	53.8
Delaware	4,330	4,466	5,220	65,107	78,501	83,016	66.5	56.9	62.9
District of Columbia ...	7,787	8,113	9,169	45,801	72,372	70,265	170.0	112.1	130.5
Florida	46,274	49,914	60,434	1,168,986	1,399,219	1,572,959	39.6	35.7	38.4
Georgia	27,322	28,481	35,086	728,478	865,538	903,396	37.5	32.9	38.8
Hawaii	4,696	4,772	5,127	116,166	118,324	123,584	40.4	40.3	41.5
Idaho..	4,489	4,646	7,235	130,028	144,632	149,739	34.5	32.1	48.3
Illinois.	52,222	55,938	59,611	1,111,306	1,242,578	1,274,718	47.0	45.0	46.8
Indiana.	30,571	31,854	36,579	571,520	627,241	623,312	53.5	50.8	58.7
lowa.	17,669	18,577	20,418	269,324	302,946	311,451	65.6	61.3	65.6
Kansas.	14,873	15,014	16,565	249,744	281,504	292,984	59.6	53.3	56.5
Kentucky....	14,674	15,460	17,905	397,201	409,650	395,618	36.9	37.7	45.3
Louisiana....................	17,989	19,854	21,199	459,805	484,149	490,354	39.1	41.0	43.2
Maine ...	5,619	5,429	6,485	110,955	108,029	117,048	50.6	50.3	55.4
Maryland.	20,873	22,891	25,685	427,478	473,697	526,277	48.8	48.3	48.8
Massachusetts...	40,681	42,717	45,623	511,122	593,001	625,908	79.6	72.0	72.9
Michigan	44,371	45,790	50,565	921,950	957,339	986,126	48.1	47.8	51.3
Minnesota	23,117	23,128	27,869	418,324	486,487	516,133	55.3	47.5	54.0
Mississippi ...	9,983	11,232	11,681	299,031	316,573	311,137	33.4	35.5	37.5
Missouri	27,251	30,083	33,838	495,615	552,843	572,472	55.0	54.4	59.1
Montana...	4,622	5,016	5,177	85,538	88,639	94,488	54.0	56.6	54.8
Nebraska....................	9,889	10,788	11,993	161,398	178,383	188,583	61.3	60.5	63.6
Nevada....	3,417	4,101	5,029	133,106	189,705	207,871	25.7	21.6	24.2
New Hampshire	7,660	7,266	8,111	94,357	108,106	121,124	81.2	67.2	67.0
New Jersey	24,572	26,948	31,987	668,453	696,100	747,332	36.8	38.7	42.8
New Mexico...	6,048	5,959	6,580	169,870	186,485	205,017	35.6	32.0	32.1
New York......	96,429	100,010	112,475	1,602,205	1,820,985	1,919,224	60.2	54.9	58.6
North Carolina.............	32,795	34,767	39,289	699,477	816,974	822,150	46.9	42.6	47.8
North Dakota ...	4,484	4,688	5,161	66,272	74,916	80,276	67.7	62.6	64.3
Ohio	48,865	51,026	56,993	1,052,052	1,081,211	1,112,156	46.4	47.2	51.2
Oklahoma...................	14,412	15,789	17,922	328,471	367,634	375,095	43.9	42.9	47.8
Oregon.........	13,159	13,452	16,296	287,641	337,895	341,623	45.7	39.8	47.7
Pennsylvania...............	61,840	67,041	78,044	1,039,419	1,121,633	1,191,907	59.5	59.8	65.5
Rhode Island....	8,788	8,468	9,811	84,855	109,933	116,201	103.6	77.0	84.4
South Carolina	14,998	16,676	19,256	381,672	418,585	420,351	39.3	39.8	45.8
South Dakota......	4,603	4,363	4,921	73,421	79,589	83,635	62.7	54.8	58.8
Tennessee..	20,659	22,712	25,770	510,638	563,333	557,703	40.5	40.3	46.2
Texas........................	70,765	76,037	88,000	1,947,117	2,280,525	2,421,692	36.3	33.3	36.3
Utah	15,275	16,775	19,565	265,713	329,723	326,302	57.5	50.9	60.0
Vermont.....................	4,492	4,671	4,841	51,912	58,647	62,424	86.5	79.6	77.6
Virginia	30,914	32,895	36,747	649,086	697,925	737,118	47.6	47.1	49.9
Washington	22,492	23,271	27,571	505,840	581,479	605,063	44.5	40.0	45.6
West Virginia	8,582	8,704	9,572	186,316	174,936	167,236	46.1	49.8	57.2
Wisconsin	26,934	28,415	30,839	483,384	535,174	562,611	55.7	53.1	54.8
Wyoming.........	1,641	1,677	1,695	51,218	51,476	54,090	32.0	32.6	31.3
Puerto Rico	14,110	15,762	16,669	NA	426,194	411,575	NA	37.0	40.5

[^3]
Bachelor's Degrees in Natural Sciences and Engineering Conferred per 1,000 Individuals 18-24 Years Old

Figure 8-16
Bachelor's degrees in natural sciences and engineering conferred per 1,000 individuals 18-24 years old: 2005

SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years); Census Bureau, 2000 Decennial Census; and Population Estimates Program (various years). See table 8-16.

Findings

- During the past decade, the value of this indicator has remained unchanged at 7.9 NS\&E bachelor's degrees conferred per 1,000 18-24-year-olds.
- The percentage of NS\&E bachelor's degrees among all bachelor's degrees conferred declined slightly from 16.8% in 1996 to 16.4\% in 2005.
- The value of this indicator ranged from 3.1 to 14.9 for individual states. However, the District of Columbia had a value of 18.6, reflecting a large concentration of academic institutions relative to the size of the resident population.
- The value for this indicator has decreased in 21 states and the District of Columbia over the past decade.
- State rankings were generally in the same quartile for this indicator as for the number of bachelor's degrees conferred per 1,000 18-24-year-olds.

Natural sciences and engineering (NS\&E) fields include physical, earth, ocean, atmospheric, biological, agricultural, and computer sciences; mathematics; and engineering but exclude social sciences and psychology. The ratio of new NS\&E bachelor's degrees to the 18-24-year-old population indicates the extent to which a state prepares young people to enter the types of technology-intensive occupations that are fundamental to a knowledge-based, technology-driven economy. The capacity to produce NS\&E degrees also may generate resources for the state. The 18-24-yearold cohort was chosen to approximate the age range of most students who are pursing an undergraduate degree.

Although the number of NS\&E bachelor's degrees awarded is based on an actual count, the population of

18-24-year-olds is an estimate developed by the Census Bureau in the Population Estimates Program, which relies on the Decennial Census. This estimate may make the value of this indicator imprecise for jurisdictions with small populations.

A high value for this indicator may suggest relative success in providing a technical undergraduate education. Student and graduate mobility after graduation, however, may make this indicator less meaningful in predicting the qualifications of a state's future workforce. The indicator's value may also be high when a higher education system draws a large percentage of out-of-state students to study in NS\&E fields, a situation that sometimes occurs in states with small resident populations and the District of Columbia.

Table 8-16
Bachelor's degrees in natural sciences and engineering conferred per 1,000 individuals 18-24 years old, by state: 1996, 2001, and 2005

NA = not available
NS\&E = natural sciences and engineering
SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years); Census Bureau, 2000 Decennial Census; and Population Estimates Program (various years).

S\&E Degrees as Share of Higher Education Degrees Conferred

Figure 8-17
S\&E degrees as share of higher education degrees conferred: 2005

SOURCE: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years). See Table 8-17.

Findings

- In 2005, more than 609,000 S\&E bachelor's, master's, and doctoral degrees were conferred nationwide, an increase of 21% during the past decade.
- Overall, there has been a slight decline in the number of S\&E degrees as a share of total degrees conferred from 31.0\% in 1996 to 29.9\% in 2005.
- States place different emphases on technical higher education. In some states, nearly 40% of their degrees are awarded in S\&E fields; in others approximately 20\% of their degrees are awarded in these fields
- State emphasis on S\&E education remained relatively constant over the decade; notable exceptions are increases in Hawaii and Maryland and decreases in Wyoming and Arizona.
- The District of Columbia has a high value of 41% because of the large S\&E graduate programs in political science and public administration at several of its academic institutions.

This indicator is a measure of the extent to which a state's higher education programs are concentrated in S\&E fields. The indicator is expressed as the percentage of higher education degrees that were conferred in S\&E fields. High values for this indicator are from states that emphasize $\mathrm{S} \& E$ fields in their higher education systems.

S\&E fields include physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psy-
chology. For both S\&E degrees and higher education degrees conferred, bachelor's, master's, and doctoral degrees are included; associate's degrees are excluded. Geographic location refers to the location of the degree-granting institution and does not reflect the state where students permanently reside. The year is the latter date of the academic year. For example, data for 2005 represent degrees conferred during the 2004-05 academic year.

Table 8-17
S\&E degrees as share of higher education degrees conferred, by state: 1996, 2001, and 2005

State	S\&E degrees			All higher education degrees			S\&E/higher education degrees (\%)		
	1996	2001	2005	1996	2001	2005	1996	2001	2005
United States.................	502,046	519,446	609,114	1,617,096	1,750,369	2,036,215	31.0	29.7	29.9
Alabama....................	6,975	7,426	7,951	27,139	29,302	31,951	25.7	25.3	24.9
Alaska ..	670	604	676	1,999	1,776	2,107	33.5	34.0	32.1
Arizona.	6,655	6,565	10,968	27,922	40,468	60,188	23.8	16.2	18.2
Arkansas.	2,774	2,844	3,306	11,239	12,058	14,303	24.7	23.6	23.1
California...................	58,551	62,752	75,803	152,162	167,200	197,839	38.5	37.5	38.3
Colorado	11,073	11,696	13,189	27,577	30,390	35,346	40.2	38.5	37.3
Connecticut	6,976	6,929	8,154	21,205	22,479	26,378	32.9	30.8	30.9
Delaware.	1,894	1,861	2,158	5,739	6,116	7,455	33.0	30.4	28.9
District of Columbia	6,675	6,856	7,477	15,872	15,939	18,307	42.1	43.0	40.8
Florida.......................	17,289	18,561	23,974	63,271	69,121	84,841	27.3	26.9	28.3
Georgia ...	10,572	11,489	14,394	37,426	39,537	48,691	28.2	29.1	29.6
Hawaii	1,942	2,131	2,349	6,419	6,461	7,031	30.3	33.0	33.4
Idaho.......................	1,722	1,756	2,360	5,686	5,809	8,969	30.3	30.2	26.3
Illinois	21,551	23,370	25,927	80,126	86,923	95,634	26.9	26.9	27.1
Indiana	11,882	11,187	13,317	39,319	41,484	48,940	30.2	27.0	27.2
lowa ..	6,506	6,389	7,328	21,761	22,680	25,393	29.9	28.2	28.9
Kansas..	5,332	5,660	6,139	20,246	20,705	22,791	26.3	27.3	26.9
Kentucky.....	4,933	5,015	6,085	19,566	20,749	25,138	25.2	24.2	24.2
Louisiana....................	6,781	6,924	7,773	23,737	26,173	28,398	28.6	26.5	27.4
Maine ...	2,168	2,236	2,550	6,572	6,659	8,173	33.0	33.6	31.2
Maryland	11,479	12,710	15,608	31,688	34,738	39,918	36.2	36.6	39.1
Massachusetts...........	22,230	22,825	25,232	65,306	70,333	75,589	34.0	32.5	33.4
Michigan ...	18,796	18,611	21,249	61,625	68,231	74,695	30.5	27.3	28.4
Minnesota .	9,289	9,163	11,199	30,672	31,906	40,897	30.3	28.7	27.4
Mississippi	3,473	3,472	3,577	13,108	14,904	15,931	26.5	23.3	22.5
Missouri	10,319	11,353	12,852	38,843	44,278	52,183	26.6	25.6	24.6
Montana....	1,891	2,076	2,254	5,535	6,049	6,416	34.2	34.3	35.1
Nebraska........	3,119	3,261	3,836	12,542	14,315	16,421	24.9	22.8	23.4
Nevada...	1,178	1,277	1,826	4,448	5,366	6,723	26.5	23.8	27.2
New Hampshire	2,893	2,940	3,316	9,857	9,526	10,755	29.3	30.9	30.8
New Jersey	12,560	13,842	15,667	34,043	37,760	45,515	36.9	36.7	34.4
New Mexico	2,864	2,522	2,860	8,865	8,460	9,718	32.3	29.8	29.4
New York........	43,392	44,664	51,555	144,398	153,327	176,746	30.1	29.1	29.2
North Carolina...	14,516	14,543	16,664	41,615	45,316	52,136	34.9	32.1	32.0
North Dakota	1,462	1,397	1,539	5,268	5,597	6,454	27.8	25.0	23.8
Ohio	19,333	18,661	20,687	68,153	71,266	80,181	28.4	26.2	25.8
Oklahoma....	4,982	5,914	6,286	18,626	21,421	23,921	26.7	27.6	26.3
Oregon...	6,153	6,427	7,691	17,582	18,646	22,764	35.0	34.5	33.8
Pennsylvania.....	25,756	26,717	31,632	83,683	91,693	107,302	30.8	29.1	29.5
Rhode Island...............	3,243	2,872	3,646	11,089	10,633	12,277	29.2	27.0	29.7
South Carolina	5,893	6,131	6,857	19,889	21,781	24,873	29.6	28.1	27.6
South Dakota..............	1,990	1,801	2,017	5,757	5,445	6,227	34.6	33.1	32.4
Tennessee	7,813	7,787	8,706	27,572	31,505	34,953	28.3	24.7	24.9
Texas........................	27,252	28,242	34,716	96,227	103,447	123,473	28.3	27.3	28.1
Utah ..	6,308	6,101	7,840	18,498	20,346	23,521	34.1	30.0	33.3
Vermont...	2,128	2,129	2,493	5,844	6,014	6,543	36.4	35.4	38.1
Virginia	15,376	15,782	17,549	42,580	44,738	50,670	36.1	35.3	34.6
Washington	9,523	9,907	12,020	31,320	31,299	36,531	30.4	31.7	32.9
West Virginia	2,761	2,699	2,945	10,885	11,225	12,520	25.4	24.0	23.5
Wisconsin	10,253	10,538	12,160	34,466	36,614	40,287	29.7	28.8	30.2
Wyoming....................	900	831	757	2,129	2,161	2,202	42.3	38.5	34.4
Puerto Rico	4,113	5,034	5,031	15,736	18,378	20,855	26.1	27.4	24.1

NOTES: S\&E degrees include bachelor's, master's, and doctorate. S\&E degrees include physical, computer, agricultural, biological, earth, atmospheric, ocean, and social sciences; psychology; mathematics; and engineering. All higher education degrees include bachelor's, master's, and doctorate.
SOURCE: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years).

S\&E Graduate Students per 1,000 Individuals 25-34 Years Old

Figure 8-18
S\&E graduate students per 1,000 individuals 25-34 years old: 2005

SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Graduate Students and Postdoctorates in Science and Engineering; and Census Bureau, Population Estimates Program (various years). See table 8-18.

Findings

- The number of S\&E graduate students in the United States grew 15\% over the previous decade, rising from approximately 409,000 in 1996 to more than 471,000 in 2005.
- Individual states showed varying levels of graduate level S\&E training, with 0.5\%-2.7\% of their 25-34-year-old population pursuing S\&E graduate studies in 2005.
- The District of Columbia is an outlier, with about 8\% of its 25-34-year-old population enrolled as S\&E graduate students, reflecting a large concentration of S\&E graduate programs in political science and public administration and a small resident population.
- Changes in the value of this indicator over the past decade may reflect shifts in population, changes in S\&E graduate education, or a combination of both. Growth in the number of S\&E graduate students was highest in California, Texas, and Florida between 1996 and 2005.

Graduate students in S\&E fields may become the technical leaders of the future. The ratio of $\mathrm{S} \& E$ graduate students to a state's 25-34-year-old population is a relative measure of a state's population with graduate training in S\&E. The 25-34-year-old cohort was chosen to approximate the age of most graduate students. The cohort includes U.S. citizens and noncitizens as well as graduate students who come from other states. The population cohort includes all state residents ages 25-34 and does not distinguish between citizens and noncitizens.

Data on S\&E graduate students were collected by surveying all academic institutions in the United States that offer doctoral or master's degree programs in any science or engineering field, including physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psychology. Graduate students who are enrolled in schools of nursing, public health, dentistry, veterinary medicine, and other health-related disciplines are not included.

Table 8-18
S\&E graduate students per 1,000 individuals 25-34 years old, by state: 1996, 2001, and 2005

State	S\&E graduate students			Population 25-34 years old			S\&E graduate students/ 1,000 individuals 25-34 years old		
	1996	2001	2005	1996	2001	2005	1996	2001	2005
United States.	408,754	422,331	471,371	40,245,871	39,701,883	40,144,656	10.2	10.6	11.7
Alabama.....	5,334	5,257	6,232	630,233	591,099	596,242	8.5	8.9	10.5
Alaska .	782	611	795	84,704	88,274	94,149	9.2	6.9	8.4
Arizona...	6,381	6,665	6,849	657,074	760,730	864,417	9.7	8.8	7.9
Arkansas ...	2,040	2,052	2,420	338,213	349,764	370,205	6.0	5.9	6.5
California...	51,004	54,249	63,474	5,347,874	5,270,958	5,261,651	9.5	10.3	12.1
Colorado	8,364	8,843	8,835	558,163	681,814	706,360	15.0	13.0	12.5
Connecticut	5,732	6,900	6,943	503,807	438,925	413,537	11.4	15.7	16.8
Delaware......	1,459	1,461	1,760	121,415	106,814	107,945	12.0	13.7	16.3
District of Columbia ...	8,255	7,448	8,662	108,632	102,322	104,177	76.0	72.8	83.1
Florida......................	14,264	16,345	19,130	2,002,813	2,086,696	2,234,269	7.1	7.8	8.6
Georgia	8,508	9,345	10,675	1,215,294	1,309,335	1,354,947	7.0	7.1	7.9
Hawaii	1,734	1,455	1,892	168,485	169,440	175,190	10.3	8.6	10.8
Idaho.	1,343	1,495	1,923	149,784	171,653	196,134	9.0	8.7	9.8
Illinois.	22,121	24,173	23,307	1,825,273	1,802,505	1,787,380	12.1	13.4	13.0
Indiana .	8,781	8,489	9,695	867,584	822,315	841,485	10.1	10.3	11.5
lowa	4,722	4,693	5,009	383,395	357,757	358,104	12.3	13.1	14.0
Kansas.	5,873	5,846	5,825	368,460	345,539	351,504	15.9	16.9	16.6
Kentucky......	3,740	4,017	4,625	565,744	560,393	578,303	6.6	7.2	8.0
Louisiana......	5,585	5,703	4,777	614,661	585,687	593,005	9.1	9.7	8.1
Maine	666	605	684	176,186	154,509	151,290	3.8	3.9	4.5
Maryland	9,253	9,181	11,198	838,211	737,209	729,112	11.0	12.5	15.4
Massachusetts.....	19,537	20,118	22,493	1,036,693	911,871	838,499	18.8	22.1	26.8
Michigan	14,593	15,431	15,224	1,449,151	1,338,131	1,289,703	10.1	11.5	11.8
Minnesota	6,465	6,634	10,674	691,672	669,256	671,628	9.3	9.9	15.9
Mississippi ...	2,703	2,594	3,138	382,545	375,787	381,834	7.1	6.9	8.2
Missouri	5,895	6,320	7,278	770,644	731,638	757,374	7.6	8.6	9.6
Montana...	1,146	1,176	1,371	101,054	101,958	109,731	11.3	11.5	12.5
Nebraska......	2,560	2,428	2,811	223,417	221,334	225,120	11.5	11.0	12.5
Nevada........	1,439	1,584	1,992	252,663	316,202	363,877	5.7	5.0	5.5
New Hampshire	1,216	1,337	1,448	188,221	158,323	153,457	6.5	8.4	9.4
New Jersey	10,429	11,148	12,093	1,200,054	1,170,282	1,105,168	8.7	9.5	10.9
New Mexico..	3,171	3,269	3,762	228,959	231,954	249,745	13.8	14.1	15.1
New York.......	38,439	38,613	42,039	2,852,788	2,706,393	2,559,820	13.5	14.3	16.4
North Carolina..	9,768	10,494	12,019	1,150,418	1,213,053	1,215,149	8.5	8.7	9.9
North Dakota	896	1,078	1,512	87,491	74,406	74,480	10.2	14.5	20.3
Ohio	17,491	16,080	18,885	1,633,740	1,489,708	1,459,108	10.7	10.8	12.9
Oklahoma...................	3,905	4,166	4,274	442,383	448,235	467,576	8.8	9.3	9.1
Oregon......................	3,831	3,844	4,310	437,028	476,414	506,932	8.8	8.1	8.5
Pennsylvania...............	18,814	18,348	20,146	1,705,702	1,520,455	1,460,565	11.0	12.1	13.8
Rhode Island.....	1,662	1,646	2,018	158,924	137,986	134,088	10.5	11.9	15.0
South Carolina	3,507	3,120	3,234	573,575	553,179	563,274	6.1	5.6	5.7
South Dakota......	918	982	930	93,985	89,669	92,998	9.8	11.0	10.0
Tennessee	6,090	5,737	6,448	801,585	804,104	826,126	7.6	7.1	7.8
Texas.........................	26,007	28,224	32,582	2,897,002	3,207,841	3,392,687	9.0	8.8	9.6
Utah .	4,107	4,034	4,884	292,112	333,573	390,591	14.1	12.1	12.5
Vermont.	599	597	644	87,507	72,773	71,097	6.8	8.2	9.1
Virginia	11,571	12,156	12,408	1,114,265	1,030,917	1,044,709	10.4	11.8	11.9
Washington	5,802	5,834	6,513	828,876	844,924	874,525	7.0	6.9	7.4
West Virginia	1,885	2,013	2,205	230,950	224,034	232,453	8.2	9.0	9.5
Wisconsin	7,606	7,729	8,439	750,352	694,595	697,679	10.1	11.1	12.1
Wyoming...................	761	764	887	56,110	59,150	65,257	13.6	12.9	13.6
Puerto Rico	2,206	3,062	3,649	NA	537,823	550,887	NA	5.7	6.6

[^4]
Advanced S\&E Degrees as Share of S\&E Degrees Conferred

Figure 8-19
Advanced S\&E degrees as share of S\&E degrees conferred: 2005

Findings

- In 2005, more than 147,000 advanced S\&E degrees were awarded nationwide; this total represented approximately 22% more than in 1996, but the share of advanced degrees remained stable at 24% of all S\&E degrees conferred.
- Some states specialize in providing graduate-level technical training, with nearly 35% of their S\&E graduates completing training at the master's or doctoral level; other states have much smaller graduate S\&E programs, with values as low as 8%.
- Over the past decade, the largest absolute increases in the production of advanced S\&E degree holders have occurred in California, New York, and Texas.
- In states with small S\&E graduate programs, the number of advanced S\&E degrees conferred varies considerably from year to year. Caution should be used in making annual comparisons for those states with small S\&E graduate programs.
- The District of Columbia is an outlier, with 44% reflecting large S\&E graduate programs in political science and public administration at several of its academic institutions.

This indicator shows the extent to which a state's higher education programs in S\&E are concentrated at the graduate level. S\&E fields include physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psychology. Advanced S\&E degrees include master's and doctoral degrees. All S\&E degrees include bachelor's, master's, and doctoral degrees but exclude associate's degrees.

The indicator value is obtained by dividing the number of advanced $S \& E$ degrees by the total number of S\&E degrees awarded by the higher education institutions within the state. A high value shows that a state's higher education institutions are emphasizing $S \& E$ training at the graduate level.

Table 8-19
Advanced S\&E degrees as share of S\&E degrees conferred, by state: 1996, 2001, and 2005

State	Advanced S\&E degrees			All S\&E degrees			Advanced/all S\&E degrees (\%)		
	1996	2001	2005	1996	2001	2005	1996	2001	2005
United States..................	121,109	123,561	147,339	502,046	519,446	609,114	24.1	23.8	24.2
Alabama.....................	1,470	1,969	2,271	6,975	7,426	7,951	21.1	26.5	28.6
Alaska	209	184	236	670	604	676	31.2	30.5	34.9
Arizona.......................	1,810	1,632	1,851	6,655	6,565	10,968	27.2	24.9	16.9
Arkansas	439	440	558	2,774	2,844	3,306	15.8	15.5	16.9
California....................	14,889	15,208	18,894	58,551	62,752	75,803	25.4	24.2	24.9
Colorado	2,919	2,991	3,194	11,073	11,696	13,189	26.4	25.6	24.2
Connecticut	1,767	1,768	2,209	6,976	6,929	8,154	25.3	25.5	27.1
Delaware	434	419	507	1,894	1,861	2,158	22.9	22.5	23.5
District of Columbia	3,194	2,990	3,317	6,675	6,856	7,477	47.9	43.6	44.4
Florida	4,022	4,176	5,253	17,289	18,561	23,974	23.3	22.5	21.9
Georgia	2,403	2,551	3,182	10,572	11,489	14,394	22.7	22.2	22.1
Hawaii	444	529	538	1,942	2,131	2,349	22.9	24.8	22.9
Idaho.	389	341	424	1,722	1,756	2,360	22.6	19.4	18.0
Illinois.	6,366	7,171	8,280	21,551	23,370	25,927	29.5	30.7	31.9
Indiana	2,629	2,439	2,840	11,882	11,187	13,317	22.1	21.8	21.3
lowa	1,178	1,014	1,261	6,506	6,389	7,328	18.1	15.9	17.2
Kansas	1,201	1,203	1,394	5,332	5,660	6,139	22.5	21.3	22.7
Kentucky.	887	974	1,551	4,933	5,015	6,085	18.0	19.4	25.5
Louisiana.	1,481	1,435	1,758	6,781	6,924	7,773	21.8	20.7	22.6
Maine	207	174	196	2,168	2,236	2,550	9.5	7.8	7.7
Maryland	3,458	3,832	4,617	11,479	12,710	15,608	30.1	30.1	29.6
Massachusetts.	6,477	6,636	7,653	22,230	22,825	25,232	29.1	29.1	30.3
Michigan	4,734	4,933	5,741	18,796	18,611	21,249	25.2	26.5	27.0
Minnesota	1,843	1,683	2,137	9,289	9,163	11,199	19.8	18.4	19.1
Mississippi	709	636	793	3,473	3,472	3,577	20.4	18.3	22.2
Missouri	2,807	2,939	3,452	10,319	11,353	12,852	27.2	25.9	26.9
Montana.....................	345	358	447	1,891	2,076	2,254	18.2	17.2	19.8
Nebraska.	671	697	808	3,119	3,261	3,836	21.5	21.4	21.1
Nevada......................	297	304	482	1,178	1,277	1,826	25.2	23.8	26.4
New Hampshire	416	463	490	2,893	2,940	3,316	14.4	15.7	14.8
New Jersey	3,023	3,225	3,811	12,560	13,842	15,667	24.1	23.3	24.3
New Mexico	931	729	857	2,864	2,522	2,860	32.5	28.9	30.0
New York....................	11,219	11,444	13,816	43,392	44,664	51,555	25.9	25.6	26.8
North Carolina.	2,502	2,717	3,177	14,516	14,543	16,664	17.2	18.7	19.1
North Dakota	221	183	234	1,462	1,397	1,539	15.1	13.1	15.2
Ohio	5,257	4,650	5,222	19,333	18,661	20,687	27.2	24.9	25.2
Oklahoma.	1,285	1,847	1,624	4,982	5,914	6,286	25.8	31.2	25.8
Oregon.......................	1,299	1,296	1,544	6,153	6,427	7,691	21.1	20.2	20.1
Pennsylvania...............	5,449	5,507	6,753	25,756	26,717	31,632	21.2	20.6	21.3
Rhode Island...............	662	532	610	3,243	2,872	3,646	20.4	18.5	16.7
South Carolina	1,025	1,114	1,104	5,893	6,131	6,857	17.4	18.2	16.1
South Dakota.	417	379	472	1,990	1,801	2,017	21.0	21.0	23.4
Tennessee.	1,427	1,506	1,563	7,813	7,787	8,706	18.3	19.3	18.0
Texas.........................	7,072	7,464	9,438	27,252	28,242	34,716	26.0	26.4	27.2
Utah	1,054	1,011	1,283	6,308	6,101	7,840	16.7	16.6	16.4
Vermont.	379	295	501	2,128	2,129	2,493	17.8	13.9	20.1
Virginia	3,199	3,238	3,926	15,376	15,782	17,549	20.8	20.5	22.4
Washington	1,970	1,852	2,141	9,523	9,907	12,020	20.7	18.7	17.8
West Virginia	483	523	660	2,761	2,699	2,945	17.5	19.4	22.4
Wisconsin	1,863	1,730	2,069	10,253	10,538	12,160	18.2	16.4	17.0
Wyoming....................	277	230	200	900	831	757	30.8	27.7	26.4
Puerto Rico	453	791	910	4,113	5,034	5,031	11.0	15.7	18.1

NOTES: All degrees include bachelor's, master's, and doctorate; advanced degrees include only master's and doctorate. S\&E degrees include physical, computer, agricultural, biological, earth, atmospheric, ocean, and social sciences; psychology; mathematics; and engineering.
SOURCE: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years).

Average Undergraduate Charge at Public 4-Year Institutions

Figure 8-20
Average undergraduate charge at public 4-year institutions: 2006

1st quartile (\$17,708-\$13,685)	2nd quartile (\$13,275-\$11,286)	3rd quartile $\mathbf{(\$ 1 0 , 9 7 3 - \$ 9 , 6 7 5)}$	4th quartile (\$9,625-\$8,506)	No data
California	Arizona	Alaska	District of Columbia	
Connecticut	Colorado	Alabama		
Delaware	Indiana	Georgia	Arkansas	
Illinois	lowa	Kansas	Hawaii	
Maryland	Maine	Kentucky	Idaho	
Massachusetts	Minnesota	Montana	Louisiana	
Michigan	Missouri	Nevada	Mississippi	
New Hampshire	Nebraska	North Carolina	New Mexico	
New Jersey	New York	North Dakota	Oklahoma	
Ohio	Oregon	Tennessee	Utah Dakota	
Pennsylvania	South Carolina	Vexas	Wyoming	
Rhode Island	Virginia	West Virginia		
Vermont	Washington	Wisconsin		

SOURCE: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years). See table 8-20.

Findings

- During 2006, the total annual nominal charge for a full-time undergraduate student to attend a public 4-year institution averaged \$12,108 nationally, an increase of 73% during the past decade in current dollars.
- All states showed major increases in undergraduate charges at public institutions in 2006 compared with 1996. In Oklahoma, lowa, Nebraska, and Texas, undergraduate charges more than doubled during this period.
- In 2006, the state average for a year of undergraduate education at a public 4-year institution ranged from a low of $\$ 8,506$ to a high of $\$ 17,708$.
- Tuition and required fees averaged approximately 40% of the total charges at public 4-year institutions, but individual states had different cost structures.

The average annual charge for an undergraduate student to attend a public 4-year academic institution is one indicator of how accessible higher education in S\&E is to a state's students. The annual charge includes standard in-state charges for tuition, required fees, room, and board for a full-time undergraduate student who is a resident of that state. These charges were weighted by the number of full-time undergraduates attending each public institution within the state. The total charge for all public 4 -year institutions in the state was divided by the total number of full-time
undergraduates attending all public 4 -year institutions in the state. The year is the latter date of the academic year. For example, data for 2006 represent costs for the 2005-06 academic year.

To improve the educational attainment of their residents, many states have chosen to reduce the charge to students by providing state subsidies or direct financial aid. Additional financial aid is provided by the federal government and by the academic institutions. The data in this indicator do not include any adjustment for financial aid that a student might receive.

Table 8-20
Average undergraduate charge at public 4-year institutions, by state: 1996, 2001, and 2006 (Dollars)

State	1996	2001	2006
United States.	7,014	8,653	12,108
Alabama.	5,735	7,349	9,625
Alaska .	6,663	8,390	10,620
Arizona..	5,996	7,874	11,480
Arkansas .	5,055	6,797	9,192
California...	8,209	9,590	13,685
Colorado.	7,030	8,362	11,569
Connecticut .	8,755	10,521	14,658
Delaware..	8,512	10,283	14,326
District of Columbia	NA	NA	NA
Florida..	6,251	7,947	10,141
Georgia	5,690	7,463	10,062
Hawaii.	NA	8,272	9,042
Idaho..	5,306	6,765	8,982
Illinois..	7,841	9,532	13,976
Indiana.	7,388	9,239	12,388
lowa.	5,945	7,587	12,329
Kansas.	5,688	6,654	9,980
Kentucky..	5,454	6,923	10,663
Louisiana..	5,503	6,329	8,506
Maine ..	7,899	9,371	12,568
Maryland.	8,731	10,834	14,793
Massachusetts.	8,770	9,207	14,651
Michigan .	8,189	9,825	13,693
Minnesota	6,734	8,127	12,777
Mississippi ..	5,416	7,195	9,461
Missouri .	6,768	8,203	11,861
Montana.	7,803	7,615	10,613
Nebraska.	5,503	7,355	11,286
Nevada..	7,400	8,247	10,865
New Hampshire .	8,730	11,720	15,479
New Jersey .	9,118	12,007	17,708
New Mexico...	5,299	7,086	9,579
New York..	8,971	10,260	13,275
North Carolina.	5,119	7,076	9,675
North Dakota	5,641	6,418	9,829
Ohio	8,157	10,451	16,032
Oklahoma...	4,296	6,022	9,404
Oregon..	7,395	9,394	12,720
Pennsylvania..	9,138	11,091	15,464
Rhode Island...	9,453	11,095	14,315
South Carolina	6,964	9,096	13,145
South Dakota.	5,613	6,975	9,493
Tennessee.	5,373	7,658	9,956
Texas.	5,471	7,614	10,973
Utah .	5,389	6,598	8,745
Vermont.	10,657	12,847	16,571
Virginia.	8,207	8,751	12,279
Washington..	7,129	8,909	12,384
West Virginia .	6,119	7,290	9,992
Wisconsin	5,839	7,396	10,560
Wyoming...	5,429	7,017	8,946
Puerto Rico ..	NA	NA	NA

[^5]
Average Undergraduate Charge at Public 4-Year Institutions as Share of Disposable Personal Income

Figure 8-21
Average undergraduate charge at public 4-year institutions as share of disposable personal income: 2006

1st quartile (54.9\%-41.8\%)	2nd quartile (41.4\%-37.2\%)	3rd quartile (36.8\%-33.7\%)	4th quartile (33.6\%-24.7\%)	No data
Delaware	Arizona	Alabama	District of Columbia	
Illinois	California	Arkansas	Alaska	
Indiana	Cowa	Colorado	Florida	
Maine	Kentucky	Connecticut	Hawaii	
Michigan	Maryland	Georgia	Idaho	
New Hampshire	Massachusetts	Nebraska	Kansas	
New Jersey	Minnesota	New Mexico	Louisiana	
Ohio	Mississippi	North Carolina	Nevada	
Oregon	Missouri	North Dakota		
Pennsylvania	Montana	Texas	Oklahoma	
Rhode Island	New York	Utah	South Dakota	
South Carolina	Washington	Virginia	Wyoming	
Vermont	West Virginia	Wisconsin		

SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years); and Bureau of Economic Analysis, State and Local Personal Income data. See table 8-21.

Findings

- In 2006 throughout the United States, a year of undergraduate education at a state institution would have consumed 38.2% of an average resident's disposable income, an increase from the 33.3% it would have consumed a decade earlier.
- The cost of a year of undergraduate education at a public institution consumed one-quarter to one-half of the per capita disposable income for residents of most states in 2006.
- Although a year of undergraduate education at a public institution became less affordable for residents in most states, affordability improved in six states during the past decade.
- Residents in Ohio, lowa, South Carolina, and Nebraska experienced the steepest increases in the cost of a year of undergraduate education relative to their purchasing power (in excess of 10% of per capita disposable income) between 1996 and 2006.

This indicator provides a broad measure of the affordability of higher education at a public institution for the average resident. It is calculated by dividing the average undergraduate charge at all public 4-year institutions in the state by the per capita disposable personal income of state residents. The average undergraduate charge includes standard in-state tuition, room, board, and required fees for a student who is a resident of the state. Disposable personal income is the income that is available to state residents for spending
or saving. It is calculated as personal income minus personal current taxes paid to federal, state, and local governments. The year is the latter date of the academic year. For example, data for 2006 represent costs for the 2005-06 academic year.

High values indicate that a year of undergraduate education is more costly or less affordable to state residents. However, the data in this indicator do not include any adjustment for financial aid that a student might receive.

Table 8-21
Average undergraduate charge at public 4-year institutions as share of disposable personal income, by state: 1996, 2001, and 2006

	Average undergraduate charge (\$)			Per capita disposable personal income (\$)			Undergraduate charge/ disposable personal income (\%)		
State	1996	2001	2006	1996	2001	2006	1996	2001	2006
United States.	7,014	8,653	12,108	21,089	26,228	31,735	33.3	33.0	38.2
Alabama.	5,735	7,349	9,625	17,842	21,998	28,185	32.1	33.4	34.1
Alaska	6,663	8,390	10,620	23,003	28,155	33,595	29.0	29.8	31.6
Arizona.	5,996	7,874	11,480	18,306	22,932	27,763	32.8	34.3	41.3
Arkansas	5,055	6,797	9,192	16,920	20,443	25,112	29.9	33.2	36.6
California.	8,209	9,590	13,685	22,011	27,492	33,373	37.3	34.9	41.0
Colorado	7,030	8,362	11,569	22,174	29,575	34,332	31.7	28.3	33.7
Connecticut	8,755	10,521	14,658	27,105	34,610	40,973	32.3	30.4	35.8
Delaware.	8,512	10,283	14,326	22,071	27,266	33,683	38.6	37.7	42.5
District of Columbia	NA	NA	NA	28,275	37,147	47,515	NA	NA	NA
Florida.	6,251	7,947	10,141	20,962	25,611	31,635	29.8	31.0	32.1
Georgia	5,690	7,463	10,062	20,029	24,670	28,109	28.4	30.3	35.8
Hawaii.	NA	8,272	9,042	22,086	25,136	31,856	NA	32.9	28.4
Idaho.	5,306	6,765	8,982	17,898	21,904	26,754	29.6	30.9	33.6
Illinois.	7,841	9,532	13,976	22,924	27,852	33,419	34.2	34.2	41.8
Indiana	7,388	9,239	12,388	19,528	23,925	28,979	37.8	38.6	42.7
lowa	5,945	7,587	12,329	19,962	23,921	29,808	29.8	31.7	41.4
Kansas	5,688	6,654	9,980	20,036	25,045	30,935	28.4	26.6	32.3
Kentucky.	5,454	6,923	10,663	17,443	21,766	26,104	31.3	31.8	40.8
Louisiana.	5,503	6,329	8,506	17,690	22,047	28,553	31.1	28.7	29.8
Maine	7,899	9,371	12,568	18,801	23,715	28,777	42.0	39.5	43.7
Maryland	8,731	10,834	14,793	23,396	30,061	37,574	37.3	36.0	39.4
Massachusetts.	8,770	9,207	14,651	24,439	31,746	38,794	35.9	29.0	37.8
Michigan	8,189	9,825	13,693	21,040	25,998	30,117	38.9	37.8	45.5
Minnesota	6,734	8,127	12,777	21,986	27,825	33,494	30.6	29.2	38.1
Mississippi	5,416	7,195	9,461	16,004	19,849	24,360	33.8	36.2	38.8
Missouri	6,768	8,203	11,861	19,777	24,178	29,066	34.2	33.9	40.8
Montana.	7,803	7,615	10,613	16,983	21,889	27,419	45.9	34.8	38.7
Nebraska	5,503	7,355	11,286	20,879	25,117	30,676	26.4	29.3	36.8
Nevada.	7,400	8,247	10,865	22,803	26,776	32,290	32.5	30.8	33.6
New Hampshire	8,730	11,720	15,479	23,434	29,223	34,964	37.3	40.1	44.3
New Jersey.	9,118	12,007	17,708	26,299	32,816	39,840	34.7	36.6	44.4
New Mexico.	5,299	7,086	9,579	17,034	21,491	26,839	31.1	33.0	35.7
New York..	8,971	10,260	13,275	24,212	29,154	35,407	37.1	35.2	37.5
North Carolina	5,119	7,076	9,675	19,548	23,834	28,339	26.2	29.7	34.1
North Dakota	5,641	6,418	9,829	19,084	23,199	29,515	29.6	27.7	33.3
Ohio	8,157	10,451	16,032	20,217	24,665	29,223	40.3	42.4	54.9
Oklahoma.	4,296	6,022	9,404	17,523	22,999	28,895	24.5	26.2	32.5
Oregon.	7,395	9,394	12,720	20,232	24,506	29,310	36.6	38.3	43.4
Pennsylvania.	9,138	11,091	15,464	21,258	26,135	32,222	43.0	42.4	48.0
Rhode Island.	9,453	11,095	14,315	21,213	26,404	32,734	44.6	42.0	43.7
South Carolina	6,964	9,096	13,145	17,724	22,065	26,406	39.3	41.2	49.8
South Dakota.	5,613	6,975	9,493	19,661	24,328	31,116	28.5	28.7	30.5
Tennessee.	5,373	7,658	9,956	19,628	24,157	29,456	27.4	31.7	33.8
Texas.	5,471	7,614	10,973	19,802	25,691	31,012	27.6	29.6	35.4
Utah	5,389	6,598	8,745	17,085	21,687	25,792	31.5	30.4	33.9
Vermont.	10,657	12,847	16,571	19,418	25,221	30,317	54.9	50.9	54.7
Virginia	8,207	8,751	12,279	21,761	27,547	33,628	37.7	31.8	36.5
Washington	7,129	8,909	12,384	22,202	28,169	33,334	32.1	31.6	37.2
West Virginia	6,119	7,290	9,992	16,540	20,776	25,204	37.0	35.1	39.6
Wisconsin	5,839	7,396	10,560	20,091	25,322	30,439	29.1	29.2	34.7
Wyoming...................	5,429	7,017	8,946	19,159	26,351	36,176	28.3	26.6	24.7
Puerto Rico	NA								

NA = not available
NOTES: National average undergraduate charge for United States from Digest of Education Statistics data tables. Average charges for entire academic year. Tuition and fees weighted by number of full-time-equivalent undergraduates but not adjusted to reflect student residency. Room and board based on full-time students. National value for disposable personal income is value reported by Bureau of Economic Analysis.
SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years); and Bureau of Economic Analysis, State and Local Personal Income data.

State Expenditures on Student Aid per Full-Time Undergraduate Student

Figure 8-22
State expenditures on student aid per full-time undergraduate student: 2006

Findings

- In the United States, the total amount of state financial aid from grants that were provided to undergraduates rose from nearly $\$ 2.9$ billion in 1996 to nearly $\$ 6.8$ billion in 2006.
- On a per-student basis, state expenditures for student grants across the United States increased from \$427 in 1996 to \$802 in 2006 in current dollars.
- The amount of financial assistance provided by the states and the District of Columbia varied greatly in 2006; 10 jurisdictions averaged less than $\$ 100$ per undergraduate student, while 11 provided more than $\$ 1,000$ per student, including South Carolina and Georgia with more than \$2,000 per student.
- Four states reported spending less in current dollars for student financial aid in 2006 than in 1996 even though the cost of undergraduate education rose rapidly during this time period. All of these states were among the group spending less than $\$ 100$ per undergraduate student.

The cost of an undergraduate education can be reduced with financial assistance from the state, federal government, or academic institution. This indicator measures the amount of financial support from state grants that go to undergraduate students at both public and private institutions in the state. It is calculated by dividing the total state grant aid to undergraduates by the number of full-time undergraduates who are attending school in the state. A high value is one indicator of state efforts to provide access to higher education at a time of escalating undergraduate costs

This indicator should be viewed relative to the level of tuition charged to undergraduates in a state because some states have chosen to subsidize tuition for all students at public institutions rather than provide grants.

Total state grant expenditures for financial aid include both needbased and non-need-based grants. State assistance through subsidized or unsubsidized loans and awards to students at the graduate and first professional degree levels is not included. The year is the latter date of the academic year. For example, data for 2006 represent costs for the 2005-06 academic year.

Table 8-22
State expenditures on student aid per full-time undergraduate student, by state: 1996, 2001, and 2006

State	State expenditures on student aid (\$thousands)			Undergraduate enrollment at 4 -year institutions			State expenditures on student aid/ undergraduate (\$)		
	1996	2001	2006	1996	2001	2006	1996	2001	2006
United States.	2,870,447	4,605,393	6,789,273	6,725,612	7,193,814	8,460,873	427	640	802
Alabama..	8,320	7,413	7,626	120,895	130,189	140,142	69	57	54
Alaska	430	0	502	26,641	24,573	26,802	16	0	19
Arizona..	2,291	2,990	2,798	88,412	111,429	242,591	26	27	12
Arkansas	11,727	39,151	28,364	63,756	70,538	81,086	184	555	350
California.	235,582	461,914	757,809	517,769	599,658	698,811	455	770	1,084
Colorado ..	36,401	54,151	60,737	119,686	133,500	160,580	304	406	378
Connecticut	20,374	44,763	39,366	79,673	85,143	92,522	256	526	425
Delaware.	1,390	1,432	10,240	26,513	25,761	29,225	52	56	350
District of Columbia ...	939	781	33,856	43,365	40,703	62,888	22	19	538
Florida	100,363	302,633	410,758	235,558	288,143	466,469	426	1,050	881
Georgia	165,220	310,995	461,615	175,093	188,383	222,706	944	1,651	2,073
Hawaii	499	535	410	28,048	26,290	34,336	18	20	12
Idaho..	1,027	1,138	5,424	36,169	39,343	57,809	28	29	94
Illinois..	282,809	382,566	380,349	259,759	276,559	333,959	1,089	1383	1,139
Indiana .	69,599	111,618	182,281	205,747	217,294	241,153	338	514	756
lowa	39,431	53,100	53,815	93,412	97,241	119,841	422	546	449
Kansas ...	9,588	12,819	15,168	81,295	84,620	92,127	118	151	165
Kentucky...	26,215	66,931	172,866	107,893	109,981	126,074	243	609	1,371
Louisiana..	15,053	91,166	116,432	143,810	146,259	135,457	105	623	860
Maine	6,988	11,961	13,387	40,895	42,093	44,100	171	284	304
Maryland	36,066	50,416	76,362	108,231	117,720	130,057	333	428	587
Massachusetts..	54,646	116,892	80,093	236,525	235,263	243,742	231	497	329
Michigan	84,154	102,164	197,674	264,454	287,233	318,373	318	356	621
Minnesota	92,099	120,465	131,010	137,830	142,734	167,954	668	844	780
Mississippi	1,235	20,163	22,285	56,733	61,043	65,515	22	330	340
Missouri	24,236	43,882	42,068	166,157	180,799	209,818	146	243	200
Montana......	393	3,195	3,760	32,170	32,393	33,784	12	99	111
Nebraska..	3,114	5,975	9,918	62,045	58,789	62,753	50	102	158
Nevada.	3,063	13,449	39,671	24,519	32,012	80,249	125	420	494
New Hampshire	773	1,497	3,753	40,511	40,367	43,915	19	37	85
New Jersey	141,198	197,619	256,047	146,595	156,867	167,990	963	1,260	1,524
New Mexico	16,988	38,736	61,780	40,438	43,089	50,390	420	899	1,226
New York..	630,069	659,394	895,129	560,579	569,260	617,536	1,124	1,158	1,450
North Carolina..	43,968	121,153	192,018	182,725	191,117	224,053	241	634	857
North Dakota	2,187	1,152	1,864	28,514	28,462	33,164	77	40	56
Ohio	120,967	173,868	221,411	300,831	302,681	334,964	402	574	661
Oklahoma......	20,501	29,035	58,216	90,281	98,512	115,304	227	295	505
Oregon..	13,651	19,711	29,429	66,714	76,071	90,742	205	259	324
Pennsylvania....	232,020	325,234	403,957	356,314	377,646	415,319	651	861	973
Rhode Island.............	5,741	6,164	12,883	45,757	49,484	53,930	125	125	239
South Carolina	18,622	98,095	255,744	86,620	92,074	104,430	215	1,065	2,449
South Dakota....	562	0	3,367	31,718	32,310	37,183	18	0	91
Tennessee...	19,289	30,156	173,907	133,310	139,743	157,956	145	216	1,101
Texas.......................	40,768	108,628	366,873	405,011	432,747	530,410	101	251	692
Utah	1,197	2,511	7,409	102,588	120,151	143,077	12	21	52
Vermont....	11,874	14,414	17,560	25,652	25,972	27,968	463	555	628
Virginia	77,386	115,242	132,720	167,392	180,573	210,638	462	638	630
Washington...	57,866	98,533	173,835	97,139	105,470	123,879	596	934	1,403
West Virginia	8,132	18,217	70,981	66,079	68,435	66,790	123	266	1,063
Wisconsin	49,528	71,145	93,583	158,986	168,547	180,721	312	422	518
Wyoming...................	219	0	163	8,805	8,550	9,591	25	0	17
Puerto Rico	23,689	40,231	33,840	138,665	149,699	163,259	171	269	207

[^6]Associate's Degree Holders or Higher Among Individuals 25-44 Years Old
Figure 8-23
Associate's degree holders or higher among individuals 25-44 years old: 2005

SOURCES: Census Bureau, 2000 Decennial Census; Population Estimates Program (various years); and American Community Survey (various years). See table 8-23.

Findings

- The early- to mid-career population with at least an associate's degree was 37.4\% nationwide in 2005 , which represents an increase from 34.7\% in 2000.
- Only Alaska failed to show an increase in the percentage of its early career population with at least an associate's degree between 2000 and 2005. Eighteen states had 2005 values below the 2000 national average of 34.7% compared with 27 states with values below this level in 2000.
- In 2005, the percentage of this cohort with at least an associate's degree varied greatly among states, ranging from 50.4% to 26.2%. States with the lowest cost of living tended to rank lowest on this indicator.

This indicator represents the percentage of the early- to mid-career population that has earned at least a college degree. That degree may be at the associate's through doctoral level. The indicator represents where college degree holders have chosen to live and work rather than where they were educated. The age cohort of 25-44 years represents the group most likely to have completed a college program. High values indicate a resident population or potential workforce with widespread credentials at the community college level or higher.

Estimates of educational attainment are developed by the Census Bureau based on the 2000 Decennial Census and the American Community Survey (ACS). The census is conducted every 10 years, but the ACS provides annually updated data on the characteristics of population and housing. In 2005, ACS became the largest household survey in the United States, with an annual sample size of about 3 million addresses. Estimates of population are taken from the Census Bureau's Population Estimates Program, which is also based on the 2000 Decennial Census.

Table 8-23
Associate's degree holders or higher among individuals 25-44 years old, by state: 2000, 2003, and 2005

State	Associate's degree holders 25-44 years old			Population 25-44 years old			Associate's degree holders/ individuals $25-44$ years old (\%)		
	2000	2003	2005	2000	2003	2005	2000	2003	2005
United States.	29,471,612	30,738,684	31,382,831	85,040,251	84,216,990	84,010,639	34.7	36.5	37.4
Alabama...	370,196	381,050	389,490	1,288,527	1,241,184	1,234,729	28.7	30.7	31.5
Alaska	61,646	58,059	58,631	203,522	194,823	194,890	30.3	29.8	30.1
Arizona.	472,901	498,703	552,805	1,511,469	1,599,029	1,694,572	31.3	31.2	32.6
Arkansas	177,657	187,589	202,622	750,972	738,579	750,229	23.7	25.4	27.0
California.	3,670,622	3,918,228	3,892,099	10,714,403	10,832,873	10,794,860	34.3	36.2	36.1
Colorado.	596,036	623,279	636,437	1,400,850	1,417,501	1,421,418	42.5	44.0	44.8
Connecticut	443,608	447,818	432,451	1,032,689	999,800	968,330	43.0	44.8	44.7
Delaware	84,170	90,649	87,994	236,441	233,356	233,683	35.6	38.8	37.7
District of Columbia ...	90,097	100,283	103,236	189,439	188,758	189,675	47.6	53.1	54.4
Florida.	1,513,345	1,616,842	1,694,517	4,569,347	4,676,558	4,812,867	33.1	34.6	35.2
Georgia .	884,108	929,979	1,013,471	2,652,764	2,723,720	2,784,441	33.3	34.1	36.4
Hawaii ..	136,758	132,630	129,858	362,336	352,806	355,620	37.7	37.6	36.5
Idaho.	112,690	121,592	121,718	362,401	370,690	387,620	31.1	32.8	31.4
Illinois.	1,444,942	1,487,189	1,530,725	3,795,544	3,727,314	3,672,713	38.1	39.9	41.7
Indiana.	537,644	543,808	562,483	1,791,828	1,748,331	1,741,859	30.0	31.1	32.3
lowa.	289,740	294,559	317,772	808,259	775,320	764,399	35.8	38.0	41.6
Kansas	282,475	307,608	289,848	769,204	743,961	732,886	36.7	41.3	39.5
Kentucky...	317,109	335,263	353,170	1,210,773	1,182,970	1,187,091	26.2	28.3	29.8
Louisiana....	316,348	346,949	340,337	1,293,128	1,230,819	1,217,481	24.5	28.2	28.0
Maine ..	122,958	128,525	123,129	370,597	358,691	350,196	33.2	35.8	35.2
Maryland.	672,460	714,825	693,317	1,664,677	1,641,907	1,615,367	40.4	43.5	42.9
Massachusetts.	942,748	970,834	932,197	1,989,783	1,922,446	1,848,998	47.4	50.5	50.4
Michigan	982,169	1,026,212	1,013,031	2,960,544	2,840,435	2,772,896	33.2	36.1	36.5
Minnesota ..	631,677	668,668	684,727	1,497,320	1,465,370	1,443,493	42.2	45.6	47.4
Mississippi.	208,866	214,703	231,759	807,170	782,327	778,254	25.9	27.4	29.8
Missouri	517,750	541,597	543,130	1,626,302	1,587,931	1,585,316	31.8	34.1	34.3
Montana...	81,428	85,047	85,590	245,220	232,735	232,383	33.2	36.5	36.8
Nebraska...	185,090	187,939	202,182	487,107	471,024	464,556	38.0	39.9	43.5
Nevada......	152,536	167,370	193,902	628,572	679,392	729,594	24.3	24.6	26.6
New Hampshire ..	156,434	163,231	161,161	381,240	373,644	364,731	41.0	43.7	44.2
New Jersey	1,076,450	1,105,776	1,114,215	2,624,146	2,578,072	2,510,115	41.0	42.9	44.4
New Mexico..	149,398	142,448	153,406	516,100	506,956	511,007	28.9	28.1	30.0
New York.	2,359,507	2,432,498	2,499,314	5,831,622	5,667,484	5,501,929	40.5	42.9	45.4
North Carolina.	844,019	892,169	933,034	2,500,535	2,507,025	2,523,658	33.8	35.6	37.0
North Dakota	71,509	70,144	73,974	174,891	160,522	156,178	40.9	43.7	47.4
Ohio ..	1,075,353	1,107,195	1,098,912	3,325,210	3,172,294	3,105,980	32.3	34.9	35.4
Oklahoma..	276,525	275,638	296,769	975,169	946,358	944,171	28.4	29.1	31.4
Oregon.......	333,963	355,143	361,760	997,269	1,003,698	1,015,644	33.5	35.4	35.6
Pennsylvania.............	1,230,548	1,243,379	1,269,457	3,508,562	3,343,434	3,255,635	35.1	37.2	39.0
Rhode Island....	117,758	128,487	127,598	310,636	306,459	296,717	37.9	41.9	43.0
South Carolina	357,570	370,577	389,378	1,185,955	1,167,347	1,171,573	30.2	31.7	33.2
South Dakota...	73,128	76,724	82,619	206,399	197,386	195,213	35.4	38.9	42.3
Tennessee..	489,940	511,871	521,417	1,718,428	1,684,796	1,698,611	28.5	30.4	30.7
Texas.	1,973,279	2,059,427	2,112,582	6,484,321	6,644,003	6,762,605	30.4	31.0	31.2
Utah .	222,534	247,337	276,707	626,600	648,111	695,736	35.5	38.2	39.8
Vermont.	70,277	68,018	68,447	176,456	168,392	163,707	39.8	40.4	41.8
Virginia	874,239	904,354	925,208	2,237,655	2,227,978	2,228,610	39.1	40.6	41.5
Washington.....	693,591	721,329	739,976	1,816,217	1,803,610	1,820,192	38.2	40.0	40.7
West Virginia	115,337	123,752	125,231	501,343	479,781	478,383	23.0	25.8	26.2
Wisconsin	566,244	566,942	596,923	1,581,690	1,537,180	1,517,725	35.8	36.9	39.3
Wyoming..................	44,235	44,448	42,115	138,619	131,810	132,103	31.9	33.7	31.9
Puerto Rico	358,595	NA	424,718	1,049,995	1,069,617	1,077,981	34.2	NA	39.4

NA = not available

SOURCES: Census Bureau, 2000 Decennial Census; Population Estimates Program (various years); and American Community Survey (various years).

Bachelor's Degree Holders or Higher Among Individuals 25-44 Years Old

Figure 8-24
Bachelor's degree holders or higher among individuals 25-44 years old: 2005

1st quartile (51.0\%-32.8\%)	2nd quartile (32.1\%-28.0\%)	3rd quartile (27.6\%-23.4\%)	4th quartile (23.3\%-19.1\%)
Colorado	California	Alabama	Alaska
Connecticut	Delaware	Arizona	Arkansas
District of Columbia	Georgia	Florida	Idaho
Illinois	Hawa	Indiaii	Kentucky
Maryland	Kansas	Maine	Louisiana
Massachusetts	Nebraska	Michigan	Mississippi
Minnesota	North Dakota	Missouri	Nevada
New Hampshire	Oregon	Montana	New Mexico
New Jersey	Pennsylvania	North Carolina	Oklahoma
New York	South Dakota	Ohio	West Virginia
Rhode Island	Utah	South Carolina	Wyoming
Vermont	Washington	Tennessee	
Virginia	Wisconsin		

SOURCES: Census Bureau, 2000 Decennial Census; Population Estimates Program (various years); and American Community Survey (various years).
See table 8-24.

Findings

- The early- to mid-career population with at least a bachelor's degree was 29.0\% nationwide in 2005, which represents an increase from 26.8\% in 2000.
- Only Hawaii failed to show an increase in the percentage of its early career population with at least a bachelor's degree between 2000 and 2005. Twenty states had 2005 values below the 2000 national average of 26.8% compared with 30 states with values below this level in 2000.
- In 2005, the percentage of the early career population with at least a bachelor's degree varied greatly among states, ranging from 42.2% to 19.1\%. States with the lowest cost of living tended to rank lowest on this indicator.

This indicator represents the percentage of the early- to mid-career population that has earned at least a 4 -year undergraduate degree. That degree may be at the bachelor's through doctoral level. The indicator represents where college degree holders have chosen to live and work rather than where they were educated. The age cohort of 25-44 years represents the group most likely to have completed a college program. High values indicate a resident population or potential workforce with widespread credentials at the college or university level.

Estimates of educational attainment are developed by the Census Bureau based on the 2000 Decennial Census and the American Community Survey (ACS). The census is conducted every 10 years, but the ACS provides annually updated data on the characteristics of population and housing. In 2005, ACS became the largest household survey in the United States, with an annual sample size of about 3 million addresses. Estimates of population are taken from the Census Bureau's Population Estimates Program, which is also based on the 2000 Decennial Census.

Table 8-24
Bachelor's degree holders or higher among individuals 25-44 years old, by state: 2000, 2003, and 2005

State	Bachelor's degree holders 25-44 years old			Population 25-44 years old			Bachelor's degree holders/individuals 25-44 years old (\%)		
	2000	2003	2005	2000	2003	2005	2000	2003	2005
United States	22,781,996	23,984,096	24,353,620	85,040,251	84,216,990	84,010,639	26.8	28.5	29.0
Alabama..	275,759	282,805	288,817	1,288,527	1,241,184	1,234,729	21.4	22.8	23.4
Alaska	45,560	44,868	45,315	203,522	194,823	194,890	22.4	23.0	23.3
Arizona.	355,836	374,059	408,522	1,511,469	1,599,029	1,694,572	23.5	23.4	24.1
Arkansas	136,883	149,619	152,225	750,972	738,579	750,229	18.2	20.3	20.3
California...	2,882,717	3,134,086	3,112,603	10,714,403	10,832,873	10,794,860	26.9	28.9	28.8
Colorado.	480,984	513,973	512,178	1,400,850	1,417,501	1,421,418	34.3	36.3	36.0
Connecticut	362,272	380,576	362,929	1,032,689	999,800	968,330	35.1	38.1	37.5
Delaware......	65,811	73,052	71,090	236,441	233,356	233,683	27.8	31.3	30.4
District of Columbia ...	84,836	96,119	96,816	189,439	188,758	189,675	44.8	50.9	51.0
Florida ...	1,081,551	1,159,165	1,212,200	4,569,347	4,676,558	4,812,867	23.7	24.8	25.2
Georgia	718,591	766,181	820,695	2,652,764	2,723,720	2,784,441	27.1	28.1	29.5
Hawaii ...	99,378	97,202	95,029	362,336	352,806	355,620	27.4	27.6	26.7
Idaho..	80,235	88,937	89,959	362,401	370,690	387,620	22.1	24.0	23.2
Illinois..	1,149,688	1,191,554	1,216,933	3,795,544	3,727,314	3,672,713	30.3	32.0	33.1
Indiana	397,050	404,241	408,107	1,791,828	1,748,331	1,741,859	22.2	23.1	23.4
lowa ..	202,004	200,579	221,497	808,259	775,320	764,399	25.0	25.9	29.0
Kansas .	223,467	243,308	224,946	769,204	743,961	732,886	29.1	32.7	30.7
Kentucky..	234,921	247,142	256,209	1,210,773	1,182,970	1,187,091	19.4	20.9	21.6
Louisiana...	256,363	283,161	267,429	1,293,128	1,230,819	1,217,481	19.8	23.0	22.0
Maine ...	86,989	92,827	85,987	370,597	358,691	350,196	23.5	25.9	24.6
Maryland.	566,294	600,135	582,280	1,664,677	1,641,907	1,615,367	34.0	36.6	36.0
Massachusetts.	773,569	820,821	780,522	1,989,783	1,922,446	1,848,998	38.9	42.7	42.2
Michigan	719,607	764,082	757,970	2,960,544	2,840,435	2,772,896	24.3	26.9	27.3
Minnesota	476,707	506,833	511,402	1,497,320	1,465,370	1,443,493	31.8	34.6	35.4
Mississippi.	144,488	149,176	152,606	807,170	782,327	778,254	17.9	19.1	19.6
Missouri	407,449	424,660	429,501	1,626,302	1,587,931	1,585,316	25.1	26.7	27.1
Montana...	62,682	63,186	63,693	245,220	232,735	232,383	25.6	27.1	27.4
Nebraska....	134,516	138,152	149,233	487,107	471,024	464,556	27.6	29.3	32.1
Nevada...	111,517	128,178	143,301	628,572	679,392	729,594	17.7	18.9	19.6
New Hampshire	114,745	121,639	122,682	381,240	373,644	364,731	30.1	32.6	33.6
New Jersey	899,016	932,505	943,939	2,624,146	2,578,072	2,510,115	34.3	36.2	37.6
New Mexico..............	110,360	106,530	110,562	516,100	506,956	511,007	21.4	21.0	21.6
New York..	1,817,661	1,885,493	1,964,870	5,831,622	5,667,484	5,501,929	31.2	33.3	35.7
North Carolina..	636,799	682,432	697,740	2,500,535	2,507,025	2,523,658	25.5	27.2	27.6
North Dakota	46,291	49,712	48,381	174,891	160,522	156,178	26.5	31.0	31.0
Ohio .	806,803	835,693	833,138	3,325,210	3,172,294	3,105,980	24.3	26.3	26.8
Oklahoma..	209,025	211,507	218,272	975,169	946,358	944,171	21.4	22.3	23.1
Oregon........	257,875	278,460	284,778	997,269	1,003,698	1,015,644	25.9	27.7	28.0
Pennsylvania...	938,930	959,366	979,367	3,508,562	3,343,434	3,255,635	26.8	28.7	30.1
Rhode Island....	88,647	101,468	98,477	310,636	306,459	296,717	28.5	33.1	33.2
South Carolina	259,773	279,322	283,280	1,185,955	1,167,347	1,171,573	21.9	23.9	24.2
South Dakota..	51,213	52,989	56,951	206,399	197,386	195,213	24.8	26.8	29.2
Tennessee....	380,929	393,328	401,027	1,718,428	1,684,796	1,698,611	22.2	23.3	23.6
Texas.	1,571,951	1,623,020	1,668,865	6,484,321	6,644,003	6,762,605	24.2	24.4	24.7
Utah	162,495	174,787	197,780	626,600	648,111	695,736	25.9	27.0	28.4
Vermont.	52,787	53,121	53,693	176,456	168,392	163,707	29.9	31.5	32.8
Virginia .	722,081	750,953	763,865	2,237,655	2,227,978	2,228,610	32.3	33.7	34.3
Washington	520,382	553,669	554,104	1,816,217	1,803,610	1,820,192	28.7	30.7	30.4
West Virginia	83,441	92,148	91,539	501,343	479,781	478,383	16.6	19.2	19.1
Wisconsin	402,965	396,601	430,486	1,581,690	1,537,180	1,517,725	25.5	25.8	28.4
Wyoming.......	30,103	30,676	29,830	138,619	131,810	132,103	21.7	23.3	22.6
Puerto Rico	245,975	NA	276,934	1,049,995	1,069,617	1,077,981	23.4	NA	25.7

NA = not available

SOURCES: Census Bureau, 2000 Decennial Census; Population Estimates Program (various years); and American Community Survey (various years).

Bachelor's Degree Holders Potentially in the Workforce

Figure 8-25
Bachelor's degree holders potentially in the workforce: 2005

1st quartile (51.2\%-34.2\%)	2nd quartile (33.6\%-29.1\%)	3rd quartile (28.9\%-26.7\%)	4th quartile (26.5\%-22.5\%)
California	Alaska	Alabama	Arkansas
Colorado	Delaware	Arizona	Idaho
Connecticut	Georgia	Florida	Indiana
District of Columbia	Hawaii	Maine	lowa
Illinois	Kansas	Missouri	Kentucky
Maryland	Michigan	Nebraska	Luisiana
Massachusetts	Minnesota	North Dakota	Mississippi
New Hampshire	Montana	Ohio	Nevada
New Jersey	New Mexico	Tenn Carolina	Oklahoma
New York	North Carolina	Texas	South Dakota
Vermont	Oregon	Utah	West Virginia
Virginia	Pennsylvania	Whisconsin	Wyoming
Washington			

SOURCES: Census Bureau, 2000 Decennial Census and American Community Survey (various years); and Bureau of Labor Statistics, Local Area Unemployment Statistics. See table 8-25.

Findings

- In 2005, 45 million individuals between the ages of 25 and 64 held bachelor's degrees in the United States, up from 39 million in 2000. Nationwide, the ratio of bachelor's degree holders to the size of the workforce rose from 28.5% in 2000 to 31.7% in 2005. This ratio varied considerably among the states, ranging from 22.5% to 43.2% in 2005.
- The value of this indicator increased in all states and the District of Columbia between 2000 and 2005. This may reflect a replacement of older cohorts of workers with younger, more educated ones. It may also indicate the restructuring of state economies to emphasize work that requires a higher level of education or credentials.
- Between 2000 and 2005, Michigan, Massachusetts, and the District of Columbia showed the largest increases in the ratio of bachelor's degree holders to workforce size.
- The geographic distribution of bachelor's degree holders bears little resemblance to any of the degree production indicators, which attests to the considerable mobility of the college-educated population in the United States.

The ratio of bachelor's, graduate, or professional degree holders to the size of a state's workforce is an indicator of a population with undergraduate and/or graduate education skill levels potentially available for its workforce. Workers with at least a bachelor's degree have a clear advantage over less-educated workers in expected lifetime earnings. A high value for this indicator suggests a large percentage of the potential workforce with an undergraduate education. This indicator does not imply that all degree holders are currently employed; rather, it indicates the potential educational level of the workforce if all degree holders were employed. Knowledge-intensive businesses seeking to relocate may be attracted to states with high values on this indicator.

Degree data are based on the U.S. Census Bureau's 2000 Decennial Census and American Community Survey and are limited to individuals who are 25-64 years old because this is the age range of most of the workforce. Individuals younger than age 25 are considered to be in the process of completing their education. Individuals older than 64 are considered to be largely retired, so their educational attainment would have limited applicability to the quality of the workforce. Civilian workforce data are Bureau of Labor Statistics estimates based on Local Area Unemployment Statistics. Estimates for sparsely populated states and the District of Columbia may be imprecise because of their small representation in the survey samples.

Table 8-25
Bachelor's degree holders potentially in the workforce, by state: 2000, 2003, and 2005

State	Bachelor's degree holders 25-64 years old			Employed workforce			Bachelor's degree holders/workforce (\%)		
	2000	2003	2005	2000	2003	2005	2000	2003	2005
United States	39,078,598	43,038,717	44,972,214	136,940,378	137,418,377	141,739,774	28.5	31.3	31.7
Alabama.	479,734	532,098	549,086	2,067,147	2,000,039	2,056,800	23.2	26.6	26.7
Alaska	87,739	91,931	96,854	299,324	308,523	318,423	29.3	29.8	30.4
Arizona.	638,515	689,950	781,932	2,404,916	2,565,030	2,727,003	26.6	26.9	28.7
Arkansas.	247,079	276,084	287,058	1,207,352	1,199,379	1,276,851	20.5	23.0	22.5
California.	4,960,210	5,611,074	5,732,017	16,024,341	16,226,987	16,782,260	31.0	34.6	34.2
Colorado.	819,906	901,534	936,007	2,300,192	2,323,554	2,436,795	35.6	38.8	38.4
Connecticut	633,867	695,356	707,700	1,697,670	1,704,693	1,734,386	37.3	40.8	40.8
Delaware.	111,260	126,828	131,287	402,777	403,504	415,687	27.6	31.4	31.6
District of Columbia ...	133,155	148,230	150,461	291,916	283,736	293,900	45.6	52.2	51.2
Florida.	1,968,126	2,266,930	2,398,022	7,569,406	7,811,887	8,375,993	26.0	29.0	28.6
Georgia	1,148,814	1,266,705	1,394,550	4,095,362	4,180,568	4,384,030	28.1	30.3	31.8
Hawaii ..	184,130	196,970	200,132	584,858	588,880	614,290	31.5	33.4	32.6
Idaho...	149,622	172,807	178,690	632,451	652,627	698,466	23.7	26.5	25.6
Illinois.	1,876,455	2,032,846	2,113,824	6,176,837	5,942,720	6,112,981	30.4	34.2	34.6
Indiana	672,835	707,713	745,940	3,052,719	3,011,436	3,054,803	22.0	23.5	24.4
lowa.	351,922	366,596	404,729	1,557,081	1,543,507	1,568,561	22.6	23.8	25.8
Kansas	385,924	434,766	425,214	1,351,988	1,364,410	1,389,201	28.5	31.9	30.6
Kentucky.	402,094	435,777	467,998	1,866,348	1,851,017	1,879,413	21.5	23.5	24.9
Louisiana.	453,353	512,319	496,071	1,930,662	1,899,642	1,938,280	23.5	27.0	25.6
Maine	170,334	193,729	193,647	650,385	655,561	669,250	26.2	29.6	28.9
Maryland.	979,588	1,083,343	1,095,665	2,711,382	2,750,040	2,820,526	36.1	39.4	38.8
Massachusetts.	1,266,113	1,370,101	1,387,065	3,273,281	3,211,853	3,211,033	38.7	42.7	43.2
Michigan .	1,242,388	1,378,696	1,407,669	4,953,421	4,681,180	4,726,204	25.1	29.5	29.8
Minnesota	783,613	891,852	906,335	2,720,492	2,765,997	2,796,622	28.8	32.2	32.4
Mississippi	256,581	279,111	293,533	1,239,859	1,228,526	1,226,492	20.7	22.7	23.9
Missouri.	695,491	776,798	792,737	2,875,336	2,819,935	2,847,758	24.2	27.5	27.8
Montana...	124,462	130,542	139,593	446,552	447,679	463,929	27.9	29.2	30.1
Nebraska.	230,857	244,248	267,867	923,198	932,870	940,040	25.0	26.2	28.5
Nevada.	206,361	241,719	272,492	1,015,221	1,092,651	1,178,072	20.3	22.1	23.1
New Hampshire	207,431	226,741	243,698	675,541	684,348	703,175	30.7	33.1	34.7
New Jersey ...	1,510,429	1,639,510	1,734,942	4,130,310	4,126,674	4,255,813	36.6	39.7	40.8
New Mexico..	226,334	232,196	252,804	810,024	832,639	867,317	27.9	27.9	29.1
New York.	3,031,927	3,275,249	3,460,430	8,751,441	8,713,529	8,959,845	34.6	37.6	38.6
North Carolina..	1,044,025	1,155,486	1,229,917	3,969,235	3,965,695	4,112,828	26.3	29.1	29.9
North Dakota .	80,545	91,105	95,520	335,780	335,453	341,847	24.0	27.2	27.9
Ohio.	1,375,311	1,480,377	1,521,816	5,573,154	5,502,110	5,546,537	24.7	26.9	27.4
Oklahoma.	383,381	414,535	431,778	1,609,522	1,597,338	1,629,217	23.8	26.0	26.5
Oregon........	488,862	533,853	564,786	1,716,954	1,704,397	1,754,715	28.5	31.3	32.2
Pennsylvania.	1,618,658	1,736,241	1,842,351	5,830,902	5,818,296	5,966,226	27.8	29.8	30.9
Rhode Island..	156,862	185,148	181,553	520,758	535,458	539,709	30.1	34.6	33.6
South Carolina .	454,656	521,905	534,821	1,902,029	1,868,309	1,939,646	23.9	27.9	27.6
South Dakota...	89,855	95,907	104,555	397,678	405,840	411,551	22.6	23.6	25.4
Tennessee...	649,844	719,592	750,100	2,756,498	2,720,676	2,758,184	23.6	26.4	27.2
Texas.	2,646,909	2,892,917	3,062,665	9,896,002	10,260,318	10,677,171	26.7	28.2	28.7
Utah.	276,360	292,932	339,337	1,097,915	1,132,948	1,211,803	25.2	25.9	28.0
Vermont.	103,476	113,291	118,184	326,742	333,788	341,442	31.7	33.9	34.6
Virginia	1,232,454	1,361,804	1,438,181	3,502,524	3,646,114	3,785,583	35.2	37.3	38.0
Washington.....	932,352	1,037,358	1,069,031	2,898,677	2,916,045	3,089,953	32.2	35.6	34.6
West Virginia ..	157,883	179,117	181,476	764,649	742,990	754,060	20.6	24.1	24.1
Wisconsin	690,065	732,493	791,966	2,894,884	2,866,994	2,887,434	23.8	25.5	27.4
Wyoming......	60,451	64,307	68,128	256,685	259,987	267,669	23.6	24.7	25.5
Puerto Rico	378,586	NA	454,714	1,162,153	1,200,322	1,250,335	32.6	NA	36.4

NA = not available

NOTES: Bachelor's degree holders include those completing a bachelor's or higher degree. Workforce represents employed component of civilian labor force and reported as annual data not seasonally adjusted.
SOURCES: Census Bureau, 2000 Decennial Census and American Community Survey (various years); and Bureau of Labor Statistics, Local Area Unemployment Statistics.

Individuals in S\&E Occupations as Share of Workforce

Figure 8-26
Individuals in S\&E occupations as share of workforce: 2006

1st quartile (21.59\%-3.90\%)	2nd quartile (3.89\%-3.32\%)	3rd quartile (3.31\%-2.70\%)	4th quartile (2.68\%-1.92\%)	No data
California	Arizona	Alabama	Idaho	
Colorado	Illinois	Alaska	Arkansas	
Connecticut	Kansas	Florida	Indiana	Kentucky
Delaware	Missouri	Georgia	Louisiana	
District of Columbia	Nebraska	Hawaii	Maine	
Maryland	New Hampshire	lowa	Mississippi	
Massachusetts	New Mexico	Montana	Nevada	
Michigan	New York	North Carolina	South Carolina	
Minnesota	Oregon	North Dakota	South Dakota	
New Jersey	Pennsylvania	Ohio	Tennessee	
Utah	Oklanoma	West Virginia		
Virginia	Vermont	Rhode Island		
Washington	Wisconsin	Wyoming		

SOURCES: Bureau of Labor Statistics, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics. See table 8-26.

Findings

- In 2006, 3.7\% of the U.S. workforce, or about 5.4 million people, worked in occupations classified as S\&E.
- The percentage of the workforce engaged in S\&E occupations ranged from 1.9\% to 6.5\% in individual states in 2006.
- The highest percentage of S\&E occupations was found in the District of Columbia and the adjacent states of Maryland and Virginia as well as in Massachusetts, Washington, and Colorado.
- Between 2004 and 2006, the percentage of S\&E occupations increased in 29 states and the District of Columbia, and it decreased in 18 states.

This indicator shows the extent to which a state's workforce is employed in S\&E occupations. A high value for this indicator shows that a state's economy has a high percentage of technical jobs relative to other states.

S\&E occupations are defined by standard occupational codes that encompass mathematical, computer, life, physical, and social scientists; engineers; and postsecondary teachers in any of these S\&E fields. Managers, technicians, elementary and secondary schoolteachers, and medical personnel are excluded.

The location of S\&E occupations primarily reflects where the individuals work and is based on estimates from the Occupational Employment Statistics survey, a cooperative program between the Bureau of Labor Statistics (BLS) and state employment security agencies. Civilian workforce data are BLS estimates based on the Current Population Survey, which assigns workers to a location based on residence. Because of this difference and the sample-based nature of the data, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-26
Individuals in S\&E occupations as share of workforce, by state: 2004 and 2006

State	S\&E occupations		Employed workforce		Workforce in S\&E occupations (\%)	
	2004	2006	2004	2006	2004	2006
United States.	5,065,330	5,383,860	139,213,523	144,581,912	3.64	3.72
Alabama...	57,560	66,100	2,014,678	2,120,573	2.86	3.12
Alaska	10,660	10,720	312,922	323,531	3.41	3.31
Arizona..	95,380	98,110	2,649,243	2,854,381	3.60	3.44
Arkansas	22,150	24,860	1,228,163	1,292,886	1.80	1.92
California............................	693,670	730,010	16,444,457	17,029,307	4.22	4.29
Colorado ...	126,280	133,730	2,384,562	2,537,037	5.30	5.27
Connecticut	82,820	79,380	1,714,758	1,765,075	4.83	4.50
Delaware..	17,980	21,550	408,022	424,506	4.41	5.08
District of Columbia	57,750	64,120	285,567	296,957	20.22	21.59
Florida....	229,950	246,190	8,056,259	8,692,761	2.85	2.83
Georgia	141,710	136,470	4,257,465	4,522,025	3.33	3.02
Hawaii	16,360	18,940	597,147	628,277	2.74	3.01
Idaho.................................	22,310	NA	670,746	723,621	3.33	NA
Illinois..	219,530	222,470	6,012,320	6,315,715	3.65	3.52
Indiana	79,120	80,110	3,017,271	3,108,806	2.62	2.58
lowa.	39,280	43,670	1,542,342	1,602,849	2.55	2.72
Kansas ...	52,020	48,620	1,378,713	1,400,169	3.77	3.47
Kentucky.	44,350	44,680	1,859,902	1,922,163	2.38	2.32
Louisiana..	42,230	40,180	1,926,594	1,910,348	2.19	2.10
Maine ..	15,160	15,950	661,163	678,843	2.29	2.35
Maryland ..	154,310	159,470	2,766,653	2,892,620	5.58	5.51
Massachusetts....................	186,260	198,670	3,204,653	3,234,860	5.81	6.14
Michigan .	183,140	208,520	4,694,981	4,730,291	3.90	4.41
Minnesota ..	119,380	125,930	2,781,744	2,822,297	4.29	4.46
Mississippi.	23,190	24,910	1,234,167	1,218,664	1.88	2.04
Missouri.	87,200	96,420	2,821,802	2,885,857	3.09	3.34
Montana............................	11,390	13,010	456,624	478,162	2.49	2.72
Nebraska....	31,720	32,500	940,047	945,270	3.37	3.44
Nevada...	23,980	26,930	1,134,550	1,240,868	2.11	2.17
New Hampshire	24,350	27,680	693,648	711,512	3.51	3.89
New Jersey	165,150	176,460	4,177,841	4,309,021	3.95	4.10
New Mexico.	33,500	30,800	850,164	895,623	3.94	3.44
New York..	272,930	306,810	8,810,155	9,072,733	3.10	3.38
North Carolina.	135,380	138,790	4,028,598	4,250,619	3.36	3.27
North Dakota	8,420	9,360	338,221	346,359	2.49	2.70
Ohio	180,360	185,190	5,507,404	5,609,056	3.27	3.30
Oklahoma..	NA	50,770	1,608,849	1,650,877	NA	3.08
Oregon...	62,570	64,520	1,722,058	1,796,165	3.63	3.59
Pennsylvania..	195,730	214,910	5,889,957	6,009,858	3.32	3.58
Rhode Island..	19,660	18,060	531,121	547,618	3.70	3.30
South Carolina	51,030	53,230	1,900,122	1,988,378	2.69	2.68
South Dakota.........................	9,420	10,120	409,263	417,100	2.30	2.43
Tennessee	65,120	67,040	2,733,793	2,835,530	2.38	2.36
Texas.................................	383,180	408,710	10,456,224	10,921,673	3.66	3.74
Utah.	43,030	49,690	1,169,163	1,272,801	3.68	3.90
Vermont..........................	11,770	12,780	337,709	348,026	3.49	3.67
Virginia	220,180	251,720	3,704,593	3,878,988	5.94	6.49
Washington..........................	154,610	171,780	3,008,352	3,160,350	5.14	5.44
West Virginia	16,100	17,150	744,034	767,134	2.16	2.24
Wisconsin	95,230	96,860	2,871,034	2,918,155	3.32	3.32
Wyoming...............................	6,760	7,640	263,705	275,617	2.56	2.77
Puerto Rico	20,410	23,850	1,226,251	1,260,703	1.66	1.89

NOTE: Workforce represents employed component of civilian labor force and reported as annual data not seasonally adjusted.
SOURCES: Bureau of Labor Statistics, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics.

Employed S\&E Doctorate Holders as Share of Workforce

Figure 8-27
Employed S\&E doctorate holders as share of workforce: 2006

SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients; and Bureau of Labor Statistics, Local Area Unemployment Statistics. See table 8-27.

Findings

- The number of employed S\&E doctorate holders in the United States rose from 517,000 in 1997 to 618,000 in 2006, an increase of 20\%.
- For the United States, the value of this indicator rose from 0.39% to 0.43% of the workforce because the number of employed S\&E doctorate holders increased more rapidly than the size of the workforce during this period.
- In 2006, the values for this indicator in individual states ranged from 0.20% to 1.00% of the state's workforce; the District of Columbia was an outlier at 4.49%, reflecting the fact that there are many government offices, colleges and universities, and government contractors in the area that employ scientists and engineers.
- States in the top quartile tend to be home to major research laboratories, research universities, or research-intensive industries.

This indicator shows a state's ability to attract and retain highly trained scientists and engineers. These individuals often conduct $\mathrm{R} \& \mathrm{D}$, manage R\&D activities, or are otherwise engaged in knowledge-intensive activities. A high value for this indicator in a state suggests employment opportunities for individuals with highly advanced training in $\mathrm{S} \& \mathrm{E}$.

S\&E fields include physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psychology. S\&E doctorate data derive from NSF's

Survey of Doctorate Recipients, which excludes those with doctorates from foreign institutions. The location of the employed doctorate holders primarily reflects the state in which the individuals work. Civilian workforce data are Bureau of Labor Statistics' estimates from the Local Area Unemployment Statistics, which bases location on residence. Because of this difference and the sample-based nature of the data, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-27
Employed S\&E doctorate holders as share of workforce, by state: 1997, 2001, and 2006

${ }^{\text {a }}$ Estimates for S\&E doctorate holders may vary between 10% and 25% because geography is not part of the sample design.
NOTES: Data on S\&E doctorate holders classified by employer location, and workforce data based on respondents' residence. Data on 2006 employed S\&E doctorate holders are preliminary. Workforce represents employed component of civilian labor force and reported as annual data not seasonally adjusted.
SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients; and Bureau of Labor Statistics, Local Area Unemployment Statistics.

Engineers as Share of Workforce

Figure 8-28
Engineers as share of workforce, by state: 2006

1st quartile (3.00\%-1.24\%)	2nd quartile (1.21\%-0.99\%)	3rd quartile (0.94\%-0.73\%)	4th quartile (0.71\%-0.53\%)	No data
Alabama	Alaska	Florida	Oregon	
Arizona	Delaware	Hawaii	Arkansas	
California	Minnesota	Illinois	Georgia	
Colorado	New Hampshire	Indiana	Iowa	
Connecticut	New Mexico	Louisiana	Kentucky	
District of Columbia	Ohio	Mississippi	Maine	
Idano	Pennsylvania	Missouri	Montana	
Kansas	Rhode Island	New Jersey	Nebraska	
Maryland	South Carolina	New York	Nevada	
Massachusetts	Texas	North Dakota	North Carolina	
Michigan	Utah	Oklahoma	South Dakota	
Virginia	Vermont	Tennessee	West Virginia	
Washington	Wisconsin	Wyoming		

SOURCES: Bureau of Labor Statistics, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics. See table 8-28.

Findings

- In the United States, 1.54 million individuals were employed in engineering occupations in 2006, an increase over the 1.48 million engineers employed in 2004. During this period, the percentage of the workforce employed in engineering occupations remained unchanged at 1.06%.
- The concentration of engineers in individual states ranged from 0.53\% to 2.11\% in 2006.
- The District of Columbia was an outlier at 3.00%, reflecting the fact that there are many government offices, colleges and universities, and government contractors in the area that employ scientists and engineers.
- Between 2004 and 2006, the percentage of engineers in the workforce increased in 28 states and decreased in 17 states and the District of Columbia.
- States in the top quartile for this indicator tended to have a relatively high concentration of hightechnology businesses.

This indicator shows the extent to which a state's workforce includes trained engineers. The indicator encompasses the standard occupational codes for engineering fields such as aerospace, agricultural, biomedical, chemical, civil, computer hardware, electrical and electronics, environmental, industrial, marine and naval architectural, materials, mechanical, mining and geological, nuclear, and petroleum. Engineers design and operate production processes and create new products and services.

The location of engineering occupations primarily reflects where
the individuals work and is based on estimates from the Occupational Employment Statistics survey, a cooperative program between the Bureau of Labor Statistics (BLS) and state employment security agencies. The size of a state's civilian workforce is estimated from the BLS Current Population Survey, which assigns workers to a location based on residence. Because of this difference and the sample-based nature of the data, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-28
Engineers as share of workforce, by state: 2004 and 2006

State	Engineers		Employed workforce		Engineers in workforce (\%)	
	2004	2006	2004	2006	2004	2006
United States..........................	1,480,520	1,535,620	139,213,523	144,581,912	1.06	1.06
Alabama.............................	22,170	26,210	2,014,678	2,120,573	1.10	1.24
Alaska .	3,480	3,330	312,922	323,531	1.11	1.03
Arizona..	36,180	35,630	2,649,243	2,854,381	1.37	1.25
Arkansas .	5,900	7,210	1,228,163	1,292,886	0.48	0.56
California.	220,120	231,480	16,444,457	17,029,307	1.34	1.36
Colorado	34,370	37,040	2,384,562	2,537,037	1.44	1.46
Connecticut	26,160	24,070	1,714,758	1,765,075	1.53	1.36
Delaware	3,810	4,810	408,022	424,506	0.93	1.13
District of Columbia	10,490	8,920	285,567	296,957	3.67	3.00
Florida.	59,070	67,810	8,056,259	8,692,761	0.73	0.78
Georgia .	30,550	30,170	4,257,465	4,522,025	0.72	0.67
Hawaii.	4,560	5,380	597,147	628,277	0.76	0.86
Idaho..	8,250	9,270	670,746	723,621	1.23	1.28
Illinois.	59,010	57,270	6,012,320	6,315,715	0.98	0.91
Indiana ..	30,380	28,380	3,017,271	3,108,806	1.01	0.91
lowa.	9,900	10,420	1,542,342	1,602,849	0.64	0.65
Kansas	19,020	17,480	1,378,713	1,400,169	1.38	1.25
Kentucky...	12,870	12,950	1,859,902	1,922,163	0.69	0.67
Louisiana..	15,790	15,250	1,926,594	1,910,348	0.82	0.80
Maine ..	4,830	4,230	661,163	678,843	0.73	0.62
Maryland.	33,190	36,880	2,766,653	2,892,620	1.20	1.27
Massachusetts......................	50,370	51,750	3,204,653	3,234,860	1.57	1.60
Michigan ..	91,600	99,680	4,694,981	4,730,291	1.95	2.11
Minnesota	30,370	28,280	2,781,744	2,822,297	1.09	1.00
Mississippi.	8,140	9,830	1,234,167	1,218,664	0.66	0.81
Missouri.	21,070	22,870	2,821,802	2,885,857	0.75	0.79
Montana..	2,580	2,840	456,624	478,162	0.57	0.59
Nebraska.	5,810	5,820	940,047	945,270	0.62	0.62
Nevada..	7,190	7,960	1,134,550	1,240,868	0.63	0.64
New Hampshire	7,890	8,090	693,648	711,512	1.14	1.14
New Jersey	37,850	38,130	4,177,841	4,309,021	0.91	0.88
New Mexico	12,170	10,870	850,164	895,623	1.43	1.21
New York...	64,920	68,540	8,810,155	9,072,733	0.74	0.76
North Carolina.	31,400	30,040	4,028,598	4,250,619	0.78	0.71
North Dakota	2,230	2,520	338,221	346,359	0.66	0.73
Ohio	62,560	57,810	5,507,404	5,609,056	1.14	1.03
Oklahoma..	12,520	13,840	1,608,849	1,650,877	0.78	0.84
Oregon	18,500	NA	1,722,058	1,796,165	1.07	NA
Pennsylvania.	NA	61,620	5,889,957	6,009,858	NA	1.03
Rhode Island..	5,270	5,430	531,121	547,618	0.99	0.99
South Carolina ..	21,260	22,460	1,900,122	1,988,378	1.12	1.13
South Dakota.	2,050	2,210	409,263	417,100	0.50	0.53
Tennessee.	21,100	21,230	2,733,793	2,835,530	0.77	0.75
Texas...	120,810	123,990	10,456,224	10,921,673	1.16	1.14
Utah ..	11,560	13,090	1,169,163	1,272,801	0.99	1.03
Vermont.	3,440	3,780	337,709	348,026	1.02	1.09
Virginia	47,180	50,780	3,704,593	3,878,988	1.27	1.31
Washington	45,140	49,840	3,008,352	3,160,350	1.50	1.58
West Virginia	4,920	5,230	744,034	767,134	0.66	0.68
Wisconsin	29,590	30,990	2,871,034	2,918,155	1.03	1.06
Wyoming..............................	2,290	2,570	263,705	275,617	0.87	0.93
Puerto Rico	7,290	8,280	1,226,251	1,260,703	0.59	0.66

NOTE: Workforce represents employed component of civilian labor force and reported as annual data not seasonally adjusted.
SOURCES: Bureau of Labor Statistics, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics.

Life and Physical Scientists as Share of Workforce

Figure 8-29
Life and physical scientists as share of workforce: 2006

1st quartile (2.15\%-0.52\%)	2nd quartile (0.50\%-0.42\%)	3rd quartile (0.40\%-0.32\%)	4th quartile (0.31\%-0.22\%)	No data
Alaska	California	Illinois	Alabama	Kansas
Colorado	Connecticut	Indiana	New Jersey	North Carolina
Delaware	Minnesota	Iowa	Arizona	Oregon
District of Columbia	Nebraska	Louisiana	Pennsylvania	
Hawaii	North Dakota	Maine	Florida	
Idaho	Mississippi	Georgia	Kentucky	
Maryland	Oklahoma	Missouri	Michigan	Nevada
Massachusetts	South Dakota	New Hampshire	Ohio	
Montana	Texas	New York	Rhode Island	South Carolina
New Mexico	Utah	Virginia	Tennessee	
Washington	Vermont			
Wyoming	West Virginia	Wisconsin		

SOURCES: Bureau of Labor Statistics, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics. See Table 8-29.

Findings

- Nearly 578,000 individuals, or 0.40% of the workforce, were employed as life and physical scientists in the United States in 2006, an increase over the 546,000 life and physical scientists employed in 2004, which was 0.39% of the workforce.
- In 2006, individual states had indicator values ranging from 0.22% to 0.93%, which showed major differences in the concentration of jobs in the life and physical sciences.
- The District of Columbia was an outlier at 2.15%, reflecting the fact that there are many government offices, colleges and universities, and government contractors in the area that employ scientists and engineers.
- Between 2004 and 2006, the percentage of life and physical scientists in the workforce increased in 18 states and the District of Columbia and decreased in 11 states.

This indicator shows a state's ability to attract and retain life and physical scientists. Life scientists are identified from standard occupational codes that include agricultural and food scientists, biological scientists, conservation scientists and foresters, and medical scientists. Physical scientists are identified from standard occupational codes that include astronomers, physicists, atmospheric and space scientists, chemists, materials scientists, environmental scientists, and geoscientists, and postsecondary teachers in these subject areas. A high share of life and physical scientists could indicate several scenarios ranging from a robust cluster of life sciences companies to a high percentage of acreage in forests or national parks.

The latter requires foresters, wildlife specialists, and conservationists to manage the natural assets in an area with low population density.

The location of life and physical scientists reflects where the individuals work and is based on estimates from the Occupational Employment Statistics survey, a cooperative program between the Bureau of Labor Statistics (BLS) and state employment security agencies. The size of a state's civilian workforce is estimated from the BLS Current Population Survey, which assigns workers to a location based on residence. Because of this difference and the sample-based nature of the data, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-29
Life and physical scientists as share of workforce, by state: 2004 and 2006

State	Life and physical scientists		Employed workforce		Life and physical scientists in workforce (\%)	
	2004	2006	2004	2006	2004	2006
United States..........................	546,160	577,890	139,213,523	144,581,912	0.39	0.40
Alabama............................	5,630	5,690	2,014,678	2,120,573	0.28	0.27
Alaska	3,090	3,010	312,922	323,531	0.99	0.93
Arizona...............................	6,940	6,460	2,649,243	2,854,381	0.26	0.23
Arkansas	2,890	2,880	1,228,163	1,292,886	0.24	0.22
California.............................	68,020	72,590	16,444,457	17,029,307	0.41	0.43
Colorado	NA	14,130	2,384,562	2,537,037	NA	0.56
Connecticut	8,460	7,750	1,714,758	1,765,075	0.49	0.44
Delaware..	3,100	2,940	408,022	424,506	0.76	0.69
District of Columbia	5,860	6,370	285,567	296,957	2.05	2.15
Florida............................	20,490	22,100	8,056,259	8,692,761	0.25	0.25
Georgia	13,090	9,820	4,257,465	4,522,025	0.31	0.22
Hawaii	2,400	3,390	597,147	628,277	0.40	0.54
Idaho.	9,930	3,860	670,746	723,621	1.48	0.53
Illinois	19,390	22,650	6,012,320	6,315,715	0.32	0.36
Indiana	NA	10,350	3,017,271	3,108,806	NA	0.33
lowa.	NA	5,390	1,542,342	1,602,849	NA	0.34
Kansas	4,640	NA	1,378,713	1,400,169	0.34	NA
Kentucky.............................	5,300	4,990	1,859,902	1,922,163	0.28	0.26
Louisiana..............................	6,130	6,090	1,926,594	1,910,348	0.32	0.32
Maine	2,430	2,650	661,163	678,843	0.37	0.39
Maryland	18,150	19,930	2,766,653	2,892,620	0.66	0.69
Massachusetts......................	20,700	23,260	3,204,653	3,234,860	0.65	0.72
Michigan	10,340	12,940	4,694,981	4,730,291	0.22	0.27
Minnesota	11,700	13,450	2,781,744	2,822,297	0.42	0.48
Mississippi ...	4,540	4,490	1,234,167	1,218,664	0.37	0.37
Missouri	9,920	10,190	2,821,802	2,885,857	0.35	0.35
Montana..	3,050	3,450	456,624	478,162	0.67	0.72
Nebraska.............................	4,280	4,350	940,047	945,270	0.46	0.46
Nevada...	3,210	3,460	1,134,550	1,240,868	0.28	0.28
New Hampshire	1,870	2,250	693,648	711,512	0.27	0.32
New Jersey	19,710	NA	4,177,841	4,309,021	0.47	NA
New Mexico	7,550	5,380	850,164	895,623	0.89	0.60
New York..	NA	31,280	8,810,155	9,072,733	NA	0.34
North Carolina.	19,190	NA	4,028,598	4,250,619	0.48	NA
North Dakota	1,570	1,610	338,221	346,359	0.46	0.46
Ohio	15,020	17,320	5,507,404	5,609,056	0.27	0.31
Oklahoma............................	NA	7,010	1,608,849	1,650,877	NA	0.42
Oregon................................	7,990	NA	1,722,058	1,796,165	0.46	NA
Pennsylvania.........................	25,460	NA	5,889,957	6,009,858	0.43	NA
Rhode Island.........................	2,790	2,120	531,121	547,618	0.53	0.39
South Carolina ...	5,190	5,680	1,900,122	1,988,378	0.27	0.29
South Dakota.	1,770	1,900	409,263	417,100	0.43	0.46
Tennessee	7,380	7,680	2,733,793	2,835,530	0.27	0.27
Texas....	47,540	50,040	10,456,224	10,921,673	0.45	0.46
Utah	5,820	6,330	1,169,163	1,272,801	0.50	0.50
Vermont...............................	1,250	1,480	337,709	348,026	0.37	0.43
Virginia .	NA	15,370	3,704,593	3,878,988	NA	0.40
Washington..........................	NA	20,590	3,008,352	3,160,350	NA	0.65
West Virginia	2,850	3,230	744,034	767,134	0.38	0.42
Wisconsin	11,660	13,000	2,871,034	2,918,155	0.41	0.45
Wyoming.............................	1,840	2,070	263,705	275,617	0.70	0.75
Puerto Rico	4,840	5,470	1,226,251	1,260,703	0.39	0.43

[^7]
Computer Specialists as Share of Workforce

Figure 8-30
Computer specialists as share of workforce: 2006

SOURCES: BLS, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics. See Table 8-30.

Findings

- In the United States, 2.96 million individuals, or 2.05% of the workforce, were employed as computer specialists in 2006, an increase over the 2.80 million computer specialists employed in 2004, which was 2.02% of the workforce.
- Individual states showed considerable differences in the intensity of computerrelated operations in their economies, with 0.70% to 4.38% of their workforce employed in computer-related occupations in 2006.
- There was a concentration of computerintensive occupations in the District of Columbia and the adjacent states of Maryland and Virginia. This may be due to the fact that there are many government offices, colleges and universities, and government contractors in the area that employ scientists and engineers, especially computer scientists.
- Between 2004 and 2006, the percentage of computer specialists in the workforce increased in 31 states and the District of Columbia and decreased in 18 states.

This indicator shows the extent to which a state's workforce makes use of specialists with advanced computer training. Computer specialists are identified from 10 standard occupational codes that include computer and information scientists, programmers, software engineers, support specialists, systems analysts, database administrators, and network and computer system administrators. States with higher values may indicate a state workforce that is better able to thrive in an information economy or to embrace and utilize computer technology.

The location of computer specialists reflects where the individuals work and is based on estimates from the Occupational Employment Statistics survey, a cooperative program between the Bureau of Labor Statistics (BLS) and state employment security agencies. The size of a state's civilian workforce is estimated from the BLS Current Population Survey, which assigns workers to a location based on residence. Because of this difference and the sample-based nature of the data, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-30
Computer specialists as share of workforce, by state: 2004 and 2006

NOTES: For a small number of states, data for selected computer occupations suppressed by state or Bureau of Labor Statistics (BLS) and not reported at state level. Workforce represents employed component of civilian labor force and reported as annual data not seasonally adjusted.
SOURCES: BLS, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics.

R\&D as Share of Gross Domestic Product

Figure 8-31
R\&D as share of gross domestic product: 2004

SOURCES: National Science Foundation, Division of Science Resources Statistics, National Patterns of R\&D Resources (various years); and Bureau of Economic Analysis, Gross Domestic Product data. See Table 8-31.

Findings

- The national value of R\&D expenditures as a share of GDP has varied from 2.47% in 1998 to 2.44\% in 2004.
- In 2004, state values for this indicator ranged from 0.41% to 8.01%, indicating large differences in the geographic concentration of R\&D.
- New Mexico is an outlier on this indicator because of the presence of large federal R\&D activities and a relatively small GDP.
- Between 1998 and 2004, the value of this indicator increased in 31 states and declined in 18 states and the District of Columbia.
- States with high rankings on this indicator also tended to rank high on S\&E doctorate holders as a share of the workforce.

This indicator shows the extent to which R\&D play a role in a state's economy. A high value indicates that the state has a high intensity of R\&D activity, which may support future growth in knowledge-based industries. Industries that have a high percentage of R\&D activity include pharmaceuticals, chemicals, computer equipment and services, electronic components, aerospace, and motor vehicles. R\&D refers to R\&D activities performed by federal agencies, industry, universities, and other nonprofit organizations. At the national level in 2004, industry
performed roughly 71% of total R\&D, followed by colleges and universities at 15%; government facilities, including federally funded $R \& D$ centers, at 12%; and nonprofit institutions at 2%. Data for the value of gross domestic product (GDP) and for R\&D expenditures are shown in current dollars.

The methodology for assigning R\&D activity at the state level was modified in 2001, and data back to 1998 were recalculated using the new methodology. State-level R\&D data from years before 1998 are not comparable.

Table 8-31
R\&D as share of gross domestic product, by state: 1998, 2001, and 2004

State	R\&D performed (\$millions)			State GDP (\$millions)			R\&D performed/GDP (\%)		
	1998	2001	2004	1998	2001	2004	1998	2001	2004
United States...............	214,752	255,897	283,439	8,679,660	10,058,169	11,633,573	2.47	2.54	2.44
Alabama.	1,926	2,251	2,760	106,656	118,682	141,702	1.81	1.90	1.95
Alaska	NA	297	271	23,165	26,609	34,729	NA	1.11	0.78
Arizona...................	2,318	3,048	3,544	137,581	165,358	194,134	1.68	1.84	1.83
Arkansas	283	451	514	61,861	68,927	81,752	0.46	0.65	0.63
California..	43,919	50,959	59,607	1,085,884	1,301,050	1,515,453	4.04	3.92	3.93
Colorado	4,565	4,313	5,497	143,160	178,078	198,407	3.19	2.42	2.77
Connecticut	3,559	5,311	7,881	145,373	165,025	183,873	2.45	3.22	4.29
Delaware	2,556	1,316	1,182	36,831	44,206	52,454	6.94	2.98	2.25
District of Columbia ...	2,606	2,543	2,383	51,682	63,730	77,782	5.04	3.99	3.06
Florida..	4,773	5,642	5,409	417,169	497,423	607,201	1.14	1.13	0.89
Georgia .	2,492	3,236	3,655	255,612	299,442	337,622	0.97	1.08	1.08
Hawaii.	242	358	490	37,549	41,822	50,781	0.64	0.86	0.96
Idaho...	1,127	1,259	1,006	29,800	35,631	42,697	3.78	3.53	2.36
Illinois..	8,830	10,472	11,300	423,855	476,461	534,364	2.08	2.20	2.11
Indiana	3,089	4,235	5,130	178,909	195,196	229,618	1.73	2.17	2.23
lowa.	1,054	1,324	1,625	83,665	91,920	111,626	1.26	1.44	1.46
Kansas..	1,518	1,597	2,169	76,005	86,430	99,125	2.00	1.85	2.19
Kentucky	645	951	1,006	108,813	115,113	131,839	0.59	0.83	0.76
Louisiana.	542	827	972	118,085	133,689	162,646	0.46	0.62	0.60
Maine ..	159	389	384	31,731	37,129	43,131	0.50	1.05	0.89
Maryland	8,019	11,379	14,341	161,954	192,659	229,158	4.95	5.91	6.26
Massachusetts..........	13,382	14,665	15,987	236,079	280,509	309,483	5.67	5.23	5.17
Michigan	13,655	15,533	16,722	309,431	334,419	363,380	4.41	4.64	4.60
Minnesota ..	3,818	5,010	5,992	164,897	190,231	222,628	2.32	2.63	2.69
Mississippi	366	650	651	60,513	65,961	76,534	0.61	0.99	0.85
Missouri	1,868	2,550	3,038	164,267	182,362	204,733	1.14	1.40	1.48
Montana...	191	239	295	19,884	22,471	27,790	0.96	1.06	1.06
Nebraska...	315	580	740	52,076	57,438	67,976	0.60	1.01	1.09
Nevada...................	571	444	623	63,635	77,291	99,342	0.90	0.57	0.63
New Hampshire	1,340	1,587	1,665	39,102	44,279	51,656	3.43	3.58	3.22
New Jersey	11,368	11,392	12,460	314,117	362,987	409,156	3.62	3.14	3.05
New Mexico	3,032	3,947	5,114	45,918	51,359	63,861	6.60	7.69	8.01
New York..................	13,731	14,422	13,113	686,906	808,537	908,308	2.00	1.78	1.44
North Carolina...........	4,560	5,825	6,491	242,904	285,651	324,622	1.88	2.04	2.00
North Dakota	119	461	558	16,936	18,527	22,715	0.71	2.49	2.46
Ohio	6,970	8,790	7,816	348,723	374,719	424,562	2.00	2.35	1.84
Oklahoma........	513	872	814	79,341	94,329	111,400	0.65	0.92	0.73
Oregon....................	1,910	5,447	3,664	100,951	110,916	135,014	1.89	4.91	2.71
Pennsylvania.............	8,762	11,156	10,813	361,800	406,713	464,467	2.42	2.74	2.33
Rhode Island.............	1,677	1,579	1,840	29,537	35,149	42,213	5.68	4.49	4.36
South Carolina	989	1,447	1,599	102,945	117,296	132,348	0.96	1.23	1.21
South Dakota	60	141	149	20,771	23,910	29,519	0.29	0.59	0.50
Tennessee................	2,503	2,651	3,180	160,872	180,582	214,400	1.56	1.47	1.48
Texas.......................	10,774	12,722	14,266	629,209	762,247	904,412	1.71	1.67	1.58
Utah	1,495	1,495	1,602	60,168	70,109	81,059	2.48	2.13	1.98
Vermont...................	175	423	546	15,935	18,828	22,002	1.10	2.24	2.48
Virginia	4,934	5,544	7,345	226,569	276,762	325,467	2.18	2.00	2.26
Washington	8,466	10,372	10,936	195,794	225,765	252,384	4.32	4.59	4.33
West Virginia	421	466	523	39,500	43,365	49,903	1.07	1.07	1.05
Wisconsin	2,501	3,249	3,675	160,681	181,936	208,269	1.56	1.79	1.76
Wyoming..................	65	82	98	14,859	18,941	23,876	0.44	0.44	0.41
Puerto Rico	NA	NA	NA	54,086	69,208	79,209	NA	NA	NA

NA $=$ not available

GDP = gross domestic product
NOTES: R\&D includes R\&D performed by federal agencies, industry, universities, and other nonprofit organizations. R\&D and GDP reported in current dollars.
SOURCES: National Science Foundation, Division of Science Resources Statistics, National Patterns of R\&D Resources (various years); Bureau of
Economic Analysis, Gross Domestic Product data; and Government of Puerto Rico, Office of the Governor.

Federal R\&D Obligations per Civilian Worker

Figure 8-32
Federal R\&D obligations per civilian worker: 2005

SOURCES: National Science Foundation, Division of Science Resources Statistics, Federal Funds for Research and Development (various years); and Bureau of Labor Statistics, Local Area Unemployment Statistics. See Table 8-32.

Findings

- Federal R\&D obligations rose from $\$ 67$ billion in 1995 to nearly $\$ 107$ billion in 2005, an increase of 59% in current dollars.
- The increase in federal R\&D obligations (in current dollars) was greater than the increase in the civilian workforce causing the value of this indicator to rise from $\$ 532$ per worker in 1995 to $\$ 753$ per worker in 2005.
- Federal R\&D obligations in 2005 varied greatly among the states, ranging from $\$ 121$ to $\$ 4,329$ per worker. Higher values were found in the states surrounding the District of Columbia and in sparsely populated states with national laboratories or federal facilities.
- The District of Columbia was an outlier with $\$ 13,588$ per worker in 2005, possibly because many federal employees work there but live in neighboring states.
- Between 1995 and 2005, the value of R\&D obligations per worker increased in 44 states and the District of Columbia and decreased in 6 states.

This indicator shows how federal $R \& D$ funding is disbursed geographically relative to the size of states' civilian workforces. Because the Department of Defense is the primary source for federal R\&D obligations, much of this funding is used for development, but it also may provide direct and indirect benefits to a state's economy and may stimulate the conduct of basic research. A high value may indicate the existence of major federally funded R\&D facilities in the state.

Federal R\&D dollars are attributed to the states in which the recipients of federal obligations are located. The size of a state's civilian workforce is estimated based on the Bureau of Labor Statistics Current Population Survey, which assigns workers to a location based on residence. Because of these differences and the sample-based nature of the population data, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-32
Federal R\&D obligations per civilian worker, by state: 1995, 2000, and 2005

State	Federal R\&D obligations (\$thousands)			Civilian workers			Federal R\&D obligations/ civilian worker (\$)		
	1995	2000	2005	1995	2000	2005	1995	2000	2005
United States	67,033,110	71,034,535	106,743,406	126,063,353	136,940,378	141,739,774	532	519	753
Alabama	2,016,252	1,614,901	2,800,183	1,955,846	2,067,147	2,056,800	1,031	781	1,361
Alaska	96,915	146,777	233,543	282,098	299,324	318,423	344	490	733
Arizona	915,087	1,121,701	2,674,487	2,095,749	2,404,916	2,727,003	437	466	981
Arkansas	97,724	116,333	154,255	1,170,593	1,207,352	1,276,851	83	96	121
California.	12,703,572	14,082,960	19,379,567	14,062,361	16,024,341	16,782,260	903	879	1,155
Colorado.	965,060	1,369,733	2,036,617	2,041,652	2,300,192	2,436,795	473	595	836
Connecticut	902,334	806,228	2,153,517	1,657,732	1,697,670	1,734,386	544	475	1,242
Delaware.	56,381	69,867	94,151	366,200	402,777	415,687	154	173	226
District of Columbia	2,805,093	2,374,647	3,993,434	273,764	291,916	293,900	10,246	8,135	13,588
Florida	2,403,899	2,216,206	2,197,889	6,655,500	7,569,406	8,375,993	361	293	262
Georgia	4,365,770	2,632,186	1,707,465	3,522,905	4,095,362	4,384,030	1,239	643	389
Hawaii.	480,428	209,737	384,401	557,042	584,858	614,290	862	359	626
Idaho..	211,063	216,928	273,093	567,558	632,451	698,466	372	343	391
Illinois.	1,116,137	1,404,613	1,982,619	5,857,677	6,176,837	6,112,981	191	227	324
Indiana	426,192	506,326	553,616	2,977,440	3,052,719	3,054,803	143	166	181
lowa ...	214,316	267,038	447,661	1,527,972	1,557,081	1,568,561	140	171	285
Kansas ..	120,846	223,493	198,017	1,296,202	1,351,988	1,389,201	93	165	143
Kentucky.	75,670	203,851	262,780	1,757,111	1,866,348	1,879,413	43	109	140
Louisiana.	176,253	249,045	402,068	1,820,359	1,930,662	1,938,280	97	129	207
Maine .	54,476	249,812	239,831	601,565	650,385	669,250	91	384	358
Maryland ..	7,039,183	8,684,796	12,211,434	2,572,708	2,711,382	2,820,526	2,736	3,203	4,329
Massachusetts.	3,339,532	4,145,472	5,701,829	3,029,360	3,273,281	3,211,033	1,102	1,266	1,776
Michigan .	688,376	975,052	1,105,199	4,576,521	4,953,421	4,726,204	150	197	234
Minnesota	571,128	781,132	758,267	2,529,464	2,720,492	2,796,622	226	287	271
Mississippi ..	212,739	394,585	424,101	1,175,278	1,239,859	1,226,492	181	318	346
Missouri .	1,613,322	890,597	4,040,346	2,690,210	2,875,336	2,847,758	600	310	1,419
Montana..	64,821	95,025	176,841	417,770	446,552	463,929	155	213	381
Nebraska.	86,762	98,491	145,135	882,603	923,198	940,040	98	107	154
Nevada.	372,570	263,897	382,463	805,286	1,015,221	1,178,072	463	260	325
New Hampshire	213,647	356,873	364,332	605,929	675,541	703,175	353	528	518
New Jersey..	1,325,902	1,937,769	2,344,121	3,846,322	4,130,310	4,255,813	345	469	551
New Mexico..	1,987,076	2,130,504	3,279,285	744,557	810,024	867,317	2,669	2,630	3,781
New York.	2,581,383	2,927,523	4,955,670	8,125,798	8,751,441	8,959,845	318	335	553
North Carolina.	825,433	1,062,536	1,791,495	3,582,647	3,969,235	4,112,828	230	268	436
North Dakota	47,313	64,051	105,109	331,252	335,780	341,847	143	191	307
Ohio ...	1,811,413	1,799,136	2,369,822	5,330,591	5,573,154	5,546,537	340	323	427
Oklahoma...	159,395	185,121	253,602	1,490,602	1,609,522	1,629,217	107	115	156
Oregon..	277,229	468,167	557,481	1,583,153	1,716,954	1,754,715	175	273	318
Pennsylvania...	2,414,250	2,357,552	3,234,522	5,554,303	5,830,902	5,966,226	435	404	542
Rhode Island...	515,425	418,037	572,251	477,409	520,758	539,709	1,080	803	1,060
South Carolina.	177,962	248,988	408,407	1,754,633	1,902,029	1,939,646	101	131	211
South Dakota..	26,492	38,803	69,982	373,515	397,678	411,551	71	98	170
Tennessee.	581,956	734,406	1,292,888	2,574,000	2,756,498	2,758,184	226	266	469
Texas	4,062,175	2,671,790	4,988,545	8,985,635	9,896,002	10,677,171	452	270	467
Utah.	371,208	285,968	813,912	979,367	1,097,915	1,211,803	379	260	672
Vermont.	53,590	72,030	170,743	305,279	326,742	341,442	176	220	500
Virginia ..	3,603,023	4,842,811	8,214,449	3,317,434	3,502,524	3,785,583	1,086	1,383	2,170
Washington.	1,127,750	1,329,466	2,387,686	2,636,011	2,898,677	3,089,953	428	459	773
West Virginia ...	296,347	235,677	772,528	723,904	764,649	754,060	409	308	1,024
Wisconsin	347,089	420,839	648,219	2,773,640	2,894,884	2,887,434	125	145	224
Wyoming.......	35,151	35,059	33,548	240,846	256,685	267,669	146	137	125
Puerto Rico	46,657	81,016	101,433	1,076,473	1,162,153	1,250,335	43	70	81

NOTES: Only 11 agencies required to report federal R\&D obligations: Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Homeland Security (not established in 1995 and 2000), Interior, and Transportation; Environmental Protection Agency; National Aeronautics and Space Administration; and National Science Foundation. These obligations represent approximately 98\% of total federal R\&D obligations in FY 1995, 2000, and 2005. Civilian workers represent employed component of civilian labor force and reported as annual data not seasonally adjusted.

SOURCES: National Science Foundation, Division of Science Resources Statistics, Federal Funds for Research and Development (various years); and Bureau of Labor Statistics, Local Area Unemployment Statistics.

Federal R\&D Obligations per Individual in S\&E Occupation

Figure 8-33
Federal R\&D obligations per individual in S\&E occupation: 2005

1st quartile (\$100,808-\$22,016)	2nd quartile $\mathbf{(\$ 2 0 , 7 9 6 - \$ 1 3 , 4 5 1)}$	3rd quartile $\mathbf{(\$ 1 3 , 3 7 1 - \$ 8 , 0 9 4)}$	4th quartile (\$7,398-\$3,835)
Alabama	Alaska	Florida	Arkansas
Arizona	Colorado	Georgia	Delaware
California	Maine	Idaho	Indiana
Connecticut	Mississippi	Ilinois	Kansas
District of Columbia	Montana	Louisiana	Kentucky
Hawaii	North Carolina	Michigan	
Maryland	Nevada	North Dakota	Minnesota
Massachusetts	New Hampshire	Ohio	Nebraska
Missouri	Oew Jersey	Oklahoma	
New Mexico	New York	South Carolina	South Dakota
Rhode Island	Texnsylvania	Vermont	Wisconsin
Virginia	Tennessee	Wyan	

SOURCES: National Science Foundation, Division of Science Resources Statistics, Federal Funds for Research and Development (various years); and Bureau of Labor Statistics, Occupational Employment and Wage Estimates. See Table 8-33.

Findings

- The federal government obligated nearly $\$ 107$ billion for R\&D in 2005, more than $\$ 20,000$ for each person employed in an S\&E occupation.
- The distribution for this indicator was highly skewed in 2005, with only 13 states and the District of Columbia above the national average. High values were reported in the District of Columbia and adjoining states and also in states where federal facilities or major defense contractors are located.
- The state distribution of federal R\&D obligations per person employed in an S\&E occupation ranged from $\$ 3,835$ to $\$ 100,808$ in 2005.
- Between 2003 and 2005, the value of this indicator increased in 25 states and the District of Columbia and decreased in 25 states. The largest increases in indicator value occurred in Missouri, West Virginia, and Maryland, and the largest decreases in Mississippi.

This indicator demonstrates how federal R\&D obligations are distributed geographically based on individuals with a bachelor's or higher degree who work in S\&E occupations. These positions include mathematical, computer, life, physical, and social scientists; engineers; and postsecondary teachers in any of these fields. Positions such as managers and elementary and secondary schoolteachers are excluded. A
high value may indicate the existence of major federally funded R\&D facilities or the presence of large defense or other federal contractors in the state.

Federal R\&D dollars are counted where they are obligated but may be expended in many locations. Data on people in S\&E occupations are sample based. For these reasons, estimates for sparsely populated states and the District of Columbia may be imprecise.

Table 8-33
Federal R\&D obligations per individual in S\&E occupation, by state: 2003 and 2005

State	Federal R\&D obligations (\$millions)		Individuals in S\&E occupations		Federal R\&D obligations/ individual in S\&E occupation (\$)	
	2003	2005	2003	2005	2003	2005
United States................	91,247	106,743	4,961,550	5,233,510	18,391	20,396
Alabama...................	2,933	2,800	56,380	62,790	52,020	44,596
Alaska	246	234	10,600	11,230	23,210	20,796
Arizona....................	1,857	2,674	92,120	96,410	20,156	27,741
Arkansas	140	154	21,340	24,660	6,547	6,255
California..	17,410	19,380	676,180	716,530	25,748	27,046
Colorado	1,612	2,037	124,140	126,110	12,985	16,150
Connecticut	2,068	2,154	81,380	83,930	25,411	25,658
Delaware..	91	94	17,370	18,010	5,261	5,228
District of Columbia ...	2,916	3,993	54,890	63,410	53,127	62,978
Florida.....................	2,522	2,198	221,070	241,000	11,408	9,120
Georgia	1,514	1,707	144,170	137,580	10,503	12,411
Hawaii	350	384	16,090	17,460	21,731	22,016
Idaho.......................	216	273	22,150	23,880	9,757	11,436
Illinois	1,900	1,983	211,230	221,630	8,996	8,946
Indiana	561	554	78,410	79,910	7,158	6,928
lowa	465	448	37,320	40,300	12,466	11,108
Kansas	190	198	51,970	51,630	3,656	3,835
Kentucky..................	232	263	45,230	44,530	5,131	5,901
Louisiana..................	442	402	41,900	41,030	10,547	9,799
Maine	145	240	15,020	15,500	9,650	15,473
Maryland	7,804	12,211	149,250	160,120	52,291	76,264
Massachusetts..........	5,157	5,702	184,690	193,180	27,920	29,516
Michigan	1,673	1,105	182,940	192,150	9,146	5,752
Minnesota	861	758	117,120	120,930	7,354	6,270
Mississippi	1,174	424	22,190	23,480	52,900	18,062
Missouri	1,270	4,040	84,150	92,260	15,091	43,793
Montana...................	130	177	11,450	11,940	11,314	14,811
Nebraska..................	146	145	30,710	31,530	4,765	4,603
Nevada....................	409	382	22,330	24,400	18,330	15,675
New Hampshire	363	364	23,430	26,840	15,498	13,574
New Jersey	1,786	2,344	161,420	174,270	11,063	13,451
New Mexico	2,850	3,279	33,600	32,530	84,823	100,808
New York..................	3,973	4,956	272,440	289,010	14,583	17,147
North Carolina...........	1,611	1,791	132,440	134,290	12,163	13,340
North Dakota	102	105	8,430	9,070	12,070	11,589
Ohio	2,396	2,370	177,100	180,900	13,529	13,100
Oklahoma.................	274	254	44,360	46,370	6,185	5,469
Oregon	480	557	61,230	62,030	7,843	8,987
Pennsylvania.............	3,788	3,235	185,560	204,270	20,413	15,835
Rhode Island.............	523	572	18,740	18,080	27,927	31,651
South Carolina	412	408	48,740	50,460	8,447	8,094
South Dakota	55	70	9,150	9,460	5,988	7,398
Tennessee................	1,039	1,293	63,680	66,390	16,320	19,474
Texas.......................	4,757	4,989	365,270	389,550	13,023	12,806
Utah	650	814	45,570	45,110	14,268	18,043
Vermont....................	182	171	11,420	12,770	15,926	13,371
Virginia	6,213	8,214	209,280	236,650	29,687	34,711
Washington	2,292	2,388	150,230	160,960	15,257	14,834
West Virginia	367	773	16,220	16,040	22,651	48,163
Wisconsin	657	648	93,320	93,590	7,042	6,926
Wyoming...................	41	34	6,130	7,350	6,704	4,564
Puerto Rico	112	101	19,940	20,950	5,628	4,842

[^8]
Industry-Performed R\&D as Share of Private-Industry Output

Figure 8-34
Industry-performed R\&D as share of private-industry output: 2005

SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Industrial Research and Development (various years); and Bureau of Economic Analysis, Gross Domestic Product data. See Table 8-34.

Findings

- The amount of R\&D performed by industry rose from $\$ 164$ billion in 1998 to $\$ 222$ billion in 2005, an increase of 36% (unadjusted for inflation).
- The value of this indicator for the United States has shown a downward trend over the past 7 years; starting at 2.14% in 1998, it declined to 2.03% in 2002 and has held steady through 2005
- Industrial R\&D is concentrated in a few states-only 14 states had indicator values exceeding the national average in 2005.
- States with high values for this indicator were usually located on the West Coast or the northern half of the East Coast.

This indicator measures the emphasis that private industry places on R\&D. Industrial $R \& D$ focuses on projects that are expected to yield new or improved products, processes, or services and to bring direct benefits to the company. A high value for this indicator shows that the companies and industries within a state are making major investments in their R\&D activities

Differences among states on this indicator should be interpreted with caution. Because industries differ in their reliance on $R \& D$, the indicator
reflects state differences in industrial structure as much as the behavior of individual companies. Furthermore, industrial R\&D data for states with small economies may be based on data imputed from previous years' survey results and imprecise estimates.

The methodology for making statelevel assignments of the industrial R\&D reported by companies with operations in multiple states changed in 1998. Industrial R\&D data from years before 1998 are not comparable.

Table 8-34
Industry-performed R\&D as share of private-industry output, by state: 1998, 2002, and 2005

	Industry-performed R\&D (\$millions)			Private-industry output (\$millions)			Industry-performed R\&D/ private-industry output (\%)		
State	1998	2002	2005	1998	2002	2005	1998	2002	2005
United States..	163,658	185,505	222,427	7,652,500	9,131,170	10,892,216	2.14	2.03	2.04
Alabama...................	845	846	1,417	89,994	104,211	128,397	0.94	0.81	1.10
Alaska	37	51	32	18,175	23,302	32,416	0.20	0.22	0.10
Arizona.	1,801	3,201	2,980	120,484	150,429	185,757	1.49	2.13	1.60
Arkansas	213	225	271	54,258	62,883	75,322	0.39	0.36	0.36
California..................	32,856	42,177	50,683	965,937	1,184,559	1,435,610	3.40	3.56	3.53
Colorado	3,180	2,823	4,299	126,013	160,289	188,879	2.52	1.76	2.28
Connecticut	3,346	6,077	7,885	132,955	150,755	176,328	2.52	4.03	4.47
Delaware..	1,356	1,219	1,511	33,652	41,196	52,017	4.03	2.96	2.90
District of Columbia ...	598	194	166	32,710	43,937	54,453	1.83	0.44	0.30
Florida	3,265	3,707	4,164	365,813	459,933	590,516	0.89	0.81	0.71
Georgia	1,617	2,107	2,282	224,870	267,441	311,917	0.72	0.79	0.73
Hawaii	55	103	168	29,201	33,619	42,515	0.19	0.31	0.40
Idaho	1,103	992	642	25,510	31,197	39,542	4.32	3.18	1.62
Illinois	7,318	7,616	9,712	384,342	438,363	500,730	1.90	1.74	1.94
Indiana .	2,922	3,572	4,610	161,797	184,923	212,463	1.81	1.93	2.17
lowa.	750	753	1,039	73,908	85,652	104,033	1.01	0.88	1.00
Kansas..	1,384	1,427	1,993	65,697	77,183	89,350	2.11	1.85	2.23
Kentucky..................	606	656	660	94,081	103,514	118,016	0.64	0.63	0.56
Louisiana....	377	248	300	103,343	116,505	159,901	0.36	0.21	0.19
Maine	137	250	350	27,363	33,121	38,543	0.50	0.75	0.91
Maryland ..	1,905	3,800	3,706	133,482	168,770	203,772	1.43	2.25	1.82
Massachusetts..........	10,367	10,609	13,342	214,890	258,688	291,776	4.82	4.10	4.57
Michigan	12,554	13,565	16,752	278,874	313,384	332,057	4.50	4.33	5.04
Minnesota	3,367	4,460	6,340	148,057	177,427	207,306	2.27	2.51	3.06
Mississippi	183	224	194	50,894	56,215	65,879	0.36	0.40	0.29
Missouri	1,505	1,592	2,602	146,453	166,436	190,015	1.03	0.96	1.37
Montana...	63	66	77	16,607	19,565	25,066	0.38	0.34	0.31
Nebraska...	195	342	407	44,485	50,901	62,166	0.44	0.67	0.65
Nevada.	476	339	382	56,995	72,826	99,213	0.84	0.47	0.39
New Hampshire	1,138	1,153	1,435	35,812	41,991	49,161	3.18	2.75	2.92
New Jersey	11,107	11,566	13,214	282,938	335,111	383,478	3.93	3.45	3.45
New Mexico	1,450	331	405	37,455	41,702	56,803	3.87	0.79	0.71
New York..................	10,283	9,234	9,474	614,396	736,066	861,618	1.67	1.25	1.10
North Carolina...........	3,483	3,704	5,158	212,790	259,825	305,739	1.64	1.43	1.69
North Dakota	46	154	104	14,277	16,671	21,012	0.32	0.92	0.49
Ohio	5,742	6,230	5,900	312,647	346,524	393,696	1.84	1.80	1.50
Oklahoma.................	369	412	422	65,997	80,492	102,166	0.56	0.51	0.41
Oregon....................	1,345	2,320	3,252	88,532	100,222	122,121	1.52	2.31	2.66
Pennsylvania.............	7,393	7,064	8,846	324,847	381,405	437,693	2.28	1.85	2.02
Rhode Island...............	1,332	1,121	1,387	25,892	32,294	38,160	5.14	3.47	3.63
South Carolina	996	1,054	1,402	87,771	102,565	117,441	1.13	1.03	1.19
South Dakota............	40	53	68	17,932	23,084	26,493	0.22	0.23	0.26
Tennessee	2,440	1,289	1,246	142,438	169,564	200,821	1.71	0.76	0.62
Texas.......................	8,984	10,744	12,438	558,165	691,968	882,277	1.61	1.55	1.41
Utah	1,119	1,116	1,234	51,610	61,934	75,777	2.17	1.80	1.63
Vermont....................	114	286	360	13,976	16,974	19,963	0.82	1.68	1.80
Virginia	2,540	2,920	4,379	186,444	235,685	290,120	1.36	1.24	1.51
Washington	7,072	8,579	9,736	168,427	198,461	233,449	4.20	4.32	4.17
West Virginia	335	264	242	33,440	37,308	43,913	1.00	0.71	0.55
Wisconsin	1,929	2,649	2,729	143,368	167,489	192,732	1.35	1.58	1.42
Wyoming..................	20	21	30	12,506	16,611	23,628	0.16	0.13	0.13
Puerto Rico	NA								

[^9]
Academic R\&D per \$1,000 of Gross Domestic Product

Figure 8-35
Academic R\&D per \$1,000 of gross domestic product: 2005

1st quartile (\$6.87-\$4.58)	2nd quartile (\$4.53-\$3.56)	3rd quartile (\$3.47-\$3.06)	4th quartile (\$2.73-\$1.62)
lowa	Alabama	Arizona	Arkansas
Maryland	Alaska	Connecticut	Delaware
Massachusetts	California	Illinois	Florida
Montana	Colorado	Indiana	Idaho
Nebraska	District of Columbia	Kansas	Maine
New Hampshire	Georgia	Louisiana	Minnesota
New Mexico	Hawaii	Ohio	Nevada
North Carolina	Michigan	South Carolina	New Jersey
North Dakota	Mississippi	Tennessee	Oklahoma
Pennsylvania	Missouri	Texas	South Dakota
Rhode Island	New York	Washington	Virginia
Vermont	Wyoming		West Virginia
Wisconsin	Utah		

SOURCES: National Science Foundation, Division of Science Resources Statistics, Academic Research and Development Expenditures (various years); and Bureau of Economic Analysis, Gross Domestic Product data. See table 8-35.

Findings

- Expenditures for research performed in academic institutions have doubled in a decade, rising from $\$ 21.6$ billion in 1995 to $\$ 44.9$ billion in 2005 (unadjusted for inflation).
- In the United States, academic research increased more rapidly than GDP, causing the value of this indicator to increase by 21\% between 1995 and 2005. During this period, 45 states reported increases in the value of this indicator and 5 states and the District of Columbia showed decreases.
- The largest percentage increases in academic R\&D as a share of GDP occurred in Hawaii and Mississippi, where the value of this indicator approximately doubled between 1995 and 2005.
- States ranking high on the intensity of academic research usually did not rank high on the intensity of industrial research.

This indicator measures the extent of spending on academic research performed in a state relative to the size of the state's economy. Academic R\&D is more basic and less product oriented than R\&D performed by industry. It can be a valuable basis for future economic development. High values for this indicator may reflect an academic R\&D system that can compete for funding from federal, state, and industrial sources.

In this indicator, Maryland data exclude expenditures by the Applied Physics Laboratory (APL) at the Johns Hopkins University. APL employs more than 3,000 people and supports the Department of Defense, the National Aeronautics and Space Administration, and other government agencies rather than focusing on academic research. Data for the value of gross domestic product (GDP) by state and for R\&D expenditures are shown in current dollars.

Table 8-35
Academic R\&D per \$1,000 of gross domestic product, by state: 1995, 2000, and 2005

State	Academic R\&D (\$thousands)			State GDP (\$millions)			Academic R\&D/ \$1,000 GDP		
	1995	2000	2005	1995	2000	2005	1995	2000	2005
United States.	21,649,053	29,551,103	44,945,923	7,232,723	9,749,104	12,372,847	2.99	3.03	3.63
Alabama.	336,644	428,122	589,860	94,021	114,576	151,342	3.58	3.74	3.90
Alaska	72,453	108,099	153,721	24,805	27,034	39,394	2.92	4.00	3.90
Arizona.	380,216	465,777	720,184	104,036	158,533	212,312	3.65	2.94	3.39
Arkansas	94,257	131,868	209,518	53,303	66,801	87,004	1.77	1.97	2.41
California	2,666,631	4,065,130	6,272,890	908,963	1,287,145	1,616,351	2.93	3.16	3.88
Colorado	399,315	544,584	825,984	108,043	171,862	214,337	3.70	3.17	3.85
Connecticut	380,511	468,435	669,199	120,800	160,436	193,496	3.15	2.92	3.46
Delaware	54,197	78,126	115,751	27,507	41,472	56,731	1.97	1.88	2.04
District of Columbia ...	187,695	245,828	302,921	47,123	58,699	82,628	3.98	4.19	3.67
Florida.	608,896	851,932	1,448,634	340,501	471,316	666,639	1.79	1.81	2.17
Georgia	684,492	926,749	1,274,410	199,138	290,887	358,365	3.44	3.19	3.56
Hawaii	78,429	161,300	240,247	36,572	40,202	54,773	2.14	4.01	4.39
Idaho.	61,906	73,726	119,871	27,099	34,989	45,891	2.28	2.11	2.61
Illinois.	831,644	1,170,743	1,770,938	359,723	464,194	555,599	2.31	2.52	3.19
Indiana	377,034	509,141	759,419	147,984	194,419	236,357	2.55	2.62	3.21
lowa	323,535	418,263	548,237	71,905	90,186	117,635	4.50	4.64	4.66
Kansas	181,777	258,336	348,751	63,699	82,812	105,228	2.85	3.12	3.31
Kentucky	155,345	276,986	452,265	90,459	111,900	138,616	1.72	2.48	3.26
Louisiana.	329,534	409,143	579,734	109,153	131,520	180,336	3.02	3.11	3.21
Maine	33,512	57,753	81,624	27,648	35,542	44,906	1.21	1.62	1.82
Maryland	762,306	1,070,630	1,678,649	137,391	180,367	244,447	5.55	5.94	6.87
Massachusetts.	1,164,614	1,486,174	2,079,463	195,277	274,949	320,050	5.96	5.41	6.50
Michigan	779,483	1,007,582	1,455,849	251,017	337,235	372,148	3.11	2.99	3.91
Minnesota	342,003	418,029	559,585	131,357	185,093	231,437	2.60	2.26	2.42
Mississippi	118,436	217,064	353,445	53,816	64,266	79,786	2.20	3.38	4.43
Missouri	403,589	614,028	893,013	137,528	176,708	215,073	2.93	3.47	4.15
Montana.	69,975	99,069	170,791	17,393	21,366	29,915	4.02	4.64	5.71
Nebraska.	158,717	208,480	360,148	44,505	55,478	72,242	3.57	3.76	4.99
Nevada.	86,902	106,154	178,492	48,974	73,719	110,158	1.77	1.44	1.62
New Hampshire	93,073	150,982	287,472	32,149	43,518	54,119	2.90	3.47	5.31
New Jersey	441,835	567,666	867,121	266,724	344,824	427,654	1.66	1.65	2.03
New Mexico	232,428	243,822	345,844	41,459	50,725	69,692	5.61	4.81	4.96
New York.	1,780,233	2,291,749	3,604,414	594,444	777,157	961,385	2.99	2.95	3.75
North Carolina	720,413	1,039,812	1,652,049	191,579	273,698	350,700	3.76	3.80	4.71
North Dakota	59,617	67,406	149,994	14,515	17,752	24,935	4.11	3.80	6.02
Ohio	646,498	918,241	1,530,915	293,260	372,006	442,243	2.20	2.47	3.46
Oklahoma.	189,722	252,419	291,697	69,580	89,757	121,558	2.73	2.81	2.40
Oregon..	260,059	346,149	536,228	80,099	112,438	141,831	3.25	3.08	3.78
Pennsylvania.............	1,150,888	1,552,417	2,353,640	314,504	389,619	486,139	3.66	3.98	4.84
Rhode Island..	99,408	129,697	199,709	25,666	33,609	43,623	3.87	3.86	4.58
South Carolina	227,727	294,274	486,399	86,053	112,514	140,088	2.65	2.62	3.47
South Dakota.	21,747	27,589	67,012	17,807	23,099	30,541	1.22	1.19	2.19
Tennessee.	310,766	405,291	726,078	135,655	174,851	224,995	2.29	2.32	3.23
Texas.	1,510,543	2,037,681	3,073,724	507,441	727,233	989,333	2.98	2.80	3.11
Utah.	202,212	308,059	400,276	46,303	67,568	88,364	4.37	4.56	4.53
Vermont.	54,839	64,762	117,442	13,892	17,782	23,056	3.95	3.64	5.09
Virginia	452,717	553,924	914,166	185,490	260,743	350,692	2.44	2.12	2.61
Washington	494,333	643,757	901,102	151,338	221,961	271,381	3.27	2.90	3.32
West Virginia	53,510	73,420	145,150	36,362	41,476	53,091	1.47	1.77	2.73
Wisconsin	481,967	661,641	998,449	134,096	175,737	216,985	3.59	3.76	4.60
Wyoming..................	40,470	43,094	83,449	14,567	17,331	27,246	2.78	2.49	3.06
Puerto Rico	69,636	74,529	100,235	42,647	61,702	82,650	1.63	1.21	1.21

GDP = gross domestic product
NOTES: In 2000 and 2005, academic R\&D reported for all institutions; in 1995, reported for doctorate-granting institutions only. For Maryland, academic R\&D excludes R\&D performed by Applied Physics Laboratory at Johns Hopkins University. GDP reported in current dollars.
SOURCES: National Science Foundation, Division of Science Resources Statistics, Academic Research and Development Expenditures (various years); Bureau of Economic Analysis, Gross Domestic Product data; and Government of Puerto Rico, Office of the Governor.

S\&E Doctorates Conferred per 1,000 S\&E Doctorate Holders

Figure 8-36
S\&E Doctorates Conferred per 1,000 S\&E Doctorate Holders: 2005 and 2006
(

SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Earned Doctorates and Survey of Doctorate Recipients. See table 8-36.

Findings

- In 2005, nearly 28,000 S\&E doctorates were awarded by U.S. academic institutions, approximately 10\% more than in 2001 and 3% more than in 1997.
- Nationwide, the value of this indicator declined between 1997 and 2003, reflecting an increase in the stock of S\&E doctorate holders living in the United States.
- This indicator is volatile for many states and may reflect the migration patterns of existing S\&E doctorate holders.

This indicator provides a measure of the rate at which the states are training new S\&E doctorate recipients for entry into the workforce. High values indicate relatively large production of new doctorate holders compared with the existing stock. Some states with relatively low values may need to attract S\&E doctorate holders from elsewhere to meet the needs of local employers.

This indicator does not account for the mobility of recent S\&E doctorate recipients, which is very high. Foreignborn graduate students may decide to return home after graduation to begin
their careers. Most recent doctorate recipients are influenced by the location of employment opportunities.
U.S. S\&E doctorate holders include those in the physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psychology. Medical doctorates are excluded. The population of doctorate holders for this indicator consisted of all individuals under age 76 years who received a research doctorate in science or engineering from a U.S. institution and were residing in the United States.

Table 8-36
S\&E doctorates conferred per 1,000 S\&E doctorate holders, by state: 1997, 2001, 2005, and 2006

${ }^{\text {a }}$ Estimates for S\&E doctorate holders may vary between 10% and 25% because geography is not part of the sample design.
NOTES: Data on U.S. S\&E doctorate holders classified by employer location. Data on 2006 S\&E doctorate holders are preliminary.
SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Earned Doctorates and Survey of Doctorate Recipients.

Academic Article Output per 1,000 S\&E Doctorate Holders in Academia

Figure 8-37
Academic article output per 1,000 S\&E doctorate holders in academia: 2005 and 2006

SOURCES: Thomson Scientific ISI database; ipIQ, Inc.; and National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients. See table 8-37.

Findings

- Between 1997 and 2005, the number of scientific and technical articles increased by 16% and the number of S\&E doctorate holders increased by nearly the same percentage, causing the value of this indicator to remain almost unchanged for the United States
- The publication rate for academic S\&E doctorate holders in states in the top quartile of this indicator was approximately twice as high as for states in the bottom quartile.
- States with the greatest volatility on this indicator frequently had larger changes in academic employment than in number of publications; this may indicate that academic article output is lower at the beginning and end of academic careers.
- In 2003, the states with the highest values for this indicator were distributed across the nation.

The volume of peer-reviewed articles per 1,000 academic S\&E doctorate holders is an approximate measure of their contribution to scientific knowledge. Publications are only one measure of academic productivity, which includes trained personnel, patents, and other outputs. A high value on this indicator shows that the S\&E faculty in a state's academic institutions are generating a high volume of publications relative to other states. Academic institutions include both 2-year and 4-year schools.

Publication counts are based on the number of articles appearing in
a set of journals listed in Thomson ISI's Science Citation Index and Social Sciences Citation Index. The number of journals in this set was 5,029 in 1997, 5,255 in 2001, and 5,161 in 2005. Articles with authors in different institutions were counted fractionally. For a publication with N authors, each author's institution was credited with $1 / N$ articles.

S\&E doctorates include physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psychology. Medical doctorates and S\&E doctorates from foreign institutions are excluded.

Table 8-37
Academic article output per 1,000 S\&E doctorate holders in academia, by state: 1997, 2001, 2005, and 2006

State	Academic article output			S\&E doctorate holders in academia			Academic articles/ 1,000 academic doctorate holders		
	1997	2001	2005	1997	2001	2006	1997	2001	2005/2006
United States.......	144,319	147,450	167,720	245,670	261,780	295,390	587	563	568
Alabama...................	1,910	1,899	1,996	4,640	3,050	3,510	412	623	569
Alaska ${ }^{\text {a }}$.	163	186	245	450	530	580	362	351	422
Arizona...	2,257	2,199	2,459	3,050	3,340	4,080	740	658	603
Arkansas ${ }^{\text {a }}$............	603	608	743	1,520	1,640	1,960	397	371	379
California..................	17,512	18,115	20,807	26,050	26,790	30,800	672	676	676
Colorado	2,524	2,630	2,853	4,550	5,120	5,840	555	514	489
Connecticut	2,808	2,755	3,145	4,000	4,420	4,770	702	623	659
Delaware ${ }^{\text {a }}$................	499	560	638	750	840	950	665	667	672
District of Columbia ...	1,224	1,211	1,267	2,210	2,840	2,600	554	426	487
Florida	4,186	4,256	5,424	6,850	8,250	9,590	611	516	566
Georgia	3,255	3,576	4,190	5,780	6,450	7,750	563	554	541
Hawaiia	574	539	618	1,380	1,570	1,680	416	343	368
Idaho ${ }^{\text {a }}$......................	295	309	347	780	980	1,490	378	315	233
Illinois	6,893	7,007	7,776	10,620	11,090	12,040	649	632	646
Indiana	3,103	3,095	3,557	4,680	5,710	6,220	663	542	572
Iowa	2,273	2,226	2,401	3,100	3,220	3,510	733	691	684
Kansas ${ }^{\text {a }}$...................	1,199	1,251	1,362	2,260	2,270	2,600	531	551	524
Kentucky...	1,380	1,356	1,642	3,040	3,240	3,640	454	419	451
Louisiana...	1,895	1,828	2,064	3,580	3,470	3,470	529	527	595
Maine ${ }^{\text {a }}$.....	247	234	303	1,340	1,200	1,240	184	195	244
Maryland	4,391	4,935	5,506	6,400	6,100	7,680	686	809	717
Massachusetts..........	9,143	9,597	10,695	11,810	13,390	15,380	774	717	695
Michigan	4,880	5,078	5,841	7,850	8,820	9,580	622	576	610
Minnesota	2,435	2,388	2,680	4,490	5,540	5,810	542	431	461
Mississippi	629	692	843	1,940	2,000	2,020	324	346	417
Missouri	3,160	3,229	3,469	5,770	5,710	5,660	548	565	613
Montana ${ }^{\text {a }}$.................	272	328	380	1,020	810	1,230	267	405	309
Nebraska ${ }^{\text {a }}$................	1,030	1,011	1,167	2,360	1,960	1,930	436	516	605
Nevada ${ }^{\text {a }}$	370	447	532	980	1,260	1,630	378	355	326
New Hampshire ${ }^{\text {a }}$.......	605	614	776	1,130	1,240	1,240	535	495	626
New Jersey	3,102	3,054	3,422	5,290	5,860	6,530	586	521	524
New Mexico	808	780	840	2,450	2,910	2,990	330	268	281
New York..................	12,381	12,406	13,624	20,900	21,770	23,290	592	570	585
North Carolina...........	4,958	5,141	6,087	7,740	9,050	10,300	641	568	591
North Dakota ${ }^{\text {a }}$...........	269	271	362	900	660	970	299	411	373
Ohio	5,170	5,078	5,597	9,750	9,920	10,690	530	512	524
Oklahoma.................	919	925	1,034	2,680	2,800	2,890	343	330	358
Oregon.....	1,613	1,556	1,920	2,690	3,250	3,640	600	479	527
Pennsylvania.............	8,194	8,362	9,588	12,150	13,590	16,250	674	615	590
Rhode Island ${ }^{\text {a }}$...........	852	862	942	1,730	1,730	2,060	492	498	457
South Carolina	1,210	1,351	1,528	3,230	3,030	3,730	375	446	410
South Dakota ${ }^{\text {a }}$..........	140	131	165	700	640	690	200	205	239
Tennessee................	2,255	2,285	2,767	4,720	4,800	5,740	478	476	482
Texas......................	8,755	9,040	10,626	13,760	14,270	17,240	636	633	616
Utah	1,570	1,570	1,777	3,080	3,100	3,600	510	506	494
Vermonta	380	412	423	1,140	1,050	1,060	333	392	399
Virginia	3,014	3,104	3,509	5,830	7,180	8,050	517	432	436
Washington	3,207	3,339	3,697	5,410	6,390	7,320	593	523	505
West Virginia ${ }^{\text {a }}$............	417	388	419	1,190	1,150	1,350	350	337	310
Wisconsin	3,190	3,046	3,451	5,390	5,210	6,000	592	585	575
Wyoming ${ }^{\text {a }}$................	200	190	216	560	570	520	357	333	415
Puerto Rico ${ }^{\text {a }}$.............	168	186	204	640	1,070	1,250	263	174	163

${ }^{\text {a }}$ Estimates for S\&E doctorate holders may vary between 10% and 25% because geography is not part of the sample design.
NOTES: Data on U.S. S\&E doctorate holders classified by employer location. Data on 2006 S\&E doctorate holders are preliminary.
SOURCES: Thomson Scientific ISI database; ipIQ, Inc.; and National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients.

Academic Article Output per \$1 Million of Academic R\&D

Figure 8-38
Academic article output per \$1 million of academic R\&D: 2005

1st quartile (5.50-4.01)	2nd quartile (3.95-3.58)	3rd quartile (3.56-3.14)	4th quartile (2.99-1.59)
Connecticut	Florida	Alabama	Alaska
Delaware	Kansas	Arizona	Hawaii
District of Columbia	Kentucky	Arkansas	Idaho
Illinois	Maine	California	Mississippi
Indiana	Missouri	Colorado	Montana
lowa	New Jersey	Georgia	Nevada
Massachusetts	New York	Louisiana	New Hampshire
Michigan	North Carolina	Maryland	New Mexico
Minnesota	Ohio	Nebraska	North Dakota
Pennsylvania	Oregon	Oklahoma	South Dakota
Rhode Island	Tennessee	Seuth Carolina	West Virginia
Utah	Vermont	Wisconsin	Wyoming

SOURCES: Thomson Scientific ISI database; ipIQ, Inc.; and National Science Foundation, Division of Science Resources Statistics, Academic Research and Development Expenditures (various years). See table 8-38.

Findings

- From 1995 to 2005 , the number of academic publications rose from 146,000 to nearly 168,000 , an increase of 15%.
- In 2005, academic researchers produced an average of 4.3 publications per $\$ 1$ million of academic R\&D, compared with 7.5 in 1995. This partly reflects the effect of general price inflation (28\% during this time period), but may also indicate rising academic research costs.
- The value for this indicator decreased for all states between 1995 and 2005.

This indicator shows the relationship between the number of academic publications and the expenditure for academic R\&D. A high value for this indicator means that a state's academic institutions have a high publications output relative to their R\&D spending. Academic institutions include both 2 -year and 4-year schools. This indicator is not an efficiency measure; it is affected by the highly variable costs of R\&D and by publishing conventions in different fields and institutions. It may reflect variations in field emphasis among states and institutions.

Publication counts are based on the number of articles appearing in a set of journals listed in Thomson ISI's Science

Citation Index and Social Sciences Citation Index. The number of journals in this set was 4,601 in 1993, 5,084 in 1998 , and 5,161 in 2005. Articles with authors in different institutions were counted fractionally. For a publication with N authors, each author's institution was credited with $1 / N$ articles. In this indicator, Maryland data exclude expenditures by the Applied Physics Laboratory (APL) at the Johns Hopkins University. APL employs more than 3,000 workers and supports the Department of Defense, the National Aeronautics and Space Administration, and other government agencies rather than focusing on academic research.

Table 8-38
Academic article output per \$1 million of academic R\&D, by state: 1995, 2000, and 2005

State	Academic article output			Academic R\&D (\$millions)			Academic articles/ \$1 million academic R\&D		
	1995	2000	2005	1995	2000	2005	1995	2000	2005
United States...............	146,122	143,922	167,720	19,438	25,317	39,369	7.52	5.68	4.26
Alabama...................	1,925	1,772	1,996	337	428	590	5.71	4.14	3.38
Alaska	165	174	245	72	108	154	2.29	1.61	1.59
Arizona....................	2,318	2,179	2,459	380	466	720	6.10	4.68	3.42
Arkansas	518	572	743	94	132	210	5.51	4.33	3.54
California..................	18,004	17,634	20,807	2,667	4,065	6,273	6.75	4.34	3.32
Colorado	2,568	2,504	2,853	399	545	826	6.44	4.59	3.45
Connecticut	2,811	2,788	3,145	381	468	669	7.38	5.96	4.70
Delaware	515	520	638	54	78	116	9.54	6.67	5.50
District of Columbia ...	1,233	1,244	1,267	188	246	303	6.56	5.06	4.18
Florida	4,154	4,247	5,424	609	852	1,449	6.82	4.98	3.74
Georgia	2,959	3,294	4,190	684	927	1,274	4.33	3.55	3.29
Hawaii	615	557	618	78	161	240	7.88	3.46	2.58
Idaho.......................	257	277	347	62	74	120	4.15	3.74	2.89
Illinois......................	6,979	6,910	7,776	832	1,171	1,771	8.39	5.90	4.39
Indiana	3,182	3,069	3,557	377	509	759	8.44	6.03	4.69
lowa	2,352	2,198	2,401	324	418	548	7.26	5.26	4.38
Kansas	1,226	1,286	1,362	182	258	349	6.74	4.98	3.90
Kentucky..................	1,280	1,337	1,642	155	277	452	8.26	4.83	3.63
Louisiana..................	1,946	1,787	2,064	330	409	580	5.90	4.37	3.56
Maine	258	272	303	34	58	82	7.59	4.69	3.70
Maryland	4,431	4,598	5,506	762	1,071	1,679	5.81	4.29	3.28
Massachusetts...........	9,128	9,347	10,695	1,165	1,486	2,079	7.84	6.29	5.14
Michigan	4,965	4,885	5,841	779	1,008	1,456	6.37	4.85	4.01
Minnesota	2,574	2,259	2,680	342	418	560	7.53	5.40	4.79
Mississippi	621	653	843	118	217	353	5.26	3.01	2.39
Missouri	3,368	3,052	3,469	404	614	893	8.34	4.97	3.88
Montana...................	256	313	380	70	99	171	3.66	3.16	2.22
Nebraska..................	1,091	979	1,167	159	208	360	6.86	4.71	3.24
Nevada....................	390	443	532	87	106	178	4.48	4.18	2.99
New Hampshire	596	592	776	93	151	287	6.41	3.92	2.70
New Jersey	2,919	2,993	3,422	442	568	867	6.60	5.27	3.95
New Mexico	766	802	840	232	244	346	3.30	3.29	2.43
New York................	12,818	12,146	13,624	1,780	2,292	3,604	7.20	5.30	3.78
North Carolina...........	5,189	5,073	6,087	720	1,040	1,652	7.21	4.88	3.68
North Dakota	263	242	362	60	67	150	4.38	3.61	2.41
Ohio	5,156	5,064	5,597	646	918	1,531	7.98	5.52	3.66
Oklahoma.................	949	906	1,034	190	252	292	4.99	3.60	3.54
Oregon	1,648	1,665	1,920	260	346	536	6.34	4.81	3.58
Pennsylvania.............	8,244	8,037	9,588	1,151	1,552	2,354	7.16	5.18	4.07
Rhode Island.............	858	853	942	99	130	200	8.67	6.56	4.71
South Carolina	1,179	1,285	1,528	228	294	486	5.17	4.37	3.14
South Dakota............	128	135	165	22	28	67	5.82	4.82	2.46
Tennessee................	2,296	2,278	2,767	311	405	726	7.38	5.62	3.81
Texas.......................	8,997	8,795	10,626	1,511	2,038	3,074	5.95	4.32	3.46
Utah	1,539	1,559	1,777	202	308	400	7.62	5.06	4.44
Vermont...................	403	405	423	55	65	117	7.33	6.23	3.62
Virginia	3,007	3,075	3,509	453	554	914	6.64	5.55	3.84
Washington..............	3,189	3,288	3,697	494	644	901	6.46	5.11	4.10
West Virginia	419	376	419	54	73	145	7.76	5.15	2.89
Wisconsin	3,278	3,025	3,451	482	662	998	6.80	4.57	3.46
Wyoming..................	192	178	216	40	43	83	4.80	4.14	2.60
Puerto Rico	171	192	204	70	75	100	2.44	2.56	2.04

NOTES: In 2000 and 2005, academic R\&D reported for all institutions. In 1995, academic R\&D reported for doctorate-granting institutions only.
SOURCES: Thomson Scientific ISI database; inIQ, Inc.; and National Science Foundation, Division of Science Resources Statistics, Academic Research and Development Expenditures (various years).

Academic Patents Awarded per 1,000 S\&E Doctorate Holders in Academia

Figure 8-39
Academic patents awarded per 1,000 S\&E doctorate holders in academia: 2005 and 2006

SOURCES: Patent and Trademark Office, Technology Assessment and Forecast Branch, U.S. Colleges and Universities-Utility Patent Grants, Calendar Years 1969-2005; and National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients. See table 8-39.

Findings

- Throughout the United States, the number of patents awarded to academic institutions increased from more than 2,400 in 1997 to more than 2,700 in 2005 , an increase of 11%, while the number of academic S\&E doctorate holders rose by 20\% between 1997 and 2006.
- In 2005, 9.2 academic patents were produced nationally for each 1,000 S\&E doctorate holders employed in academia, slightly lower than the 10.0 patents produced in 1997.
- In 2003, states varied widely on this indicator, with values ranging from 0 to 20.2 patents per 1,000 S\&E doctorate holders employed in academia, indicating a difference in patenting philosophy or mix of industries that these academic institutions deal with.
- California and Massachusetts showed both the highest levels of academic patenting activity and the highest levels of venture capital investment.

Since the early 1980s, academic institutions have increasingly been viewed as engines of economic growth. Growing attention has been paid to the results of academic R\&D in terms of their role in creating new products, processes, and services. One indicator of such R\&D results is volume of academic patents. Academic patenting is highly concentrated and partly reflects the resources devoted to institutional patenting offices.

This indicator relates the number of academic-owned utility patents to the size of the doctoral S\&E workforce in academia. Academia includes both 2-year and 4-year institutions. Utility patents, commonly
known as patents for inventions, include any new, useful, or improved method, process, machine, device, manufactured item, or chemical compound, and represent a key measure of intellectual property. This indicator is an approximate measure of the degree to which results with perceived economic value are generated by the doctoral academic workforce.

S\&E doctorates include physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics; engineering; and psychology. Medical doctorates and S\&E doctorates from foreign institutions are excluded.

Table 8-39
Academic patents awarded per 1,000 S\&E doctorate holders in academia, by state: 1997, 2001, 2005, and 2006

State	Patents awarded to academic institutions			S\&E doctorate holders in academia			Academic patents/ 1,000 academic S\&E doctorate holders		
	1997	2001	2005	1997	2001	2006	1997	2001	2005/2006
United States...............	2,447	3,219	2,725	245,670	261,780	295,390	10.0	12.3	9.2
Alabama...................	23	40	28	4,640	3,050	3,510	5.0	13.1	8.0
Alaska ${ }^{\text {a }}$....................	2	0	0	450	530	580	4.4	0.0	0.0
Arizona...................	21	17	22	3,050	3,340	4,080	6.9	5.1	5.4
Arkansas ${ }^{\text {a }}$.................	8	28	19	1,520	1,640	1,960	5.3	17.1	9.7
California..................	409	638	622	26,050	26,790	30,800	15.7	23.8	20.2
Colorado	32	31	14	4,550	5,120	5,840	7.0	6.1	2.4
Connecticut	34	37	41	4,000	4,420	4,770	8.5	8.4	8.6
Delaware ${ }^{\text {a }}$................	4	5	7	750	840	950	5.3	6.0	7.4
District of Columbia ...	28	13	7	2,210	2,840	2,600	12.7	4.6	2.7
Florida.....................	94	103	128	6,850	8,250	9,590	13.7	12.5	13.3
Georgia	45	75	68	5,780	6,450	7,750	7.8	11.6	8.8
Hawaiia	6	4	6	1,380	1,570	1,680	4.3	2.5	3.6
Idaho ${ }^{\text {a }}$......................	0	0	0	780	980	1,490	0.0	0.0	0.0
Illinois......................	81	109	84	10,620	11,090	12,040	7.6	9.8	7.0
Indiana	39	17	39	4,680	5,710	6,220	8.3	3.0	6.3
lowa	51	67	29	3,100	3,220	3,510	16.5	20.8	8.3
Kansas ${ }^{\text {a }}$...................	7	18	6	2,260	2,270	2,600	3.1	7.9	2.3
Kentucky	16	20	23	3,040	3,240	3,640	5.3	6.2	6.3
Louisiana..................	26	42	18	3,580	3,470	3,470	7.3	12.1	5.2
Maine ${ }^{\text {a }}$....	0	2	1	1,340	1,200	1,240	0.0	1.7	0.8
Maryland	66	114	98	6,400	6,100	7,680	10.3	18.7	12.8
Massachusetts..........	188	218	213	11,810	13,390	15,380	15.9	16.3	13.8
Michigan	104	105	110	7,850	8,820	9,580	13.2	11.9	11.5
Minnesota	50	65	63	4,490	5,540	5,810	11.1	11.7	10.8
Mississippi	6	12	18	1,940	2,000	2,020	3.1	6.0	8.9
Missouri	40	55	28	5,770	5,710	5,660	6.9	9.6	4.9
Montana ${ }^{\text {a }}$.................	4	4	5	1,020	810	1,230	3.9	4.9	4.1
Nebraska ${ }^{\text {a }}$................	27	21	14	2,360	1,960	1,930	11.4	10.7	7.3
Nevada ${ }^{\text {a }}$..................	2	4	2	980	1,260	1,630	2.0	3.2	1.2
New Hampshire ${ }^{\text {a }}$.......	3	10	10	1,130	1,240	1,240	2.7	8.1	8.1
New Jersey	52	81	58	5,290	5,860	6,530	9.8	13.8	8.9
New Mexico	19	17	16	2,450	2,910	2,990	7.8	5.8	5.4
New York..................	224	283	201	20,900	21,770	23,290	10.7	13.0	8.6
North Carolina............	96	148	106	7,740	9,050	10,300	12.4	16.4	10.3
North Dakota ${ }^{\text {a }}$...........	5	4	3	900	660	970	5.6	6.1	3.1
Ohio	75	93	72	9,750	9,920	10,690	7.7	9.4	6.7
Oklahoma.................	17	22	14	2,680	2,800	2,890	6.3	7.9	4.8
Oregon	27	23	16	2,690	3,250	3,640	10.0	7.1	4.4
Pennsylvania.............	138	213	117	12,150	13,590	16,250	11.4	15.7	7.2
Rhode Island ${ }^{\text {a }}$............	9	19	11	1,730	1,730	2,060	5.2	11.0	5.3
South Carolina	14	14	18	3,230	3,030	3,730	4.3	4.6	4.8
South Dakota ${ }^{\text {a }}$...........	2	2	0	700	640	690	2.9	3.1	0.0
Tennessee.................	25	42	24	4,720	4,800	5,740	5.3	8.8	4.2
Texas.......................	125	155	157	13,760	14,270	17,240	9.1	10.9	9.1
Utah	38	48	26	3,080	3,100	3,600	12.3	15.5	7.2
Vermont ${ }^{\text {a }}$..................	3	3	4	1,140	1,050	1,060	2.6	2.9	3.8
Virginia	49	41	37	5,830	7,180	8,050	8.4	5.7	4.6
Washington...............	42	56	40	5,410	6,390	7,320	7.8	8.8	5.5
West Virginia ${ }^{\text {a }}$............	2	4	0	1,190	1,150	1,350	1.7	3.5	0.0
Wisconsin	65	74	77	5,390	5,210	6,000	12.1	14.2	12.8
Wyoming ${ }^{\text {a }}$................	4	3	5	560	570	520	7.1	5.3	9.6
Puerto Rico ${ }^{\text {a }} \ldots .$.	0	5	0	640	1,070	1,250	0.0	4.7	0.0

[^10]
Patents Awarded per 1,000 Individuals in S\&E Occupations

Figure 8-40
Patents awarded per 1,000 individuals in S\&E occupations: 2006

1st quartile (34.2-17.4)	2nd quartile (16.6-11.2)	3rd quartile (10.9-7.3)	4th quartile (7.1-1.0)	No data
Arizona	Colorado	Florida	Idaho	
California	Delaware	Georgia	Alabama	
Connecticut	Illinois	Kansas	Alaska	Arkansas
Massachusetts	Indiana	Kentucky	District of Columbia	
Michigan	lowa	Louisiana	Hawaii	Mississippi
Minnesota	Nevada	Maine	Nebraska	
New Hampshire	New Mexico	Maryland	North Dakota	
New Jersey	North Carolina	Missouri	Virginia	
New York	Ohio	Montana	West Virginia	
Oregon	Pennsylvania	Oklahoma	Wyoming	
Vermont	Rhode Island	South Carolina		
Washington	Texas	South Dakota		
Wisconsin	Utah	Tennessee		

SOURCES: U.S. Patent and Trademark Office, Electronic Information Products Division/Patent Technology Monitoring Branch, Patent Counts by Country/ State and Year, Utility Patents, January 1, 1963-December 31, 2006; and Bureau of Labor Statistics, Occupational Employment and Wage Estimates. See table 8-40.

Findings

- Nearly 90,000 utility patents were awarded to inventors residing in the United States in 2006, an increase of almost 7% from the 84,000 utility patents awarded in 2004.
- In 2006, the national average for this indicator was 16.7 patents per 1,000 individuals in an S\&E occupation, which was slightly higher than the average of 16.6 in 2004.
- The state of Idaho typically reports the highest values for this indicator, reflecting the presence of a highpatenting Department of Energy National Laboratory in this sparsely populated state. In 2006, this may not be evident because the Idaho data for individuals in S\&E occupations were suppressed.
- Values for the remaining states varied widely, ranging from 3.4 to 34.2 patents per 1,000 individuals in S\&E occupations in 2006.
- Nearly 25% of all 2006 U.S. utility patents were awarded to residents of California.

This indicator shows state patent activity normalized to the size of its S\&E workforce, specifically employees in S\&E occupations. People in S\&E occupations include mathematical, computer, life, physical, and social scientists; engineers; and postsecondary teachers in any of these fields. Managers, technicians, elementary and secondary schoolteachers, and medical personnel are excluded.

Although the Patent and Trademark Office grants several types of patents, this indicator includes only utility patents, commonly known as patents for inventions. Utility patents can be granted for any new, useful, or improved method, process, machine, device, manufactured item, or chemical compound, and represent a key
measure of intellectual property. The Patent and Trademark Office classifies patents based on the residence of the first-named inventor. Only U.S.-origin patents are included.

The location of S\&E occupations primarily reflects where the individuals work and is based on estimates from the Occupational Employment Statistics survey, a cooperative program between the Bureau of Labor Statistics and state employment security agencies. Because of the different methods of assigning geographic location, this indicator is of limited applicability for sparsely populated states or for locations where a large percentage of the population lives in one state or region and works in another.

Table 8-40
Patents awarded per 1,000 individuals in S\&E occupations, by state: 2004 and 2006

State	Patents awarded		Individuals in S\&E occupations		Patents/1,000 individuals in S\&E occupations	
	2004	2006	2004	2006	2004	2006
United States..........................	84,249	89,795	5,065,330	5,383,860	16.6	16.7
Alabama.............................	375	357	57,560	66,100	6.5	5.4
Alaska	39	36	10,660	10,720	3.7	3.4
Arizona................................	1,621	1,705	95,380	98,110	17.0	17.4
Arkansas	132	138	22,150	24,860	6.0	5.6
California............................	19,488	22,275	693,670	730,010	28.1	30.5
Colorado	2,099	2,118	126,280	133,730	16.6	15.8
Connecticut	1,577	1,652	82,820	79,380	19.0	20.8
Delaware	342	357	17,980	21,550	19.0	16.6
District of Columbia	75	63	57,750	64,120	1.3	1.0
Florida	2,456	2,600	229,950	246,190	10.7	10.6
Georgia	1,326	1,487	141,710	136,470	9.4	10.9
Hawaii	76	84	16,360	18,940	4.6	4.4
Idaho	1,785	1,663	22,310	NA	80.0	NA
Illinois...	3,162	3,294	219,530	222,470	14.4	14.8
Indiana	1,280	1,165	79,120	80,110	16.2	14.5
lowa	658	666	39,280	43,670	16.8	15.3
Kansas	448	492	52,020	48,620	8.6	10.1
Kentucky	407	413	44,350	44,680	9.2	9.2
Louisiana.............................	343	321	42,230	40,180	8.1	8.0
Maine .	134	142	15,160	15,950	8.8	8.9
Maryland	1,313	1,410	154,310	159,470	8.5	8.8
Massachusetts......................	3,672	4,011	186,260	198,670	19.7	20.2
Michigan	3,756	3,758	183,140	208,520	20.5	18.0
Minnesota	2,754	2,957	119,380	125,930	23.1	23.5
Mississippi	136	119	23,190	24,910	5.9	4.8
Missouri	768	721	87,200	96,420	8.8	7.5
Montana..	119	121	11,390	13,010	10.4	9.3
Nebraska..............................	191	186	31,720	32,500	6.0	5.7
Nevada...	410	386	23,980	26,930	17.1	14.3
New Hampshire	626	602	24,350	27,680	25.7	21.7
New Jersey	2,957	3,172	165,150	176,460	17.9	18.0
New Mexico	370	344	33,500	30,800	11.0	11.2
New York............................	5,846	5,627	272,930	306,810	21.4	18.3
North Carolina.	1,794	1,974	135,380	138,790	13.3	14.2
North Dakota	53	66	8,420	9,360	6.3	7.1
Ohio	2,889	2,630	180,360	185,190	16.0	14.2
Oklahoma...	447	544	NA	50,770	NA	10.7
Oregon	1,725	2,060	62,570	64,520	27.6	31.9
Pennsylvania........................	2,883	2,842	195,730	214,910	14.7	13.2
Rhode Island........................	309	269	19,660	18,060	15.7	14.9
South Carolina	524	577	51,030	53,230	10.3	10.8
South Dakota......................	82	74	9,420	10,120	8.7	7.3
Tennessee............................	681	669	65,120	67,040	10.5	10.0
Texas................................	5,930	6,308	383,180	408,710	15.5	15.4
Utah	683	684	43,030	49,690	15.9	13.8
Vermont...............................	400	437	11,770	12,780	34.0	34.2
Virginia	1,077	1,094	220,180	251,720	4.9	4.3
Washington	2,221	3,286	154,610	171,780	14.4	19.1
West Virginia	100	103	16,100	17,150	6.2	6.0
Wisconsin	1,658	1,688	95,230	96,860	17.4	17.4
Wyoming.............................	52	48	6,760	7,640	7.7	6.3
Puerto Rico	19	25	20,410	23,850	0.9	1.0

NOTE: Origin of utility patent determined by residence of first-named inventor.
SOURCES: U.S. Patent and Trademark Office, Electronic Information Products Division/Patent Technology Monitoring Branch, Patent Counts by Country/ State and Year, Utility Patents, January 1, 1963-December 31, 2006; and Bureau of Labor Statistics, Occupational Employment and Wage Estimates.

High-Technology Share of All Business Establishments

Figure 8-41
High-technology share of all business establishments: 2004

SOURCE: Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations. See table 8-41.

Findings

- The number of establishments in hightechnology industries rose from more than 590,000 in 2003 to nearly 604,000 in 2004, an increase of about 14,000 or 2\%
- The percentage of U.S. establishments in high-technology industries grew from 8.17\% to 8.19% of the total business establishments during the 2003-04 period. However, in 22 states the high-technology share of all business establishments declined in 2004 relative to 2003.
- Between 2003 and 2004, the largest growth in the number of establishments in hightechnology industries occurred in Florida and California, which added 2,000 and 1,700 establishments, respectively.
- The state distribution of this indicator is simila to that of three other indicators: bachelor's degree holders, S\&E doctoral degree holders, and S\&E occupations, all expressed as a share of the workforce.

This indicator measures the portion of a state's business establishments that are classified as high-technology industries. High-technology industries are defined as those in which the proportion of employees in technology-oriented occupations is at least twice the average proportion for all industries. State economies with a high percentage of business establishments in high-technology industries are likely to be well positioned to take advantage of new technological developments.

The data pertaining to establishments for the years 2003 and 2004 were based on their classification according to the 2002 edition of the North American Industry Classification System (NAICS). A list of the 46 industries (by 4-digit NAICS code) that are defined as high-technology can be found in the Technical Note at the end of this chapter. Data for earlier years are not directly comparable.

Table 8-41
High-technology share of all business establishments, by state: 2003 and 2004

State	High-technology establishments		All business establishments		$\begin{aligned} & \text { High-technology/ } \\ & \text { business } \\ & \text { establishments (\%) } \end{aligned}$	
	2003	2004	2003	2004	2003	2004
United States...............	590,417	603,642	7,223,240	7,366,978	8.17	8.19
Alabama...................	6,347	6,407	99,453	100,521	6.38	6.37
Alaska	1,345	1,358	19,037	19,309	7.07	7.03
Arizona.....................	10,433	10,901	120,966	125,330	8.62	8.70
Arkansas	4,012	4,142	64,058	65,127	6.26	6.36
California..................	77,614	79,288	822,751	838,615	9.43	9.45
Colorado	15,532	16,027	143,398	146,937	10.83	10.91
Connecticut	7,827	7,794	91,207	92,710	8.58	8.41
Delaware	3,964	3,907	24,739	25,344	16.02	15.42
District of Columbia ...	2,589	2,695	19,357	19,503	13.38	13.82
Florida.....................	38,118	40,165	458,823	483,693	8.31	8.30
Georgia	18,820	19,424	208,350	214,200	9.03	9.07
Hawaii	2,097	2,152	30,950	31,538	6.78	6.82
Idaho........................	2,515	2,582	39,582	41,205	6.35	6.27
Illinois......................	27,606	28,200	310,589	315,093	8.89	8.95
Indiana	9,626	9,858	147,073	149,050	6.55	6.61
lowa	4,316	4,324	80,745	81,334	5.35	5.32
Kansas	5,716	5,900	74,637	75,600	7.66	7.80
Kentucky	5,453	5,585	90,358	91,598	6.03	6.10
Louisiana..................	7,218	7,192	101,933	102,866	7.08	6.99
Maine	2,466	2,541	40,519	41,131	6.09	6.18
Maryland	13,428	13,974	132,782	135,699	10.11	10.30
Massachusetts...........	17,183	17,305	177,910	175,426	9.66	9.86
Michigan	16,937	16,988	236,221	237,392	7.17	7.16
Minnesota	12,834	13,055	145,364	148,276	8.83	8.80
Mississippi	3,269	3,274	59,565	60,364	5.49	5.42
Missouri	9,562	9,745	149,753	153,584	6.39	6.35
Montana...................	2,108	2,229	33,616	34,570	6.27	6.45
Nebraska..................	2,797	2,864	50,213	50,803	5.57	5.64
Nevada....................	5,387	5,493	53,080	55,713	10.15	9.86
New Hampshire	3,511	3,559	38,119	38,707	9.21	9.19
New Jersey	24,286	24,256	237,097	240,013	10.24	10.11
New Mexico	3,322	3,385	43,386	44,071	7.66	7.68
New York..................	35,926	36,706	500,559	509,873	7.18	7.20
North Carolina...........	14,869	15,426	207,500	212,457	7.17	7.26
North Dakota	964	972	20,371	20,763	4.73	4.68
Ohio	19,875	20,120	269,202	271,078	7.38	7.42
Oklahoma.................	6,859	6,965	85,633	87,180	8.01	7.99
Oregon	7,500	7,659	102,462	104,966	7.32	7.30
Pennsylvania.............	22,266	22,796	297,040	300,832	7.50	7.58
Rhode Island.............	1,976	2,043	29,172	29,900	6.77	6.83
South Carolina	5,869	6,048	98,735	100,947	5.94	5.99
South Dakota	1,206	1,234	24,314	24,693	4.96	5.00
Tennessee.................	8,196	8,226	129,458	131,355	6.33	6.26
Texas.......................	45,062	45,522	481,804	489,782	9.35	9.29
Utah .	5,474	5,716	60,011	62,644	9.12	9.12
Vermont....................	1,453	1,498	21,747	22,072	6.68	6.79
Virginia	18,868	19,758	182,783	188,533	10.32	10.48
Washington...............	13,171	13,480	166,229	170,848	7.92	7.89
West Virginia	2,257	2,259	40,225	40,732	5.61	5.55
Wisconsin	9,035	9,249	141,560	143,739	6.38	6.43
Wyoming..................	1,353	1,396	18,804	19,262	7.20	7.25
Puerto Rico	NA	NA	NA	NA	NA	NA

NA = not available
SOURCE: Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations.

Net High-Technology Business Formations as Share of All Business Establishments

Figure 8-42
Net high-technology business formations as share of all business establishments: 2004

$\mathbf{1 s t}$ quartile (0.45\%-0.21\%)	2nd quartile (0.20\%-0.14\%)	3rd quartile (0.13\%-0.08\%)	4th quartile (0.06\% to -0.21\%)
Arizona	Arkansas	Alaska	California
Colorado	Hawaii	Idaho	Connecticut
District of Columbia	Illinois	Kentucky	Delaware
Florida	Indiana	Massachusetts	Iowa
Georgia	Maine	Minnesota	Louisiana
Kansas	New York	Missouri	Michigan
Maryland	Oregon	Nebraska	Mississippi
Montana	Pennsylvania	New Hampshire	New Jersey
Nevada	South Carolina	New Mexico	North Dakota
North Carolina	Ohio	South Dakota	
Rhode Island	Washington	Oklahoma	Tennessee
Utah	Wisconsin	Texas	West Virginia

SOURCE: Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations. See table 8-42.

Findings

- In 2004, 11,598 net new businesses in high-technology industries were formed in the United States. From a base of approximately 7 million total business establishments, 84,155 new business establishments were formed in high-technology industries and 72,557 ceased operation in those same industries.
- Net business formations cannot be used to directly link the number of high-technology business establishments in 2003 and 2004. In addition to the births and deaths that occurred during 2004, the total number of 2004 high-technology establishments also includes business establishments that were reclassified during 2004. There were 12,387 establishments that were in operation in both 2003 and 2004 and were classified in a high-technology NAICS code in 2003 but not in 2004. Similarly, there were 14,014 establishments that were in operation in both 2003 and 2004 that were not classified with a high-technology NAICS code in 2003 but acquired one in 2004.
- Four states had net losses of business establishments in hightechnology industries in 2004.
- Utah and Virginia showed the highest rates of net hightechnology business formations in 2004. However, the largest numbers of net new businesses were formed in Florida and California.

The business base of a state is constantly changing as new businesses form and others cease to function. The term net business formations refers to the difference between the number of businesses that are formed and the number that cease operations during any particular year. This difference can be small or can vary considerably from year to year.

The ratio of the number of net business formations that occur in high-technology industries to the number of business establishments in a state indicates the changing role of high-technology industries in a state's economy. High positive values indicate an increasingly prominent role for these industries.

The data on business establishments in high-technology industries for 2003 and 2004 were based on their classification according to the 2002 edition of the North American Industry Classification System (NAICS). A list of the 46 industries (by 4-digit NAICS code) that are defined as high-technology can be found in the Technical Note at the end of this chapter. Data for earlier years are not directly comparable. Company births and deaths are determined from Employer Identification Numbers in the Census Bureau records; thus, changes in company name, ownership, or address are not counted as business formations or business deaths.

Table 8-42
Net high-technology business formations as share of all business establishments, by state: 2004

State	Net high-technology business formations	All business establishments	High-technology formations/business establishments (\%)
United States..	11,598	7,366,978	0.16
Alabama.	63	100,521	0.06
Alaska	22	19,309	0.11
Arizona.	357	125,330	0.28
Arkansas.	123	65,127	0.19
California..	1,099	838,615	0.13
Colorado.	490	146,937	0.33
Connecticut	-47	92,710	-0.05
Delaware..	-52	25,344	-0.21
District of Columbia	66	19,503	0.34
Florida.	1,743	483,693	0.36
Georgia ..	642	214,200	0.30
Hawaii.	51	31,538	0.16
Idaho...	54	41,205	0.13
Illinois ..	452	315,093	0.14
Indiana	208	149,050	0.14
lowa ..	12	81,334	0.01
Kansas.	160	75,600	0.21
Kentucky...	116	91,598	0.13
Louisiana...	-38	102,866	-0.04
Maine .	81	41,131	0.20
Maryland.	475	135,699	0.35
Massachusetts.	156	175,426	0.09
Michigan ..	44	237,392	0.02
Minnesota	185	148,276	0.12
Mississippi	7	60,364	0.01
Missouri.	195	153,584	0.13
Montana...	108	34,570	0.31
Nebraska..	64	50,803	0.13
Nevada..	169	55,713	0.30
New Hampshire ..	30	38,707	0.08
New Jersey.	-80	240,013	-0.03
New Mexico...	37	44,071	0.08
New York....	702	509,873	0.14
North Carolina..	514	212,457	0.24
North Dakota	-1	20,763	0.00
Ohio ..	204	271,078	0.08
Oklahoma...	75	87,180	0.09
Oregon......	156	104,966	0.15
Pennsylvania...	474	300,832	0.16
Rhode Island...	67	29,900	0.22
South Carolina ..	175	100,947	0.17
South Dakota.	16	24,693	0.06
Tennessee ..	39	131,355	0.03
Texas....	401	489,782	0.08
Utah ..	283	62,644	0.45
Vermont.	42	22,072	0.19
Virginia ..	845	188,533	0.45
Washington ..	346	170,848	0.20
West Virginia ..	16	40,732	0.04
Wisconsin ..	215	143,739	0.15
Wyoming...	37	19,262	0.19
Puerto Rico ...	NA	NA	NA

[^11]
Employment in High-Technology Establishments as Share of Total Employment

Figure 8-43
Employment in high-technology establishments as share of all employment: 2004

1st quartile (16.03\%-12.93\%)	2nd quartile (12.49\%-10.74\%)	3rd quartile (10.63\%-8.42\%)	4th quartile (8.12\%-5.54\%)
California	Arizona	Alabama	Hawaii
Colorado	Georgia	Alaska	Iowa
Connecticut	Idaho	Arkansas	Kentucky
Delaware	Illinois	Indiana	Louisiana
District of Columbia	Michigan	Missouri	Maine
Kansas	New Hampshire	Nebraska	Mississippi
Maryland	New York Mexico	Montana	
Massachusetts	Ohio	North Carolina	Nevada
Minnesota	Oklahoma	Rhode Island	North Dakota
New Jersey	Oregon	Seuth Carolina	South Dakota
Texas	Pennsylvania	Wisconsee	West Virginia
Virginia	Utah		Wyoming

SOURCE: Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations. See table 8-43.

Findings

- Employment in high-technology industries in the United States declined slightly between 2003 and 2004, continuing a trend that was observed during the 1998-2002 period.
- Nationwide this indicator declined from 11.96 in 2003 to 11.61 in 2004, or about 3\%; only 10 states and the District of Columbia showed increases in high-technology employment as a share of total employment.
- Washington and Texas reported the loss of 72,000 and 57,000 jobs, respectively, in high-technology industries in 2004.
- On this indicator, states varied greatly in 2004, ranging from 5.5% to 16.0% of their workforce employed in high-technology industries
- Not surprisingly, states were distributed similarly on the high-technology employment and high-technology establishment indicators.

This indicator measures the extent to which the workforce in a state is employed in high-technology industries. High-technology industries are defined as those in which the proportion of employees in technology-oriented occupations is at least twice the average proportion for all industries. State economies with a high value are probably well positioned to take advantage of new technological developments because they have a relatively larger pool of experienced high-technology workers.

The data pertaining to establishments for the years 2003 and 2004 were based on their classification according to the 2002 edition of the North American Industry Classification System (NAICS). A list of the 46 industries (by 4-digit NAICS code) that are defined as high-technology can be found in the Technical Note at the end of this chapter. Data for earlier years are not directly comparable.

Table 8-43
Employment in high-technology establishments as share of all employment, by state: 2003 and 2004

State	Employment in hightechnology establishments		All employment		High-technology/ all employment (\%)	
	2003	2004	2003	2004	2003	2004
United States.	13,563,122	13,356,596	113,373,663	115,049,548	11.96	11.61
Alabama..........................	152,879	158,927	1,597,265	1,628,733	9.57	9.76
Alaska	21,851	22,107	216,707	223,099	10.08	9.91
Arizona.	234,603	238,462	1,997,990	2,043,729	11.74	11.67
Arkansas .	95,180	101,124	988,822	1,007,283	9.63	10.04
California...	1,781,830	1,767,202	12,986,496	13,260,306	13.72	13.33
Colorado ..	274,979	265,613	1,883,883	1,908,126	14.60	13.92
Connecticut	210,114	204,107	1,550,615	1,537,160	13.55	13.28
Delaware.	52,349	54,164	385,098	391,647	13.59	13.83
District of Columbia	54,314	57,250	422,912	436,791	12.84	13.11
Florida..	576,274	587,452	6,548,276	6,863,196	8.80	8.56
Georgia	413,384	411,977	3,386,590	3,451,802	12.21	11.94
Hawaii ...	25,777	26,203	458,952	473,181	5.62	5.54
Idaho.	55,706	53,738	466,379	488,557	11.94	11.00
Illinois.	646,285	617,306	5,204,887	5,216,180	12.42	11.83
Indiana	219,598	219,694	2,540,554	2,586,282	8.64	8.49
lowa.	102,387	96,100	1,232,709	1,241,688	8.31	7.74
Kansas...	155,023	153,046	1,109,699	1,115,930	13.97	13.71
Kentucky.	121,838	119,167	1,471,622	1,489,285	8.28	8.00
Louisiana...	137,029	129,722	1,603,492	1,623,431	8.55	7.99
Maine ..	35,184	36,221	488,788	494,165	7.20	7.33
Maryland.	315,887	323,966	2,088,552	2,151,093	15.12	15.06
Massachusetts..................	460,984	455,749	2,974,164	2,979,251	15.50	15.30
Michigan	499,133	486,706	3,884,881	3,895,217	12.85	12.49
Minnesota	315,994	309,303	2,381,860	2,392,481	13.27	12.93
Mississippi	66,566	61,858	912,004	928,181	7.30	6.66
Missouri .	254,299	257,290	2,387,245	2,420,994	10.65	10.63
Montana...	20,296	20,452	302,932	314,806	6.70	6.50
Nebraska..	68,975	69,724	774,858	774,187	8.90	9.01
Nevada.	61,847	64,648	970,678	1,021,842	6.37	6.33
New Hampshire	63,264	63,907	540,132	550,869	11.71	11.60
New Jersey	550,224	558,921	3,578,674	3,609,297	15.38	15.49
New Mexico	60,399	61,149	571,057	580,443	10.58	10.53
New York...	823,992	798,462	7,415,430	7,431,893	11.11	10.74
North Carolina...	349,424	345,316	3,337,552	3,365,050	10.47	10.26
North Dakota	20,584	20,176	258,878	265,632	7.95	7.60
Ohio	531,491	512,352	4,769,406	4,761,492	11.14	10.76
Oklahoma.	132,887	133,871	1,184,312	1,194,830	11.22	11.20
Oregon...	152,140	147,549	1,338,380	1,355,101	11.37	10.89
Pennsylvania...	566,406	551,971	5,028,650	5,106,171	11.26	10.81
Rhode Island..	35,806	36,577	427,369	434,600	8.38	8.42
South Carolina	163,373	164,035	1,550,227	1,560,401	10.54	10.51
South Dakota....................	18,890	19,897	299,723	307,944	6.30	6.46
Tennessee..............	219,898	217,191	2,298,836	2,346,903	9.57	9.25
Texas..	1,158,481	1,101,175	8,049,300	8,116,465	14.39	13.57
Utah	99,856	101,547	900,331	934,939	11.09	10.86
Vermont...............	29,402	27,572	256,401	256,040	11.47	10.77
Virginia	459,017	489,703	2,932,471	3,054,221	15.65	16.03
Washington.....................	401,413	329,698	2,292,462	2,268,155	17.51	14.54
West Virginia	46,635	46,172	561,317	568,581	8.31	8.12
Wisconsin	233,967	245,257	2,382,979	2,434,580	9.82	10.07
Wyoming..........................	15,008	14,820	180,866	187,318	8.30	7.91
Puerto Rico	NA	NA	NA	NA	NA	NA

NA = not available

SOURCE: Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations.

SBIR Average Annual Federal Funding per \$1 Million of Gross Domestic Product

Figure 8-44
Average annual federal SBIR funding per \$1 million of gross domestic product: 2003-05

1st quartile (\$825-\$187)	2nd quartile (\$180-\$98)	3rd quartile (\$96-\$56)	4th quartile (\$53-\$19)
Alabama	Arizona	Arkansas	Alaska
California	Connecticut	District of Columbia	Georgia
Colorado	Delaware	Florida	Illinois
Maryland	Hawaii	Idaho	lowa
Massachusetts	Maine	Indiana	Kansas
Montana	Michigan	Nevada	Kentucky
New Hampshire	Minnesota	North Carolina	Louisiana
New Mexico	New Jersey	North Dakota	Mississippi
Rhode Island	New York	OKlahoma	Missouri
Utah	Ohio	South Carolina	Nebraska
Vermont	Oregon	Wisconsin	South Dakota
Virginia	Pennsylvania	West Virginia	Wyoming

SOURCES: Small Business Administration, Office of Technology, SBIR program statistics (various years); and Bureau of Economic Analysis, Gross Domestic Product data. See table 8-44.

Findings

- Strong growth has occurred in the SBIR program in recent years as total annual awards have increased from nearly $\$ 1$ billion in 1995-97 to nearly $\$ 1.9$ billion in 2003-05.
- The value of SBIR awards is not evenly distributed but is concentrated in relatively few states; the total of annual state awards may range from under \$1 million to nearly $\$ 400$ million.
- Many of the states with the highest rankings on this indicator are locations of federal laboratories or well-recognized academic research institutions from which innovative small businesses have emerged.
- States with a high ranking on this indicator also tend to rank high on the hightechnology and venture capital indicators.

Funds awarded through the federal Small Business Innovation Research (SBIR) program support technological innovation in small companies (i.e., companies with 500 or fewer employees). Awards are made to evaluate the feasibility and scientific merit of new technology (up to $\$ 100,000$) and to develop the technology to a point where it can be commercialized (up to $\$ 750,000$). The total award dollars include both Phase 1 and Phase 2 SBIR awards.

Because of year-to-year fluctuations, this indicator is calculated using 3-year averages. The average annual SBIR award dollars won by small businesses in a state are divided by the average annual gross domestic product. A high value indicates that small business firms in a state are doing cutting-edge development work that attracts federal support.

Table 8-44
Average annual federal SBIR funding per \$1 million of gross domestic product, by state: 1995-97, 1999-2001, and 2003-05

State	Average SBIR funding (\$thousands)			Average state GDP (\$millions)			SBIR funding (\$)/ \$1 million of GDP		
	1995-97	1999-2001	2003-05	1999-97	1999-2001	2003-05	1995-97	1999-2001	2003-05
United States...	998,381	1,087,387	1,877,206	7,687,788	9,669,468	11,630,863	130	112	161
Alabama.	21,780	18,081	34,425	98,165	115,060	141,085	222	157	244
Alaska	416	589	682	25,924	25,988	35,114	16	23	19
Arizona.....................	14,899	20,981	29,176	113,354	157,470	196,152	131	133	149
Arkansas .	146	1,459	4,989	56,168	67,114	81,480	3	22	61
California.	222,268	224,699	396,052	965,361	1,256,262	1,512,772	230	179	262
Colorado ...	38,530	57,727	82,889	117,345	168,741	200,047	328	342	414
Connecticut	31,192	18,208	30,596	128,332	158,588	182,418	243	115	168
Delaware.	4,307	4,785	6,756	29,220	41,706	52,591	147	115	128
District of Columbia ...	2,589	4,650	4,342	48,037	59,612	77,376	54	78	56
Florida.....................	21,025	24,095	41,373	362,477	470,440	610,954	58	51	68
Georgia	7,493	11,933	17,979	214,879	289,137	337,970	35	41	53
Hawaii	2,993	3,800	8,306	37,151	40,216	50,665	81	94	164
Idaho.	1,013	1,320	4,061	28,213	34,424	42,245	36	38	96
Illinois....	12,097	17,018	25,857	379,354	461,469	533,420	32	37	48
Indiana .	5,505	5,537	12,985	155,901	191,784	227,136	35	29	57
Iowa	665	1,704	3,777	77,010	89,406	110,490	9	19	34
Kansas.	2,857	2,984	4,825	68,058	82,635	99,304	42	36	49
Kentucky..................	2,708	2,629	4,271	95,764	113,498	131,782	28	23	32
Louisiana...	1,344	1,988	4,372	115,288	129,752	163,236	12	15	27
Maine ..	2,046	2,770	6,172	28,743	35,344	42,730	71	78	144
Maryland ...	42,552	53,590	103,691	144,187	181,466	228,970	295	295	453
Massachusetts..........	152,375	164,626	253,901	208,863	269,358	307,791	730	611	825
Michigan	20,248	17,629	41,062	264,568	332,602	364,853	77	53	113
Minnesota	17,242	14,500	26,135	141,752	182,733	220,748	122	79	118
Mississippi	1,006	1,739	3,675	56,030	64,421	76,193	18	27	48
Missouri	2,222	3,963	8,067	145,677	176,017	205,118	15	23	39
Montana..	1,285	5,630	7,429	18,053	21,414	27,744	71	263	268
Nebraska..................	943	1,969	3,359	47,547	55,440	68,282	20	36	49
Nevada...	1,656	2,751	6,871	54,003	73,284	99,109	31	38	69
New Hampshire	14,564	12,825	20,737	34,703	42,670	51,324	420	301	404
New Jersey	30,943	32,380	49,318	281,557	345,025	408,629	110	94	121
New Mexico	18,184	21,530	22,009	44,225	50,361	63,674	411	428	346
New York...	47,360	40,693	88,804	630,846	771,996	906,645	75	53	98
North Carolina.	11,556	12,646	28,500	203,755	274,008	327,113	57	46	87
North Dakota	742	1,391	2,020	15,552	17,711	23,107	48	79	87
Ohio ..	34,970	43,771	76,282	308,011	369,113	423,068	114	119	180
Oklahoma.................	2,135	2,943	8,718	74,657	89,102	112,137	29	33	78
Oregon...	14,841	13,359	22,383	89,588	109,208	132,828	166	122	169
Pennsylvania.............	34,431	37,231	73,221	327,334	390,814	463,770	105	95	158
Rhode Island.............	2,417	3,791	8,200	27,094	33,200	41,731	89	114	196
South Carolina.	1,072	3,439	7,927	90,070	112,824	133,440	12	30	59
South Dakota.	681	1,011	1,047	18,793	22,861	29,159	36	44	36
Tennessee................	8,812	9,078	9,660	142,663	175,027	213,225	62	52	45
Texas.......................	33,955	40,169	80,597	554,252	719,492	907,514	61	56	89
Utah .	9,660	9,285	15,231	50,776	67,170	81,617	190	138	187
Vermont...................	2,820	3,477	5,875	14,661	17,799	21,878	192	195	269
Virginia	60,204	64,819	101,364	196,908	260,061	326,233	306	249	311
Washington...............	23,336	25,187	48,596	162,503	220,700	254,859	144	114	191
West Virginia	503	2,516	6,677	37,408	41,982	49,815	13	60	134
Wisconsin	8,930	11,030	19,944	141,561	175,562	207,053	63	63	96
Wyoming..................	863	1,462	2,021	15,447	17,401	24,269	56	84	83
Puerto Rico	23	207	503	45,392	62,917	78,896	1	3	6

GDP = gross domestic product; SBIR = Small Business Innovation Research
NOTES: GDP reported in current dollars.
SOURCES: Small Business Administration, Office of Technology, SBIR program statistics (various years); Bureau of Economic Analysis, Gross Domestic Product data; and Government of Puerto Rico, Office of the Governor.

Venture Capital Disbursed per \$1,000 of Gross Domestic Product

Figure 8-45
Venture capital disbursed per \$1,000 of gross domestic product: 2006

1st quartile (\$8.51-\$1.31)	2nd quartile (\$1.30-\$0.29)	3rd quartile (\$0.28-\$0.10)	4th quartile (\$0.09-\$0.00)
California	Arizona	Alabama	Alaska
Colorado	Arkansas	Indiana	Delaware
District of Columbia	Connecticut	Kansas	Idaho
Maryland	Klorida	Maine	Iowa
Massachusetts	Georgia	Michigan	Louisiana
Minnesota	Hawaii	Mississippi	Montana
New Hampshire	Illinois	Missouri	Nebraska
New Jersey	New Mexico	Nevada	North Dakota
North Carolina	New York	Oklahoma	Ohio
Pennsylvania	Tregon	Tennessee	South Carolina
Rhode Island	Texas	Wisconsin	South Dakota
Utah	Vermont	Virginia	

SOURCES: PricewaterhouseCoopers, Venture Economics, and National Venture Capital Association, MoneyTree Survey, special tabulations; and Bureau of Economic Analysis, Gross Domestic Product data. See table 8-45.

Findings

- The amount of venture capital invested in the United States increased approximately 10 -fold, from only $\$ 11$ billion in 1996 to a record $\$ 106$ billion in 2000, before falling to $\$ 26$ billion in 2006 (in current dollars).
- In 2006, the state average for venture capital disbursed per $\$ 1,000$ GDP was $\$ 1.98$, which was larger than the $\$ 1.47$ invested in 1996 but only about one-half the fraction of GDP invested in 2001.
- Venture capital is concentrated in relatively few states. Companies in California received 48% of the total venture capital disbursed in the United States in 2006, followed by companies in Massachusetts with 11%.
- The distribution of venture capital among states is becoming more limited. Twenty-one states reported lower values for this indicator in 2006 than in 1996.
- The state distribution of venture capital was similar to that for the high-technology indicators.

Venture capital represents an important source of funding for startup companies. This indicator shows the relative magnitude of venture capital investments in a state after adjusting for the size of the state's economy. The indicator is expressed as dollars of venture capital disbursed per $\$ 1,000$ of gross domestic product (GDP). A high value indicates that companies in those states are successfully attracting venture capital to fuel their growth.

Venture capital investments represent a method of funding the growth and expansion of companies early in their development before establishing a predictable sales history that would qualify them for other types of financing. Access to this type of financing varies greatly in different states.

Table 8-45
Venture capital disbursed per \$1,000 of gross domestic product, by state: 1996, 2001, and 2006

State	Venture capital disbursed (\$thousands)			State GDP (\$millions)			Venture capital (\$)/ \$1,000 GDP		
	1996	2001	2006	1996	2001	2006	1996	2001	2006
United States..	11,270,035	40,664,265	26,075,607	7,659,648	10,058,169	13,149,033	1.47	4.04	1.98
Alabama..	50,170	80,347	18,895	97,941	118,682	160,569	0.51	0.68	0.12
Alaska ...	0	0	0	26,083	26,609	41,105	0.00	0.00	0.00
Arizona...	95,347	196,804	270,796	113,138	165,358	232,463	0.84	1.19	6
Arkansas ..	0	10,400	39,181	56,455	68,927	91,837	0.00	0.15	0.43
California.	4,558,144	16,694,055	12,577,804	958,476	1,301,050	1,727,355	4.76	12.83	7.28
Colorado ..	318,354	1,263,862	643,352	116,045	178,078	230,478	2.74	7.10	2.79
Connecticut.	142,694	535,779	247,117	126,744	165,025	204,134	1.13	3.25	1.21
Delaware..	4,742	164,630	0	28,885	44,206	60,361	0.16	3.72	0.00
District of Columbia ...	7,113	162,181	114,927	47,560	63,730	87,664	0.15	2.54	1.31
Florida..	412,331	895,125	317,110	362,950	497,423	713,505	1.14	1.80	4
Georgia ...	274,324	931,562	357,314	215,128	299,442	379,550	1.28	3.11	0.94
Hawaii..	20,150	37,811	17,132	36,959	41,822	58,307	0.55	0.90	0.29
Idaho..	133	2,700	0	28,152	35,631	49,907	0.00	0.08	0.00
Illinois..	362,761	958,237	407,650	377,271	476,461	589,598	0.96	2.01	0.69
Indiana	22,766	53,755	68,932	155,512	195,196	248,915	0.15	0.28	0.28
lowa ..	22,100	6,041	0	77,244	91,920	123,970	0.29	0.07	0.00
Kansas.	25,162	39,923	11,000	67,965	86,430	111,699	0.37	0.46	0.10
Kentucky....	31,097	23,855	34,710	94,987	115,113	145,959	0.33	0.21	0.24
Louisiana..	13,660	80,450	11,450	114,967	133,689	193,138	0.12	0.60	0.06
Maine ..	1,467	3,878	7,649	28,636	37,129	46,973	0.05	0.10	0.16
Maryland.	137,409	1,001,492	657,280	142,910	192,659	257,815	0.96	5.20	2.55
Massachusetts...	1,075,645	4,779,022	2,874,103	208,288	280,509	337,570	5.16	17.04	8.51
Michigan	85,666	156,285	103,009	263,871	334,419	381,003	0.32	0.47	0.27
Minnesota	172,950	478,587	323,978	141,664	190,231	244,546	1.22	2.52	1.32
Mississippi ...	10,580	30,000	9,140	55,997	65,961	84,225	0.19	0.45	0.11
Missouri ..	47,881	248,870	62,058	145,044	182,362	225,876	0.33	1.36	0.27
Montana...	0	24,820	0	17,998	22,471	32,322	0.00	1.10	0.00
Nebraska...	10,436	58,963	6,500	48,317	57,438	75,700	0.22	1.03	0.09
Nevada..	1,985	28,250	18,400	54,085	77,291	118,399	0.04	0.37	6
New Hampshire	42,628	224,616	75,857	34,823	44,279	56,276	1.22	5.07	1.35
New Jersey	402,077	1,510,888	780,017	281,806	362,987	453,177	1.43	4.16	1.72
New Mexico....	22,412	14,215	30,118	43,658	51,359	75,910	0.51	0.28	0.40
New York....	406,025	2,104,368	1,285,864	630,003	808,537	1,021,944	0.64	2.60	1.26
North Carolina...	184,939	589,751	510,345	201,329	285,651	374,525	0.92	2.06	1.36
North Dakota	0	1,017	0	16,075	18,527	26,385	0.00	0.05	0.00
Ohio.	162,972	233,615	43,508	305,413	374,719	461,302	0.53	0.62	0.09
Oklahoma....	31,803	29,800	13,834	74,936	94,329	134,651	0.42	0.32	0.10
Oregon...........	94,973	233,391	143,287	91,166	110,916	151,301	1.04	2.10	0.95
Pennsylvania..	305,140	960,191	763,712	325,515	406,713	510,293	0.94	2.36	1.50
Rhode Island.	300	118,709	113,505	26,665	35,149	45,660	0.01	3.38	2.49
South Carolina ...	91,850	97,141	9,994	89,260	117,296	149,214	1.03	0.83	0.07
South Dakota...	0	500	0	19,073	23,910	32,330	0.00	0.02	0.00
Tennessee...	146,787	212,801	47,000	141,335	180,582	238,029	1.04	1.18	0.2
Texas...	532,761	2,945,371	1,387,544	550,014	762,247	1,065,891	0.97	3.86	1.30
Utah	52,270	210,147	168,564	51,442	70,109	97,749	1.02	3.00	1.72
Vermont........	2,000	11,600	10,143	14,632	18,828	24,213	0.14	0.62	0.4
Virginia	453,255	978,848	391,793	196,638	276,762	369,260	2.31	3.54	1.06
Washington......	412,415	1,145,091	1,030,511	161,760	225,765	293,531	2.55	5.07	3.51
West Virginia	0	1,400	3,724	37,346	43,365	55,658	0.00	0.03	0.07
Wisconsin ...	20,361	93,121	60,300	141,755	181,936	227,230	0.14	0.51	0.27
Wyoming...........	0	0	6,500	15,732	18,941	29,561	0.00	0.00	0.22
Puerto Rico	4,080	32,000	14,291	45,341	69,208	86,464	0.09	0.46	0.17

[^12]NOTES: GDP reported in current dollars. Preliminary Puerto Rico 2006 GDP.
SOURCES: PricewaterhouseCoopers, Venture Economics, and National Venture Capital Association, MoneyTree Survey, special tabulations; Bureau of Economic Analysis, Gross Domestic Product data; and Government of Puerto Rico, Office of the Governor.

Venture Capital Deals as Share of High-Technology Business Establishments

Figure 8-46
Venture capital deals as share of high-technology business establishments: 2004
(

SOURCE: SOURCES: PricewaterhouseCoopers, Venture Economics, and National Venture Capital Association, MoneyTree Survey, special tabulations; and Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations. See table 8-46.

Findings

- The number of venture capital deals that involved U.S. companies fell from a high of 7,900 deals in 2000 to a fairly consistent value of 2,900-3,100 deals annually during the period of 2002-04.
- In 2004, the distribution of venture capital among hightechnology companies was uneven between states Companies in only five states exceeded the national average of 0.50\%.
- Companies in high-technology industries located in Massachusetts were the most successful in accessing venture capital investments in 2004 with a 2.1% rate. This was less than half the rate of Massachusetts companies that received such funding in 2000. California companies in hightechnology industries obtained venture capitol investment at a rate of 1.6%. No other states exceeded a rate of 1%.
- In 2004, no venture capital deals were reported in Alaska, Montana, or Nebraska

This indicator provides a measure of the extent to which high-technology companies in a state receive venture capital investments. The value of the indicator is calculated by dividing the number of venture capital deals by the number of companies operating in hightechnology industries in that state. In most cases, a company will not receive more than one infusion of venture capital in a given year.

Venture capital investment can bring needed capital and management expertise that can help to grow a high-technology company. High values indicate that high-technology companies in a state are frequently using venture capital to facilitate their growth and development.

Table 8-46
Venture capital deals as share of high-technology business establishments, by state: 2003 and 2004

State	Venture capital deals		High-technology establishments		Venture capital deals/ high-technology establishment (\%)	
	2003	2004	2003	2004	2003	2004
United States................	2,903	3,036	590,417	603,642	0.49	0.50
Alabama....................	9	5	6,347	6,407	0.14	0.08
Alaska	0	0	1,345	1,358	0.00	0.00
Arizona.....................	16	12	10,433	10,901	0.15	0.11
Arkansas..	3	1	4,012	4,142	0.07	0.02
California.	1,122	1,225	77,614	79,288	1.45	1.55
Colorado	72	75	15,532	16,027	0.46	0.47
Connecticut	34	32	7,827	7,794	0.43	0.41
Delaware..................	1	1	3,964	3,907	0.03	0.03
District of Columbia ...	6	8	2,589	2,695	0.23	0.30
Florida......................	61	57	38,118	40,165	0.16	0.14
Georgia	55	73	18,820	19,424	0.29	0.38
Hawaii	6	4	2,097	2,152	0.29	0.19
Idaho.	5	2	2,515	2,582	0.20	0.08
Illinois.......................	58	51	27,606	28,200	0.21	0.18
Indiana	8	9	9,626	9,858	0.08	0.09
lowa	1	4	4,316	4,324	0.02	0.09
Kansas	2	9	5,716	5,900	0.03	0.15
Kentucky..	3	5	5,453	5,585	0.06	0.09
Louisiana..	1	3	7,218	7,192	0.01	0.04
Maine.	2	3	2,466	2,541	0.08	0.12
Maryland	84	85	13,428	13,974	0.63	0.61
Massachusetts..........	378	365	17,183	17,305	2.20	2.11
Michigan	17	19	16,937	16,988	0.10	0.11
Minnesota	58	47	12,834	13,055	0.45	0.36
Mississippi.	4	5	3,269	3,274	0.12	0.15
Missouri	23	10	9,562	9,745	0.24	0.10
Montana...................	1	0	2,108	2,229	0.05	0.00
Nebraska.	2	0	2,797	2,864	0.07	0.00
Nevada.	6	5	5,387	5,493	0.11	0.09
New Hampshire	32	23	3,511	3,559	0.91	0.65
New Jersey ..	88	88	24,286	24,256	0.36	0.36
New Mexico.	5	8	3,322	3,385	0.15	0.24
New York.	119	149	35,926	36,706	0.33	0.41
North Carolina.	76	57	14,869	15,426	0.51	0.37
North Dakota	2	1	964	972	0.21	0.10
Ohio	25	32	19,875	20,120	0.13	0.16
Oklahoma..	2	11	6,859	6,965	0.03	0.16
Oregon.....................	21	27	7,500	7,659	0.28	0.35
Pennsylvania............	90	92	22,266	22,796	0.40	0.40
Rhode Island..	10	7	1,976	2,043	0.51	0.34
South Carolina	4	5	5,869	6,048	0.07	0.08
South Dakota.	1	3	1,206	1,234	0.08	0.24
Tennessee.................	22	23	8,196	8,226	0.27	0.28
Texas.	165	162	45,062	45,522	0.37	0.36
Utah	22	27	5,474	5,716	0.40	0.47
Vermont.	6	4	1,453	1,498	0.41	0.27
Virginia	80	73	18,868	19,758	0.42	0.37
Washington...............	81	114	13,171	13,480	0.61	0.85
West Virginia	5	3	2,257	2,259	0.22	0.13
Wisconsin	8	10	9,035	9,249	0.09	0.11
Wyoming..................	1	2	1,353	1,396	0.07	0.14
Puerto Rico...............	1	1	NA	NA	NA	NA

[^13]
Venture Capital Disbursed per Venture Capital Deal

Figure 8-47
Venture capital disbursed per venture capital deal: 2006

SOURCE: PricewaterhouseCoopers, Venture Economics, and National Venture Capital Association, MoneyTree Survey, special tabulations. See table 8-47.

Findings

- The size of the average venture capital investment in the United States rose over the past decade to more than $\$ 7$ million per deal in 2006. This average represented an increase in investment size from \$4 million per deal in 1996 and $\$ 5$ million per deal in 1998 but a decline from \$13 million per deal in 2000.
- The total number of venture capital deals began to rise again during the past few years, increasing from 2,872 in 2004 to 3,519 in 2006.
- The state distribution on this indicator was skewed in 2006; only 11 states and the District of Columbia were above the national average, and 7 states reported no venture capital investments.
- The value of this indicator has shown a high level of variability during the past decade both at the national level and for individual states.

This indicator provides a measure of the average size of the venture capital investments being made in a state. The indicator is expressed as the total dollars of venture capital invested in millions divided by the number of companies receiving venture capital. The availability of venture capital may vary widely based on local business climate and entrepreneurial activity. The amount also will vary by stage of investment and type of company.

This indicator provides some measure of the magnitude of investment that developing companies in a specific state have attracted from venture capital sources. High values indicate a large average deal size.

Some states have relatively few venture capital deals taking place in a given year; thus, the value of this indicator may show large fluctuations on a year-to-year basis. This variation is further compounded by the large change in total venture capital investments that has occurred since 2000, making the use of a 3-year average of state investments misleading. Twentythree states reported fewer than 10 venture capital deals in 2006. In such states, a single large or small venture capital investment can significantly affect the value of this indicator.

Table 8-47
Venture capital disbursed per venture capital deal, by state: 1996, 2001, and 2006

State	Venture capital disbursed (\$thousands)			Venture capital deals			Venture capital/deal (\$millions)		
	1996	2001	2006	1996	2001	2006	1996	2001	2006
United States......	11,270,037	40,664,265	26,075,607	2,566	4,473	3,519	4.39	9.09	7.41
Alabama.............	50,170	80,347	18,895	8	16	7	6.27	5.02	2.70
Alaska .	0	0	0	0	0	0	0.00	0.00	0.00
Arizona.....	95,347	196,804	270,796	28	32	31	3.41	6.15	8.74
Arkansas	0	10,400	39,181	0	3	6	0.00	3.47	6.53
California................	4,558,144	16,694,055	12,577,804	1,018	1,528	1,495	4.48	10.93	8.41
Colorado	318,354	1,263,862	643,352	79	113	96	4.03	11.18	6.70
Connecticut	142,694	535,779	247,117	44	69	30	3.24	7.76	8.24
Delaware	4,742	164,630	0	4	2	1	1.19	82.32	0.00
District of Columbia ...	7,113	162,181	114,927	4	24	14	1.78	6.76	8.21
Florida......................	412,331	895,125	317,110	56	113	56	7.36	7.92	5.66
Georgia	274,324	931,562	357,314	54	139	75	5.08	6.70	4.76
Hawaii	20,150	37,811	17,132	2	5	11	10.08	7.56	1.56
Idaho.......................	133	2,700	0	1	2	0	0.13	1.35	0.00
Illinois	362,761	958,237	407,650	54	126	54	6.72	7.61	7.55
Indiana	22,766	53,755	68,932	8	6	13	2.85	8.96	5.30
lowa	22,100	6,041	0	6	4	1	3.68	1.51	0.00
Kansas	25,162	39,923	11,000	8	9	2	3.15	4.44	5.50
Kentucky..................	31,097	23,855	34,710	7	4	8	4.44	5.96	4.34
Louisiana..................	13,660	80,450	11,450	4	11	3	3.42	7.31	3.82
Maine	1,467	3,878	7,649	5	5	4	0.29	0.78	1.91
Maryland	137,409	1,001,492	657,280	45	92	109	3.05	10.89	6.03
Massachusetts...........	1,075,645	4,779,022	2,874,103	287	512	380	3.75	9.33	7.56
Michigan	85,666	156,285	103,009	21	24	15	4.08	6.51	6.87
Minnesota	172,950	478,587	323,978	53	85	38	3.26	5.63	8.53
Mississippi	10,580	30,000	9,140	3	3	3	3.53	10.00	3.05
Missouri	47,881	248,870	62,058	21	18	16	2.28	13.83	3.88
Montana...................	0	24,820	0	0	2	0	0.00	12.41	0.00
Nebraska..........	10,436	58,963	6,500	5	7	3	2.09	8.42	2.17
Nevada....................	1,985	28,250	18,400	2	4	6	0.99	7.06	3.07
New Hampshire	42,628	224,616	75,857	16	30	22	2.66	7.49	3.45
New Jersey	402,077	1,510,888	780,017	63	151	88	6.38	10.01	8.86
New Mexico.....	22,412	14,215	30,118	5	4	8	4.48	3.55	3.76
New York.........	406,025	2,104,368	1,285,864	91	289	196	4.46	7.28	6.56
North Carolina............	184,939	589,751	510,345	61	91	70	3.03	6.48	7.29
North Dakota	0	1,017	0	0	1	0	0.00	1.02	0.00
Ohio	162,972	233,615	43,508	53	43	31	3.07	5.43	1.40
Oklahoma.................	31,803	29,800	13,834	7	7	5	4.54	4.26	2.77
Oregon	94,973	233,391	143,287	30	44	31	3.17	5.30	4.62
Pennsylvania.............	305,140	960,191	763,712	82	135	101	3.72	7.11	7.56
Rhode Island.............	300	118,709	113,505	1	11	7	0.30	10.79	16.22
South Carolina	91,850	97,141	9,994	13	5	4	7.07	19.43	2.50
South Dakota.............	0	500	0	0	1	1	0.00	0.50	0.00
Tennessee...	146,787	212,801	47,000	24	29	11	6.12	7.34	4.27
Texas...........	532,761	2,945,371	1,387,544	131	329	179	4.07	8.95	7.75
Utah	52,270	210,147	168,564	15	43	35	3.48	4.89	4.82
Vermont..	2,000	11,600	10,143	1	3	9	2.00	3.87	1.13
Virginia	453,255	978,848	391,793	62	137	84	7.31	7.14	4.66
Washington...............	412,415	1,145,091	1,030,511	76	139	138	5.43	8.24	7.47
West Virginia	0	1,400	3,724	0	2	2	0.00	0.70	1.86
Wisconsin	20,361	93,121	60,300	8	21	19	2.55	4.43	3.17
Wyoming...................	0	0	6,500	0	0	1	0.00	0.00	6.50
Puerto Rico	4,080	32,000	14,291	5	5	3	0.82	6.40	4.76

SOURCE: PricewaterhouseCoopers, Venture Economics, and National Venture Capital Association, MoneyTree Survey, special tabulations.

Technical Note: Defining High-Technology Industries

Although there is no consensus on the identity of hightechnology industries, this chapter utilizes a modification of the approach employed by the Bureau of Labor Statistics (BLS). That approach is based on the intensity of high-technology employment within an industry. High-technology occupations include scientific, engineering, and technician occupations. These occupations employ workers who possess an in-depth
knowledge of the theories and principles of science, engineering, and mathematics, which are generally acquired through postsecondary education in some field of technology. An industry is considered a high-technology industry if employment in technology-oriented occupations accounts for a proportion of that industry's total employment that is at least twice the 4.9% average for all industries (i.e., 9.8% or higher). Level I high-technology industries include the 14 industries in which technology-oriented employment is at least 5 times the average for all industries, or 24.7%. Level II high-technology industries

Table 8-48
2002 NAICS codes that constitute high-technology industries

NAICS code	Industry
Level I industries	
3254..	. Pharmaceutical and medicine manufacturing
3341.................	. Computer and peripheral equipment manufacturing
3342..................	. Communications equipment manufacturing
3344..................	Semiconductor and other electronic component manufacturing
3345.	. Navigational, measuring, electromedical, and control instruments manufacturing
3364.	Aerospace product and parts manufacturing
5112.	. Software publishers
5161.	. Internet publishing and broadcasting
$5179 .$.	. Other telecommunications
5181...	. Internet service providers and Web search portals
5182.	. Data processing, hosting, and related services
5413.	Architectural, engineering, and related services
5415.	. Computer systems design and related services
5417.....	. Scientific research and development services
Level II industries	
1131,32............	Forestry
2111..................	. Oil and gas extraction
2211.	. Electric power generation, transmission, and distribution
3251.	. Basic chemical manufacturing
3252.	Resin, synthetic rubber, and artificial synthetic fibers and filaments manufacturing
3332.	. Industrial machinery manufacturing
3333.	Commercial and service industry machinery manufacturing
3343.	. Audio and video equipment manufacturing
3346..	. Manufacturing and reproducing magnetic and optical media
4234.	. Professional and commercial equipment and supplies, merchant wholesalers
5416..................	. Management, scientific, and technical consulting services
Level III industries	
3241..................	. Petroleum and coal products manufacturing
3253.................	Pesticide, fertilizer, and other agricultural chemical manufacturing
3255..................	. Paint, coating, and adhesive manufacturing
3259..................	. Other chemical product and preparation manufacturing
3336..	. Engine, turbine, and power transmission equipment manufacturing
3339.	. Other general purpose machinery manufacturing
3353.	. Electrical equipment manufacturing
3369.	. Other transportation equipment manufacturing
4861.	. Pipeline transportation of crude oil
4862.	. Pipeline transportation of natural gas
4869.	. Other pipeline transportation
5171..	Wired telecommunications carriers
5172.	Wireless telecommunications carriers (except satellite)
5173.	. Telecommunications resellers
5174.	. Satellite telecommunications
5211.	. Monetary authorities, central bank
5232.	Securities and commodity exchanges
5511...	. Management of companies and enterprises
5612..	. Facilities support services
8112.................	. Electronic and precision equipment repair and maintenance

include the 12 industries in which the high-technology occupations are 3.0-4.9 times the average or $14.8 \%-24.7 \%$ of total employment. Level III high-technology industries include the 20 industries with a proportion of high-technology employment that is 2.0-2.9 times the industry average or $9.8 \%-14.7 \%$ of total employment.

In each case, the industry is defined by a four-digit code that is based on the listings in the 2002 North American Industry Classification System (NAICS). The 2002 NAICS codes contain a number of new additions and changes from the previous 1997 NAICS codes that were used to classify business establishments in datasets covering the period 1998-2002. Therefore, this listing of high-technology industry codes can be applied only to datasets covering the years after 2002 when the 2002 NAICS codes were used to classify business establishments.

The BLS methodology includes the "Federal Government, excluding Postal Service" in its listing of high-technology industries. However, in this chapter "high-technology industries" is used in indicators that refer to business establishments and employment in those business establishments. These indicators are intended to measure private-sector activity. For this reason, "Federal Government, excluding Postal Service" was deleted from the list of high-technology industries. With this deletion, the list of high-technology industries used in this chapter includes the 46 four-digit codes from the 2002 NAICS listing shown in table 8-48.

Reference

Hecker D. 2005. High-technology employment: A NAICS-based update. Monthly Labor Review 128(7):57-72.

[^0]: NA = not available
 NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 8 science scores for public schools only. In 2000, Alaska, Colorado, Delaware, District of Columbia, Florida, Iowa, Kansas, New Hampshire, New Jersey, Pennsylvania, South Dakota, Washington, and Wisconsin did not participate or did not meet reporting standards. In 2000, Alabama, Arizona, California, Hawaii, Indiana, Kentucky, Louisiana, Massachusetts, Nevada, North Dakota, South Carolina, Vermont, Virginia, and Wyoming significantly different from 2005 when only one jurisdiction or the nation is examined. In 2005, Alaska, District of Columbia, lowa, Kansas, Nebraska, New York, and Pennsylvania did not participate.

[^1]: NA = not available
 NOTES: National average for United States is reported value in National Assessment of Educational Progress (NAEP) reports. NAEP grade 8 science scores for public schools only. In 2000, Alaska, Colorado, Delaware, District of Columbia, Florida, lowa, Kansas, New Hampshire, New Jersey, Pennsylvania, South Dakota, Washington, and Wisconsin did not participate or did not meet reporting standards. In 2000, Alabama, Arizona, California, Hawaii, Indiana, Kentucky, Louisiana, Massachusetts, Nevada, North Dakota, South Carolina, Vermont, Virginia, and Wyoming significantly different from 2005 when only one jurisdiction or the nation is examined. In 2005, Alaska, District of Columbia, Iowa, Kansas, Nebraska, New York, and Pennsylvania did not participate.

[^2]: NA = not available

[^3]: NA = not available
 SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years); Census Bureau, 2000 Decennial Census; and Population Estimates Program (various years).

[^4]: NA = not available
 SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Graduate Students and Postdoctorates in Science and Engineering; and Census Bureau, Population Estimates Program (various years).

[^5]: NA = not available
 NOTES: National average for United States from Digest of Education Statistics data tables. Average charges for entire academic year. Tuition and fees weighted by number of full-time-equivalent undergraduates but not adjusted to reflect student residency. Room and board based on full-time students.
 SOURCE: National Center for Education Statistics, Integrated Postsecondary Education Data System (various years).

[^6]: NOTES: 2001 and 2006 enrollment data for 4-year degree-granting institutions participating in Title IV federal financial aid programs.
 SOURCES: National Association of State Scholarship and Grant Programs, Annual Survey Report (various years); and National Center for Education Statistics, Integrated Postsecondary Education Data System (various years).

[^7]: NOTE: Workforce represents employed component of civilian labor force and reported as annual data not seasonally adjusted.
 SOURCES: Bureau of Labor Statistics, Occupational Employment and Wage Estimates; and Local Area Unemployment Statistics.

[^8]: NOTES: Only 11 agencies required to report federal R\&D obligations: Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Homeland Security (2005 only), Interior, and Transportation; Environmental Protection Agency; National Aeronautics and Space Administration; and National Science Foundation. These obligations represent approximately 98\% of total federal R\&D obligations in FY 2003 and 2005.
 SOURCES: National Science Foundation, Division of Science Resources Statistics, Federal Funds for Research and Development (various years); and Bureau of Labor Statistics, Occupational Employment and Wage Estimates.

[^9]: NA = not available
 NOTES: In 1998, >50\% of industrial R\&D value imputed because of raking of state data for Alaska, Arkansas, Hawaii, Louisiana, Mississippi, Nebraska, North Dakota, South Dakota, and Wyoming. In 1998, $>50 \%$ of industrial R\&D value imputed for Delaware, District of Columbia, Idaho, Kansas, New Mexico, Rhode Island, and Washington. In 2002, >50\% of industrial R\&D value imputed because of raking of state data for Alaska, Arkansas, Louisiana, and Wisconsin. In 2002, $>50 \%$ of industrial R\&D value imputed for Kansas, Maine, Oregon, and Vermont. In 2005, $>50 \%$ of industrial R\&D value imputed because of raking of state data for Alaska. In 2005, >50\% of industrial R\&D value imputed for Indiana, Kansas, Montana, and Rhode Island. Private-industry output reported in current dollars.
 SOURCES: National Science Foundation, Division of Science Resources Statistics, Survey of Industrial Research and Development (various years); and Bureau of Economic Analysis, Gross Domestic Product data.

[^10]: ${ }^{\text {a }}$ Estimates for S\&E doctorate holders may vary between 10% and 25% because geography is not part of the sample design.
 NOTES: Data on U.S. S\&E doctorate holders classified by employer location. Data on 2006 S\&E doctorate holders in academia are preliminary.
 SOURCES: Patent and Trademark Office, Technology Assessment and Forecast Branch, U.S. Colleges and Universities-Utility Patent Grants, Calendar Years 1969-2005; and National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients.

[^11]: NA = not available
 SOURCE: Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations.

[^12]: GDP = gross domestic product

[^13]: NA = not available
 SOURCES: PricewaterhouseCoopers, Venture Economics, and National Venture Capital Association, MoneyTree Survey, special tabulations; and Census Bureau, 1989-2004 Business Information Tracking Series, special tabulations.

