

Dyslipidemias in Children: A Cardiologist's Perspective

John K. Stevens, Jr. MD, FACC

Director, Preventive Cardiology and CardioPulmonary Exercise Lab

Sibley Heart Center-Cardiology

Section Chief, Cardiology, Children's Healthcare of Atlanta at Scottish Rite

Assistant Professor of Pediatrics, Emory University School of Medicine

In pediatric cardiology we do take a family history!

- PPE/LH/syncope/SCD & arrhythmias.....
- SCD/SIDS
- LQTS/Brugada/VT
- Pacemaker/AICD
- Cardiomyopathies
- Syncope/seizures
- Marfan
- Cong. deafness

- History & Physical form...
- Cong. Heart disease & birth defects
- MI, CVA, hyperchol., htn., pacer, heart surg.
- ▼ SCD, stillbirths
- Seizures
- Not diabetes or obesity

Preventive Cardiology FH

- Pedigree added to table
- Aunts/uncles/cousins/greatgrandparents added to sibs/parents/grandparents/"others"
- Commorbidities: obesity, diabetes, smoking, physical inactivity, nutrition and...
- Expanded details of vascular disease (angina, stents, TIAs, meds, etc.), dyslipidemias and hypertension (#'s, dx., meds, response)

Epidemiology

- Plasma cholesterol values predicts risk for coronary heart disease (CHD)
- CHD is the most common cause of death in the US in both men and women
- CHD causes approximately 500,000 deaths/year (twice as many as cancer, 50 times as many as AIDS)

Epidemiology: Children

Countries with higher dietary intakes of cholesterol and saturated fatty acids have higher average plasma cholesterols

▼ 36% of US youth ≤ 19 years old have cholesterol ≥ 170 mg/dl

Epidemiology

	<u>Boys</u>	<u>Girls</u>
Whites	27%	31%
Blacks	37%	46%

Epidemiology: Coronary Heart Disease

- ♥ Clinical sequelae ≥ middle age
- Arterial lesions-origins in childhood
- Aorta-fatty streaks in early childhood
- Coronary arteries-fatty streaks-many in 2nd decade
- ♥ Coronary arteries-fibrous plaques-some in 2nd decade
- Coronary arteries-fibrous plaques in many after age 20

23 Year old male, Type IV lesion

Vascular Pathology: Endothelial Dysfunction

- Carotid arterial intimamedia wall thickness
- ▶ LDL-c is a strong independent predictor of carotid arterial intima-media thickness in children with heFH
- 5-fold more rapid increase vs. nl. sibs

Impaired flowmediated dilatation of the brachial artery in children with heFH vs. controls

Statins and Endothelial Dysfunction

- Statins associated with carotid arterial wall intima-media thickness regression
- Statins may inhibit or reduce faster progression of atherosclerosis
- Short term statin
 (simvastatin) results in
 improved flow
 mediated dilatation of
 the brachial artery to a
 level similar to non heFH controls

Common Genetic Disorders Ranked by Predominant Lipid Abnormality

- High LDL-cholesterol
 - Familial hypercholesterolemia
 - Familial defective apo B-100
 - Familial combined hyperlipidemia
 - Polygenic primary elevation of LDL

Common Genetic Disorders Ranked by Predominant Lipid Abnormality

- High triglycerides of mild to moderate severity
 - Familial combined hyperlipidemia
 - Familial dysbetalipoproteinemia (type III)
 - Familial hypertriglyceridemia

Common Genetic Disorders Ranked by Predominant Lipid Abnormality

- Low HDL-cholesterol
 - Familial hypoalphalipoproteinemia
- Excess lipoprotein(a) [Lp(a)]
- Very high triglycerides
 - Familial hypertriglyceridemia

Genetic Conditions Causing Elevated LDL

Familial Hypercholesterolemia (FH): defective or deficient LDL receptors; retarded clearance of LDL from plasma.

▶ Familial Combined Hyperlipidemia (FCH): increased secretion of apo B-100.

Genetic Conditions Causing Elevated LDL

- Familial Defective Apo B-100: mutant apo B-100 poorly recognized by LDL receptor; retarded clearance of LDL from plasma.
- ▶ Polygenic Primary Elevation of LDL: heterogeneous group of conditions; clearance of LDL usually retarded; E4 allele of apo E sometimes plays a role

Familial Type III Hyperlipoproteinemia (Familial Dysbetalipoproteinemia)

Pathogenesis: defective apo E (usually E-II/II phenotype)

► Lipoproteins: hypercholesterolemia and hypertriglyceridemia; elevated remnants of VLDL and chylomicrons.

Pathophysiologic Mechanisms of Hypertriglyceridemias

Mechanism

- * Increased apo B-100 secretion
- * Increased hepatic triglyceride production (familial hypertriglyceridemia)
- * Increased expression of apo C-III or C-II
- * Heterozygosity for lipoprotein lipase

(some cases of familial hypertriglyceridemia)

- * Lipoprotein lipase deficiency (type I hyperlipoproteinemia) (rare)
- * Apolipoprotein C-II deficiency hyperlipoproteinemia)triglyceride-rich lipoproteins (rare)

Impact on physiology

- *Increased number of VLDL (familial combined hyperlipidemia) particles
- * Increased size of VLDL particles
- * Reduced VLDL clearance
- * Reduced clearance of deficiency triglyceride-rich lipoproteins
- * Reduced clearance of triglyceride-rich lipoproteins
- * Reduced clearance of (type I (type I or type V

Inherited Dyslidemias--Incidence

Lipid disorder:

Familial hypercholesterolemia

-homozygotes

-heterozygotes

Familial Combined Hyperlipidemia

Familial Defective apo B-100

Polygenic Hypercholesterolemia

Familial Dysbetalipoproteinemia

Familial Hypertriglyceridemia

Familial Chylomicronemia

Familial Hypoalphalipoproteinemia

Approximate incidence:

1/1,000,000

1/500

0.5-1 %

rare to 1/600

1/20 to 1/100

1/100 (occurs 1/5000)

rare to 1/300

rare

rare

Causes of Secondary Hypercholesterolemia

- Exogenous
 - Drugs
 - Alcohol
 - Obesity
- Storage diseases
 - Glycogen storage diseases
 - Sphingolipidoses

- Endocrine and Metabolic
 - Hypothyroidism
 - Diabetes mellitus
 - Lipodystrophy
 - Pregnancy
 - Idiopathic hypercalcemia

Causes of Secondary Hypercholesterolemia

- Obstructive Liver
 Diseases
 - Biliary atresia
 - Biliary cirrhosis
- Chronic Liver
 Diseases
 - Nephrotic syndrome

- Others
 - Anorexia nervosa
 - Progeria
 - Collagen disease
 - Klinefelter syndrome

Preventive Cardiology

- Primary Prevention
- Should be practiced in the primary care setting
- Population Approach vs. High-Risk Approach

- Secondary Prevention
- Not practiced in pediatrics with regard to atherosclerosis
 (with rare exceptions)

Primary Prevention

- Population Approach
- NCEP/AHA
 recommends a well balanced diet low in
 saturated fat for
 everyone
- High-Risk Approach
- Identify high risk individuals by family history:
- Parental hypercholesterolemia
- Early atherosclerosis
 in 1st degree relatives

Risk Assessment

♥ Positive family history ★ Lipoprotein analysis

Parental hypercholesterolemia (≥240 mg/dL) → total cholesterol

Referral Scenarios from PCPs

- FH, TC/FLP, algorithms, therapy, goals met, continued F/U
- ▼FH, TC/FLP, algorithms, therapy, goals not
 met → refers
- ▼FH, TC/FLP, initiates therapy → refers
- ightharpoonup FH, TC/FLP, *no* therapy ightharpoonup refers
- ♥ FH, no TC/FLP, no therapy → refers

Risk Assessment

- ◆ Acceptable cholesterol (<170 mg/dL) → repeat every 5 years and education</p>
- ▼ Borderline cholesterol (170-199 mg/dL) → repeat and average with 1st
- ♥ High cholesterol (≥200 mg/dL) → lipoprotein analysis

Classification of Total and LDL-Cholesterol in Childen/Adolescents

Category	Total Cholesterol (mg/dL)	LDL-Cholesterol (mg/dL)
Acceptable	< 170	< 110
Borderline	170-199	110-129
High	<u>></u> 200	<u>></u> 130

Treatment

Lipoprotein analysis

Hypercholesterolemia

▼ In 15% of children with TC = 200-240 mg/dl, LDL-C is below 15th percentile, but HDL-C is increased (hyperalphalipoproteinemia) associated with decreased risk of atherosclerotic disease

Clinical Evaluation

- History, physical exam, lab tests
 - Evaluate for secondary causes
 - Evaluate for familial disorders

Intensive clinical intervention

Clinical Evaluation

- Clinical Evaluation (history, physical exam, lab tests
 - Evaluate for secondary causes
 - Evaluate for familial disorders

Intensive clinical intervention

Clinical Evaluation

Screen all family members

Set goal LDL-cholesterol

- minimal: <130 mg/dL

- ideal: <110 mg/dL

Step-One Diet, then Step-Two Diet

The TLC Diet

Nutrient

Saturated fat*

Polyunsaturated fat

Monounsaturated fat

Total fat**

Cholesterol

Carbohydrate***

Fiber

Protein

Total calories

Recommended Intake

< 7% of total calories

up to 10% of total calories

up to 20% of total calories

25-35% of total calories

< 200 mg/day

50-60% of total calories

20-30 g/day

15% of total calories

Balance energy intake and expenditure to maintain desirable body weight/prevent weight gain.

^{*}intake of trans-fatty acids should be low (not on food labeling)

^{**} $TG \ge 500 \text{ mg/dl}$, fat intake should be $\le 15\%$ of total calories

^{***}derived predominantly from foods rich in complex carbohydrates, including grains (especially whole grains), fruits, and vegetables

Major Cardiovascular Risk Factors

- ▼ Age (male >45; female > 55 or premature menopause without estrogen replacement)
- ▼ Family history of premature atherosclerosis in 1st degree relative (<55 male; <65 female)</p>
- Cigarette smoking
- Hypertension
- Diabetes mellitus

Major Cardiovascular Risk Factors

- Elevated LDL-cholesterol
- ▶ Low HDL-cholesterol (<40 mg/dl)</p>
- ▼-Note: high HDL-C >60 mg/dl is considered a negative risk factor
- Physical inactivity
- Obesity

Emerging Risk Factors

- Elevated lipoprotein (a) [Lp(a)]
- Hyperhomocysteinemia
- Proinflammatory factors (eg, CRP)
- Prothrombotic factors (eg, fibrinogen)
- Impaired fasting glucose (the metabolic syndrome

The Metabolic Syndrome

- Genetic and Environmental influences cause hyperinsulinemia, which causes:
 - Glucose intolerance
 - Small, dense LDL
 - Increased triglycerides
 - Decreased HDL-C
 - Hypertension
 - Increased fibrinogen and Plasminogen activator inhibitor 1
 - Microalbuminuria, hyperuricemia

Treatment of Dyslipidemias

Diet

- Step I American Heart Association Diet
- Step II American HeartAssociation Diet
- ? Therapeutic LifestyleChange (TLC) Diet
- Decrease calories
- Decrease simple sugars
- Increase dietary fiber

- Increase physical activity
 - Aerobic
 - Daily living
 - Decrease sedentary time

Treatment of Dylipidemias in Chidren: Beyond NCEP

- Carefully consider medications beyond bile acid sequestrants
 - Age: "> 10 years" or earlier
 - Significant family history
 - Inadequate response to TLC with good compliance
 - Inadequate response to bile acid sequestrant if used

Treatment of Dylipidemias in Chidren: Beyond NCEP

- Assess and treat multiple risk factors (ATP III)
 - Dyslipidemia-LDL & TC, but also TG or non-HDL and HDL; consider Lp(a)
 - Weight/adiposity-consider The Metabolic Syndrome (hyperinsulinemia)
 - Physical inactivity
 - Hypertension
 - Family history
 - Smoking
 - Consider homocysteine

Indications for Drug Therapy

- \vee LDL-c \geq 190 mg/dl
- ▶ LDL-c ≥ 160 mg/dl AND family history of premature cardiovascular disease (<55 yrs) or 2 or more other risk factors present after vigorous attempts to control these risk factors</p>
- ▶ Risk factors: smoking, hypertension, low HDL-C (< 35 mg/dl), severe obesity (≥ 95th %-ile; ? BMI ≥ 95th %-ile), diabetes mellitus, metabolic syndrome, physical inactivity

Treatment of Dyslipidemias

- Specific nutrients
 - Phytosterols and phytostanols
 - Fish oil (omega-3 fatty acids)
 - Antioxidants
 - Folate (1 mg/Day)
 - Soy proteins

Treatment of Dyslipidemias

Medications

- Non-absorbed
 - Supplemental fiber (psyllium)
 - Bile acid sequestrants
 - Cholestyramine (Questran, etc.)
 - Colestipol (Colestid)
 - Colesevelam (WelChol)

Absorbed

- HMG-CoA reductase inhibitors ("statins")
 - Atorvastatin (Lipitor)
 - Simvistatin (Zocor)
 - Pravastatin (Pravachol)
- Nicotinic acid (niacin)
 - Niaspan
- Fibric acid derivatives ("fibrates")
- Cholesterol absorption inhibitors
 - Ezetimibe (Zetia)

Pharmacotherapy: Lipid Modifying Effects

	<u>LDL-C</u>	<u>HDL-C</u>	<u>TG</u>
Bile acid Sequestrants	↓ 15-20%	↑ 5%	variable
HMG-CoA Reductase Inhibitors	↓ 20-60%	↑ 5-15%	↓ 10-40%
Fibric acid Derivatives	variable, ↓ 10-15%	↑ 5-20%	↓ 20-50%
Nicotinic acid	↓ 20-30%	15-35 %	↓ 20-50%

Dyslipidemias in Children: Principles of Therapy

- Emphasize that it is NOT a disease or disorder (generally)
- ▼ Reassure that it does NOT doom one to heart disease
- Adopt a different time scale from acute problems
- Prescribe Therapeutic Lifestyle Changes for ALL

Dyslipidemias in Children: Principles of Therapy

- ▶ Don't just treat the numbers-base pharmacotherapy on patient/family readiness/probable compliance, family history, physical examination, the lipid profile (and other data)
- Make small changes/use moderation/allow "cheating"

Dyslipidemias in Children: Principles of Therapy

- Assess and address other risk factors
- Follow-up/assess compliance
- Keep a positive attitude
- **♥** Keep patient safety 1st and foremost

THANKS!