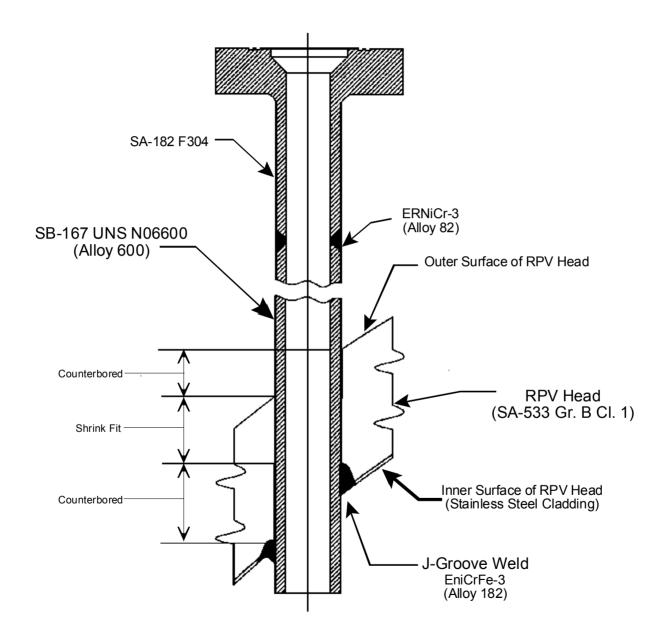

Reactor Pressure Vessel Head Degradation


Brian W. Sheron Associate Director For Project Licensing and Technical Analysis Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission

> American Nuclear Society 2002 Annual Meeting June 11-14, 2002

Background

- 1988—NRC Generic Letter 88-05 requests licensees to monitor, inspect, and prevent boric acid corrosion on pressure boundary surfaces
- 1991--First cracking of CRDM nozzles identified in an international nuclear plant
- 1997—NRC Generic Letter 97-01 requests
 - Description/plans of CRDM nozzle inspection and results
 - Analysis if augmented inspection is not performed
 - Description of any resin intrusions that exceeded EPRI primary water chemistry guidelines

Background

- February 2001—Oconee Unit 3 CRDM nozzle inspection per NRC Generic Letter 97-01
 - Discovers 9 cracked & leaking CRDM nozzles
 - Circumferential cracks in 3 of the 9 degraded nozzles
 - 2 cracks are 165 degrees in circumferential extent and through-wall
- April 2001—Oconee Unit 2 CRDM nozzle inspection
 - Discovers 4 cracked & leaking CRDM nozzles
 - Circumferential crack in 1 of the 4 degraded nozzles
- All Oconee cracks were repaired

Background

- August 2001--NRC Bulletin 2001-01 requests:
 - Susceptibility ranking of vessel head penetration nozzles from all plants
 - Inspection plans for vessel head penetration nozzles on the basis of susceptibility ranking
 - Description of post-inspection vessel head penetration nozzle leakage and cracking

Bulletin 2001-01: Susceptibility Criteria

- Plants with CRDM nozzle cracking or leakage: expected to perform qualified volumetric exam by end of 2001
- Plants with High Susceptibility (within 5 EFPY of Oconee 3): expected to perform qualified visual exam by end of 2001
- Plant with Moderate Susceptibility (5 to 30 EFPY of Oconee 3): expected to perform effective visual exam at the next refueling outage
- Plant with Low susceptibility (more than 30 EFPY of Oconee 3): no additional actions required

INSPECTION RESULTS: CRACKING/LEAKAGE HISTORY AND HIGH SUSCEPTIBILITY PLANTS (4/24/02) 7

↔ ¶

Plants	Most Recent Inspection					
	Date	Method & Scope	Summary of Cracked or Leaking CRDM Nozzles			
			Leaking	Cracked	Circumferential ¶ Nozzle Cracks	Number Repaired
Oconee 1	11/2000	Qualified Visual - 100%	1★	1★	0	1
Oconee 3	02/2001	Qualified Visual - 100%	9	9	3	9
ANO-1	03/2001	Qualified Visual - 100%	1	1	0	1
Oconee 2	04/2001	Qualified Visual - 100%	4	4	1	4
Robinson	04/2001	Qualified Visual - 100%	0	0	0	0
North Anna 1	09/2001	Qualified Visual - 100%★★	0	8	0	0
Crystal River 3 ★★★	10/2001	Qualified Visual - 100%★★	1	1	1	1
TMI-1	10/2001	Qualified Visual - 100%	5★	8*	0	6
Surry 1	10/2001	Qualified Visual - 100%★★	(4)	10	0	6
North Anna 2	10/2001	Qualified Visual - 100%★★	3	3	0	3
Surry 2	11/2001	Qualified Visual - 100%★★	0	0	0	0
Oconee 3	11/2001	Qual. Visual - 100% (UT of 100%)	5	7	1	7
D. C. Cook 2	1/2002	Qual. Visual, ECT, UT - 100%	0	0	0	0
Millstone 2 $\star\star\star$	2/2002	UT Examination - 100%	0	3	0	3
Davis-Besse	2/2002	UT Examination - 100%	3	5	1	3 (5)
Oconee 1	3/2002	Qualified Visual - 100%	1	2	0	2

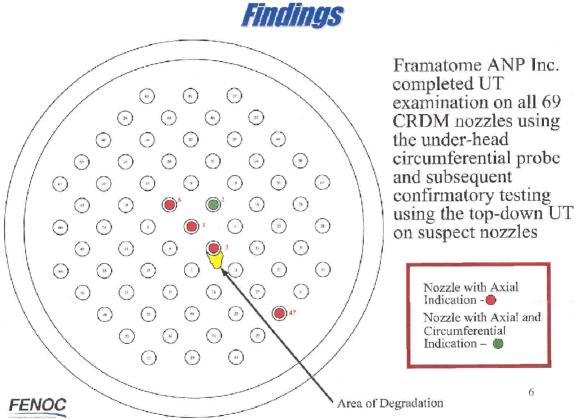
+ +

** Thermocouple nozzles also cracked/leaking: Oconee 1 (5 out of 8), TMI 1 (8 out of 8) ¶

★★* ** Pending acceptability of licensee's supplemental response ¶

→ ★★★* → MODERATE susceptibility plants. ¶

Moderate susceptibility plants with no evidence of boric acid deposits: ANO 2, Beaver Valley 1 & 2, Calvert Cliffs 1, Farley 1, Kewaunee, Palo Verde 2, Point Beach 2, Prairie Island 2, Salem 2, St. Lucie 2, Turkey Point 3 & 4, and Waterford 3


Davis Besse RPV Head Inspection

- February 2002---Davis Besse visual inspection of RPV head per NRC Bulletin 2001-01
- UT inspection of all 69 CRDM nozzles
 - 5 nozzles with indications (3 with throughwall cracks)
 - Cavity found adjacent to nozzle #3
 - Degraded area near nozzle #2
 - Significant boron and corrosion deposits on the RPV head

NRC Bulletin 2002-01

- March 2002---NRC Bulletin 2002-01
- Within 15 days--
 - Summarize RPV head inspection and maintenance program
 - Evaluate potential degradation conditions
 - Plan for future inspections
 - Justify continued operation
- Within 30 days after inspection—submit results of inspection
- Within 60-days— submit boric acid corrosion prevention program

Responses to Bulletin 2002-01

- General observations:
 - Most licensees correct leaks
 - Most licensees do inspections under insulation following "significant" leakage
 - No one is in same category as Davis-Besse
 - Many licensees have performed bare metal inspections
 - Almost all licensees have left minor debris and isolated chunks of boron deposit on the RPV head

NRC Augmented Inspection Team Findings at Davis Besse

- Containment Air Cooler Clogging
 - Increase in boron deposit on cooling coils
 - Change in boron deposit color
- Containment Radiation Monitor Filters
 - Filters clogged with corrosion products from reactor coolant leakage
- Boric Acid Corrosion
 - Nozzle flange leakage
 - RPV head boron and corrosion deposit not removed

Root Cause Investigation

- Sequence of events leading to 2002
- Contributors to degradation
- Crack propagation
- Leak rates through crack
- Boric acid corrosion and corrosion rate

Contributors to Degradation

- Degradation caused by primary water stress corrosion cracking (PWSCC)
 - Susceptible material-- Alloy 600 in nozzles and Alloy 82/182 in J-groove welds
 - Affected nozzles fabricated from heat M3935
 - High tensile stress adjacent to J-groove weld
 - Aggressive environment—high head operating temperature

NRC's Actions

- Augmented Inspection Team at Davis Besse
- Davis-Besse Lessons Learned Task Force
- Inspection Manual Chapter 0350 Panel
- Review licensee's root cause analysis
- Review responses to NRC Bulletin 2002-01

Current status of Davis Besse

- The licensee decided to use RPV head from Midland plant
- Certify Midland RPV head per NRC regulation and industry codes
- Framatome is studying degraded section of original RPV head
- NRC Region III followup inspections
- NRC Manual Chapter 0350 Restart panel formed

Generic Implications

- Davis Besse root cause evaluation provided qualitative assessment of probable corrosion mechanisms and sequence of events
- Did not provide quantitative information regarding when and under what conditions a through-wall leak would lead to vessel head corrosion

Generic Implications

- Is there a period of time following initiation of a through-wall leak in which NRC can be assured no unacceptable reactor vessel head corrosion will occur?
- Without knowing this, NRC has no assurance that visual inspections for through-wall leaks will prevent unacceptable reactor vessel head corrosion
- What is an acceptable amount of reactor vessel head corrosion?

Generic Implications

- Industry needs to provide NRC with sufficient information to justify why visual inspection methods and inspection intervals will assure no unacceptable reactor vessel head corrosion
- Until that information is received, NRC staff is reevaluating acceptability of visual inspections to detect CRDM nozzle cracking
- NRC staff is preparing further guidance

Website of Presentation Slides

- <u>www.nrc.gov/reactors/operating/ops-</u> <u>experience/vessel-head-degradation/public-</u> <u>meetings.html</u>
- Or,
- Go to <u>www.nrc.gov</u>
- Click on Nuclear Reactors (top of the page)
- Click on <u>Operating Reactors</u> (scroll down)
- Click on **Operational Experience** (scroll down)
- Click on <u>Reactor Vessel Head Degradation</u>
- Click on <u>Public Meetings</u>
- Click on 6/12/02 ANS Meeting