1	
2	
3	U.S. NUCLEAR REGULATORY COMMISSION FIRST ENERGY NUCLEAR OPERATING COMPANY
4	PUBLIC MEETING PUBLIC MEETING
5	Meeting held on Tuesday, December 10, 2002, at
6	7:00 p.m. at the Camp Perry, Clubhouse #600, Port Clinton, Ohio, taken by me, Marlene S. Rogers-Lewis,
7	Stenotype Reporter and Notary Public in and for the State of Ohio.
8	
9	
10	PANEL MEMBERS PRESENT:
11	U. S. NUCLEAR REGULATORY COMMISSION
12	John (Jack) Grove Grobe, Chairman, 0350 Panel
13	William Dean, Vice Chairman, MC 0350 Panel
14	Christine Lipa, Branch Chief, Region III
15	Christopher (Scott) Thomas, Senior Resident Inspector - Davis-Besse
16	Jon Hopkins, Project Manager
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	MS. LIPA: We're just about ready
2	to begin. Well, good evening and welcome. This is
3	the U.S. NRC, the Nuclear Regulatory Commission's
4	public meeting today with members of the public. We
5	held a meeting earlier today, and we'll give you a
6	summary of what we discussed earlier, but the main
7	purpose of this meeting is just to inform anybody
8	interested stakeholders of the NRC's Oversight Panel
9	activities, and up here, the five of us are members
10	of the NRC, and also there is other NRC in the
11	audience, so I'll just go through briefly.
12	Scott Thomas is the Senior Resident for the
13	NRC at the Davis-Besse facility.
14	I'm Christine Lipa, and I'm the Branch Chief,
15	and I'm stationed out of Region III, which is near
16	Chicago, Illinois.
17	Bill Dean is the Vice Chairman of the
18	Oversight Panel, and he's stationed in Rockville,
19	Maryland.
20	Jack Grobe is the Chairman of the Oversight
21	Panel, and he's stationed in Region III.
22	And then Jon Hopkins is the Project Manager,
23	and he's stationed in Maryland also.
24	Next slide shows that one of the goals of
25	this meeting is to receive comments and questions

1	from members of the public, and to ensure that we can
2	hear everybody's comments today, we ask that you
3	limit your comments or questions to five minutes.
4	Now, we have a lot of people tonight, so that will be
5	important as we go through, and then we'll follow the
6	format we've used in previous meetings where we'll
7	start with local members of the public first before
8	we go onto other members of the public that are
9	interested and want to provide comments or questions
10	to us.
11	I want to mention a few handouts that were in
12	the foyer on the way in. One of those is the NRC's
13	newsletter for the month of December, and it provides
14	a summary of the vessel head degradation issue, as
15	well as some recent NRC Oversight Panel activities.

the foyer on the way in. One of those is the NRC's newsletter for the month of December, and it provides a summary of the vessel head degradation issue, as well as some recent NRC Oversight Panel activities. There is also a feedback form that you can use to provide feedback to us on the format of this meeting, how the sound system works, if you can see the slide, which I'm thinking already we're partially blocking it, but any kind of feedback, we would really appreciate it. This is the first time we have used this facility, it's a very nice facility, but we need to work out the bugs and make sure it works for us going forward.

Also in the foyer there was a copy of the

1	utility slides from the earlier meeting today. There
2	were some of those left if you wanted to grab one of
3	those, and, you know, get a sense for what we
4	discussed earlier. Also there's a summary of the
5	Lessons Learned Task Force report out there that you
6	can review.
7	The next thing I would like to go through on
8	the agenda is a summary of the vessel head
9	degradation issue, and we have some pictures that we
10	can show you. Scott Thomas will walk through parts
11	of that.
12	MR. GROBE: Everybody that's got
13	an empty chair next to them, raise your hand.
14	There's a lot of folks in the back here, why don't we
15	just take a minute, and you folks can come up and
16	find a seat. I don't want to and there's some
17	seats up here in the front if you want to get that
18	close to us. There is no splash zone here so you
19	don't have to worry about that. Let's try again,
20	there is about 10 more people in the back. Raise
21	your hand if you got a chair next to you. Come on
22	up, guys. There's seats up here. You just want to
23	leave early, huh? Okay. Okay, good enough.
24	MS. LIPA: Okay. Thank you,
25	Jack.

1	MR. THOMAS:	How many are here for
2	the first time, this is your fi	rst public meeting?
3	THEREUPON, sever	al audience members raised
4	their hands.	
5	MR. THOMAS:	What I'm going to do
6	for the people that aren't fa	amiliar with the issue
7	and with nuclear power pro	ocess in general, we have
8	five or six slides that we're	going to talk go
9	through very briefly and ju-	st give you a general idea
10	of the issue that happene	d at Davis-Besse.
11	What we have here i	is a very simple depiction
12	of what the power plant	what makes up the power
13	plant. This area here is t	he containment building,
14	which is comprised of an	inner containment, which is
15	an inch and a half steel lin	ner, kind of like if you
16	picture a Thermos, the gla	ass portion of the Thermos
17	would be the containment	t, and then the outer building
18	is what you see is the s	hield building, that's
19	what you see from the roa	ad as you drive by. It's
20	approximately two and a l	nalf feet thick, rebar
21	reinforced structure. Insi	de containment you have
22	the primary systems which	h consists of the reactor
23	where fission occurs and	generates heat. It's
24	transferred to the steam g	generators where water is
25	hoiled which makes steam	n which drives the turbine

1	which drives the generator which makes electricity.
2	One thing to note is that this cycle is a closed
3	cycle, and this cycle is a is a cycle, and these
4	two don't mix. This is hot, high pressure
5	radioactive water, and this is non-radioactive water
6	and steam cycle, so I think that's it for this one.
7	Next slide, please. This is a picture of
8	the top of the head. It's comprised of this is
9	the reactor vessel head. These are the control rod
10	drives, and these are the nozzles that penetrate the
11	reactor head. Where you have this circled area is
12	where the degradation occurred. We have a better
13	picture of that, I think.
14	MS. LIPA: Yeah.
15	MR. THOMAS: One area prior to
16	one of the things that lead to the inability to
17	observe and clean the reactor head is this is a very
18	tight clearance. This is an insulation piece.
19	This is a steel assembly, and the only way into this
20	area is through rectangular they are called weep
21	holes, mouse holes they have a number of names
22	which are positioned right about here. Since then
23	there has been inspection ports cut here around the
24	periphery, but one thing that lead up to the issue
25	was difficulty to be able to inspect this area here

1	Next picture. This is a depiction of a
2	nozzle. My pointer gave out. This is a nozzle
3	itself. This is the head area. The way this is
4	put into the reactor head is, it's a compression fit,
5	the nozzle is a compression fit in the head with the
6	J-weld here, and that's how it's held in place, and
7	that's about all we get out of this picture.
8	Next slide. This is a picture of the reactor
9	vessel head post 2000 outage. What you're seeing
10	here is these are the studs and the bolts that hold
11	the reactor head on. This is the transition between
12	the head to the service structure, and remember when
13	I just the last slide I talked about the weep
14	holes, these are the weep holes. They're about five
15	by seven, about this size, (indicating). What you
16	see here is a boric acid combined with iron oxide
17	that has come from the cavity area that was on top of
18	the head, flowed down the top of the reactor head,
19	down the side of the head and collected on the
20	reactor flange area.
21	Next slide, please.
22	MR. COLLINS: Oh, sorry.
23	MR. THOMAS: This is a excuse
24	me, a drawing of the cavity itself. This is the
25	reactor head. This is the nozzle penetration. This

1	is another this is nozzle 11. This is nozzle No.
2	3. As you can see, it doesn't have the nozzle's
3	been removed here, but this area is a a depiction
4	of the cavity itself, so that was the shape of the
5	cavity. All that was left was the cladding on top
6	of the reactor vessel right here.
7	Next slide. And, excuse me, this is an
8	actual picture of the cavity itself. Go back to
9	that one real quick. This where nozzle 3 would have
10	gone in, and the cavity itself goes back this way
11	toward nozzle 11, and there's been a number of
12	descriptions of the cavity, anything from football
13	size to milk bottle size to a number of
14	descriptions. A football size would be an accurate
15	description.
16	Next. This is just another picture of the
17	cavity. I don't have anything to add for this one.
18	Any specific questions on this what I have
19	shown here? This is just a brief overview of the
20	issue itself.
21	MS. RYDER: I had a question about
22	one of the photos.
23	MR. THOMAS: Yeah.
24	MS. RYDER: The one with the red
25	rust down the side.

1	MR. THOMAS:	Yes.
2	MS. RYDER:	How is it that your
3	inspectors didn't know	that that photo existed?
4	MR. GROBE:	That's a good
5	question, Amy. The	why don't you introduce
6	yourself?	
7	MS. RYDER:	My name is Amy Ryder,
8	I'm with Ohio Citizen A	ction group.
9	MR. GROBE:	There's really, I
10	think, two answers to t	hat question. As I'm sure
11	you can imagine there	is roughly a thousand people
12	that work at an industr	ial facility this size, and
13	there's a lot of activitie	s that go on, and we sample
14	different activities, and	I we didn't choose during the
15	course of our day-to-d	ay work to look at this
16	specific inspection pho	otograph that was taken in
17	April of 2000, I guess.	
18	Second answer is	s, back last fall in the, I
19	think it was Septembe	r through late November into
20	December time frame,	we had quite a long dialogue
21	with FirstEnergy emplo	oyees regarding the condition of
22	the reactor head. It w	as following up the issuance
23	of a bulletin. A bulleti	n is a document that we use
24	to communicate with a	number of reactor licensees.
25	In this case it was all p	pressurized water reactors,

1	Davis-Besse is a pressurized water reactor. We
2	asked for information that would assist the NRC in
3	understanding the condition of the head, and that
4	photograph was not provided. Quite a bit of
5	information was provided, but that specific
6	photograph was not provided by the company.
7	MS. RYDER: Do you find that
8	acceptable? Doesn't it seem like they were
9	intentionally hiding the problem?
10	MR. GROBE: That's kind of a
11	loaded question. The folks that do inspections are
12	engineers. They're not investigators. Whenever we
13	come across a situation that doesn't seem quite right
14	to us, we have an office called the Office of
15	Investigations, and these are all former criminal
16	investigators, and in this situation it didn't seem
17	quite right to us that some of the information didn't
18	come to our attention, and we initiated an
19	investigation. That investigation is ongoing, and
20	when it's completed we'll know the results.
21	MS. RYDER: I'm not an engineer or
22	investigator and looking at that photo, you'd think
23	the photographer would have said, look, guys, I think
24	we've got a problem here.
25	MR. GROBE: It's, like I said,

1	when things don't appear quite right, we ask our
2	investigators to take a look at it, and they're in
3	the process of doing that. When they complete their
4	investigation, that will be public knowledge.
5	MS. RYDER: What do you think of
6	it?
7	MR. GROBE: I'll have to wait for
8	the investigation results, Amy. Thanks.
9	MR. THOMAS: Anything else about
10	the basic description? We'll have a question and
11	answer session later on, but I can answer any basic
12	questions about what I have talked about here. Sir?
13	MR. DUSSEL: Yes, I was
14	wondering
15	MR. GROBE: Could you approach the
16	microphone, please?
17	MR. THOMAS: And please state your
18	name, too, for the stenographer.
19	MR. DUSSEL: My name is Tim Dussel,
20	and I was wondering I've read articles where I
21	believe some 20 years ago Davis-Besse was told to
22	open up those inspection holes so inspections could
23	be done and a lot of things I've read about
24	inspections, they keep saying that the lid was clean
25	as far as people could see. I think that's kind of

1	a loaded question there.
2	Is there any reason why they went 20
3	almost 20 years when they knew that those inspection
4	holes should have been opened up so you could get in
5	to see or inspect the rod ends?
6	MR. THOMAS: Well, it wasn't a
7	requirement for them to install this modification,
8	so plants have operated successfully without it,
9	so
10	MR. GROBE: Because of the
11	difficulty in inspecting the head, as I think some of
12	you Jay, could you put up that drawing of the
13	head? Yeah, that one.
14	MR. COLLINS: Yes.
15	MR. GROBE: As you can appreciate,
16	because of the curvature of the reactor head, it
17	would be difficult to inspect, and the way that was
18	done was with a camera that was remotely controlled
19	on a pole, and the Davis-Besse internally
20	initiated a modification to install inspection ports.
21	They're about one foot diameter ports that are much
22	higher than service structure. As Scott indicated
23	earlier, they are up here. There is seven reactors
24	that are very similar to Davis-Besse, and they're
25	manufactured by Babcock & Wilcox Corporation. Five

1	off those seven had installed the inspection ports,
2	two had not, and Davis-Besse was one of them. The
3	decision was based on their belief that they had the
4	ability to inspect reactor heads sufficiently from
5	the weep holes, so it's not like they were directed
6	to do this. It was an enhancement, and they chose
7	not to do it at that time.
8	MR. DUSSEL: I just don't
9	understand how an inspection can be done if you can't
10	see. You know, that strikes me very peculiar. I
11	just don't understand how all these inspections have
12	been done and I keep reading and reading where the
13	lid was clean, and how could anyone say it was clean
14	if you can't see if it was clean and 900 pounds of
15	boric acid taken off? 900 pounds of boric acid, how
16	many burlap sackfuls would that be?
17	MR. GROBE: It's maybe we
18	should give a little bit more background because it's
19	clear that some of you don't have the depth of
20	knowledge that others may have.
21	There's requirements both through the
22	American Society of Mechanical Engineers as well as
23	through internal procedures at the site that require
24	certain types of inspections. Boric acid is a
25	constituent of the reactor coolant and pressurized

1	water reactors there are roughly 70 pressurized
2	water reactors in the United States. Every one of
3	them has boric acid in the reactor coolant. It's an
4	additive that is used to help control nuclear
5	reaction. Because boric acid the solution of
6	boric acid that is actually in the coolant is very,
7	very mild. It's not corrosive. The concern is
8	the if there is a leak in the reactor coolant
9	system, wherever the leak exists, the water which has
10	boric acid in it a very mild solution can exit
11	through the leak and the water immediately vaporizes,
12	and leaves a higher concentration of boric acid on
13	the surface, so the back in the late '80s, the NRC
14	required licensees not only to have the American
15	Society of Mechanical Engineering standards that deal
16	with potential corrosiveness of boric acid, we
17	required licensees to explain to us how they were
18	going to control boric acid corrosion because it's
19	a an artifact of this type of reactor, but you
20	need to be able to do that, so each licensee put into
21	position a procedure that whenever there was a
22	discovery of boric acid, it appears to be a white
23	powder when it is left, a white residue. Whenever
24	you see that you have to clean it off, and it's a
25	requirement through a number of different

1	regulations, you have to clean it, you have to clean
2	it down to bare metal. You have to clearly inspect
3	the metal to make sure there isn't any corrosion. If
4	there is corrosion, you have to repair it or in some
5	cases you can justify why if it's a very mild
6	pitting or something like that, you can justify that
7	that's an acceptable leave as is. Davis-Besse did
8	not follow those requirements, and through the course
9	of the '90s from the mid '90s to the late '90s
10	they left boric acid residue on the reactor head, and
11	I think your number is one that I've heard before,
12	and I don't know that anybody knows the quantity of
13	boric acid that was on the head with precision, but
14	it was in the hundreds of pounds of boric acid.
15	That obstructed the view of the individuals that were
16	trying to inspect the head. Those individuals
17	didn't follow station procedures and the American
18	Society of Mechanical Engineering requirements that
19	required them to clean that boric acid, and internal
20	documents documented that it had been cleaned and
21	that the head was inspected, and there was no damage,
22	and, in fact, that had not occurred. All of these
23	issues are being looked into, but the fact of the
24	matter is, this was a completely preventable
25	situation, and that photograph Jay, put up the

1	picture that shows the red rust. This is a clear
2	indication that there is corrosion going on. It's
3	rust. It's iron oxide, and that was not adequately
4	responded to by the staff at Davis-Besse. These are
5	things that happened in the past, and they were not
6	corrected, and these are cited as violations in our
7	inspections. There's an investigation ongoing into
8	why it happened, and once we find out why it
9	happened, we will take appropriate actions.
10	MR. DUSSEL: What do you think
11	appropriate actions would be for falsifying records?
12	Evidently, there was
13	MR. GROBE: We need to have the
14	results of the investigation before we can make that
15	determination.
16	MR. DUSSEL: Is Davis-Besse going
17	to be allowed to operate and start running before the
18	investigation is done?
19	MR. GROBE: We need to get our
20	arms around what those issues are and make sure that
21	NRC adequately dealt with before we restart.
22	MR. DUSSEL: Thank you.
23	MR. GROBE: Uh huh.
24	MS. LIPA: Okay, thanks, and
25	those are good guestions, but what I want to do

1	before we get into the question and answer period,
2	we're actually going to provide for everyone's
3	benefit who was not here earlier today a summary of
4	the afternoon meeting with FirstEnergy, and then the
5	next item on the agenda following that summary is
6	questions and answers, so everybody will get a chance
7	to ask their questions, it's just let us give a
8	summary of the afternoon meeting and Bill will do
9	that and following that, we'll get into more
10	questions and answers. Thank you.
11	MR. DEAN: Thanks, Christine.
12	Hopefully I'll make this short, so we can get to the
13	answers and questions. We do have a fairly large
14	audience tonight, but it is important, one of the
15	purposes of this meeting that we have it in the
16	evening with the public is to give you the
17	opportunity to be informed as to the types of things
18	that are transpiring, the types of things that the
19	NRC and this Oversight Panel is doing relative to
20	monitoring the activities at Davis-Besse, and so it's
21	important to do a recap of today's meeting.
22	We discussed, first off, some of the
23	activities that have been ongoing in the last month
24	or so from the NRC's perspective. There are two
25	inspections that have been completed and inspection

1	reports issued which are available publicly
2	available. One of those is the containment extent
3	of condition. That report generally found that the
4	licensee has done a good job of evaluating their
5	containment in terms of the spread of boric acid and
6	its impact on containment components. There are
7	some unresolved issues that we're still looking at.
8	There is some work that is still ongoing that we will
9	continue to follow, but that inspection report
10	basically documents what the licensee has done to
11	date.
12	The other one is the reactor pressure vessel
13	head replacement activities. Basically the effort
14	to cut the hole in the shield building and
15	containment and to move in and out the replacemen
16	reactor vessel head and move out the old one and g
17	that in place, ready for installation, and basically
18	that inspection report determined that the licensee

containment and to move in and out the replacement reactor vessel head and move out the old one and get that in place, ready for installation, and basically that inspection report determined that the licensee did a pretty good job on all of those activities, maintained good positive control of what was going on. Some of the things that are ongoing, there are inspections ongoing that are not yet completed, will not be completed because completion of them is contingent upon activities that the licensee still has ongoing relative to things like program reviews.

1	There is a number of programs that the licensee has
2	endeavored to evaluate and assess those programs, for
3	example, boric acid corrosion control program, the
4	corrective action program, and so on, that were
5	instrumental in this event occurring, and so they've
6	gone back and done an in-depth review of those
7	programs. We are inspecting their efforts in that
8	area and they still have some additional work to do
9	so we will not complete our inspection until they are
10	done. Another area is system health. Obviously,
11	we felt it was important, as did the licensee, that
12	they had to assess the health of other safety systems
13	in the other plant not just the reactor vessel head
14	to assure themselves, assure us and assure the public
15	that they don't have other issues of safety
16	significance, and so those activities are ongoing.
17	We have not completed our inspection efforts in that
18	regard because the licensee still has a certain
19	amount of work to do in terms of their system health
20	assurance efforts. The other issue and one of the
21	things really that Scott didn't address in terms of
22	the event, but really is kind of at the core of the
23	issue that occurred here and this is failure in terms
24	of managerial organizational behavior at Davis-Besse.
25	Some of you may hear this referred to as safety

1	culture issues. We have a substantial part of our
2	assessment process to look at what is the licensee
3	doing relative to organizational effectiveness and
4	human performance and then, of course, we have the
5	Resident Inspector and the Senior Resident Inspector
6	on site that do daily observations of ongoing
7	activities of the licensee, and so those are all
8	ongoing, continuing NRC activities that have yet to
9	be completed.
10	One meeting of note to discuss or that
11	occurred over the past month; on November 26th, we
12	had a meeting in the headquarter's office in
13	Rockville, Maryland to discuss with the licensee
14	their activities regarding the bottom of the reactor
15	vessel, the picture that you saw, the oxide and the
16	boron that collect at the top of the reactor vessel.
17	Over the course of time some of those materials found
18	their way down the side of the reactor vessel and you
19	could actually see, some of you that might have gone
20	to our web site unfortunately, we don't have any
21	pictures to show you
22	MS. LIPA: Yeah, we do.
23	MR. DEAN: Do we?
24	MR. COLLINS: Give me a minute.
25	MR. DEAN: Okay, Jay is going to

1	pull up a picture what the bottom of the reactor
2	vessel looks like. Basically, they had some distinct
3	trails of both iron oxide, rust, as well as boric
4	acid trailing down and collecting to the bottom of
5	the reactor vessel, and when the licensee pulled off
6	the insulation to see where those trails led, the
7	bottom of the reactor vessel head had notable trails
8	of boric acid deposit and rust, and so that raises
9	the question is are those items at the bottom of
10	the vessel a result of just wash down, things that
11	have collected from the top of the reactor vessel, or
12	are they indeed and there you see an example of
13	the bottom of the reactor vessel. This is after it
14	was cleaned. Go back to that previous one, Jay.
15	This is an example of what the collection looked like
16	at the bottom around one of the penetrations, and
17	there is another example, you see how it was
18	collected, so that raises questions. Is that
19	leakages perhaps from these penetrations, or is it,
20	indeed, just wash down and trails from all of the
21	materials, the 900 pounds of boric acid, and so on,
22	that were at the top of the reactor vessel, and so
23	the licensee has yet been unable to definitively
24	determine that, and so they came to the headquarter's
25	office to meet with a number of our engineering

1	specialists there to describe their plans to try and
2	assure that these penetrations at the bottom of the
3	reactor vessel which are not the same at the top,
4	they operate at a lower temperature, they're much
5	smaller. There is not a history of leakage or
6	cracking from those penetrations both internationally
7	and domestically, but it still a question that has to
8	be answered, and so they described their plans to do
9	testing. Basically, what they intend to do is at
10	some point next year bring the plant up to normal
11	operating pressure, normal operating temperature and
12	have it sit there for seven days, and then go in and
13	do a close visual inspection of all those
14	penetrations. That is why it's important if you go
15	back to the one that was clean, shows a clean head,
16	they would be able to go in there and do a visual
17	inspection, and see if there was any of these little
18	boric acid crystals that Jack was talking about,
19	these white crystals. That would an indication that
20	perhaps there might be a small leak, and so we had
21	that meeting on November 26th, and I don't think that
22	meeting summary is yet available, but I think are
23	the meeting slides?
24	MR. HOPKINS: The slides are up on
25	the web site.

1	MR. DEAN: Okay. The meeting
2	slides are up on the web site, so if you were to
3	access our web site, you could see the licensee's
4	presentation. That was a pretty important meeting.
5	The other thing that came out of that meeting
6	is that the licensee described their plans to install
7	a sensitive leak detection system. It's called a
8	flus, F-L-U-S, which is a system of German design,
9	and that's been used at some European facilities. It
10	hasn't been used here in the United States which is
11	basically a very sensitive moisture detection system
12	which they would install at the bottom of the reactor
13	vessel. They hope to be able to do that before this
14	extended outage period is completed, so they
15	described their plans to do that.
16	Okay, to talk about what the licensee
17	described in terms of their restart readiness plan,
18	the other major purpose of our meetings we come
19	here every month and meet with the licensee is to get
20	an update from them on where they are in terms of all
21	of their activities related to their Return to
22	Service Plan. In the area of Management and Human
23	Performance, which I said was a very important area,
24	they talked about some of the things that they're
25	doing in terms of enhancing communications and

1	training. In particular, they have accomplished some
2	things over the past month relative to specific
3	training for supervisors and managers relative to
4	assuring a safety conscience work environment. The
5	also described they have a fairly active what
6	they call their management observation program and
7	the purpose of that is to get managers out into the
8	field to look at ongoing activities and work and to
9	assure themselves that the types of things that they
10	have developed in terms of expectations for
11	performance and how they expect work and activities
12	to be accomplished, are there safety standards being
13	met by the work force, and, generally, they describe
14	a fairly satisfactory results from their management
15	observation program thus far. They do have issues
16	relative to things like job planning, housekeeping,
17	some documentation issues, but, in general, they felt
18	that the results have been fairly satisfactory in
19	terms of how well they believe their safety standards
20	and expectations are being translated to the staff.
21	The other major area they talked about is
22	one of the issues that has emanated from looking at
23	the licensee's root cause is the role that their
24	operations department has played relative to
25	establishing safety standards at the plant, and I

1	think the licensee has determined, and we would $\ensuremath{\mbox{\scriptsize degree}}$
2	agree that their operations department did not take
3	a leadership role in the past in establishing safety
4	standards, and it's something they want to embody
5	into their organizational philosophy, so they
6	described some of the ongoing activities that they
7	have in terms of developing this approach, bringing
8	the operations department to the floor in terms of
9	leading safety standards, and they describe some of
10	the activities that their operations department is
11	getting involved in and taking a greater role, things
12	like plant safety reviews and maintenance work
13	activities.
14	The second area they discussed talked about
15	some of their near goals relative to activities to
16	support potential plant restart, and we talked to
17	some degree about some near term activities mainly to
18	support this testing that I talked about of the
19	bottom of the reactor vessel head to assure
20	themselves and assure us that those penetrations are
21	not leaking, and what they described is that
22	basically beginning in about the middle of January or
23	so they hope to be able to begin the evolution of
24	reloading the fuel in the core, putting the reactor

vessel head, the new reactor vessel head on top of

25

1	the core, performing an integrated leak rate test of
2	the containment. Of course, they got this big hole
3	to move the reactor vessel heads in and out. They
4	have to assure themselves that containment is leak
5	tight, so they have to do what's called an integrated
6	leak rate test, where they pressurize containment and
7	observe it for leaks, and then eventually bring the
8	actual reactor plant up to normal operating pressure
9	and temperature using basically their large reactor
10	coolant pumps and the pump heat that that generates
11	to bring the plant up to temperature and basically do
12	a seven day stay at that and then go and look around
13	evaluate the plant for leaks. Also to give them an
14	opportunity to test a number of these systems that
15	they have been working on, so they described their
16	plans to do that. There is a lot of work that
17	remains physically before the plant can even be at
18	the position to be able to do that. They have a
19	number of valves that are being worked on to assure
20	leak tightness. They're doing some major work on
21	some of their reactor coolant pumps to assure that
22	those are going to be leak-free, and there is a
23	number of issues that have emerged from all of the
24	work they have done to try and identify all the
25	issues that basically what they call mode

restraint. In other words, they can't change their mode of operation until they complete a lot of these activities, and so there's hundreds of those issues that still need to be resolved, so the licensee still has a lot of work on their plate to even get to that point.

Third area we talked about with the licensee was their containment health. Basically they have completed for the most part their discovery activities in terms of identifying all of the issues in containment that would have been a result of the boric acid and leakage, and so they basically have about 900 plus issues. They have not yet identified or reviewed all of those issues to determine what the corrective actions are; however, they do have some major work in progress, in particular, rebuilding the containment air coolers, expanding a screening area for the emergency sump, and, basically, recoating and painting the entire containment and some of the core flood tanks.

Let's see, system health reviews, I talked about this earlier as an area that the NRC has ongoing inspection activities. They still have a lot of work to do in that area, though, they have completed many of the reviews and are awaiting

management to sign off basically, and approval of the
results of those review, but there's a number of key
design issues that have emerged from those reviews
that await resolution. We, matter of fact, will have
a meeting with the licensee probably on December 23rd
in the Region III office to discuss some of their
plans and activities as result of the lessons learned
and the findings that they have had from their system
health assurance, so that will be a pretty key
meeting for us to get a better feel for where they're
going in terms of system health.

Plant programs is an area where much of the review work is done. I talked about that as an area the NRC still has ongoing inspections; however, the licensee is further ahead in assessing their programs and revamping them, and so we will probably be able to complete some of our inspection activities hopefully in January regarding that, and then, finally, some of you may have the opportunity -- I noticed earlier some of you were looking at -- over on the side there, the licensee put up some of their performance metrics that they were using to basically monitor progress at the plant, and one of the points that they try to make is that if you looked at those, basically those show that they believe they're at a

1	point where they've completed the majority of their
2	discovery, and by that, I mean, basically they're
3	identification of issues that need to be resolved
4	whether they're physical issues or program issues and
5	that their work off rate is now starting to exceed
6	their discovery, so, basically, that's kind of a
7	critical point in terms of plant recovery and a plant
8	that's in an extended shut down, when you complete a
9	lot of the work in terms of discovery and now your
10	work off rate exceeds that, so you start to see a
11	decline now on all of the work that's on their plant plate,
12	so they have kind of reached that turning point, but
13	that doesn't mean they're anywhere near being ready
14	for restart. That's a lot of work that remains on
15	their plate just from a physical point of view, not
16	to mention where are they in terms of safety culture
17	assessment which is a big issue we raised with them
18	and something we want to make sure that they discuss
19	with us at our meeting next month. We want to hear
20	some fairly detailed discussion about their
21	activities related to safety culture, how are they
22	monitoring and measuring that, and so that's an issue
23	that we will have some detailed discussion with the
24	licensee next month, so that's probably a little bit
25	longer than I wanted to take, but it was a fairly

1	lengthy meeting and a lot of good discussion. Jack,
2	do you have anything to add?
3	MR. GROBE: Thanks, Bill, that was
4	a really good summary. While Bill was talking I
5	already heard the meeting, so I wasn't listening very
6	closely, but I was trying to think of what might be
7	good information to share with you. We're involved
8	in this day in and day out in a great amount of
9	detail and sometimes we get lost in the trees and
10	when folks like you come out to find out what's going
11	on, you're not in the level of detail that we are,
12	and we sometimes lose sight of the fact that some
13	foundational information might be helpful. I wanted
14	to just spend three or four minutes and tell you what
15	this is all about because it probably appears kind of
16	strange.
17	Over the last several years we've put in
18	place a reactor oversight program for all of the
19	operating reactors in the United States that has a
20	number of elements that are foundational to its
21	success, and that reactor oversight program is
22	comprised of two principle things; one is performance
23	indicators, each licensee in the United States, each
24	operating utility is required to report on a
25	quarterly basis to the NRC a set of performance

1	indicators and we've specified what those indicators
2	are and then collect the data, report them to us and
3	we double-check in the field if that data is actually
4	accurate and representative of the true performance
5	of the plant, and going along with that set of
6	performance indicators is our regular inspection
7	program which is comprised of roughly 2000 hours of
8	inspection by both resident inspectors, like Scott
9	Thomas, who is the Senior Resident at Davis-Besse, as
10	well as regional specialists that travel around to
11	different reactor sites. They're experts in various
12	technical disciplines, so the performance indicators
13	and the inspection program work together. We call
14	that our routine reactor oversight process.
15	Underpinning or foundational to that reactor
16	oversight process is several items, several things.
17	One is the belief that this industry has been around
18	for a while and it's a mature industry. If you look
19	at the safety performance of the nuclear industry
20	over the last decade to 20 years, it has steadily
21	improved and the nuclear plants in the United States
22	are safer today than they have ever been in the past,
23	so it was based on that fact that it was a recognized
24	appreciation that this is a mature industry, and then
25	there are three things that we call crosscutting

1	issues. One of them is the safety culture of the
2	plant and that is absolutely pivotal to the safety
3	performance of the plant. The second one is the
4	corrective action program. Sometimes you've heard
5	people talk about a learning organization you can
6	call it a number of different things, but it's an
7	organization that is mature enough to listen to
8	what's going on in the plant and react to it, so that
9	if on day in and day out they find issues, they don't
10	hind hide them, they don't ignore them, they deal with
11	them. We call that the corrective action program,
12	and the third one is capable and competent staff.
13	There's two aspects, two of those three crosscutting
14	issues that the revelations that occurred last March
15	came through loud and clear, those foundational
16	elements didn't exist, and that is the corrective
17	action program. A number of the issues that you saw
18	in the pictures tonight, those issues were known to
19	members of the plant, corrective action documents
20	called condition reports were initiated and then not
21	adequately resolved. The corrective action program
22	was not functioning effectively, and the second thing
23	is it came through clearly and the company reported
24	to us that they had lost focus on safety, that they
25	were putting production pressures ahead of safety

1	issues. Because of those issues the agency, the
2	NRC, Nuclear Regulatory Commission, determined that
3	this plant could not within our context, we
4	couldn't apply the routine oversight program to
5	Davis-Besse. We have a special you might call it
6	a circuit breaker in our inspection program. It's a
7	procedure. Sometimes you have heard at this panel
8	referred to as the 0350 Panel. That's a procedure.
9	It's Manual Chapter 0350. It describes for those
10	situations when you come into a circumstance that is
11	not appropriate for our routine inspection program,
12	it sets out a set of criteria, so this panel has
13	become the routine inspection program for
14	Davis-Besse. In situations like this, the agency
15	brings together a group of experts from very diverse
16	backgrounds. Bill Dean is the Senior Executive in
17	our headquarter's offices. I'm a Senior Executive
18	from Chicago. Jon's an expert in licensing.
19	Christine is an expert in inspection, the Resident
20	Inspector, and there is a number of typical staff and
21	managers that are on this panel, and we replace the
22	routine oversight program because the commission has
23	lost confidence had lost confidence in Davis-Besse
24	that they could effectively function and we could
25	provide effective oversight with our normal

1	inspection program. So what this panel done is
2	observe day-to-day activities at the plant, and we
3	structure an inspection program that's appropriate
4	for Davis-Besse in its situation today. We were
5	chartered in April, I guess, and one of the
6	expectations of the panel is to identify those key
7	issues that are necessary for resolution if the plant
8	is permitted to restart would be permitted to
9	restart. We call that a restart checklist, and
10	we've published that. It's been revised once since
11	it was published. It contains approximately 15 or
12	20 specific items on it covering systems, programs,
13	people, management structures a whole plethora of
14	different types of issues that this panel has
15	determined need to be adequately addressed prior to
16	this plant being permitted to restart. Our
17	responsibility as a panel is to provide oversight to
18	gain the resources necessary for both headquarters
19	and the regional offices. We've had inspectors from
20	our other regions as well as headquarters, contract
21	inspectors out here doing inspections at the plant
22	and provide oversight to those inspections and make
23	sure that before this plant would be permitted to
24	restart, that we are comfortable that it could be
25	restarted and operated safely. The process for that

1	decision because I know many of you might be
2	interested in that is that this panel would do its
3	work. If we come to the conclusion that we think the
4	plant is ready to restart, then we have to present
5	that to our bosses. My boss is Jim Dyer. He's a
6	regional administrator in Chicago, the Region III
7	office. Bill's boss is Sam Collins, Director of the
8	Office of Nuclear Reactor Regulation. Sam has
9	responsibility for every reactor in the United
10	States. Jim has responsibility for the Region III
11	reactors, and we would make a recommendation and have
12	to defend that recommendation to those two gentlemen
13	and only then would a decision be made by the NRC
14	that the plant could restart.
15	The focus of this panel is safety. There
16	have been a number of questions that have come up
17	over the past several months about schedule pressures
18	and things of that nature. Schedule is not our
19	business. The licensee is going to make whatever
20	progress they make. We're going to monitor that
21	progress with appropriate inspection resources and
22	oversight, and as they make progress, we're measuring
23	that progress through our independent inspection. We
24	will evaluate whether or not sufficient progress has
25	been made and whether the plant can be operated

1	safely. We're not at that point yet. As Bill
2	pointed out, there's a lot of work yet to be done, so
3	I wanted to give you a little bit of that foundation
4	of what we are and why we're here. There are some
5	other groups working on this project and Amy brought
6	one to light a few minutes ago, and that is our
7	Office of Investigations, completely independent,
8	they're looking at things that happened before March
9	and they're looking at why they happened, so that
10	investigation is ongoing. Our Inspector General is
11	looking at us. They report to Congress because we
12	did not perform up to standard either. Our
13	inspection program didn't discover this issue that
14	was progressing over a number of years, so we've got
15	a number of different groups looking at us. Our
16	Inspector General is looking at our performance. In
17	addition to that, Bill mentioned we have a Lessons
18	Learned Task Force that was a group of NRC experts
19	that were brought together that have nothing to do
20	with Davis-Besse, and they're looking at they were
21	chartered to look at a number of the programs and
22	behaviors of the Commission, the staff and the
23	Nuclear Regulatory Commission and why we missed this
24	issue, and they are making recommendations for
25	improvement in our programs, so there's a lot of

1	different activities going on, but this panel itself
2	is responsible from April onward to look at what's
3	necessary to have confidence that this plant can
4	operate safely and measuring whether or not the
5	company is approaching those standards, and if at
6	some time in the future they get there, then we'll be
7	able to have confidence that the plant can move
8	forward because we will have done an extensive amount
9	of inspection above and beyond our routine type of
10	oversight.
11	So, Christine, why don't I give it back to
12	you, and you can moderate questions.
13	MS. LIPA: Sure. Let me just
14	cover a couple administrative items, first of all.
15	It occurs to me that since there are so many people,
16	you might not have all gotten handouts, but I wanted
17	to let you know that our web site, which is www.nrc.com
18	www.nrc.gov, has a lot of documents. Go to that web
19	site and there is a Davis-Besse link. This is our
20	December newsletter, and on the back page it has
21	contact information for our Public Affairs Officer, I
22	wanted to point out Viktoria Mitlyng in the back and
23	her information, her phone number and her E-mail are
24	all on here if you want to contact her with any
25	questions.

1	Also, we have question cards for anybody who
2	does not want to come up to the podium and ask
3	questions tonight, we have question cards, or you can
4	contact us by E-mail after this meeting and we'll try
5	to get back to you and answer your questions.
6	The other thing I wanted to pointed out is
7	this meeting is being transcribed. We have Marlene
8	here transcribing the meeting, and what we have been
9	doing for our public meetings for at least six months
10	or so now is, we have a transcript that is available
11	about four weeks after the meeting that we put on our
12	web page. And, again, because it's being
13	transcribed when you come up to the podium to ask a
14	question, speak your name clearly for the record and
15	then ask your question. Try to keep it to five
16	minutes, please. That's important tonight with so
17	many people here, and that's all I have for that. I
18	also wanted to point out a few other NRC folks.
19	We've got Roland Lickus in the back.
20	MR. LICKUS: (Indicating).
21	MS. LIPA: And he's the State
22	and local Government Affairs from the Region III
23	office. We also have Nancy Keller. She's our
24	resident office assistant.
25	MS. KELLER: (Indicating).

1	MS. LIPA: We have Jay Collins,
2	he's running the slides for us today. He's an
3	engineer on rotation from headquarters.
4	MR. COLLINS: (Indicating).
5	MS. LIPA: And there are some
6	other NRC inspectors in the room as well, and then
7	there's Doug Simpkins. Doug Simpkins is in the
8	back. Doug is the Resident Inspector, and he and
9	Scott are the two NRC inspectors that are at the
10	plant day-to-day, and the next so next we'll start
11	with public questions and comments, and I wanted to
12	started with the young group of folks here since you
13	had your hand up earlier, if you guys wanted to go
14	first that would be all right.
15	MS. SHAW: I'm a little bit
16	shorter. Hi. My name is Lori Shaw, and I'm here
17	with a group of students. I wanted to make a
18	comment and ask two questions.
19	My first comment is and I'm sure this was
20	not intentional, but I saw a lot of students'
21	eyebrows go up, and the comment was, maybe you don't
22	have the depth of knowledge, and my comment when we
23	were at another meeting a comment was made by an NRC
24	person, well, maybe you couldn't read that off the
25	web site, and I just wanted to make a comment that

1	that can be intimidating to people in the audience
2	who want to get up and voice their opinions.
3	The two questions that I have is, one, for
4	the NRC, these students who have been doing some
5	research, they're 10 to 12 year old 13 year olds,
6	sorry, Sam, students and before this was announced
7	they had dug up that for 10 years there had been
8	warnings to the NRC and the industry that these
9	nozzles would leak and France had done moisture
10	detective devices, and so the question is why didn't
11	the NRC, when they knew it was a problem, take
12	prevention ahead of time, and why would a group of
13	students come up with a recommendation like this
14	before industry leaders?
15	MS. LIPA: Okay. Well, first of
16	all, thanks for your comment at the beginning. The
17	issue of the nozzle cracking has actually been known
18	for several years in the United States as well, and
19	the NRC has issued generic correspondence which is
20	generic letters and bulletins to the utilities to be
21	on the lookout for this. I don't think it was until
22	recently that it was became a big problem, like it
23	has become. Previously, it was just a known
24	phenomenon that could occur so the utilities were
25	expected to do inspections and be on the lookout for

1	leakage.	
2	MS. SHAW:	The second question
3	was, I was concerned that	at maybe I had heard that
4	wrong, was that after you	u did a start-up trial and
5	let the plant run that they	would do visual
6	inspections, and it seem	ed like that was the thing
7	that got Davis-Besse in t	he problem in the first
8	place because only throu	ugh ultrasonic technology and
9	the moisture tapes can w	ve really tell if there is a
10	problem, and so how wo	ould that provide accurate
11	information if after start-	up if they are only going
12	to do visual inspections	?
13	MR. DEAN:	Good questions, Lori.
14	Let me embellish first th	e answer that Christine gave
15	you relative to, you know	w, what did the NRC know
16	about cracking, it happe	ned in France, how come we
17	didn't do anything about	it, and, in fact, we did do
18	a number of things abou	ut it, but I think if you look
19	at the Lessons Learned	Task Force report that the
20	independent group that	Jack talked about and the NR
21	developed, one of the th	nings that they identified was
22	that while the issue was	known in the United States,
23	okay, the approach the	United States took was one of
24	increased leakage moni	toring, and the fact that what
25	was observed in France	and what was observed here

1	early in the United States were cracks that were of
2	an axle axial orientation which were not considered other
3	than being potential for small leaks of reactor
4	coolant which could be cleaned up and repaired if
5	they occurred, were not a safety issue, and it wasn't
6	until an inspection was done at Oconee, as a result
7	of NRC activities for plants to be conscious and look
8	at this, well, they detected cracks that were of a
9	circumferential nature. In other words, they were
10	now the around the nozzles, where if those things
11	were to progress to a through wall position, could
12	then if there were some sort of transient cause
13	ejection, so then now you have a significant safety
14	issue, and that was in the late '90s, 2000 where that
15	issue was discovered at Oconee, and so from that
16	point on, the NRC's posture relative to this cracking
17	issue changed to one where we started issuing a as
18	Jack said, bulletins, which are very significant
19	correspondence from the NRC that provides specific
20	guidance to the industry on what to do and how to
21	treat the issue, so we did not approach it the way
22	the French did. The French said, we'll just replace
23	reactor vessel heads. The agency and the industry
24	took an approach that this is not a significant
25	safety issue because of the axial orientation of the

1	cracks. It wasn't until i	t became circumferential
2	that that elevated the N	NRC's safety posture.
3	MS. SHAW:	Thank you.
4	MR. GROBE:	Bill, why don't you
5	explain why a circumfe	erential crack is of greater
6	concern?	
7	MR. DEAN:	Jay, can you throw up
8	that	
9	MR. COLLINS:	Yeah, wait a second.
10	MR. DEAN:	Okay. This is a
11	diagram of a typical co	ontrol rod drive mechanism
12	nozzle, and what I was	s referring to is that the
13	cracks that have been	observed in France and the ones
14	we observed in the Ur	nited States were basically
15	cracks of an axial orie	ntations, basically
16	length-wise along that	nozzle, and all that would
17	really accomplish or co	reate if this crack became
18	through wall is that yo	u could get leakage and you
19	would get some seepa	age of boric acid and reactor
20	coolant up here, and a	as Jack noted earlier once that
21	reactor coolant hits the	e top of the head, the
22	moisture evaporates a	and you leave the boric acid
23	crystals, and the boric	acid crystals is basically a
24	white powdery substar	nce really are relatively benign
25	as long as they're not	wet. Okay? The issue that

1	occurred here at Davis-Besse was that because of the
2	boric acid that was not removed I think Tim noted
3	earlier, okay, that was not removed, they had a crack
4	develop, but you had a cap as you will of boric acid
5	that prevented this seepage from the axial crack in
6	the nozzles from getting up here and evaporating, and
7	basically what you have was basically a formation of
8	a boric acid, kind of a liquid pool of boric acid
9	that is very corrosive, and that's what you saw the
10	results of in that cavity, and that's a direct result
11	of the failure of the licensee to effectively clean
12	the head and be able to inspect and evaluate this
13	area. Okay?
14	Now, to answer the question about
15	circumferential, if you were to have a crack a
16	through wall crack in this orientation, you could
17	actually have through a pressure transient
18	separation, which would cause ejection, and now you
19	would have a loss of coolant accident. You would
20	have coolant now coming out through this hole in the
21	reactor vessel and so that's when we elevated our
22	safety when we started seeing cracks in a
23	circumferential orientation. Now, we have this
24	concern about possible separation and ejection of the
25	nozzle.

1	MS. SHAW:	Thank you. I'm not
2	sure after some of the c	comments the students will
3	feel comfortable getting	up and asking stuff, but
4	maybe after the meeting	g they can share some of their
5	questions and concerns	with you.
6	MR. GROBE:	I hope so, and I also
7	appreciate your first con	nments. I wasn't trying to
8	be critical of anybody in	the audience. I was being
9	critical of ourselves. So	ometimes we lose sight
10	because we're so mesh	ned in this and engrossed in
11	everything that's going	on, we lose sight of making
12	sure we communicate e	effectively, and I wanted to make
13	sure we provided suffic	ient background of information
14	so that you could under	rstand what was going on.
15	We just received a	a comment, and I'm glad
16	somebody is using the	question forms. Let me read
17	it, and I think I understa	and the question, and I can
18	answer it.	
19	Acknowledging that	at Davis-Besse information
20	sharing related to the h	ead condition in late 2001
21	was not accurate, pleas	se characterize the licensee's
22	recent reporting and sh	aring out of batteries?
23	please characterize t	he licensee's recent
24	reporting and sharing o	of information related to the
25	0350 process.	

1	Has Davis-Besse provided accurate timely
2	information to support this review process? The
3	answer to that, to the best of my knowledge, is yes.
4	We have extensive interaction with the licensee
5	almost on a daily basis both from headquarters and
6	the regional office, and I have no experience where
7	information complete and accurate information wasn't
8	provided on a timely basis, and there has been a lot
9	of information sharing, so I appreciate that
10	question.
11	MS. LIPA: Okay. Are there any
12	other local members of the public that would like to
13	come up and ask a question?
14	MS. MUSER: Hi, my name is Mary Jo
15	Muser. I have a brief comment and then a couple
16	questions.
17	The fact that FirstEnergy omitted pictures of
18	the deterioration of the reactor head to the NRC and
19	that the NRC admits that the regulatory process
20	relies heavily on trust between the NRC and the
21	nuclear industry, is not sure that the rust recently
22	found on the bottom of the reactor is not going to
23	entail more cover ups on the safety of this plant in
24	regard to the industry. The NRC's failure to order
25	an immediate shut down when leaks were suspected back

1	in November of 2001, given the fact that air filters
2	had to be routinely changed every other day due to
3	clogging from airborne rust particles means you
4	failed to comply with your own regulations.
5	Why did you reject an independent panel to
6	review the safety of this plant? Let me finish.
7	Also, seeing how nuclear experts agree that if there
8	had been a core breach, people as far as way as a 500
9	mile radius would get sick of cancers. How can we
10	feel safe with Davis-Besse's 10 mile radial
11	evacuation plan.
12	Also, have you ever refused a plant from
13	reopening, and who is going to be held accountable
14	for all this?
15	MS. LIPA: Okay, well, I'm not
16	sure I can keep track of all the questions, so let me
17	talk a little bit about the 2.206 petition that you
18	referred to, and that was a request by a group of
19	people to have an independent panel, and the NRC
20	considered that request. We also, as Jack described
21	earlier, when the plant was placed under the 0350
22	process which is a completely different process of
23	inspection than the reactor oversight process, that
24	was one of the bases for why we did not believe an
25	independent panel was warranted because there is

1	additional oversight as a result of the Oversight
2	Panel, that's what most of these people are part of
3	the panel, so that's the answer to that question.
4	I'm trying to think what was one of the other
5	questions?
6	MS. MUSER: Basically by failing,
7	you failed to comply with your own regulations, so I
8	don't understand why. You really didn't answer why
9	an independent panel I think the public would have
10	felt more safely about that. Also about the
11	evacuation plan. A 10 mile radius I don't feel is
12	very effective. I think everybody else would agree
13	with that.
14	MS. LIPA: Well, I don't have the
15	details on that, but I know that that was all built
16	into the licensing basis for the plant, and that was
17	all reviewed before the plant was licensed to operate
18	here, the basis for the 10 mile. I can't get into a
19	lot more specifics on that.
20	Anybody else on the panel that has more on
21	that?
22	MR. GROBE: Sure.
23	MS. MUSER: I mean, if you lived
24	11 miles away and there was a breach of the core,
25	would you evacuate?

1	MR. GROBE: Let me make sure we're
2	operating from a sound technical basis here. There'
3	a number of barriers in a nuclear reactor from the
4	release of radioactive materials. The first barrier
5	is the field fuel pellets themselves. The vast majorit
6	of the radioactive materials created in a nuclear
7	reactor is contained within the ceramic pellet of
8	that fuel, and it never leaves that pellet. Each
9	pellet is about the size of the tip of your little
10	finger.
11	The second barrier is the fuel pin itself,
12	and there is a lot of these fuel pins in the reactor,
13	and each one of those is designed to be leak tight.
14	The third barrier is the reactor coolant
15	system, and this is the barrier that was degraded at
16	Davis-Besse. It wasn't breached. It was degraded
17	it was significantly degraded.
18	And then the fourth barrier is the
19	containment structure, and Scott described earlier
20	the containment structure and how it's built at
21	Davis-Besse. Each of these barriers is capable of
22	preventing the release of radioactive materials.
23	Three of those four barriers were still completely
24	intact. The fourth barrier was degraded, so in the
25	event of loss of a coolant accident, that's what we

1	call if the reactor coolant system had been breached
2	we call that a loss of coolant accident, if in the
3	event of a loss of coolant accident there are a
4	number of safety systems that are designed to
5	mitigate that type of accident, so you have these
6	other barriers, but you also have systems to mitigate
7	the consequences of a lot loss of coolant accident.
8	Those systems there is two of everything. We call
9	that redundancy, and in many cases the specific
10	pieces of equipment where there is redundancy or
11	different, we call that diversity, so that you might
12	have a turbine driven pump and a motor driven pump.
13	We try to design things that way, so there's an
14	extraordinarily low risk of what we call common cause
15	failure which would have both systems fail
16	simultaneously when you need them.
17	The only reactor accident that I'm aware of
18	that has resulted in significant contamination, a
19	great distance from the plant is the Chernobyl
20	accident. The reactor designs and in the Soviet Union at
21	that time did not have a containment structure. The
22	Chernobyl plant was a very, very significantly
23	different design. It's a graphite moderated gas
24	cooled reactor, so it's a very, very different
25	reactor than what we have in the United States.

1	There has been an accident in the United States where
2	there was a loss of coolant situation. That was the
3	Three-Mile Island. At Three-Mile Island, there was
4	no release of radioactive materials of any
5	consequence, and that's because these other barriers
6	provided the defense in-depth that is designed into
7	the safety of nuclear plants in the United States.
8	Now, I don't want anyone to get the
9	impression that what I'm doing is what I'm saying
10	is diminishing the importance of what happened at
11	Davis-Besse. The violations that occurred and the
12	degradation of reactor coolant system is very
13	significant, but there are a number of barriers that
14	are there to prevent the release of radioactive
15	materials and to mitigate the consequences of an
16	accident. The basis for the 10 mile emergency
17	planning zone is founded in good health physics, and
18	health physics is a study of radiation effects on
19	people, and it was concluded that that was an
20	appropriate distance to mitigate the consequences of
21	an accident should it occur.
22	MS. MUSER: Have you ever refused
23	a plant that was deemed unsafe from reopening?
24	MR. GROBE: There have been a
25	number of plants that have not reopened once they

1	have gotten into this condition. Those decisions
2	were made based on finances by the company that
3	operated the plant. An example in our region, in
4	Region III, the midwest would be the Zion plant
5	outside of Chicago. It got into a situation like
6	this, had a restart oversight panel, an 0350 Panel,
7	and the company eventually determined that it was not
8	in their best interest to restart the plant. What I
9	said earlier and I'll reiterate here because it's
10	very appropriate, the focus of this panel is safety,
11	and the plant will not restart unless it can be
12	restarted safely. That could take a short period of
13	time, matter of months, it could take a matter of
14	years depending on how the utility approaches the
15	effort and what kind of progress they make. We're
16	here for the duration, and the plant won't restart
17	unless we're comfortable that it can restart safely.
18	If prior to that point in time the company decides
19	not to restart, that's their business decision and is
20	of no concern to this body.
21	MS. MUSER: Thank you.
22	MR. THOMAS: We have a question
23	that was passed up that I'll answer real quick.
24	The question is, how could the NRC let
25	Davis-Besse operate with the six inch hole in the

1	reactor? I guess my quick answer is we wouldn't let
2	it operate with a six inch hole even the degradation
3	that was found, we didn't know that this degradation
4	existed at the time the extension was granted to let
5	it operate until mid February, so the short answer to
6	your question is, we would not let it operate in this
7	condition, and it would be required to be shut down.
8	Hopefully that answered your question.
9	MS. LIPA: Come on up.
10	MR. BLATT: Good evening. I'm
11	John Blatt, a resident of Port Clinton, Ottawa
12	County. Davis-Besse is just down the beach from my
13	home on Westshore Boulevard in Port Clinton. I'm
14	not a Clevelander or a Columbus resident. I'm here
15	as a local. I'm former Mayor of the Village of
16	Put-in-Bay, about 10 miles downwind from here. I
17	was a nuclear trained operator in the Navy in the
18	'60s and remain current in the industry since then.
19	I believe nuclear energy is absolutely essential to
20	our need to have abundant, low cost electricity in
21	the area for economic use and growth. Suggestions
22	from some to convert this plant to fossil fuel or to
23	close it down are ill-conceived. Coal and oil
24	create pollution which we cannot afford in this
25	tourist area. The trucks or trains to bring the

1	fuel would further congest the region. Nuclear
2	power is state of the art and is the least expensive
3	way to provide the services to us.
4	I understand that the operator and the
5	Nuclear Regulatory Commission made some mistakes and
6	the newspapers are correct and feel confident that
7	the present safeguards would make this a very safe
8	electrical generating facility. I worked with the
9	Nuclear Regulatory Commission in the past and have
10	nothing but confidence and respect for their
11	procedures. Do not let us become another California
12	where well intentioned misguided individuals
13	permitted a state not to prepare for its electrical
14	needs. Thank you.
15	(Applause).
16	MS. LIPA: Thank you for your
17	comments, John.
18	MR. SCHRAUDER: Good evening. My name
19	is Bob Schrauder. I'm the Director of the Support
20	Services Department at Davis-Besse, and I wanted to
21	answer a question that the woman prior had, and,
22	first of all, I cannot, will not take responsibility
23	for decisions that were made by past management. I
24	want everybody to understand that when we talk about
25	the management at Davis-Besse the management is

1	different, so when you talk about the management at
2	the plant now, you're talking about me, and so I take
3	it personally, as you would, so I won't respond to
4	what previous management did, what information they
5	had, why they made the decisions that they will, but
6	I do have an answer as to how do we know that the
7	what we're looking at at the bottom vessel will be
8	dealt with openly and honestly and that we will relay
9	accurate information to the very best of our ability
10	to the NRC, and the answer to that question is
11	because I'll make sure we do, and I will put my
12	integrity up against anybody's in the room or in the
13	country. I believe very strongly nuclear power and
14	I believe very strongly in Davis-Besse, and the
15	answer to your question is, you have my word, and
16	that is all I can give you, is my word that I will
17	make sure that to the very best of our ability all of
18	the knowledge that we have relative to the bottom of
19	the reactor vessel will be shared with the public and
20	with the NRC and will be dealt with appropriately.
21	MS. LIPA: Thank you, Bob.
22	(Applause).
23	MR. WHITCOMB: Good evening, Ms.
24	Lipa, gentlemen. My name is Howard Whitcomb. I'm
25	a resident of Ottawa County, I'm a former employee of

1	Davis-Besse, and I was there when Mr. Schrauder was
2	there. I'm also a former NRC inspector.
3	My prepared comments tonight support what
4	Lori said earlier. It's clear to me that the people
5	in Northwest Ohio are a lot smarter than the people
6	in Lisle, Illinois want to give them credit for.
7	Over the last eight months, the NRC has made claims
8	regarding this restart checklist and its intent to
9	assure the public that FirstEnergy corrects the
10	glaring mismanagement problems at Davis-Besse.
11	Noticeably absent tonight from your presentation is
12	any update as to where you are with that restart
13	checklist. Over the last eight months, the public
14	has had to endure repeated attempts by both the NRC
15	and FirstEnergy to mislead and confuse the public
16	regarding important issues at Davis-Besse Nuclear
17	Plant. In other words, the comments raised tonight
18	about the information or the lack of apparent
19	information. A lot of the public gets their
20	information from what's provided to them by the NRC,
21	and if they're not up to speed it's because somebody
22	has carefully and craftily put information out that
23	they only want the public to know about. I have
24	personally raised some issues over the last several
25	months, and based on recent articles provided by the

1	local news media, it is clear that the NRC continues
2	to fail in its efforts to regain the public's trust.
3	In a recent article on December 2nd, the
4	Sandusky Register reported that a particular
5	photograph, and I believe the photograph to be the
6	one that Ms. Ryder raised questions about earlier
7	showing the image of a rust reactor head was not
8	provided by FirstEnergy management pursuant to a
9	request by the NRC in October of 2001. A spokesman
10	for FirstEnergy is quoted as saying, quote, it was
11	there for the asking, unquote. Four days later in a
12	briefing to the members of the Advisory Committee on
13	Reactor Safeguards, you, Mr. Grobe, claimed that the
14	commission has seen definite improvement in the
15	safety culture at Davis-Besse since March 2002. Mr.
16	Grobe, upon what basis do you make such a ridiculous
17	statement?
18	MR. GROBE: Appreciate your
19	question, Howard. Let me respond, first, to a
20	couple of your premises. We are committed to
21	providing full information, full access to the
22	public, to all of the information we know, all of the
23	findings we have. We put ourselves here in front of
24	the public on a monthly basis, and, quite frankly,
25	every time we come to the site, we put ourselves in