1	U.S. NUCLEAR REGULATORY COMMISSION
•	FIRST ENERGY NUCLEAR OPERATING COMPANY
2	BOARD MEETING
3	Meeting held on Wednesday, June 12, 2002, at
	3:00 p.m. at the Oak Harbor High School, Oak Harbor, Ohio,
4	taken by me Marie B. Fresch, Registered Merit Reporter, and
	Notary Public in and for the State of Ohio.
5	
6	PANEL MEMBERS PRESENT:
7	U. S. NUCLEAR REGULATORY COMMISSION
8	Mr. John Grobe, Chairman, MC 0350 Panel
	William Dean, Vice Chairman, MC 0350 Panel
9	John Jacobson, Branch Chief,
	Mechanical Engineering Branch, DRS
10	Anthony Mendiola,
	Section Chief PDIII-2, NRR
11	Douglas Pickett, Project Manager, NRR
	Christopher (Scott) Thomas,
12	Senior Resident Inspector - Davis Besse
	Laura Collins, Project Engineer, Region 3
13	Mel Holmberg, Metalurgist, Region 3
14	FIRST ENERGY NUCLEAR OPERATING COMPANY
15	Lew Myers, FENOC Chief Operating Officer
	Bob Schrauder
16	Randy Fast
	Jim Powers
17	Dave Eshelman, Director Support Services
10	Howard Bergendahl, Vice President-Nuclear
18	John Messina
19	
20	
21	
22	
23	
24	
25	

1	MR. GROBE: Good afternoon.
2	My name is Jack Grobe, I'm the Director of the Division
3	Reactor Safety for the Nuclear Regulatory Commission Office
4	in Region 3. That's our office near Chicago, Illinois.
5	Region 3 is responsible for the oversight of the
6	facilities, nuclear power facilities in the midwest,
7	including the Davis-Besse facility. I also serve as the
8	chairman of the Davis-Besse Restart Oversight Panel.
9	Welcome to the second meeting of the NRC Restart
10	Oversight Panel, with members of First Energy and
11	Davis-Besse.
12	The purpose of the meeting today is for First Energy
13	to update the panel on activities that have occurred and
14	progress that has been made at Davis-Besse since the last
15	public Restart Oversight Panel meeting in May.
16	Before we proceed further, I would like to introduce
17	the NRC representatives that are here today. Here at the
18	table on my far right, and your far left is Laura Collins.
19	Laura is Project Engineer responsible for Davis-Besse in
20	Region 3 office.
21	On my immediate right is John Jacobson. John is the
22	Chief of my Mechanical Engineering Branch in Region 3.
23	On my immediate left is Bill Dean. Bill is the
24	Deputy Director of the Division of Inspection Program
25	Management in our headquarters offices near Washington,

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

D. C. Bill is also the Vice Chairman of the Oversight 1 2 Panel. 3 Next to Bill is Tony Mendiola. Tony supervises the coordination of licensing actions and activities the NRC 4 undertakes in our headquarters offices. 5 6 Next to Tony is Doug Pickett. Doug is the Licensing Project Manager, who has specific responsibility for the 7 8 Davis-Besse facility. 9 And, on my very far left is Scott Thomas. Scott is a Senior Resident Inspector who works at the Davis-Besse 10 11 facility for the Nuclear Regulatory Commission every day. 12 Jim Dyer, the Regional Administer in Region 3 and Jim Caldwell, Regional Administrator, wanted also to be 13 14 here today, but due to other activities, conflicting 15 activities, they are unable to be here. 16 I would like to right now recognize any public 17 officials or representatives of public officials that are 18 here today. If you could stand up and introduce yourself, 19 I would appreciate it. 20 Do we have any public officials here today? Okay. 21 MR. WITT: Yes, I'm Jere 22 Witt, County Administrator for Ottawa County. 23 THE COURT: Thank you, Jere. 24 Any others?

25 Okay. Thank you.

1 Finally, I would like to thank several people that 2 have made this meeting possible. First is Nancy Keller. 3 Nancy is our administrative support at the Davis-Besse facility, works in the Resident Inspectors Office. 4 5 Also Jan Strasma. Jan, raise your hand back there. 6 Jan is our Public Affairs Officer in Region 3. And Rolland Lickus, our Public Affairs Officer is 7 8 also here. 9 Mr. Stucker. He's up there running the sound system. Mr. Stucker and the Oak Harbor High School have 10 11 been very generous in allowing us access to this fine 12 facility to conduct these meetings, and I appreciate that. Our agenda today is fairly straightforward. I did 13 14 not make copies of it, because it's so simple. First, 15 we're going to conduct a business meeting between the NRC and First Energy to discuss the activities that are going 16 17 on at the Davis-Besse site. First Energy has provided 18 copies of their presentation out in the front of the 19 auditorium. 20 When that dialogue is completed, I will invite members of the public to step forward with any questions 21 22 that the NRC staff can address or provide any insights that 23 they wish us to consider. First Energy is invited to 24 respond to any questions that they desire to respond to. 25 We're keenly interested in your thoughts. That's

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 one of the reasons we conduct these meetings in public and

2 provide an opportunity for public input.

3 If you do not feel compelled to step to the

4 microphone, but have something you want to share with us,

5 the NRC staff will be available following the meeting.

6 And, we also have what we call feedback forms. They're

7 forms that are preaddressed, no postage necessary, that you

8 can write whatever comments you might want to provide to us

9 on those forms, and drop them in the mailbox and we'll

10 receive them.

11 So, there is a number of ways that as a member of

12 the public you have an opportunity to give us input on

13 these proceedings or any other aspect of nuclear power

14 safety.

15 To that end, I've changed a little bit the structure

16 of the way we're conducting these meetings. It's difficult

17 to conduct a business meeting in the evening. If I

18 schedule a 7:00 meeting, these guys would have already

19 worked for 12 hours, as would have my staff, and it's tough

20 to have an effective meeting that time in the evening. And

21 so, I moved the business portion of this meeting into the

22 regular business day. It's still a public meeting and

23 we'll accept public input.

24 But I also decided to transcribe this meeting. And

that transcription will be available on our web site and it

1 will be publicly available in our records management system

2 approximately three weeks after the meeting.

3 In addition, because there has been a significant

4 amount of interest in the activities at Davis-Besse, we'll

5 be conducting a meeting this evening from 7 to 9 p.m. for

6 any members of the public that want to come, that were

7 unable to make it during the business day.

8 So, we'll continue transcribing the meetings, and

9 having evening meetings as long as public interest

10 indicates that that's appropriate.

11 At this point, Bill, unless you have any additional

12 opening comments? Okay, great.

13 At this point, Lew, I would like to turn the meeting

14 over to First Energy.

15 MR. MYERS: Thank you, Jack.

16 It's indeed our pleasure to be here today and discuss with

17 you the Return to Service Plan that we, we've completed

18 since our last meeting.

19 My name is Lew Myers. I'm the Chief Operating

20 Officer of the First Energy New Operating Company.

21 My first line is Desired Outcomes. Today we would

22 like to demonstrate a comprehensive recovery plan to the

23 public. We would like to demonstrate that management at

24 First Energy Nuclear Operating Company will take strong

25 actions needed to resolve the technical issues at our

1 Davis-Besse plant; to operate the plant both safely and

2 reliably; we will improve the employee confidence before we

3 return the plant to service; and regain regulatory

4 confidence; and, finally, most importantly, we want to

5 receive your feedback, feedback from the public on our

6 actions.

7 Page four shows the basic building blocks of our

8 Return to Service Plan. We believe the plan is

9 comprehensive. Consists of seven building blocks. Each

10 building block has an arm that's here with me today. I'll

11 introduce them in a moment.

12 From an independent oversight standpoint, the first

13 building block is a Restart Overview Panel. We've been

14 very careful to put a panel together that has both

15 regulatory expertise, industry expertise, community

16 expertise, oversight expertise, and technical expertise in

17 the history of this plant.

18 We think we've put together a top notch Oversight

19 Review Panel that monitors each of our plans as we go

20 through the various phases of planning, discovery,

21 implementation, and then validation. And, you'll hear us

22 use those words.

23 The plan consists of the following building blocks.

24 First, Reactor Head Resolution Plan. We made a lot of

25 progress there since the last meeting and Bob Schrauder

1 today will discuss that.

2 The next plan is the Program Technical Compliance 3 Plan. That's looking at our engineering programs and also our nonengineering programs in the plant to ensure that 4 we're complying with the regulatory requirements and the 5 6 industry experience. So, we're going through those programs one by one. 7 8 Finally, the Containment Extent of Condition Plan. 9 The containment building; what is the material condition of the containment building and what was the effect of the 10 11 boron that leaked out into the building on the equipment. 12 So, we're going through each piece of equipment and Randy Fast will discuss that today. Randy is to my right 13 14 here. 15 The Restart Action Plan. The responsibility of the site, VP Howard Bergendahl to my left, and he'll discuss 16 17 that. 18 Finally, the System Health Assurance Plan, if you 19 will. Jim Powers to my, second to my right over here, will 20 discuss that plan. That's to go through each one of the 21 systems. And, he's had some help from our Plant Manager, 22 Randy Fast, to assist in the matter to make sure those 23 systems are in good material condition prior to bringing

the plant back online.

25 Finally, the Restart and Post-Restart Plan. As we

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

bring our plant back online, we want to do that in a 1 2 flawless manner. We're going to be installing several 3 modifications during this extended outage; a new reactor head and doing a lot of maintenance. 4 5 So, we've got premaintenance testing; we've got the 6 head testing; and we've got all the modification testing that we have to integrate together and do in a controlled 7 manner to bring the plant back online. 8 9 And finally, we have to look at ourselves internally. The NRC had a meeting today discussing their 10 11 lessons learned. Well, what are the lessons learned that 12 we have from a management standpoint? What drove us to the situation where we, we did not get, we did not identify 13 14 this leakage earlier? 15 So we have an, we have an integrated team put together that's going through that of industry experts, our 16 17 own people, and also management experts to give us feedback 18 on this recall. Dave Eshelman is in charge of that. 19 With that, I'll turn over the first, the first area 20 to Bob Schrauder. 21 MR. GROBE: Excuse me for just 22 a moment. I realized late, and I apologize for this, that 23 a member of my team was not up here. We just brought him 24 up. I want to introduce him. Sorry about that Mel.

25 This is Mel Holmberg. Mel is a metalurgist on our

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

staff in Region 3. Mel was on the Augmented Inspection 1 2 Team and he's also conducting inspections of the facility 3 today. And, we'll be talking about some of the activities Mel is reviewing and I wanted him up here to have 4 discussions and provide insight. 5 6 MR. MYERS: I'm glad you did that, because I forgot to introduce Bob Saunders is with 7 us. He's the President of First Energy. And, Gary Leidich 8 9 who I introduced earlier today, but Gary is the new Executive Officer for First Energy Nuclear Operating 10 11 Company. He's returning, and this is his first week back. 12 He came to us from an executive position from the Institute of Nuclear Power Operations. And, we welcome Gary back. 13 14 With that, I would like to turn this over to Bob 15 Schrauder for Reactor Head Resolution Oversight. 16 MR. SCHRAUDER: Thank you, Lew. 17 As Lew said, my name is Bob Schrauder. I have 18 overall responsibilities for replacing your reactor vessel 19 head at Davis-Besse. 20 By way of background, I'm an engineer by trade. I 21 have 25 years experience in the nuclear industry at various 22 positions, including the Director of Engineering and Plant 23 Manager. 24 Currently, I'm the Director of Life Cycle

25 Management. What that means is, I'm in charge of all the

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 large projects for all the FENOC facilities, as well as the

2 long term enhancements to our plants.

3 The last time we got together, our primary option

4 for restoring the plant to safe operating condition was to

5 repair the existing Davis-Besse head. During the course of

6 that meeting, there was exhibited a fair amount of anxiety,

7 I would say, between both the NRC on that option and

8 members of the public. A lot of questions were raised as

9 to why wouldn't we just replace the reactor vessel head

10 versus repair the existing one.

11 So, while my colleagues were busy designing a safe

12 and effective repair, I was tasked with looking for a

13 replacement head for the Davis-Besse plant.

14 Next slide, shows an overhead of some of the reactor

15 vessel heads that I'm talking about today. Since the last

16 meeting, we have located essentially a like-for-like

17 replacement head from a never completed nuclear power plant

18 in Midland, Michigan. We've decided therefore that our

19 best option for returning the plant to a safe operating

20 condition, and for safe operations going forward, will be

21 for Davis-Besse to replace its existing reactor vessel head

22 with this replacement head.

- 23 Now, this isn't the cheapest option, of course, nor
- 24 is it the shortest option, but we are convinced it is the
- 25 best option and gives the highest degree of confidence to

1 both the regulator, ourselves and the public.

2 Next couple slides, please. Couple of bullets I

3 want to talk about. Before we bought the head, we had to

4 assure ourselves that it was in fact usable at

5 Davis-Besse. We have done that. Physically, it's nearly a

6 perfect fit. I'll discuss a couple of minor differences

7 between that head and our existing head.

8 That head was manufactured by the same company as

9 the Davis-Besse head; Babcock and Wilcox. It is unused.

10 It's designed to the same requirements as Davis-Besse.

11 It's built to the same industry design codes and made out

12 of the same materials.

13 Now, just a couple of the physical differences that

14 I talk about are on the following page. There are, the

15 reactor vessel head must fit on the reactor precisely in

16 order for the control rods to effectively move through the

17 control nozzles and into the core.

18 To make sure that the head fits precisely on the

19 vessel, there are what are known as keyways. Keyways must

20 fit within a very tight tolerance in order to assure that

21 the head is perfectly aligned.

Each of these keyways is specifically fit to the

23 vessel that it's intended to serve. And although they are

24 in very close approximation, you have to make sure that it

25 is in fact in the precise location that is needed on your

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 reactor vessel head.

- 2 So, through some very careful and precise
- 3 measurements, we determined that of the four keyways on the

4 Midland head, several of the surfaces need to be very

5 slightly machined to fit our reactor vessel head.

6 What you see up on the screen there is a picture of

7 those keyways. The one picture shows just a, how it sits.

8 The other picture, here on my right, shows two surfaces

9 that the key fits in.

10 So, there are eight of those surfaces, four keyways,

11 eight surfaces. Four of those surfaces had to have between

12 3 and 5 thousandths of an inch shaved off of them to make

13 sure that they fit the keys on our vessel.

14 The other minor difference was the O-ring. The

15 O-ring is the sealing mechanism of the reactor vessel head

16 flange to the vessel flange itself. There is a set of two

17 sealing rings that go around it. The ones on the

18 Davis-Besse plant are .5 inches in diameter. The ones on

19 the Midland head are .455 inches.

20 We have looked at that difference. We have

21 confirmed that it effectively seals on our reactor vessel

22 and we will be able to verify that when we -- there is a

23 detection system that will enable us to tell for sure once

24 we put the vessel head on and fill it with water, that they

25 expect it to seal, as we expect it to do.

1 Now, as I said, we didn't want to purchase this 2 reactor vessel head until we made sure it met all of the 3 codes and standards. We put the head through a series of intricate inspections to make sure that its storage in the 4 Midland containment has not in any way affected its 5 6 capabilities. 7 So, we are examining virtually all of the welds on 8 this reactor vessel head. We're examining all of the 9 nozzles in the head, making sure that they are in excellent condition for us to put into our facility. 10 11 Now, we know that all these exams were done on this 12 head in the past and it was accepted for use as a code compliment at a nuclear power plant; however, we want to 13 14 make sure again that the storage of this vessel over the 15 last 17 or 18 years has not in any way affected the welds. We've already started on those. We are through with 16 17 many of them, but those will continue over the next several 18 weeks. 19 Now, in order to install the head at the Davis-Besse 20 plant and to remove it from the Midland plant, the 21 containment building where the reactor vessel is held does 22 have an equipment hatch where you move large pieces of 23 equipment in and out of the containment; however, that 24 containment, or that equipment hatch is not large enough to fit this reactor vessel head. Reactor vessel head itself 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 is about 17 feet in diameter, and it's about 9 feet tall.

2 It won't fit through that opening.

3 So, what we're going to do is put a temporary

4 opening in our containment building, about a 20 foot by 20

5 foot opening. We'll move our old reactor vessel head out

6 and move the new reactor vessel head in. Place it on the

7 reactor vessel. And then we will restore our containment

8 building to its original design capabilities. All of this

9 work we expect to be completed sometime during the fourth

10 quarter of 2002.

11 MR. JACOBSON: This is a good

12 time I think briefly for us to discuss some of your

13 inspection plans on this particular part of the project.

14 For the head replacement activities, we're taking a

15 three-prong approach on the head itself.

16 The first part of it is to go out to Midland site,

17 which we dispatched an inspector today to go out to

18 Midland, and he's going to be reviewing some of the

19 nondestructive examinations and inspections we're doing out

20 there, as well as review some of the documentation of

21 inspections.

22 The other part of it is going to be a review of the

23 documentation that supports the quote compliance of the

head.

25 And lastly, review and inspect both your opening of

the containment, as well as the restoration of the 1 2 containment. 3 These are only a few of the inspections we're going to do, but specifically with respect to the head, those are 4 three phases of the inspection that we've already begun. 5 6 MR. GROBE: Would you describe 7 what sort of testing you plan for the containment, 8 containment liner after you restore that liner, what sort 9 of testing you're planning? 10 MR. SCHRAUDER: Our containment 11 building at Davis-Besse, as you know, Jack, is two separate 12 structures; one is the pressure vessel and the other, what most people see, the concrete around the pressure vessel is 13 14 the shield portion of that. 15 When we restore the containment, the pressure vessel itself is a steel vessel. It will be cut open and then a 16 17 plate will be rewelded back in place. We'll then do an 18 examination of that weld to make sure that the weld is 19 good, has no flaws in it. 20 Then, we'll do a leak test on the opening, which 21 will be a -- right now the plan is to do what's called a 22 vacuum box test on it, where we will have an enclosure 23 around the area that has been repaired and we'll do a test 24 to verify that it is in fact not leaking.

25 Concrete itself will be checked to assure

1 appropriate curing of concrete also.

2	MR. JACOBSON: A point of	
3	clarification; I know you're replacing the head, but it's	
4	my understanding that you're going to reuse the existing	
5	surface structure that mounts to the head?	
6	MR. SCHRAUDER: That is correct.	
7	The upper portion of the surface structure will be reused	
8	from the Davis-Besse existing head.	
9	MR. JACOBSON: Incorporate some	
10	mods?	
11	MR. SCHRAUDER: The inspection	
12	modification for the surface structure, actually the lower	
13	portion of the surface structure, the supporting skirt, and	
14	that modification is being made on the Midland head. We	
15	are going to use that lower portion. And those inspection	
16	modifications will be performed on that head prior to its	
17	shipment to Davis-Besse.	
18	MR. JACOBSON: Thank you.	
19	MR. MYERS: I think it's	
20	important that the public understand that modification is	
21	designed to allow us to inspect the head again in the	
22	future in a very easy manner. Our previous head did not	
23	have that modification, and it made inspection difficult.	
24	MR. GROBE: We've been	
25	evaluating the requirements for testing of the containment	

vessel after you performed this modification or restoration 1 2 activity, I guess. We haven't concluded yet the type of 3 testing, leak rate test you are referring to is a Type C leak rate integrated test. We haven't concluded that that 4 conforms with the requirements. 5 6 We are aware that there is a number of other plants in the midwest that have performed these kinds of 7 8 operations at their facility and replaced large forms in 9 their containment and in each case they did a Type A leak rate integrated test. We're evaluating whether or not 10 11 that's the required test and we'll continue the dialogue on 12 that. 13 We'll certainly do MR. SCHRAUDER: 14 whatever we have to do, Jack, to verify that that repair is 15 good and that containment itself is satisfactory. 16 Bob, you mentioned MR. DEAN: 17 that the keyways may or may not be a technical change. Are 18 there any other challenge that you see relative to bringing 19 in the head? 20 MR. SCHRAUDER: I don't believe 21 that the keyways are necessarily a challenge. We've made 22 the measurements. We know what needs to be done. And they 23 do need to be shaved very slightly, like I said, 3 to 5 24 mills off of that.

25 And, other than completing the nondestructive exams,

there is, the service structure itself has about a 5/81 2 difference in height, and where it sits on the lower 3 skirt. And we have to make sure that all of our tooling systems and cable and everything meets up. 4 5 We're not expecting that to be a problem, but it's 6 the only other difference on that head that we will need to address and make sure that it has no problem. 7 8 MR. GROBE: Could you describe 9 for us the progress on the nondestructive examination at Midland? 10 11 MR. SCHRAUDER: Yes. The large 12 weld. If you look at this picture, you see it looks like one piece, but it's actually two pieces. The domed portion 13 14 and then the flanged portion. There is one large weld that 15 welds that dome to the flange. 16 We have completed a radiograph on that weld to 17 verify that it is good. And it is good. We know that 18 that's a good weld. 19 The other exams we're going to do are radiograph of 20 the flange to nozzle. You see the nozzles coming out of 21 the head there? There is a flange that sits on top of that 22 nozzle. That's your control rod drive mechanism comes down 23 on. 24 Each of those welds are in the process of being

25 radiographed. We'll do a big particle exam of the large

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

dome to flange weld. We'll do a visual inspection of the 1 2 entire head surface. We'll UT that flange to dome weld 3 again, making sure that there are no flaws in the weld. We'll PT the nozzle to flange weld. That's a dye penetrant 4 test; again, for surface crack verification. 5 6 We'll also exam what's called the J-groove weld on the nozzle where they will fit into the vessel on the weld 7 8 underneath to make sure that is a good weld. And we're 9 also going to perform an ultrasonic test examination of the nozzles themselves to make sure that there are no cracks in 10 11 those. 12 The way we've broken these examinations up are into three parts. One is to augment our co-data package to make 13 14 sure that we have all the required records of tests on 15 that. The other set of tests is for our in-service inspection preservice examination. And then the third set 16 17 are augmented inspection, we decided we need to do again, 18 to verify that the storage of this reactor vessel head 19 had no deleterious effects on it. 20 MR. MYERS: Jack, you 21 mentioned a lot of other plants out west? 22 MR. GROBE: I'm sorry? 23 MR. MYERS: You mentioned a 24 lot of other plants in the midwest have experienced a large number of containment similar to this. Bob, why don't you 25

talk about the experience level that we're bringing in? 1 2 MR. SCHRAUDER: Well, we've 3 brought in Bechtel Power Corporation to do the containment and restoration for us. They have done nearly all of the 4 containment openings and restorations in the United States, 5 6 and they've done several overseas also. So, they certainly are very experienced in this. 7 8 Also brought in Framatone to help us do the 9 inspections on the head. And they also are very experienced, capable contractors for us. 10 Do you have any 11 MR. GROBE: 12 challenges completing the radiographs that you have ongoing right now? 13 14 MR. SCHRAUDER: Like I said, the 15 big weld, the dome flange weld, we had success with. 16 On the nozzle to the, flange to nozzle welds, there 17 is 69 of those nozzles in the reactor vessel head. We have 18 completed the radiographs on all of those. 52 of them, 52 19 of the 69 came out very good, easy to read. 17 of them 20 have some type of an indication that we're having to relook 21 at, reshoot. 22 We believe right now that it is a cure density 23 issue, but we're going to do another set of radiographs on 24 that. Then we'll do a manual UT to make sure that there are no indications in that weld, and verify that we have a 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 good weld there. But we do have some more work to do on

2	those	inspec	tions.

3	MR. PICKETT: We understand from	
4	previous meetings that the Midland head has some rust on	
5	the head. Could you show us the drawing where the rust is	
6	identified and what is the extent?	
7	MR. SCHRAUDER: Well, if you look	
8	at the flange there, the large flange that comes down,	
9	right where that circle is on there, that's the dome and	
10	the flange. That is carbon steel. And, it does have some	
11	surface rust on it. There is not much pitting or anything.	
12	It is just surface rust on, being in relatively not	
13	completely dry environment.	
14	So, there is nothing unexpected in the fact that	
15	there is some surface rust on the head. We'll clean all	
16	that rust off before its used.	
17	MR. PICKETT: Well, was the rust	
18	limited to just the flange area on the outer perimeter or	
19	throughout the surface?	
20	MR. SCHRAUDER: Any of the exposed	
21	carbon steel has rust on it, surface rust; and we will	
22	thoroughly clean all that, again, before shipment of the	
23	head.	
24	MR. PICKETT: So, you haven't	
25	completed that work?	

1 MR. SCHRAUDER: No, we have not. 2 MR. GROBE: I have one other 3 question that affects our staff at headquarters. Are there 4 any licensing activities that you expect are necessary, any 5 co-relief requests? 6 MR. SCHRAUDER: At this time, we don't expect any new license requests or documents to come 7 8 in. We do have a couple of executive or relief requests in 9 our in-service inspection program that we have been granted in our previous inspection intervals and they will need to 10 apply to this head, as they needed to apply to our existing 11 12 head, but we have not yet identified any new NRC approvals 13 that we need. 14 MR. GROBE: Those existing 15 relief requests don't need to be modified in any way? 16 MR. SCHRAUDER: Well, we're 17 looking at those to see. We will probably resubmit them 18 just to make it clear they are for this head. The specific 19 weld identification number may be different on those 20 requests. So, we will either update that or just submit a new replacement request for them. 21 22 MR. GROBE: Any other 23 questions from the NRC staff on the head? 24 MR. DEAN: The only other

25 question I have is, obviously, there is a certain amount of

records that need to exist in order to provide pedigree, as 1 2 you will, for this. Any difficulties or problems relative 3 to the records that exist on the existing Midland head? 4 MR. SCHRAUDER: We have been able 5 to compile the original co-data package for this head with 6 the exception of the film for the radiographs. We don't have that film. And that was one of the reasons that we, 7 8 although we had a signed off code data form that said they 9 had been done, they had been accepted; they are not a part of the required plant life record. And, we wanted that 10 11 record for our files nonetheless. 12 So, that's one of the reasons I'm supplementing the code data package, as I said, and that's something that 13 14 will be specifically radiographs on those welds. 15 MR. GROBE: Thanks, Bill. You just sparked another question in my mind. 16 17 Bob, thank you also. 18 The code data package that's being put together; 19 what sort of oversight does quality assurance have over 20 that package? What's the process by which you go to accept 21 that package? 22 MR. SCHRAUDER: We have sent two 23 of our teams down to Lynchburg to verify that the package 24 is complete and meets our needs. So, both of our procurement people and our local people have examined those 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 records themselves.

2	MR. GROBE: When do you expect
3	those reviews of the code data package to be complete?
4	MR. SCHRAUDER: Well, they will,
5	they will be complete certainly within the next month;
6	probably within the next couple of weeks. I understand
7	that's something that you folks will want to look at also.
8	MR. GROBE: Right.
9	MR. SCHRAUDER: I'll have to get
10	back to you, Jack. They may be in a condition now that
11	they will be able to look at them.
12	MR. GROBE: Okay.
13	MR. JACOBSON: What's the role of
14	authorized inspector in this whole thing?
15	MR. SCHRAUDER: We are working
16	very close with our authorized nuclear inspector. He has
17	been down to Midland. We have gone through the plant with
18	him. And we intend to verify
19	(inaudible/asked to repeat)
20	MR. SCHRAUDER: I'm sorry. The
21	question was, what role the Authorized Nuclear Inspector
22	has in this activity; and we have had him involved from the
23	very beginning of our, our procurement effort on this
24	head. He has been to Midland to examine the heads and to
25	witness some of the nondestructive exams that we're doing

and we have gone over our plans with him to verify, that we 1 2 have put together to verify that this original end stamp on 3 this reactor vessel head is still valid. So, he has been very involved with us. 4 5 MR. JACOBSON: For those folks 6 that don't understand or know what we're talking about with the Authorized Nuclear Inspector; this is required by the 7 8 codes and it's essentially a third party, independent 9 party, that reviews what's been done in this component to assure code compliance. 10 11 MR. MENDIOLA: I have a few 12 questions. Is the head, how about the head, nuts and bolts, and possibly the lifting devices associated with 13 14 that head? 15 MR. SCHRAUDER: We have, by our contract with consumers on the head, we have the rights to 16 17 everything associated with the head that we want. That is, 18 obviously the nozzles which are in there, are integral to 19 the head. 20 The control rod drive mechanisms have been removed 21 from this reactor vessel head, so we'll reuse our existing 22 drive mechanisms. 23 All the lifting devices we have access to. 24 The service structure, we can take if we choose to.

25 All of the reactor vessel studs; we, in fact, have

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

already shipped. So, we have purchased them as part of 1 2 this. 3 Virtually anything associated with the head that we wanted, was included with the price that we paid for it. 4 5 MR. GROBE: Any other questions? 6 Very good. Thanks, Bob. 7 MR. SCHRAUDER: Thank you. 8 MR. FAST: Good afternoon. My 9 name is Randy Fast. I'm the Plant Manager at Davis-Besse. I'm pleased to present our plant for inspection to the 10 11 containment building. Our team is committed to a 12 comprehensive plan to support safe, reliable restart of the Davis-Besse facility. 13 As you see in the photograph here, the most 14 15 prominent structure is the cooling tower. It's the large 550 foot tall item you see there. However, what we're 16 17 going to talk about today, in the middle of the page is the 18 containment structure. 240 feet tall, about 2.4 million 19 cubic feet. That is the heart of the plant. And there 20 resides the reactor coolant system. 21 What we're doing as part of our containment 22 inspection plan is we have assembled a team of 24 highly 23 qualified engineers. These engineers have gone through a

24 special certification program, according to the American

25 Society of Mechanical Engineers to obtain VT-2

1 qualification.

2	The reason that we did that was to ensure that we	
3	had consistency in our approach in the inspections that	
4	were ongoing.	
5	We have three specific engineering inspection	
6	plans. They include an alloy 600 threaded and bolted plan,	
7	the general systems structure and components plan, and then	
8	under reactor vessel inspection plan.	
9	The purpose of these inspections is to look at boric	
10	acid degradation, and we want to look at the general	
11	material conditions of containment. The scope not only	
12	includes the reactor coolant system, but includes all of	
13	the components within that structure.	
14	Next slide, please.	
14 15	Next slide, please. MR. GROBE: Before you go on,	
15	MR. GROBE: Before you go on,	
15 16	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and	
15 16 17	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and identified one area of containment that was not included in	
15 16 17 18	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and identified one area of containment that was not included in there. I want to understand why that is. It's the inner	
15 16 17 18 19	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and identified one area of containment that was not included in there. I want to understand why that is. It's the inner surface of the containment liner itself down low in the	
 15 16 17 18 19 20 	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and identified one area of containment that was not included in there. I want to understand why that is. It's the inner surface of the containment liner itself down low in the containment where the base mat meets the board, base mat	
 15 16 17 18 19 20 21 	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and identified one area of containment that was not included in there. I want to understand why that is. It's the inner surface of the containment liner itself down low in the containment where the base mat meets the board, base mat meets the container liner. Would you talk a little about	
 15 16 17 18 19 20 21 22 	MR. GROBE: Before you go on, Randy. Mel was out inspecting earlier this week and identified one area of containment that was not included in there. I want to understand why that is. It's the inner surface of the containment liner itself down low in the containment where the base mat meets the board, base mat meets the container liner. Would you talk a little about that?	

1	discussions about that. As a matter of fact, we had gone
2	to D. C. Cook to look at lessons learned; and part of our
3	oversight panel as well identified this. So, we had three
4	other areas where these were active topics of discussion.
5	Now, obviously, Mel came to the site earlier in the
6	week and Tim Chambers, our Project Manager, was doing those
7	walkdowns. He did identify those areas. We had not had a
8	chance to fully inspect those areas, but that was to be
9	included as part of our plan.
10	We appreciate Mel's contribution, but we had in fact
11	already had a conditional report identified for this
12	action.
13	MR. GROBE: That's good to be
14	one step ahead of us.
15	MR. FAST: Yes, sir.
16	MR. GROBE: In following up on
17	that issue, I understand, I sat in your morning meeting
18	this morning and heard a discussion of the identification
19	of some corrosion in that area on the containment liner. I
20	was a little concerned about the depth at which your staff
21	challenged whether or not that corrosion was adequately
22	evaluated to determine what impact it might have had on the
23	containment vessel integrity.
24	I read your condition report and it indicates that
25	the integrity is intact and the equipment is operable. I

the integrity is intact and the equipment is operable. I 25

1	was wondering if you could help me understand, recognizing
2	that there is a very small gap, could be as small as a 16th
3	or less of an inch between that concrete and containment
4	liner, why you believe that the, an inspection of the
5	interface of the concrete and steel is sufficient? Why
6	inspection not further down in that cap is necessary?
7	MR. POWERS: I'll handle that one,
8	Jack.
9	What we're looking at today is the initial
10	operability determination assessment of the condition of
11	the liner. And we've looked at the past evaluations that
12	have been done with the liner and with potential
13	corrosion. There is, have been assessments done in the
14	past, so it's not a new issue for technical evaluation.
15	The operability determinations that first look at it
16	and begins the process of a much more in-depth
17	investigation under corrective action program, so we'll
18	continue to go into progressive detail to evaluate that
19	entire, that vessel system and its structural integrity.
20	So, we'll start down that path.
21	MR. GROBE: I appreciate that.
22	MR. JACOBSON: I did discuss this
23	with members of the design engineering group, and you're
24	right, that you're progressing down the path of environment
25	operability and looking at structural integrity.

1 My concern was more for, as a containment function, 2 making sure that there is no actual perforation. Certainly 3 there is enough mass of steel, where even with the relatively large hole may have structural integrity, per 4 se, but not boundary integrity, which was my area I was 5 6 interested in. So, I didn't get the feeling that your staff was pursuing any options to confirm there wasn't a 7 8 perforation of the liner. 9 MR. POWERS: Ultimately, that will be assessed. That will be a part of our evaluation in 10 determining that containment integrity is sound; both the 11 12 structural supporting function of it as well as the pressure integrity. Part of our corrective action process 13 14 will ensure the total functionality of the containment is 15 sound. 16 It was also MR. MYERS: 17 brought up by one of our CNRB members, which is Oversight 18 Review Board, so one of those members had brought this 19 issue up some time ago and we were looking at that too. 20 You wrote us a letter about it. 21 MR. GROBE: Jim, where would 22 you get --23 MR. MYERS: We have work to do 24 there. 25 MR. GROBE: I'm sorry.

1 Where would you expect the more significant 2 corrosion to be? Would you expect it at the surface where 3 the concrete meets the steel or would you expect it below 4 that surface? 5 MR. POWERS: We're looking at a 6 couple of areas. There is, there is areas there where ground water has come up alongside the containment and 7 8 we're evaluating that on the outside. And when we look at 9 the top of the, the specific area on the inside where the top of the containment to the concrete boundary, there is 10 11 also corrosion there. 12 My initial thought is that oxygen is more prevalent in that area. You may see more significant corrosion 13 14 locally at the top, but we need to go further down below, 15 Jack, and evaluate the complete conditions within the 16 concrete. 17 One of the things we've done on the extended 18 condition, we've talked a little earlier about going to the 19 Cook plant and gleaning their lessons learned in this 20 area. They had some questions on their containment very similar, and they did some extensive studies. 21 22 We are getting contact with the specialists that did 23 that for them to evaluate whether, whether the corrosion at 24 the surface represents the worst of it and what mechanisms we can go by to verify all the liner below, within the 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 concrete.

2	So, our intent is to verify the pressure integrity
3	and structural integrity below the concrete.
4	MR. GROBE: Okay. I'm not a
5	metalurgist, but I guess I would like to invite Mel to
6	comment on where he would expect, given the set of
7	conditions, which was a cool containment shell, and warmer
8	environment with boric acid, carry with moisture in the
9	atmosphere, it would condense on the shell.
10	Mel, do you have some thoughts?
11	MR. HOLMBERG: Yeah, based on
12	experience, I'm familiar with what happened to Cook and
13	some other plants that had corrosion in the liner. It is
14	not necessarily the surface of the corrosion is in fact the
15	worst.
16	Generally, what happens is as the gap is opened up,
17	it forms a collection point for liquid, which then does
18	establish some level that usually the gap closes up. There
19	should be a damper. At least it's been experienced at
20	other sites, such that there is a liquid level established
21	in that gap; and the interface of the air/water interface
22	typically, that has been the range they found more
23	substantial corrosion.
24	Not sophisticated terms to determine that level.
25	Some people have put a dipstick down and established that

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1	level. That's how they know after they heavily concreted,
2	that in fact it corresponds with where they also found in
3	deepest areas of pitting corrosion.
4	So, it's been my experience that no surface would
5	not be to inspect the most corrosion in that gap.
6	MR. GROBE: Your experience in
7	the past, Mel, has been simply moisture, not moisture might
8	have boric acid in it?
9	MR. HOLMBERG: That's generally
10	true, yes.
11	MR. GROBE: I'm concerned with
12	two points. First off, have you been to refuel; understood
13	that was initially scheduled for sometime today? And at
14	least containment integrity required when you do refuel out
15	of the vessel into the other storage locations?
16	MR. POWERS: Yes.
17	MR. GROBE: The operations
18	staff evaluated, has documented NCR based on conversations
19	with the people inspecting the containment; the corrosion
20	that they could see was characterized as surface
21	corrosion. And that certainly would be true with any
22	corrosion and that begins on the surface, but, and
23	basically concluded that the containment was operable.
24	I don't believe that I'm comfortable with the level
25	of technical rigor that went into that determination. Did

these operators involve any of your metalurgists or people 1 2 that were familiar with this type of corrosion as it would 3 occur in making that determination? 4 MR. ESHELMAN: I would like to 5 answer that. You mentioned first about the liner 6 challenge. When this report was brought to the supervisor, to the senior reactor operator, he's required to make an 7 8 operability determination. So, through discussions, 9 initial discussions, it was determined that based on the best evidence available, that yes, we were still operable. 10 11 However, the challenge also occurred that that is when 12 inoperability determination was asked for by the senior 13 reactor operator. 14 What that is doing is asking engineering to provide 15 a rigorous justification for what was originally determined to be operable. So, when we went into the morning meeting, 16 17 we were carrying on our daily report, an operability 18 determination that was due as mentioned about noon today. 19 So, that rigor and challenge was provided by the 20 operations staff. The initial determinations made on best 21 available information. 22 MR. GROBE: The question I 23 asked, David, was whether or not any of your engineers were 24 consulted in making that decision? Engineers would be familiar with this kind of corrosion, and that would have 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

been, I hope, information to be available, which your 1 2 engineering staff would have been available whatever time, 3 day or night, that you might need them. Were they consulted in making this determination? 4 5 MR. POWERS: I believe they 6 were, Jack. That the engineers prepared the operability determination, participating in that function, and helped 7 8 for that technical evaluation. 9 MR. GROBE: We'll probably be talking more about this, because I'm still concerned. As I 10 11 said, the documentation might not be all the consideration 12 that went into this, but the corrosion identified was surface corrosion and vessel's operability. However, due 13 14 to the uncertainty of the extent of the condition in the 15 gap, a detailed review needs to be completed. 16 If the operations staff were uncertain, I'm not sure 17 how they concluded it was operable. This doesn't seem 18 quite right to me. And we'll probably continue dialogueing 19 on this. 20 MR. FAST: Under your 21 concern, we'll continue dialogue. As well, just a point of 22 clarification on the containment integrity. Requirements 23 to refuel, the approach, there were some minor differences 24 in the requirements for the containment in modes 1, 2, 3,

and 4, and the requirements for a mode 5 and 6, so there

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 are some special issues as well here.

2	I believe that was the, some of the bases for our
3	determination, but we can continue this dialogue outside
4	and make sure that your questions are fully answered.
5	MR. GROBE: The way I read
6	this is the person that made this conclusion was based on
7	what I can see. I don't have a problem with it, but I
8	don't know, and I'm not sure that's the right safety
9	standard for people making operability determination.
10	MR. BERGENDAHL: We'll get the
11	right people together and explain whatever decisions they
12	make.
13	MR. GROBE: Okay.
14	MR. JACOBSON: This program
15	focuses exclusively on, within containment, any damage that
16	may have occurred because of the boric acid leakage. What
17	are you doing outside containment for those systems that
18	contain boric?
19	MR. FAST: For this program,
20	our principle focus is inside the building; however, for
21	the in-service inspection and return to service, all of the
22	reactor coolant system, both inside and the supporting
23	systems outside of containment will be evaluated.
24	MR. JACOBSON: Will they be
25	evaluated by what, visual inspections? What do you mean

1 evaluated?

MR. FAST: There will be a
walkdown, look for evidence of leakage in accordance with
our inspection plan by qualified inspectors.
MR. JACOBSON: So, similar to
what you've done before?
MR. FAST: That's correct.
MR. JACOBSON: Thank you.
MR. MYERS: That is in our
system, so you'll be involved.
MR. GROBE: You can structure
this any way you want. It just seemed odd to us, you have
indicated this team of VT-2 qualified inspectors, and it
seemed odd they weren't going to inspect all components
that carried boric water, whether it's inside container or
outside.
Are you using some system engineer to do system
assurance or is this team of VT-2 qualified inspectors
going to be looking at those systems under your system
assurance?
MR. FAST: What I would like
to identify, Jack, is that the individuals that were
specifically part of the inspection plan for containment
consisted of system engineers and design engineers in the
disciplines of civil, electrical, mechanical and nuclear.

1 The system assurance plan focuses around the system 2 help with the system engineer, but those same system 3 engineers that have those systems are part of the qualified 4 population with the VT-2. 5 MR. GROBE: Okay. 6 MR. MYERS: So, I believe the answer is we usually use qualified people. 7 8 MR. GROBE: Okay. All right. 9 MR. HOLMBERG: While we're on the subject, before we go on to VT-2 qualified people, one of 10 11 the objectives in this first portion of my inspection is to 12 look at the quality of the inspections that are going on. And to that end, you will establish that the person doing 13 14 it will be VT-2 qualified. However, out of the 28 people 15 that are, have done the inspections so far, five of those have prior experience. 16 17 So, you've got 23 people that have not been VT-2 18 qualified before. And, of those folks, is there confidence 19 that this lack of experience, if you will, will not produce 20 any, any problems for you in terms of understanding the 21 quality of the inspections that are going on? 22 MR. FAST: I understand your 23 concern revolves around the fact of the experience in some 24 of these individuals. What I believe that we have is a team that is working well as a team, and they are highly 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 reliant on one another to peer check and provide

3	I have personally witnessed those engineers during
4	those evaluations, and I see them in groups of 3, 4 and 5
5	in those walkdown efforts. So, the way that I would answer
6	your question is that, as opposed to a single individual
7	that's making that call, we are using a team approach, so
8	that we can ensure that we've got that peer check and we've
9	got the back-up from the other individuals on the team.
10	MR. HOLMBERG: Okay, thank you.
11	The second area example of their probing in respect
12	to quality is in terms of establishing a standard, if you
13	will, of the quality of exam.
14	For one of your plans, you did establish a standard
15	of quality for exam, being able to read characters at a
16	certain height, and under certain lighting conditions.
17	With the other two plants, no such standard exists for the
18	quality of the exam itself.
19	I wonder if you could speak to that.
20	MR. FAST: I don't have any
21	specific response; however, we appreciate your input and
22	we'll certainly take it into consideration.
23	MR. MENDIOLA: I can ask a
24	follow-up question about the VT-2 personnel. Were these
25	people qualified and certified, if you will, in the normal

3 inspection? 4 MR. FAST: We put together a training program that meets the requirements in accordance 5 6 with the American Society of Mechanical Engineers, and training was provided on station and the individuals went 7 8 through a qualification process in order to obtain that 9 VT-2 certification. To my knowledge, that's not unlike other plants in their qualification process. 10 11 MR. MENDIOLA: Okay. 12 MR. GROBE: I have more of a structural question. You have your Return to Service Plan, 13 14 and then you have implementing procedure or plans for each 15 of the building blocks, and then under that are detailed 16 procedures for each activity. Are all of these plans and 17 procedures controlled under your quality assurance program? 18 MR. FAST: I can't verify 19 right now on the fly that they are. We're still developing 20 that restart plan. We put the shell of the plan together, 21 but the idea will be for us to go through and align with 22 you those procedures, startup procedures, evaluation 23 procedures, and ensure that they meet the highest standards in the industry. 24

25 MR. GROBE: I'm not sure I was

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

method of qualifying VT-2 personnel or were they put, if

you will, in some sort of special program to conduct this

1

1 clear in my question.

2 We've received, we received Return to Service Plan 3 on the docket, and that has a set of reviews and improvements. And that certainly is a document that 4 describes activities that affect quality. 5 6 And then there is implementing procedures, several tiers of implementing procedures. And I've seen a number 7 8 of those have already been signed off and issued to the 9 field. Are each of these documents controlled under your 10 11 quality assurance program, meaning that tier five requires 12 certain steps? 13 MR. FAST: The inspection 14 plans, those specific to the inspection are not. However, 15 the return to service are principally in the post maintenance, post modification and the operations specific 16 17 procedures and they are controlled. 18 MR. GROBE: Why wouldn't the 19 inspection plans be quality procedures? Not that they're 20 not quality, but why wouldn't they be controlled under the 21 quality assurance program? 22 MR. MYERS: Inspection plan 23 itself? 24 MR. GROBE: Yeah. Maybe we're not communicating. I'll keep working on it. 25

1 MR. POWERS: The inspection 2 plan is prepared by procedures, as a controlled product 3 that we prepare; and it's status of quality we go on and 4 evaluate and get back to you on that one. 5 MR. HOLMBERG: For example, one 6 thing I do know is procedure that implements the plan, for instance, does not require adherence to the plan. And 7 8 there is no other, as far as I know, guidance documents 9 other than the one that was given to me today. So, it's just an example. There is not a requirement to adhere to a 10 plan in the guide and procedure that tells you how to 11 12 develop a plan. 13 MR. MYERS: Typically, our 14 plans do routine operation, and our plans would not be 15 under a quality program as a plan, but the implementing 16 procedures would be. I need to understand that better. 17 MR. GROBE: I think we do 18 too. We'll continue dialogueing on this. What we want to 19 make sure is you have appropriate rigor that people are 20 required to follow the procedures and plans you developed. 21 That these plans aren't just their expectations. 22 MR. BERGENDAHL: That's correct. 23 Their plan is oversight and we can step through that to 24 show you this.

25 MR. MYERS: Then we use our

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 quality control to make --

2	MR. HOLMBERG: That's where I
3	want to stop you. The plans are actually controlling the
4	work, so it is your ends document. There is no lower level
5	procedure that tells people how to do the inspection.
6	That's what I'm, that's my point. There is no procedure
7	that's implemented by the plan.
8	I wouldn't, if it was done that way, I, we wouldn't
9	be having this discussion, but I think you have a procedure
10	that we're following.
11	MR. MYERS: We understand the
12	issue now. Okay. Okay. We'll look at that.
13	MR. GROBE: This could only be
14	a vernacular issue, but it's an important one.
15	MR. MYERS: Yeah, I
16	understand.
17	MR. GROBE: Maybe we'll have
18	the lawyer resolve this issue.
19	MR. FAST: Excellent
20	suggestion.
21	MR. THOMAS: I want to be sure
22	on what you said earlier, on the system lockdowns for the
23	systems tech.
24	(inaudible/requested he repeat)
25	MR. THOMAS: Earlier, you spoke

to, a little bit about the system, about the assurance 1 2 plan; and I wanted to be clear on the specific point of the 3 walkdowns of the systems that contain boric acid on the outside containment. You stated that those would be done 4 per the system, per the assurance plan. Was that a correct 5 6 statement? 7 MR. FAST: Well, it's 8 actually, there are some systems, such as some of the water 9 treatment systems, that handle radioactive waste and whatnot that are not part of system called Assurance Plan, 10 11 and those do contain borated water. The systems that 12 directly interface with the reactor coolant system, such as decays makeup and whatnot, are what those systems are that 13 14 are under review. So I don't have the --15 MR. THOMAS: But the clarification I wanted was, will they be physically 16 17 walkdown by a system engineer or an inspector to verify 18 that they aren't subject to the same type of corrosion as 19 was found on the vessel? 20 MR. FAST: All of our systems 21 will be walked down thoroughly as part of our restart plan 22 execution. 23 MR. THOMAS: Including the one 24 outside the containment?

25 MR. FAST: That is correct.

1 MR. THOMAS: Thank you. 2 MR. FAST: Just thought we 3 might have a little fun. We have a picture here. I was in containment yesterday as part of our plant cleanup day. It 4 really is a great opportunity for the plant employees to 5 6 get together. We had folks working in containment in our office 7 8 facilities and in our turbine building and in our water 9 treatment systems and our circulating water systems, throughout the facility out on the grounds. I was able to 10 11 capture a couple of pictures. 12 Here's a couple of our plant workers, actually climbing the ladder on the side of the service structure. 13 14 And we do have activities that are still supporting, as Bob 15 Schrauder identified, our head replacement plans. 16 So, we have another picture, if you move to the next 17 one. 18 These are a couple of our workers on top of the 19 service structure. And we still have a number of control 20 rod driving, control rod driving mechanisms that are being 21 removed in preparation for the replacement activity. 22 The next picture is one of the inspection programs 23 that I talked about, was the under vessel inspection. And 24 this is really some new territory with the industry. And really exhaustively looking at the condition under vessel. 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 Under vessel represents high radiation 2 conditions, we partnered to develop some new technology. 3 We've been able to use this in the last about 60 days or so. This is a permanent magnet crawler. It's remotely 4 deployed under vessel, and it runs, right now you see it in 5 6 an inverted position. It has a camera. And that's how we were able to fully videograph the underside of the vessel. 7 8 Subsequently, we removed additional insulation, and 9 did some additional cleaning and water brush and VT-2 examination. So we are, this is some of the new technology 10 11 that we put in place to assure ourselves we fully 12 understand the condition of our, in this case, reactor 13 vessel. 14 The last picture here is just, as we talked about, 15 the total structure is about 285 feet. 45 feet of it is below grade elevation. 2.4 million cubic feet. We broke 16 17 those into elevations. This is the 603 foot elevation. 18 This is where the head is actually sitting on the reactor 19 vessel stand, and broken into a grid; that way we can 20 clearly identify the teams of engineers and their areas of 21 responsibility within the containment. So, we see here how 22 we develop some maps to create those specific areas. 23 While we are MR. MYERS: 24 talking about this area of inspection, it wouldn't be one person, it would be a team of individuals. 25

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1	MR. FAST: That's correct.
2	MR. MYERS: That's where you
3	get your peer check and they do that as a group,
4	experiencing.
5	MR. FAST: That concludes my
6	presentation. Are there any additional questions?
7	MR. DEAN: Randy, could you
8	describe to us accumulated boron positions that you all have
9	found and what the extent has been and what's been
10	necessary to clean those up.
11	MR. FAST: I would like to
12	understand a little more clearly the length and breadth of
13	your question. One of the things that we do at the onset
14	of the refueling outage is go into the containment building
15	and do a surface decontamination, so some of the areas that
16	were impacted were cleaned up very early during this
17	refueling outage.
18	However, as we've done additional inspections, we've
19	found boric acid throughout the containment and there are
20	areas that are under remediation and cleanup inside of the
21	duct work and whatnot.
22	So, I can not answer in specific terms what that
23	quantity represented; however, there was some superficial
24	amount of boron throughout the containment. Many of those
25	areas are in the process of being decontaminated, cleaned

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

1 up at this time.

2	MR. GROBE: Would you give us
3	an example or two of any damage that was identified by
4	boric acid pressure?
5	MR. FAST: I don't have any
6	photographs, but I'll provide you at least, try to provide
7	some visual clarity, an area that is most pronounced; and
8	that is the area where you come in through the personnel
9	airlock at the 603 foot elevation. It's an area where the
10	service waterlines run in the overhead.
11	Those service waterlines run typically around 70
12	degrees and they create an environment where condensation
13	can create then the fluid, as the liquid or the moisture
14	that's in the environment is collected, you have some boric
15	acid that runs down onto electrical panels, onto some
16	conduit, some surface components; in one case, there is a
17	recirculation ventilation duct that had been, you can see
18	signs of wastage on the surface, actually through a wall,
19	and that will be replaced.
20	Another area that had significant impact was our
21	containment air coolers. The containment air coolers have
22	a common duct. Those three are cooled by that service
23	water, and they provide cooling and recirculation of air
24	post accident.
25	Those areas had quite a bit of accumulation of boric

acid. The common plenum has been completely cleaned and 1 2 has been preserved and recoated. However, there is still 3 some existing surface rust. Those need to be additionally cleaned, evaluated, and we'll have corrective actions that 4 are part of the condition reporting process, which was the 5 6 process that we used as we collected data from those 7 inspections. 8 MR. MYERS: When you talk 9 about the cleaning, this is not a small room. 10 MR. FAST: It's about a 11 tractor/trailer size duct work column that feeds into each 12 of the three containment coolers. Myself and Lew have been inside that duct while it was being cleaned and then 13 14 subsequently looked at it after it's been recoated. 15 MR. GROBE: The cable fan covers what you were talking about. You said they're next 16 17 to the personnel access to containment? 18 MR. FAST: That's one 19 example. There are others and those are all looked at. 20 I'm just trying to provide you a visual in the area that is 21 really some of the worst that you might see in 22 containment. 23 MR. GROBE: Could you 24 characterize, are those easily visible by people going in and out of containment? 25