Reactor Pressure Vessel Closure Head (RPVCH) Replacement at the Davis-Besse Nuclear Power Station June 4, 2002

Agenda

- Introduction
 - Jim Powers
- RPVCH Replacement
 - Bob Schrauder
- **Concluding Remarks**
 - Jim Powers

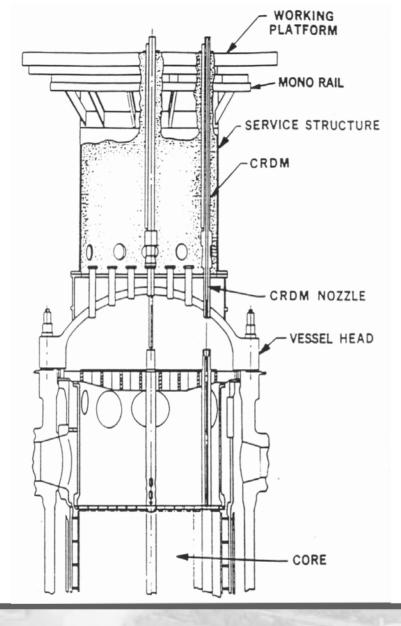
RPVCH Replacement Considerations

- Evaluated several replacement options
 - Repair existing RPVCH
 - Fabricate new RPVCH
 - Purchase existing RPVCH

3

RPVCH Replacement Considerations

- The Midland RPVCH is
 - Similar in design to the Davis-Besse RPVCH
 - Readily available
 - Not contaminated



- Midland RPVCH was fabricated by Babcock and Wilcox
 - Manufactured to ASME Boiler & Pressure
 Vessel Code Section III, Code Class A, 1968
 Edition, Summer 1968 Addenda
 - Accepted by Consumers Power and an Authorized Nuclear Inspector as an acceptable ASME component
 - Hydrostatically tested at 3125 psig per ASME
 Code Requirements

- Framatome-Advanced Nuclear Power (FRA-ANP) has purchased Midland RPVCH and is compiling/validating the ASME Code Data Package
- FRA-ANP is reconciling the Midland RPVCH against Davis-Besse design requirements
- FRA-ANP activities are governed by their safetyrelated Quality Assurance program, including 10CFR21 reporting

Replacement RPVCH Design

7

Replacement RPVCH Comparison to Davis-Besse RPVCH

Davis-Besse

Midland

Material of Construction Closure Head Closure Head Flange CRDM Nozzle CRDM Flange

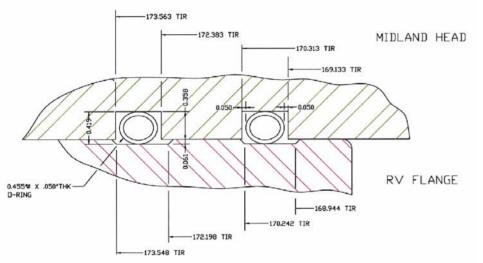
SA-533, GR B Cl 1SanSA-508, Cl 2SA-Inconel SB-167SanSA-182, F-304San

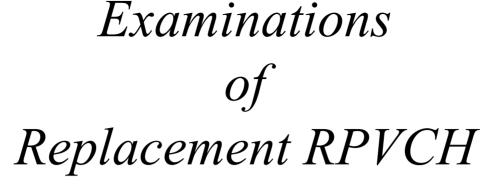
Same SA-508-64, Cl 2 Same Same

Design Pressure Temperature

2500 psig 650 degree F Same Same

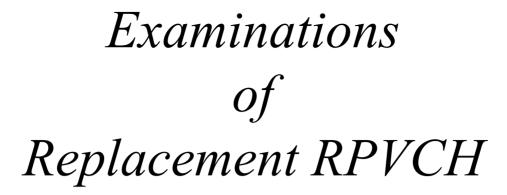
Replacement RPVCH CRD Nozzles


- Midland's Control Rod Drive (CRD) nozzles are similar to Davis-Besse
 - 68 Nozzles: Material Heat M7929
 - 1 Nozzle: Material Heat M6623
- Alignment of control rods to RPVCH nozzles is consistent with original Davis-Besse design


- Minor machining of 4 out of 8 vessel-to-head keyway surfaces is required
- The Midland CRDM flange indexing pin hole locations will be modified to match the proper Davis-Besse azimuth-orientation

- Minor differences in RPVCH O-ring design
 - O-ring grooves are slightly different requiring the use of smaller diameter O-rings (0.455 in. vs 0.500 in.)
 - New O-rings will be installed

- Examinations to supplement ASME Code Data Package:
 - Visual examinations
 - Radiography (RT) of flange-to-dome weld
 - Lifting attachments prevented full coverage
 - RT of nozzle-to-flange welds
 - PT examination of the CRDM nozzle J-groove welds


Examinations of Replacement RPVCH

- Preservice Inspections
 - Magnetic Particle (MT) examination of flangeto-dome weld
 - Ultrasonic (UT) examination of flange-to-dome weld

13

 Liquid Penetrant (PT) examination of peripheral CRDM nozzle-to-flange welds

- Additional Non-Destructive Examinations
 - Chemical smears
 - Baseline UT of CRD nozzles
 - Eddy Current Testing (ET) of CRD nozzles

Installation of the Replacement RPVCH at Davis-Besse

- Davis-Besse Containment Building will require temporary access opening
- Original RPVCH will be moved outside Containment Building for storage and/or disposal
- Davis-Besse Service Structure will be used
- Inspection ports will be installed on replacement support skirt

Installation of the Replacement RPVCH at Davis-Besse (continued)

- Original Davis-Besse control rod location and core configuration will be used
 - Existing CRD Mechanisms will be used
 - CRD Mechanisms nozzle flange split nut ring modification will be performed
 - Upgraded gasket design will be incorporated

RPVCH Planned Post-Installation Activities

- Fill and vent RCS
 - Perform visual inspection for leakage
- Bring plant to normal operating temperature and pressure using Reactor Coolant Pump heat
 Perform visual inspection for leakage
- Perform control rod drop time testing per Technical Specifications

NRC Approvals Identified to Date

- 10 CFR 50.55a approvals
 - Existing request RR-A2 for flange-to-dome weld volumetric examination
 - Existing request RR-E4 for VT-2 visual examination of containment building access opening following restoration
- No Technical Specification changes

19

Concluding Remarks

20