
We evaluated the usefulness of detection systems and
diagnostic decision support systems for bioterrorism
response. We performed a systematic review by searching
relevant databases (e.g., MEDLINE) and Web sites for
reports of detection systems and diagnostic decision sup-
port systems that could be used during bioterrorism
responses. We reviewed over 24,000 citations and identi-
fied 55 detection systems and 23 diagnostic decision sup-
port systems. Only 35 systems have been evaluated: 4
reported both sensitivity and specificity, 13 were compared
to a reference standard, and 31 were evaluated for their
timeliness. Most evaluations of detection systems and
some evaluations of diagnostic systems for bioterrorism
responses are critically deficient. Because false-positive
and false-negative rates are unknown for most systems,
decision making on the basis of these systems is seriously
compromised. We describe a framework for the design of
future evaluations of such systems. 

During the 2001 anthrax attacks, emergency response
personnel, clinicians, laboratories, and public health

officials were overwhelmed by requests for evaluation of
suspicious powders and by calls from patients concerned
about exposure to bioterrorism agents (1–4). From October
through December 2001, the New York City Bioterrorism
Response Laboratory processed >3,200 environmental
specimens (2). In the 2 months after the discovery of
anthrax in the Trenton, New Jersey, postal system, state
police responded to >3,500 false alarms involving suspect-
ed anthrax (3). These services were provided at great cost
(e.g., as of November 2001, Philadelphia spent $10 million
to investigate and test anthrax threats) (3). Systems to

detect bioterrorism agents in clinical and environmental
samples and to diagnose bioterrorism-related illnesses are
essential components of responses to both hoaxes and
actual bioterrorism events. 

First responders and public health officials require sen-
sitive and specific detection systems that can identify
bioterrorism agents early enough to take action that limits
the spread of disease. Additionally, clinicians may benefit
from diagnostic decision support systems, typically
designed to generate a list of possible diagnoses for a given
patient on the basis of clinical features, if these systems
appropriately increase clinicians’ consideration of bioter-
rorism agents. 

Under the auspices of the University of California-San
Francisco-Stanford Evidence-based Practice Center, we
prepared a comprehensive systematic review that evaluat-
ed the ability of available information technologies and
decision support systems to serve the information needs of
clinicians and public health officials during a bioterrorism
response (5). We describe the published evidence of eval-
uations of available detection systems and diagnostic deci-
sion support systems for bioterrorism-related illness. We
then describe a framework that could be applied to future
evaluations of these systems to determine whether they are
likely to serve information needs of their users during a
bioterrorism response.

Methods
We performed a systematic review of descriptions and

evaluations of systems for detection of bioterrorism agents
and diagnostic decision support systems that could facili-
tate decision making for patients with undiagnosed bioter-
rorism-related illness. We provide a brief overview of our
methods, which are described in detail elsewhere (5).

We included reports of systems specifically designed to
support the diagnosis of bioterrorism-relevant diseases or
syndromes, as defined by the U.S. Department of Health
and Human Services (6). We also included reports of gen-
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eral diagnostic systems (e.g., systems that provide differen-
tial diagnoses based on a patient’s signs or symptoms),
automated diagnostic test analysis systems, microbiologic
test analysis systems for bioterrorism-specific agents, radi-
ologic diagnostic systems that automatically make the diag-
nosis of pulmonary infiltrate or widened mediastinum, and
rapid detection technologies. For all potentially relevant
systems, reports were included if they, at a minimum, pro-
vided information about the system’s purpose, hardware
requirements, type of information or sample required by the
system, and type of information provided by the system.

Literature Sources and Search Strategies
We searched five databases of peer-reviewed articles

(e.g., MEDLINE, National Technical Information Service,
GrayLIT), Web sites of relevant government agencies
(e.g., U.S. Department of Energy), and relevant non-
governmental Web sites. We included terms such as bioter-
rorism, biological warfare, decision support system, detec-
tion, diagnosis, radiology information systems, and public
health. We also reviewed conference proceedings and ref-
erence lists of included articles. 

Study Selection and Data Abstraction
We screened peer-reviewed articles to determine if they

met inclusion criteria. Two investigators blinded to study
authors independently abstracted articles onto pretested
abstraction forms. Data abstracted from each report varied,
depending on the type of system described. For descrip-
tions of detection systems, we abstracted information
about the system’s portability, ability to run more than one
sample at a time, and ability to detect more than one bioter-
rorism agent. For descriptions of diagnostic decision sup-
port systems, we recorded whether bioterrorism-related ill-
nesses were included in the system’s knowledge base, how
the system enabled updates of the probability of bioterror-
ism-related illness as an epidemic progresses, the method
of reasoning used by the inference engine, and whether the
system used a standard vocabulary.

Criteria for Evaluating Reports of Included Systems
A complete description of the methods used to develop

our evaluation criteria for reports of detection systems and
diagnostic decision support systems can be found else-
where (5). Briefly, we reviewed reports of naturally occur-
ring and bioterrorism-related outbreaks and solicited infor-
mation from relevant experts to describe the detection and
diagnostic decisions that clinicians and public health offi-
cials would have to make while responding to bioterror-
ism. We then described the capabilities of detection and
diagnostic systems necessary to assist these decisions. We
augmented this list of system characteristics with previ-
ously published standards for evaluating information tech-

nologies and diagnostic tests to develop evaluation criteria
for systems designed to facilitate detection and diagnosis
during a bioterrorism response (5). We did not attempt to
independently evaluate detection systems and diagnostic
decision support systems; rather, we relied on information
provided in the published reports about these systems. 

Results
We reviewed 17,510 citations of peer-reviewed articles,

6,981 Web sites of government agencies, and 1,107 non-
governmental Web sites. From these, we included 115
reports of 78 potentially relevant systems for a bioterror-
ism response (55 detection systems and 23 diagnostic deci-
sion support systems). We first present the evaluative data
about the detection systems and then the evaluative data
about the diagnostic decision support systems.

Detection Systems 
We identified 55 detection systems including 4 systems

that collect aerosol environmental samples; 14 particulate
counters or biomass indicators that detect an increase in
the number of particles in aerosol samples over baseline;
27 identification systems designed to rapidly detect bioter-
rorism agents collected from environmental, human, ani-
mal, or agricultural samples; and 10 systems that integrate
the collection, identification, and communication of detec-
tion results (5). Other detection systems exist; however, we
describe all of the systems for which we found publicly
available information through the search methods
described. 

Only 8 of the 55 detection systems had published eval-
uations (Tables 1 and 2). No system was evaluated for all
the evaluation criteria. Timeliness was described for 33 of
the 55 detection systems. Of these systems, 20 were
described in specific terms such as minutes or hours,
whereas 13 systems were described in nonspecific terms
such as “rapid” or “real-time”. Several reports included
general statements about system sensitivity or detection
limits; however, studies of only 1 of the 55 detection sys-
tems specifically reported both sensitivity and specificity
(Table 2) (14–18). 

Of the four collection systems, we found evaluation
data only for BioCapture (Meso Systems Technolgy, Inc.,
Albuquerque, NM), a device that has been used by fire
departments in Seattle, Los Angeles, and New York among
other sites to collect environmental samples for subsequent
testing for bioterrorism agents (8). Although its sensitivity
and specificity were not described, the BioCapture system
had a collection efficiency reported to be 50% to 125% rel-
ative to reference standards (8). Reports on three other sys-
tems also included a comparison of the system under eval-
uation to a reference standard (Anthrax Sensor [7],
MiniFlo [12], and the Fluorescence-based array [10]).
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Most identification systems are limited in that they can
evaluate a sample for only a single bioterrorism agent in
each test cycle, they often run only a limited number of
samples at a time, and they cannot test for many bioterror-
ism agents of concern (e.g., smallpox). None of the reports
of the detection systems described methods for maintain-
ing the security of the sample or test results or evaluated
the systems in different clinical settings or among different
populations. We found no studies that directly compared
two or more systems in any given category.

In response to the 2001 anthrax cases, considerable
interest was generated in the handheld antibody-based
detection tests such as the Sensitive Membrane Antigen
Rapid Test (SMART) (New Horizons Diagnostic Corp.,
Columbia, MD) and the Antibody-based Lateral Flow
Economical Recognition Ticket  (ALERT) (14–18). Such
systems use antibodies to recognize specific targets on the
toxins, antigens, or cells of interest (13,14). Limitations of
these tests include nonspecific binding of the antibodies,
which may lead to false-positive results and degradation of
the antibodies over time, which may lead to false-negative
results (13,14). Additionally, these tests are limited by the
availability of antibodies. Given concerns about the diag-
nostic sensitivity and specificity of hand-held, antibody-
based tests when used during the anthrax attacks, the
Federal Bureau of Investigation and Centers for Disease
Control and Prevention performed an independent evalua-
tion of these tests (19). Although these results are not yet
publicly available, the July 2002 Statement by the U.S.
Department of Health and Human Services regarding
hand-held assays for identification of Bacillus anthracis
spores stated, “These studies confirm the low sensitivity of
such assays and their potential to produce false-positive
results with non-anthrax bacteria and chemicals. The per-

formance of handheld assays for the detection of biologi-
cal agents other than B. anthracis has not been evaluated
and their use is also not recommended at this time” (20).
Instead, law enforcement should transport samples quick-
ly to a Laboratory Response Network facility, where cul-
tures will be performed and preliminary results made
available within 12 to 24 hours (20).

Several detection systems were designed in part, if not
fully, by the military, and battlefield evaluations may have
been performed. However, the paucity of publicly avail-
able information about such evaluations prevents conclu-
sions about whether these systems will serve the detection
needs of first responders and clinicians. Moreover, even if
battlefield evaluation data were available, these systems
would require additional study to confirm their utility for
civilian users.

Diagnostic Systems
We identified 23 diagnostic decision support systems

that may enhance clinician consideration of bioterrorism-
related illness. We found six general diagnostic systems,
four systems designed to improve radiologic diagnoses,
four telemedicine systems, and nine systems for other
diagnostic purposes (5).  None has been formally evaluat-
ed with respect to a bioterrorism response; however, 15
diagnostic decision support systems had published evalua-
tions for potentially analogous situations (Table 3).

The general diagnostic decision support systems are
typically designed to assist clinicians develop a differential
diagnosis list on the basis of patient-specific signs and
symptoms. The included general decision support systems
require manual entry of patient information by clinicians
(Table 3). They use probabilistic or rules-based inference
to compare patient information with a knowledge base to
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Table 1. Summary of evaluation data for detection systems and diagnostic decision support systems for a bioterrorism response 

Evaluation criteria 
Detection systems 

evaluated % (yes/total) 
Diagnostic decision support  

systems evaluated % (yes/total) 
Is the timeliness of diagnostic information described? 36 (20/55) 48 (11/23) 
Are diagnostic sensitivity and specificity described? 1.8 (1/55) 13 (3/23) 
Is the reference standard against which the system was compared described? 7 (4/55) 39 (9/23) 
Are the system’s security measures described? 0 0 
Is the evaluation of the system over a range of clinical situations or patient 
populations described? 

0 0 

Is the portability of the system described? 54 (15/28) NAa 
Is the system’s ability to run more than one sample at a time described? 10 (4/41) NA 
Is the system’s ability to detect more than one bioterrorism agent described? 32 (12/37) NA 
Is the system’s ability to detect either/both toxins and organisms described? 5 (2/37) NA 
Is the inclusion of all bioterrorism agents and associated illnesses in the system’s 
knowledge base described? 

NA 26 (5/19) 

Is the flexibility to update the probability of bioterrorism-related illness as the 
epidemic progresses described? 

NA 0 

Is the method of reasoning used by inference engine described? NA 26 (5/19) 
Is the use of standard vocabulary described? NA 0 
aNA; not applicable. 



generate a differential diagnosis list that is typically ranked
in descending order of likelihood. Some of the systems
provide additional information about the suspected dis-
eases and suggest appropriate diagnostic tests if clinicians
choose to pursue these diagnoses. 

Three diagnostic decision support systems (Colum-
bia–Presbyterian Medical Center Natural Language
Processor, Neural Network for Diagnosing Tuberculosis,
and SymText) were specifically evaluated for both sensi-
tivity and specificity and typically performed better than
physicians-in-training but not as well as experienced clini-
cians (22,32,35,36). Also, the accuracy of the decision sup-
port systems decreased for difficult cases. The need for cli-
nicians to manually enter patients’ data into diagnostic
decision support systems, a laborious step that may be a
barrier to the use of these systems and increases interuser
variability, is eliminated by the few systems that automat-
ically collect patient data from an electronic medical
record (21,22,35,36). For example, diagnostic decision
support systems currently available in hospitals with elec-

tronic medical records provide clinicians with an estimate
of the likelihood of community-acquired pneumonia or
active pulmonary tuberculosis based exclusively on data
collected from the medical record (21,32,33,35,36). 

Two infectious disease diagnostic decision support sys-
tems, The Computer Program for Diagnosing and
Teaching Geographic Medicine and GIDEON, included
most of the bioterrorism-related organisms in their knowl-
edge bases (23,28). In an evaluation of The Computer
Program for Diagnosing and Teaching Geographic
Medicine, the system correctly identified 222 (75%) of
295 cases and 128 (64%) of 200 hypothetical cases (23).
The clinical diagnosis was included in the computer differ-
ential diagnosis list in 95% of cases. Several cases includ-
ed in this evaluation were for the causative agents of
anthrax, brucellosis, cholera, Lassa fever, plague, Q fever,
and tularemia. 

An evaluation of GIDEON compared its diagnostic
accuracy to that of medical house officers admitting 86
febrile adults to the hospital (28). The house officers listed
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Table 2. Evaluation data for detection systems for bioterrorism agents  
System name Purpose Evaluation datab 
Anthrax Sensor (7) A portable detection system for “highly 

sensitive detection of biological agents 
within seconds” (7). 

Reported to be capable of detecting endotoxins at a level that is “20 
times lower than previously achieved by similar devices” (7).c 

BioCapture (8) A portable collection system for use by 
first responders. 

Was compared to an All Glass Impinger (AGI) that collects samples 
into liquid and a Slit Sampler that impacts bacteria directly onto growth 
media and found to have a collection efficiency of 50%-80% relative to 
the AGI and 60%-125% relative to the Slit Sampler (8).c 

Digital Smell/Electronic  
Nose (9) 

To detect and classify microorganisms 
according to the volatile gases given off 
during metabolism. 

An array of 15 sensors was able to correctly classify 68 of 90 colonies 
containing 0 or 1 of 5 test organisms and an uninoculated control; 
however, it registered 22 of 90 as false-positives (9). 

Fluorescence-based array 
immuno-sensor (10) 

To provide simultaneous, antibody-
based detection of bioactive analytes in 
clinical fluids.  

Bioterrorism agents intended to be detected include Staphylococcus 
enterotoxin B and F1 antigen from Yersinia pestis. It was unable to 
detect S. enterotoxin B levels (<125 ng/mL) in experimentally spiked 
urine, saliva, and blood products; sensitivity for F1 antigen from Y. 
pestis was reported at 25 ng/mL (10).  

LightCycler; Ruggedized 
Advanced Pathogen 
Identification Device  
(RAPID) (11) 

LightCycler uses a PCR cycler for “real-
time” quantification of DNA samples. 
RAPID is a rugged, portable system that 
uses LightCycler technology for field 
detection of bioterrorism agents.  

RAPID is reported by the manufacturer to be 99.9% specific (11). For 
each assay, the sensitivity is set to half the infective dose (for example, 
the infectious dose of foot and mouth disease is 10 virus particles; 
RAPID’s sensitivity is set to detect 5 virus particles [11]).c 

MiniFlo (12) For rapid, portable detection of multiple 
biological agents using flow cytometry.  

Detected 87% of unknown biological agent simulants, including agents 
similar to anthrax and plague, with a false-positive rate of 0.4% (12). 
Bioterrorism agents identifiable: Y. pestis and Bacillus anthracis, as 
well as other viruses, bacteria and proteins (12). 

Model 3312A Ultraviolet 
Aerodynamic Particle Sizer 
(UV-APS) and Fluorescence 
Aerodynamic Particle Sizer-2 
(FLAPS-2) (13) 

To detect living organisms in aerosols 
and nonvolatile liquids. 

FLAPS-2 was able to detect 39 of 40 blind releases of stimulant 
aerosols (of particle ranging in size from 0.5 to 15 µm) at a distance of 
about 1 km with no false alarms during a 3-week period. In another 
trial, it was able to detect as few as 10 agent-containing particles per 
liter of air (13,4).  

Sensitive Membrane Antigen 
Rapid Test (SMART) and the 
Antibody-based Lateral Flow 
Economical Recognition Ticket 
(ALERT) (14–17) 

A handheld antigen/antibody test for the 
rapid detection of bioterrorism agents.  
 

When field tested during the Gulf War, the SMART system had an 
“alarmingly” high false-positive rate thought secondary to 
contamination (14). SMART tests are reported per the manufacturer to 
have a 96% to 99% sensitivity and 94% to 99% specificity for 
Vibrio cholerae O139 and O1) (14–17) 

aPCR; polymerase chain reaction. 
bWhere possible, we report sensitivity and specificity data (and highlight them in bold); if the published reports did not provide these values directly but did provide 
sufficient data for them to be calculated, we performed these calculations. 
cDenotes systems for which available evaluation data were from manufacturers’ Web sites only. 
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Table 3. Evaluation data for diagnostic decision support systems for bioterrorism-related illness  
System name  Purpose Evaluation datab 
Clinical decision support 
system for detection and 
respiratory isolation of 
tuberculosis patients (21) 

To automate the detection and respiratory 
isolation of patients with positive cultures 
and chest x-rays suspicious for TB. 

In a retrospective analysis, the system increased the proportion of 
appropriate TB isolations in inpatients from 51% to 75% but falsely 
recommended isolation of 27 of 171 patients. In a prospective 
analysis, the system correctly identified 30 of 43 of patients with TB 
but not identify 21 of these patients (false-negatives). However, the 
decision support system identified 4 patients not identified by the 
clinicians (21). 

Columbia–Presbyterian 
Medical Center Natural 
Language Processor (22) 

To automate the identification of 6 
pulmonary diseases (including pneumonia) 
through analysis of radiology reports. 

The system had a sensitivity of 81% (95% confidence interval [CI] 
73% to 87%) and a specificity of 98% (95% CI 97% to 99%) 
compared to physicians who had an average sensitivity of 85% and 
specificity of 98% (22). 

Computer Program for 
Diagnosing and Teaching 
Geographic Medicine (23) 

To provide a differential diagnosis of 
infectious diseases matched to 22 clinical 
parameters for a patient; also to provide 
general information about infectious 
diseases, anti-infective agents, and 
vaccines. 

The computer program correctly identified 75% (222 of 295) of the 
actual cases and 64% (128 of 200) of the hypothetical cases of patients 
with infectious diseases (23). The clinical diagnosis was included in 
the computer differential diagnosis list in 94.7% of cases. Among the 
cases included in this evaluation, several were for bioterrorism 
diseases (23). 

DERMIS (24,25) To provide a differential diagnosis of skin 
lesions. 

The system correctly diagnosed lesions 51% to 80% of the time and 
included the correct diagnosis among its top 3 choices 70% to 95% of 
the time (out of a total of 5,203 cases) (24,25). The system was more 
accurate for dermatologist users than general practitioners. 

Dxplain (26) To provide a differential diagnosis based 
on clinician-entered signs and symptoms. 
The system includes descriptions and 
findings for potential bioterrorism agents, 
and is updated weekly to account for 
potential outbreaks.  

In an evaluation of 103 consecutive internal medicine cases, Dxplain 
correctly identified the diagnosis in 73% of cases, with an average 
rank of 10.7 (the rank of a diagnosis refers to its position on the 
differential diagnosis—for example, the diagnosis with the greatest 
likelihood of being the actual disease is ranked first and the next most 
likely diagnosis is ranked second) (26). 

Fuzzy logic program to 
predict source of bacterial 
infection (27) 

To use age, blood type, gender, and race to 
predict the cause of bacterial infections. 

The program was able to correctly classify 27 of 32 patients into 1 of 4 
groups based on demographic data alone (27). 

Global Infectious Disease and 
Epidemiology Network 
(GIDEON) (28) 

To provide differential diagnoses for 
patients with diseases of infectious 
etiology. All potential bioterrorism agents 
as specified by CDC are included in the 
GIDEON knowledge base (28). 

Whereas medical house officers listed the correct diagnosis first in 
their admission note 87% of the time (for 75 of 86 patients), GIDEON 
provided the correct diagnosis for 33% (28 of 86 patients) (28). 

Iliad (and Medical HouseCall 
which is a system for 
consumers derived from Iliad) 
(29–31) 

To provide a differential diagnosis based 
on clinician-entered signs and symptoms. 
The knowledge base is focused in internal 
medicine and was last updated in 1997.  
  

In a multicenter evaluation, each of 33 users analyzed 9 diagnostically 
difficult cases. On average, Iliad included the correct diagnosis in its 
list of possible diagnoses for 4 of the 9 cases, and included the correct 
diagnosis within its top 6 diagnoses for 2 of the 9 cases. The 
differential diagnosis generated by Iliad is not dependent upon the 
level of training of the user (29–31).  

Neural Network for 
Diagnosing Tuberculosis (32) 

To predict active pulmonary TB (using 
clinical and radiographic information) so 
that patients may be appropriately isolated 
at the time of admission. 

The neural network correctly identified 11 of 11 patients with active 
TB (100% sensitivity, 69% specificity) compared with clinicians 
who correctly diagnosed 7 of 11 patients (64% sensitivity, 79% 
specificity) (32). 

PNEUMON-IA (33) To diagnose community-acquired 
pneumonia from clinical, radiologic and 
laboratory data. 

The decision support system correctly identified pneumonia in 4 of 10 
cases, compared with between 3 and 6 cases for the clinician experts 
(33). 

Quick Medical Reference 
(QMR) (34) 

To provide a differential diagnosis based 
on clinician-entered signs and symptoms. 
 

One prospective study used QMR to assist in the management of 31 
patients for which the anticipated diagnoses were known to exist in the 
QMR knowledge base. In the 20 cases for which a diagnosis was 
ultimately made, QMR included the correct diagnosis in its differential 
in 17 cases (85%) and listed the correct diagnosis as most likely in 12 
cases (60%) (34).  

SymText (35,36) To analyze radiology reports for specific 
clinical concepts such as identifying 
patients with pneumonia.  
 

Average sensitivity and specificity for assessing the location and 
extension of pneumonia was 94% and 96% for physicians and 34% 
and 95% for SymText. In selecting patients who are eligible for the 
pneumonia guideline, the area under the ROC curves was 89.7% for 
SymText and 93.3% for physicians (35,36).  

Texas Infectious Disease 
Diagnostic Decision Support 
System (37) 

To provide a weighted differential 
diagnosis based on manually entered 
patient information. 

The system was compared to a reference standard that missed the 
diagnosis of 98 of 342 cases of brucellosis. In 86 of the 98 patients, 
this system listed brucellosis in the top 5 diagnoses on the differential 
diagnosis list, and in 69 of these 98 patients, brucellosis was the only 
disease suggested by the system. The system missed the diagnosis in 
12 of 98 patients. On average, without the system it took 17.9 days 
versus 4.5 days with the system to suspect the correct diagnosis (37).  



the correct diagnosis first in their admission note 87%
(75/86) of the time compared with 33% (28/86) for
GIDEON (28). To limit the differential diagnosis provided
by the system, users enter the geographic area where the
outbreak occurred. This geographic information is com-
pared with the known areas of natural occurrence. Adding
this geographic information could falsely decrease the
probability of disease if a bioterrorism agent were used in
a region that had little naturally occurring disease from that
organism. 

Many diagnostic decision support systems use proba-
bilistic information about the likelihood of disease.
Because bioterrorism-related illness is relatively rare, in
the event of bioterrorism these systems will have inappro-
priately low pretest probabilities for bioterrorism agents.
Only Dxplain was described as being able to change the
probability of disease based on information about suspect-
ed bioterrorism events to improve the system’s perform-
ance (26). Additionally, no report specifically described
restricting access to the system by user type or other secu-
rity measures.

Discussion
We systematically examined the 115 published reports

of 55 detection and 23 diagnostic systems for bioterrorism
responses. We found that technologies are increasingly
available to assist detection and diagnostic tasks involved
in a bioterrorism response but that only 23 systems were
evaluated according to one or more evaluation criteria. Of
these, 13 were compared to a reference standard test, none
was evaluated in a range of clinical situations or in differ-
ent populations, and only 4 reported both sensitivity and
specificity. This remarkable lack of published evaluation
data markedly affects both purchasers and users of such
technologies. Decision makers will find it difficult to
choose systems for purchase as they make resource alloca-
tions for bioterrorism preparedness. Users of these tech-
nologies may find it difficult to interpret the detection and
diagnostic information provided by these systems. For
example, if a first responder were asked to determine the
presence or absence of a bioterrorism agent in a suspicious
powder using a detection system with a high false-positive
rate, he may cause unnecessary evacuation of environ-

ments suspected to be contaminated, work stoppages, and
anxiety. In contrast, if a first responder used a system with
high false-negative rate, he may have missed a bioterror-
ism agent, thereby risking excessive disease and death.
Thus, for detecting and diagnosing bioterrorism-related ill-
ness, users require systems that are both highly sensitive
and specific. Because ideal systems with near perfect sen-
sitivity and specificity do not currently exist, and may be
very difficult to produce for use in the field, users of avail-
able systems are faced with substantial challenges when
interpreting the results from diagnostic tests. 

We can illustrate the critical importance of sensitivity
and specificity of detection systems by considering the
anthrax attacks of fall 2001. The Trenton, New Jersey, state
police evaluated >3,500 samples of suspicious powders,
and none contained anthrax (3). For the purpose of illustra-
tion, let us assume that, before testing, 5 of these 3,500
samples were estimated to contain anthrax (i.e., pretest
probability equals 0.0014). If a detection test had a sensi-
tivity of 96% and specificity of 94% (i.e., the lower range
reported for SMART/ALERT), we can calculate the
posttest probability of anthrax with both positive and neg-
ative test results by using Bayes’ theorem (40). If such a
detection system indicated a positive result, the probabili-
ty that the sample contained anthrax would be approxi-
mately 2%. That is, 98% of the positive results would be
false-positives. If the system indicated a negative result,
the probability of anthrax in the sample would be 0.006%.
Thus, the test would be useful when negative, but provide
little help if positive. If the sensitivity and specificity of the
detection systems were both 99% (i.e., the upper range
reported for SMART/ALERT), the posttest probability
after a positive test would be 12%, and after a negative
test, virtually 0. Thus, even with a specificity of 99%, only
12% of samples indicated as positive would contain
anthrax, and 88% would be false-positive results. This
relationship between a diagnostic test’s sensitivity and
specificity and the pretest probability of disease is depict-
ed in Figure 1.

This example illustrates the challenges for bioterrorism
detection systems. Testing will often be done at very low
pretest probabilities. Thus, a bioterrorism detection system
must have very high specificity or the vast majority of pos-
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Table 3 continued. Evaluation data for diagnostic decision support systems for bioterrorism-related illness  
System name   Purpose Evaluation datab 
University of Chicago – 
Artificial Neural Network for 
Interstitial Lung Disease (38) 

To help radiologists differentiate among 11 
interstitial lung diseases by using clinical 
parameters and radiographic findings to 
develop a differential diagnosis.  

Areas under the ROC curve obtained with and without the system 
output were 0.911 and 0.826 (p < 0.0001), respectively (38). 

University of Chicago – 
Computer Aided Diagnosis of 
Interstitial Lung Disease (39) 

To aid in the detection of interstitial lung 
disease in digitized chest radiographs.  

Areas under the ROC curve obtained with and without computer-aided 
diagnostic output were 0.970 and 0.948 (p = 0.0002), respectively 
(39). 

aTB, tuberculosis; CDC, Centers for Disease Control and Prevention; ROC, receiver-operating characteristic curve. 
bWhere possible, we report sensitivity and specificity data (and highlight them in bold); if the published reports did not provide these values directly but did provide 
sufficient data for them to be calculated, we performed these calculations. 



itive results will be false-positives. In contrast, under cir-
cumstances when testing is performed at relatively high
pretest probability (for example, in a heavily contaminated
building), a negative test result will only be convincing if
the sensitivity of the system is very high. Thus, interpreta-
tion of diagnostic test results requires ongoing evaluation
of the pretest probability of a bioterrorist attack.

A common approach to minimize false-negative and
false-positive results is to perform confirmatory tests after
initial tests are completed. Such use of tests in sequence
creates additional difficulties interpreting their results.
Under ideal conditions for sequential tests, we can use the
posttest probability of the first test as the pretest probabil-
ity of the second test to calculate the posttest probability
after the confirmatory test. This calculation is only accu-
rate, however, if the sensitivity and specificity of the con-
firmatory test are the same regardless of whether the initial
test was positive or negative. If this circumstance is not
met, investigators must measure the sensitivity and speci-
ficity of the confirmatory test in samples or populations
with negative and positive results on the initial test. This
information is rarely available.

Sensitivity and specificity are defined only for a test
with two outcomes, such as positive or negative. For tests
with multiple outcomes, such as a detection system that
identifies multiple agents, investigators can characterize
the performance of the test with likelihood ratios (40).
Users can calculate the posttest probability for such a test
with the likelihood ratio form of Bayes’ theorem (40).

Evaluation of diagnostic decision support systems is
more complex because the purpose of these systems is typ-
ically to generate a differential diagnosis. Thus, the evalu-
ation determines the appropriateness of the differential
diagnosis, and perhaps, if the diseases in the differential
diagnosis are ranked, how high the correct disease is
ranked. Specific recommendations for evaluation of deci-
sion support systems have been published elsewhere (5).
The studies of the diagnostic decision support systems
included in Table 3 use a variety of approaches to assess
the performance of the systems. However, only two have
been evaluated specifically for capture of diseases caused
by bioterrorism agents in the differential diagnosis list.
Many of the systems require manual entry of patient data,
and none are in widespread use. Based on the available
evidence, we conclude that the available diagnostic deci-
sion support systems will be of limited usefulness in
response to a bioterrorism event.

Recommendations for Study 
Design of Detection Systems

For the purpose of evaluation, detection systems have
much in common with diagnostic tests. Published guide-
lines for evaluating diagnostic tests are well established
and promote study designs that provide unbiased estimates
of both sensitivity and specificity (or likelihood ratios) rel-
ative to an acceptable reference standard, in the appropri-
ate clinical population or setting.

The first important design consideration is that both
sensitivity and specificity (or likelihood ratios) must be
measured relative to an appropriate reference standard.
Many of the studies included in our review measured only
sensitivity or specificity. Because sensitivity and speci-
ficity are jointly determined by the choice of threshold for
a positive (or abnormal) test, either sensitivity or speci-
ficity can be made arbitrarily high at the expense of the
other. Thus, reporting one without the other is not inform-
ative. Reporting both sensitivity and specificity for a vari-
ety of thresholds for abnormal tests as a receiver operat-
ing characteristic (ROC) curve (Figure 2) is preferable.
ROC curves are useful because differences in sensitivity
and specificity of two tests could be due either to real dif-
ferences in the accuracy of the test or to the use of a dif-
ferent threshold for an abnormal test. When results are
reported as an ROC curve, no such confounding will
occur.
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Figure 1. Effect of sensitivity, specificity, and pretest probability on
posttest probability of anthrax’s being present. Upper curves show
the posttest probability of anthrax’s being present after a positive
detection or diagnostic test result. Lower curves show the posttest
probability of anthrax’s being present after a negative detection or
diagnostic test result. Separate curves are drawn for two diagnos-
tic tests described in the text: one with 99% sensitivity and 99%
specificity (thick) and another with 96% sensitivity and 94% speci-
ficity (thin). The arrow marks a pretest probability of disease of
0.0014, which relates to the example described in the text.



To develop unbiased estimates of sensitivity and speci-
ficity, studies of detection systems should use an appropri-
ate reference standard test, the reference standard should
be applied to all samples, the tests should be interpreted
while blinded to results of the reference standard, and the
samples or patient population should resemble as closely
as possible the populations in which the system will be
used (40). The reference standard should be used for all
positive and negative samples. Selective use of the refer-
ence standard, for example, using the reference standard
only on samples that are positive on the test under consid-
eration, creates so-called test referral bias which can pro-
duce overestimates of sensitivity and underestimates of
specificity (40). Test-interpretation bias may occur if the
result of the detection system is not determined while
blinded to the reference test (and vice versa). This bias
causes an artificial concordance between the detection sys-
tem and reference test, which results in overestimates of
both sensitivity and specificity. Finally, the detection sys-
tem should be evaluated under the most realistic conditions
possible, which may be difficult to implement for bioter-
rorism agents given the range of conditions from hoaxes
with no cases to real situations with a number of cases.

Evaluations of detection systems are ongoing (19). We
expect with the heightened attention to bioterrorism pre-
paredness planning that the systems for both detection and

diagnosis will improve, as will their evaluations.
Evaluations that adhere to the principles for design of stud-
ies of diagnostic tests will provide substantially more
information than is now available and will help users inter-
pret the results provided by these systems. Our review of
78 detection and diagnostic systems found that many of the
evaluations performed to date are critically deficient.
Further evaluative studies will delineate the usefulness of
these systems.
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