
We used ecologic niche modeling of outbreaks and
sporadic cases of filovirus-associated hemorrhagic fever
(HF) to provide a large-scale perspective on the geograph-
ic and ecologic distributions of Ebola and Marburg viruses.
We predicted that filovirus would occur across the
Afrotropics: Ebola HF in the humid rain forests of central
and western Africa, and Marburg HF in the drier and more
open areas of central and eastern Africa. Most of the pre-
dicted geographic extent of Ebola HF appear to have been
observed; Marburg HF has the potential to occur farther
south and east. Ecologic conditions appropriate for Ebola
HF are also present in Southeast Asia and the Philippines,
where Ebola Reston is hypothesized to be distributed. This
first large-scale ecologic analysis provides a framework for
a more informed search for taxa that could constitute the
natural reservoir for this virus family. 

The natural maintenance cycles of filoviruses (Order
Mononegavirales, family Filoviridae) are unknown

(1).1 Although dynamics of filoviruses as causes of epi-
demic diseases among humans, great apes, and other pri-
mates have been described in detail (2–13), the natural
reservoir, mode of transmission to hominids and pongids
(humans, gorillas, and chimpanzees), and temporal
dynamics remain unclear. Diverse taxa have been suggest-
ed as potential reservoirs, including bats, rodents, arthro-
pods, and plants (14–18).

Two observations provide clues about the nature of the
host-virus relationship. First, filovirus transmission to
humans is not common, and most occurrences can be
traced to a single index case (2,6,19) (exceptions occur—
e.g., the Durba Marburg outbreak appears to have involved
multiple independent infections of humans from a reser-
voir population presumably associated with a mine). We
assume that introductions to nonhuman primate popula-
tions also generally begin with single index cases, but this
hypothesis is more difficult to investigate. This rarity
argues against a common arthropod vector for transmis-
sion: if anthrophilic arthropod vectors were to carry

filoviruses, multiple index cases would be more common,
as many primates in an area would have the opportunity
for infection. In addition, filoviruses generally do not repli-
cate in arthropods or arthropod cell lines, leading several
authors to speculate on more incidental modes of transfer
(e.g., direct contact) (20).

Second, filoviruses show clear geographically related
phylogeographic structure. Viruses and subtypes from par-
ticular geographic areas cluster together phylogenetically,
even when occurrences from different years are studied.
This phylogeographic structure suggests a stable host-par-
asite relationship, in which viruses are maintained in per-
manent local-regional pools. This host would not experi-
ence high death rates, as primates do (7,9); evolution of
avirulence in long-term host-parasite relationships is
expected on theoretical grounds (21).

Searches for the natural reservoir of filoviruses have
taken several paths. Epidemiologic studies designed to
trace lineages of transmission in outbreaks have identified
index cases, but have not succeeded in specifying the mode
of “jump” to hominids (2,6,19). Testing large numbers of
organisms from the vicinity of outbreaks has failed to iden-
tify even a single nonhominid infection (14–16). Finally,
laboratory tests of reservoir competence of species have
documented the following: 1) no, or very limited, infection
of plants or arthropods; 2) a single marginally successful
infection of snakes but with very low levels of virus circu-
lation; 3) successful infection of bats and possibly rodents;
and 4) frequent successful, but fatal, infection in nonhuman
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viruses) and Marburg HF (diseases caused by Marburg viruses).
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primates (e.g., Chlorocebus, Macaca) (1,17,18). While
these investigations have shed some light, they have not
provided convincing evidence for a particular reservoir.

An unexplored approach to identifying the natural
reservoir of filoviruses is large-scale ecologic and geo-
graphic comparisons to detect patterns of co-occurrence
and codistribution of viruses with potential hosts. This
approach has been applied successfully to identifying
reservoir rodent species for Chagas disease (22). Our gen-
eral approach is as follows: 1) to understand the large-scale
ecology and geography of disease occurrences by using
ecologic niche modeling (23), and 2) to compare these
characteristics with ecologic and geographic patterns of
potential reservoirs. Here, we address the first step and
document broad-scale ecologic and geographic patterns in
filovirus-associated HF occurrences. 

Methods
Distributional data for filovirus-associated HF occur-

rences in hominids were accumulated from the literature
(Table). Occurrences of unknown origin were excluded
from analysis, but when reasonable guesses could be made
as to point or general area of origin (e.g., 1995 outbreak of
hemorrhagic fever due to Ebola Ivory Coast as originating
at Plibo, Liberia), they were included. All occurrences
were georeferenced (available from: URL: http://www.
calle.com/world) to the nearest 0.001°. Although assigned
geographic coordinates may not fix the exposure point pre-
cisely, they represent our best guess as to its position and
are likely to be representative of the coarse-scale ecologic
conditions. (The relatively crude spatial resolution at

which analyses were conducted makes some error in geo-
referencing irrelevant.)

Ecologic niches and potential geographic distributions
were modeled by using the Genetic Algorithm for Rule-set
Prediction (GARP) (30–32) (available from: URL:
http://www.lifemapper.org/desktopgarp/). In general,
GARP focuses on modeling ecologic niches (the conjunc-
tion of ecologic conditions wherein a species can maintain
populations without immigration) (33). Specifically,
GARP relates ecologic characteristics of occurrence points
to those of points sampled randomly from the rest of the
study region, developing a series of decision rules that best
summarize factors associated with presence (23). 

Occurrence points are divided evenly into training (for
model building) and test (for model evaluation) datasets.
GARP works in an iterative process of rule selection, eval-
uation, testing, and incorporation or rejection: a method is
chosen from a set of possibilities (e.g., logistic regression,
bioclimatic rules) and applied to the training data to devel-
op or evolve a rule. Predictive accuracy is evaluated on the
basis of the test data. Rules may evolve in ways that mimic
DNA evolution (e.g., point mutations, deletions). Change
in predictive accuracy between iterations is used to evalu-
ate whether particular rules should be incorporated into the
model; the algorithm runs 1,000 iterations or until conver-
gence. Model quality was evaluated through independent
test dataset reserved prior to modeling; a chi-square test
was used to compare observed success in predicting the
distribution of test points with that expected under a ran-
dom model (proportional area predicted present provides
an estimate of occurrence points correctly predicted, were
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Table. Virus, location, dates, geographic coordinates, and literature citation for filovirus-caused hemorrhagic fever occurrences 
Virus  Country Apparent origin Dates Latitude (°) Longitude (°) Reference 
Ebola Ivory Coast Côte d’Ivoire Tai National Park Nov 1994 5.850 

5.900 
-7.367 
-7.317 

(7,24) 

Ebola Ivory Coast Côte d’Ivoire or Liberia Plibo (Liberia) Dec 1995 4.589 -7.673 (25) 

Ebola Sudan Sudan Nzara June–Nov 1976 4.643 28.253 (3) 
Ebola Sudan Sudan Nzara July–Oct 1979 4.643 28.253 (4) 
Ebola Sudan Uganda Gulu Oct 2000–Feb 2001 2.783 32.300 (26) 
Ebola Zaire DRC Yambuku Sept–Oct 1976 2.817 22.233 (2) 
Ebola Zaire DRC Bonduni June 1977 2.967 19.350 (10) 

Minkebe, 1.733 12.817 
Mekouka, 1.400 12.983 

Ebola Zaire Gabon 

and/or Andock 

Dec 1994–Feb 1995 

1.483 12.917 

(8) 

Ebola Zaire DRC Kikwit Jan–Jul 1995 -5.058 18.909 (11) 
Ebola Zaire Gabon Mayibout Feb 1996 -1.117 -13.100 (8) 
Ebola Zaire Gabon Booue Jul 1996–Mar 1997 -0.100 -11.95 (8) 
Ebola Zaire Gabon and DRC Ekata Dec 2001–2002 0.706 14.275 (12) 
Marburg Zimbabwe Wankie?a Feb 1975 -18.367 26.483 (6) 
Marburg Kenya Nzoia or Mt. Elgon Jan 1980 0.450 34.617 (19) 
Marburg Kenya Mt. Elgon? 1987 1.133 34.550 (20) 
Marburg DRC Durba Apr 1999–Sept 2000 3.117 29.583 (27–29) 

aReported location where patient received a “bite.” Although some investigators felt the disease was related to the bite, the patient had traveled widely in Zimbabwe and 
parts of South Africa and was exposed to wildlife at several locations in Zimbabwe (6). DRC, Democratic Republic of the Congo;?,some doubt exists as to exact point of 
exposure. 



the prediction random with respect to the distribution of
the test points).

To characterize environments, we used 11 GIS cover-
ages summarizing elevation, slope, aspect, flow direction,
flow accumulation, and tendency to pool water (from the
USGS Hydro-1K dataset [available from: URL: http://edc-
daac.usgs.gov/gtopo30/hydro/), and climate characteristics
including daily temperature range; mean annual precipita-
tion; maximum, minimum, and mean annual temperatures;
solar radiation; frost days; wet days; and vapor pressure
(1960–1990; Intergovernmental Panel on Climate Change
[available from: URL: http://www.ipcc.ch/]). These cover-
ages are worldwide and provide a consistent view of eco-
logic variation across regions studied. GARP’s predictive
ability has been tested under diverse circumstances
(22,23,34–47).

To optimize model performance, we developed 100
replicate models of ecologic niches based on independent
random subsamples from available occurrences. We chose
a “best subset” of these models on the basis of optimal
error distributions for individual replicate models (34):
median area predicted across all replicate modes was cal-
culated, and the 20 models with predicted areas closest to
the median were chosen for further consideration. These
geographic predictions were combined to provide a sum-
mary of potential geographic distributions. Projection of
the Africa-based rule-sets onto maps of Asia and the
Pacific provided hypotheses of potential distributional
areas in other regions (46).

To permit visualization of the ecologic dimensions of
models, we combined best-subsets predictions with maps
of the ecologic parameters used to build them in a GIS
environment (COMBINE in ArcView 3.2). The resulting
dataset represents unique combinations of environments
and predictions; its attributes table provides the model pre-
diction for all environmental combinations, to permit visu-
alization of ecologic variation. We also compared ecolog-
ic conditions inside and outside of the modeled Ebola HF
distribution within 11 regularly spaced circular windows
(radius 50 km); comparisons were summarized through
Mann-Whitney U-statistics, permitting a nonparametric
visualization of the strength of association of each ecolog-
ic dimension (temperature, precipitation, elevation) with
the range limit.

Results
The geographic distribution of filovirus disease spreads

generally across the humid Afrotropics (Figure 1A).
Outlier occurrences lie at the eastern extreme of the distri-
bution, consisting of occurrences associated with Ebola
Sudan and Marburg viruses. Preliminary analyses of these
geographic distributions, based on random subsets of the
few data points available, indicated high statistical signifi-

cance to model predictions: predictions of the geographic
distribution of filovirus HFs correctly included random
independent subsets much better than random model
expectations (all p < 10-7). Although subsequent modeling
was done without subsetting to maximize occurrence data,
these preliminary results nonetheless indicated excellent
predictivity of our distributional hypotheses.

Modeling the distribution of Filoviridae in general (all
points in Figure 1A) produced a broad potential distribu-
tion across the Afrotropics, including areas from which
filovirus HF occurrences have not been reported (Tanzania,
Mozambique, Madagascar; Figure 1B). Predicted distribu-
tions of the two major Filoviridae clades—Ebola and
Marburg viruses—showed different geographic patterns.
When just the three African Ebola virus species were ana-
lyzed together, areas of overprediction in eastern Africa
disappeared, and predicted distributional areas included
only areas surrounding known occurrence points, except
for a few small disjunct areas in West Africa (Figure 1C).
The predicted distribution did not include all of the
Afrotropics—coastal central Africa and most of West
Africa appeared not to be included, although these models
are based on very small samples of occurrences.

When we analyzed the relatively few Marburg HF
occurrences for which distributional data exist (n = 4
occurrences), a complementary distributional area was
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Figure 1. Summary of known and predicted geography of filovirus-
es in Africa. (A) Known occurrence points of filovirus hemorrhagic
fevers (HFs) identified by virus species. (B) Geographic projection
of ecologic niche model based on all known filovirus disease
occurrences in Africa. (C) Geographic projection of ecologic niche
model based on all known Ebola HF occurrences (i.e., eliminating
Marburg HF occurrences). (D) Geographic projection of ecologic
niche model based on all known occurrences of Marburg HF (i.e.,
eliminating Ebola HF occurrences). Darker shades of red repre-
sent increasing confidence in prediction of potential presence.
Open squares, Ebola Ivory Coast; circles, Ebola Zaire; triangles,
Ebola Sudan; dotted squares, Marburg HF occurrences.



predicted (Figure 1D). Marburg HF was predicted to be
absent in the humid Afrotropics, rather appearing focused
in drier areas in eastern and south-central Africa. In con-
trast to Ebola HF, Marburg virus appears to have the poten-
tial to occur in areas from which filovirus disease has not
yet been described.

Sequential omission of Ebola virus species from analy-
ses provided a view of ecologic similarity of species (45):
if omission of a particular species causes little overall
change, then its ecologic characteristics are not distinct
from those of the remaining species. Omission of Ebola
Ivory Coast had little effect on the prediction (Figure 2A;
note predicted area in Ivory Coast); similarly, predictions
omitting Ebola Zaire included at least part of the distribu-
tion of Ebola Zaire (southern portion omitted; Figure 2B).
Eliminating Ebola Sudan, however, yielded a prediction
completely excluding the distribution of Ebola Sudan
(Figure 2C), which suggests that Ebola Sudan occurs
under a distinct ecologic regime.

Inspection of niche models of Ebola HF occurrences
(Marburg HF excluded) in ecologic space (Figure 3) pro-
vided insight into their ecologic distribution. Predicted
Ebola HF occurrences were concentrated in regions pre-
senting high precipitation combined with moderate-to-
high temperatures (Figure 3A), coinciding with the ecolog-
ic distribution of evergreen broadleaf forest, although in
specific cases that forest may be highly disturbed. In fact,
>50% of African evergreen broadleaf forest is predicted to
be within the niche of Ebola HF; no other land-cover type
exceeded 5% within the Ebola HF niche (Figure 3B). In
other dimensions, Ebola HF occurrences were distributed
centrically in African environments and did not include
extremes (Figure 3C–D).

Distributional limits are complex results of multiple
causal agents. A species is seldom limited on all sides by a
single factor; rather, distributional limits are the combined
result of many such factors. Inspection of the ecologic
dimensions coincident with modeled geographic limits of
Ebola HF occurrences (Figure 4) showed some of this
complexity. At points around the distributional limit of
Ebola HF distributional areas in central Africa, precipita-
tion dominates the range limit at point 11, but temperature
and elevation dominate at points 2, 3, and 6. Moreover,
gradients are steeper in some areas than others (e.g., point
6 vs. 3). This preliminary analysis thus illustrates the com-
plex relationships between ecologic dimensions and distri-
butional limits.

Given the mysterious origin of Ebola Reston virus
(Ebola HF among macaques in a breeding facility on
Luzon, Philippines) (9,13), a key question regarding Ebola
HF distribution and ecology is whether similar ecologic
conditions exist in Southeast Asia (e.g., Philippines).
Projecting ecologic niche models for Marburg HF in
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Figure 2. Geographic projection of ecologic niche models in which
two Ebola virus species were modeled and used to predict the dis-
tributional area of the third. (A) Ebola Zaire and Ebola Sudan pre-
dicting (Ebola Ivory Coast omitted; note that distributional area is
predicted in Ivory Coast). (B) Ebola Sudan and Ebola Ivory Coast
predicting (Ebola Zaire omitted). (C) Ebola Zaire and Ebola Ivory
Coast predicting (Ebola Sudan omitted). Darker shades of red rep-
resent increasing confidence in prediction of potential presence.
Open squares, Ebola Ivory Coast; circles, Ebola Zaire; triangles,
Ebola Sudan; dotted squares, Marburg hemorrhagic fever occur-
rences.



Africa onto Asian environments identified few “appropri-
ate” areas: only a few scattered areas in Papua New Guinea
and Indonesia (Figure 5A). Projection of Ebola HF mod-
els, however, identified broader potential distributional
areas in Southeast Asia (Figure 5B), including the low-
lands of Mindanao (Figure 5, inset), a finding that suggests
that similar ecologic conditions exist in the Philippines.

Discussion

Ecology and Geography of Filovirus Occurrences
The ecologic niche characteristics reconstructed for

filovirus species disease outbreaks coincided closely with
phylogenetic patterns in the group (1,48). That is, disease
sites for Ebola Ivory Coast and Ebola Zaire coincided eco-
logically, and these viruses are phylogenetically sister taxa.
Ebola Sudan is genetically and ecologically most distinct
among Ebola virus species, and (with Ebola Reston) forms
the sister clade to Ebola Ivory Coast + Ebola Zaire.
Correspondence between phylogenetic and ecologic pat-
terns suggests that ecologic distributions of Ebola Sudan
and Ebola Reston may prove similar; hence, the ecologic
characteristics of Ebola Sudan may provide clues about the
origin of Ebola Reston.

Marburg HF occurrence sites are quite distinct, with
minimal overlap with Ebola HF ecologic distributions,
coinciding with Marburg virus’ distant position in the phy-
logeny of the Filoviridae. This pattern suggests that
Marburg virus and the Ebola viruses may have host species
with markedly different ecologic requirements.

Ebola Reston 
The geographic origin of Ebola Reston virus has been

subject of controversy (9,49). Although the Ebola virus-
infected monkeys initially documented in Reston, Virginia,

originated in the Philippines, whether Ebola Reston occurs
naturally in the Philippines has been debated.
Nevertheless, the virus is distinct, and its geographic dis-
tribution is otherwise unknown. Given the phylogeny-
ecology correspondence documented above, the ecology
of Ebola Sudan may prove key in predicting the distribu-
tion of Ebola Reston, but the scanty occurrence data make
species-specific models difficult. Our results are relevant
in that ecologic conditions under which Ebola HF occurs
in Africa are also found in the Philippines. 

In previous analyses of animals, the conservative nature
of ecologic niches has been documented to lead to predic-
tion into regions inhabited by congener species (45). To the
extent that host-parasite codistribution and cospeciation
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Figure 3. Ecologic distribution of predicted
potential distributional areas for Ebola
hemorrhagic fever (HF) occurrences,
visualized in a few dimensions of climate.
(A) Large-scale view (all of Africa), in
which the basic concentration of Ebola
HF occurrences in hot, wet climates is
shown. (B) Distribution by land use/land-
cover type, summarized as the proportion
of overall area of land-cover types that is
predicted to be present at the highest
confidence level. (C,D) Regional scale
(distributional area predicted by all 20
best-subsets models for Ebola HF
buffered by 200 km in all directions) view
of the ecology of occurrences of Ebola
HF, visualized in dimensions of annual
mean minimum temperature, annual
mean maximum temperature, wet days,
and vapor pressure.

Figure 4. Preliminary exploration of patterns of ecologic variation
along the modeled distributional limits (highest confidence level)
for Ebola viruses in central Africa. The histograms represent rela-
tive values of Mann-Whitney U-tests for inside versus outside the
prediction area for temperature (red bars), precipitation (blue
bars), and elevation (green bars).
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may be involved in the virus-reservoir relationships of
filoviruses, prediction of potential distributional areas in
the Philippines may reflect conservative niche evolution in
the host taxon. Of course, because of historical effects
(e.g., limited dispersal) on species’ distributions, potential
distributional areas are often predicted in areas not inhab-
ited (44), so this evidence is not definitive.

Limitations of the Approach 
Limitations of our approach should be recognized.

First, small sample sizes become critical. Although predic-

tive models can be developed with relatively small sam-
ples of occurrence points (39), sample sizes for filovirus
HF disease outbreaks are so minimal that single data points
can change overall results. Examples of this sensitivity
include the Zimbabwe Marburg HF disease outbreak and
the Booue, Gabon, Ebola Zaire HF outbreak; inclusion of
these points causes geographic predictions to be expanded
considerably.

Other limitations center on the ecologic dimensions in
which the niche is modeled. If additional dimensions exist
that limit species’ distributions (and they certainly do),
GARP predictions will be overly large. Jackknife manipu-
lations (systematic omission of ecologic dimensions to
assess sensitivity to coverage density) can, to some degree,
help in assessing sensitivity to coverage completeness
(42), but dimensions more important than the set actually
used may exist. Particularly relevant is climate variabili-
ty—extreme events such as droughts and heavy rainfall
may prove particularly relevant to filovirus transmission
but are not included herein; such more complex models are
under development (A.T. Peterson et al., unpub. data).
Spurious associations between occurrence points and eco-
logic dimensions, though usually detected through inde-
pendent test datasets, can limit distributional predictions
overmuch.

Natural Reservoirs for Filoviruses
Detailed understanding of the geography and ecology

of filovirus HF outbreaks represents an underexplored
avenue of investigation regarding natural transmission
cycles of filoviruses. We assembled available information
regarding filovirus HF outbreaks and used various analyt-
ical tools to arrive at a detailed understanding of geogra-
phy and ecology of filovirus disease occurrences.
Consequently, we can now assemble criteria by which
potential reservoir taxa might be judged. If one assumes a
fair degree of host specificity in this host-parasite system,
patterns of codistribution and cophylogeny can be expect-
ed. Hence, criteria include the following: 1) African Ebola
virus reservoirs would be distributed principally in ever-
green broadleaf forest; 2) the main focus of the geograph-
ic distribution of the reservoir(s) would be in the Congo
Basin; 3) a disjunct (allopatric) distributional area would
be present in West Africa; 4) a related taxon in eastern
Africa would range in more arid habitats; 5) the reservoir
would belong to a clade more broadly distributed across
Africa and Southeast Asia.

Assessment of potential reservoir taxa by using these
criteria has begun (A.T. Peterson et al., unpub. data), with
the idea of eventually testing hypotheses of host associa-
tions through ecologic niche comparison methods (22).
The goal, to be explored in future publications, is to devel-
op reduced lists of taxa of highest priority for virus survey.
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Figure 5. Projection of filovirus ecologic niche models onto south-
eastern Asia and the Philippines to assess the degree to which
possible Philippine distributional areas are predictable on the
basis of the ecologic characteristics of African filovirus hemorrhag-
ic fever (HF) occurrences. (A) Projection of model for Marburg HF
occurrences (Figure 1D) to southeastern Asia. (B) Projection of
model for all filovirus disease occurrences (Figure 1B) to south-
eastern Asia (the projection of models for Ebola HF occurrences is
identical to this map). Inset: detail of projection to the island of
Mindanao, in the Philippines. Darker shades of red represent
increasing confidence in prediction of potential presence.
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