
Emerging Infectious Diseases  •  Vol. 8, No. 6, June 2002 555

RESEARCH

Defining and Detecting 
Malaria Epidemics in the 

Highlands of Western Kenya
Simon I. Hay,*† Milka Simba,† Millie Busolo,‡ Abdisalan M. Noor,† 

Helen L. Guyatt,*† Sam A. Ochola,‡ and Robert W. Snow*†‡

Epidemic detection algorithms are being increasingly recommended for malaria surveillance in sub-
Saharan Africa. We present the results of applying three simple epidemic detection techniques to routinely
collected longitudinal pediatric malaria admissions data from three health facilities in the highlands of west-
ern Kenya in the late 1980s and 1990s. The algorithms tested were chosen because they could be feasibly
implemented at the health facility level in sub-Saharan Africa. Assumptions of these techniques about the
normal distribution of admissions data and the confidence intervals used to define normal years were also
investigated. All techniques identified two “epidemic” years in one of the sites. The untransformed Cullen
method with standard confidence intervals detected the two “epidemic” years in the remaining two sites
but also triggered many false alarms. The performance of these methods is discussed and comments are
made about their appropriateness for the highlands of western Kenya.

pidemics of all infectious diseases generate considerable
public attention and are reported widely in the popular

and scientific press. The definition of truly exceptional num-
bers of cases from commonly perceived “epidemics” is often
difficult, however, particularly for widespread pathogens (1).
Plasmodium falciparum malaria is extensive, prevalent, and
increasing in sub-Saharan Africa (2–4). Stable endemic
malaria predominates throughout the continent, but epidemics
occur at the fringes of endemic areas, particularly among com-
munities at the southernmost latitudes, across the arid regions
of North Africa, and among the highlands of East, central, and
Horn of Africa (5,6).

In the late 1980s and early 1990s, a series of malaria “epi-
demics” were reported in the western highlands of Kenya and
other communities at high altitude in the subregion (5,7–17).
A widely held view is that the transmission of P. falciparum in
such communities is limited primarily by low ambient temper-
ature and that small changes in temperature could therefore
provide transiently suitable conditions for unstable transmis-
sion within populations that have acquired little functional
immunity (18–21). Furthermore, the highlands of Kenya are
densely populated and agriculturally productive. These factors
have contributed to the Government of Kenya’s decision to
define 15 districts in the western highlands (Figure 1.; [22]) as
being prone to epidemics and thus meriting special attention
for surveillance to increase epidemic preparedness (23).

The World Health Organization’s (WHO’s) Roll Back
Malaria’s efforts to manage epidemic malaria in sub-Saharan
Africa include supporting the establishment of early detection
(surveillance), early warning, and forecasting systems to pro-
vide adequate preparation time to prevent or contain malaria
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Figure 1. Locations of the three study hospitals and the administrative
districts they serve in the highlands of western Kenya. The inset map of
Kenya shows the 15 districts designated by the Government of Kenya
as at risk from unstable, temperature-limited, and hence epidemic
malaria. The three districts shaded in red are those in the large map.
The St. Joseph’s Catholic Mission Hospital (CMH) at Kilgoris, Tabaka
CMH, and Kisii District Hospital are shown within their administrative
boundaries of (1) Trans Mara, (2) Gucha and (3) Kisii Central District,
respectively. The districts are shown against a backdrop of a digital ele-
vation model for which a key is provided. North is to the top of the page.
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epidemics (24,25; URL: http://www.rbm.who.int/). The object
of early detection (or epidemiologic surveillance) is to monitor
a disease continually so that abnormal events can be identified
rapidly, in the expectation that intervention efforts can be initi-
ated in a timely manner (26,27). Extensive research on the
optimization and comparison of surveillance algorithms exists
(28–34); most published articles, however, are concerned with
weekly reporting of rare infectious diseases in relatively
wealthy countries. In technologically underdeveloped nations,
governments have far fewer resources for disease prevention
and medical care. Resource constraints in the health sector are
often so severe that the time a health service employee may
devote to surveillance will inevitably result in compromises
elsewhere. In such circumstances, these cost-benefit consider-
ations favor simple, robust surveillance systems (35).

We examined three simple techniques proposed for
malaria epidemic detection (24) to evaluate what early warn-
ing information would have been provided if surveillance had
been implemented using standard admissions records at three
hospitals in the western Kenyan highlands during the late
1980s and 1990s. We did not explore the meteorologic corre-
lates of temporal changes in malaria cases at these sites as a
basis for malaria early warning (6,36–38), although this is the
subject of ongoing research (39,40).

Methods

Study Area
Three hospitals providing inpatient clinical care were iden-

tified in the western Kenyan highlands (Figure 1). These hos-
pitals were selected because malaria epidemics had been
reported within the last 5 years where they were located, and
complete clinical records, spanning more than 10 years, were
available for review. The three hospitals were St Joseph’s
Catholic Mission Hospital at Kilgoris in Trans Mara District
(latitude 1.068 S, longitude 34.958 E; altitude 1,683 m);
Tabaka Catholic Mission Hospital (latitude 0.751 S, longitude
34.663 E; altitude 1,684 m) in Gucha District; and Kisii Dis-
trict Hospital (latitude 0.684 S, longitude 34.770 E; altitude
1,815 m) in Kisii Central District. The hospitals serve varying
catchment populations and are within 40 km of one another.

Each facility is located above 1,600 m, an altitude above
that defined as characterizing highland/epidemic-prone
malaria (18–20), although such limits have been challenged
(5). The average altitudinal limits of the wider area shown in
Figure 1 range from 1,600 to 2,200 m.

Monthly temperature and rainfall data were extracted for
January 1980 to December 1995 from an interpolated global
climate surface at 0.5 x 0.5° spatial resolution (41,42), using
georeferencing details from Tabaka Catholic Mission Hospital.
The synoptic year (1980–1995) shows a remarkably stable
mean monthly temperature of approximately 20°C (Figure 2a),
with peak rainfall (approximately 200 mm) occurring in the
months of April and May (Figure 2b), usually referred to as
the “long rains.” 

Clinical Data
Hospital admission registers for every ward at each facility

were located and sequentially reviewed to identify patient age,
date, and cause of admission. Month- and age-tallied cases of
“clinical malaria” were compiled for each complete year. Cri-
teria used to select malaria cases were based on whether
malaria was made as a primary, coprimary, or coincidental
diagnosis by the admitting physician. Not all diagnoses were
microscopically confirmed, and discharge diagnoses may have
been different from those defined on admission, following fur-
ther clinical and laboratory investigations. Nevertheless,
patients at each facility were treated for malaria during the ini-
tial 24 hours of admission and represent the monthly clinical
commitment to malaria case management at each hospital.
Such data are used routinely to define epidemics by local
health authorities and serve as the basis for increasing
demands for resources.

In these analyses we consider only the pediatric malaria
admissions (patients <15 years of age), who constituted
approximately two thirds of the patients at each facility
(Kilgoris, 14,079 adults and 30,793 children; Kisii, 44,043
adults and 84,648 children; and Tabaka, 23,692 adults and
55,871 children during the study period). The rationale is that

Figure 2. Meteorologic time-series for study hospitals. Temperature and
rainfall profiles for a synoptic (1980–1995). (a) minimum (bottom),
mean (middle), and maximum (top) monthly temperatures (°C); (b)
average total monthly rainfall (mm). The error bars denote standard
errors of the monthly means.
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children are more likely to give an accurate picture of local
malaria transmission than adults, as they are less likely to have
functional immunity or to have traveled and acquired the dis-
ease elsewhere. Cumulative monthly cases were also com-
puted for each year to show the overall annual burden and
acute, seasonal rises in malaria admissions. The years of
exceptional malaria cases were defined simply as the 2 years
of highest cases during the surveillance period.

Epidemic Detection Techniques
We assumed a minimum set of requirements for resource-

constrained, district-level health services in Kenya: access to a
computer, limited knowledge of a spreadsheet application, and
availability of at least 5 years of admission records from a
health facility. For this reason, we focused on a subset of those
techniques advocated by WHO for application to malaria sur-
veillance in resource-constrained environments (24).

Epidemic alerts can be based on simple incidence thresh-
olds only, as is common with meningococcal meningitis at the
district level in sub-Saharan Africa (43–46); when a threshold
is exceeded, an alert is triggered. The value of the threshold is
usually determined from expert opinion informed by an exam-
ination of retrospective case data over wide geographic areas.
This technique is not applicable to a single facility where accu-
rate population denominator data (necessary to calculate inci-
dence) are often not available and therefore not considered
further.

Many epidemic surveillance techniques aim to identify
points in a disease time series outside the 95% confidence
intervals of a normal distribution determined from the history
of cases at that location. A method proposed by Cullen (47)
uses the previous 5 years of data (in which epidemic years are
arbitrarily excluded) to construct an admissions profile for an
average year. The alert threshold for each month is then deter-
mined as the mean plus 2 times the standard deviation (strictly,
the arithmetic mean plus 1.96 times the standard deviation
should capture 95% of cases in normally distributed data [48]).
This technique was successfully applied to cases of Plasmo-
dium vivax malaria in northern Thailand during the 1980s (47).
It has also been used for surveillance of P. falciparum malaria
in the Madagascan highlands (49).

WHO has advocated the use of a conceptually similar
method that triggers an alert when current cases exceed the
upper 3rd quartile or the “upper normal limit” determined
from 5 years of retrospective monthly case data (50). For 5
years of observations, quartile 0 is the minimum, quartile 1 the
second lowest, quartile 2 the median, quartile 3 the second
highest, and quartile 4 the maximum value of the series for any
given month. If the current month’s cases exceed quartile 3, an
alert is triggered. This method has been implemented to detect
highland malaria epidemics in Ethiopia (22).

The Centers for Disease Control and Prevention has devel-
oped a further cumulative sum (c-sum) method for detecting
epidemics. It is based on the construction of an average or base
year, determined by calculating the expected number of cases

using the average for that month (and the previous and follow-
ing month) during the past 5 years (n=15) (29,51,52). For
example, the expected number of cases for March 2000 would
be derived from the average of February, March, and April
admissions from 1995 to 1999, inclusive. A ratio of present to
past cases is then usually presented as a current to past history
graph (53), with values greater than one representing disease
increases.

Statistical Analysis
WHO, Cullen, and c-sum methods were tested on the

series of pediatric malaria admissions data to evaluate their
usefulness in the identification of epidemics, defined as the 2
years of highest numbers of cases. We modified the c-sum
technique to provide 95% confidence intervals for the
expected cases so that it could be evaluated against the other
techniques. For each method, the expected cases in a given
month were defined by the previous 5 years of data and
sequentially updated for each new observation year in the
series. “Epidemic years” were not excluded from the base
years, as no objective criteria have been offered to define years
that are epidemic and excluding these years would increase the
likelihood of detecting epidemics. A skewness statistic that
measures the degree of asymmetry in a distribution around the
mean (Microsoft Excel 2000, Seattle, WA) was also applied to
the data to test assumptions of normality in the admissions
data. Positive or negative values indicate an asymmetric tail
extending towards more positive or more negative values,
respectively. The Cullen and c-sum techniques were then
repeated by using log10 transformed childhood admissions
data to investigate potential problems with the techniques that
assume normally distributed data. Confidence intervals were
determined for the Cullen and c-sum techniques on untrans-
formed and log10 normalized admissions data by using the
mean + (2x standard deviation) as well as the mean + (t value
at 0.05 confidence interval x standard error), as is recom-
mended for small sample sizes (48).

Results
Figure 3a-c shows pediatric admissions for the three study

hospitals during the surveillance period. The graphs of cumu-
lative cases (Figure 4a-c) show a distinct seasonality in admis-
sions; the sharpest rise in case numbers occurred in June and
July, immediately after the long rains in April and May (Figure
2b). The 2 years of highest case numbers were 1994 and 1998
for Kilgoris, 1996 and 1997 for Kisii, and 1997 and 1996 for
Tabaka. In these so-called epidemic years, cases were often
above normal in all months.

The child admissions data at each site were positively
skewed with values of 2.88, 1.96, and 1.78 (skewness statistic
= 0 for normal data series) for Kilgoris, Kisii, and Tabaka,
respectively (Table 1). Log10 transformations of these data
reduced the positive skew, thus helping normalize each series
to values of -0.13, 0.34, and -0.08 for Kilgoris, Kisii, and
Tabaka, respectively.
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WHO methods concluded that 41.7%, 31.5%, and 42.8%
of months in the surveillance period were epidemic for
Kilgoris, Kisii, and Tabaka, respectively (Table 2; Figure 3a-
c). The Cullen method showed fewer than half of these months
to be epidemic, 14.4%, 10.2%, and 12.8%, respectively. The c-
sum method indicated fewer still at 9.4%, 5.6%, and 10.6 %,
respectively. Log10 transforming the child admissions data fur-
ther reduced the proportion of months detected as epidemic.
Adjusting the confidence intervals for small sample sizes had
the opposite effect (Table 2). The WHO method and Cullen
and c-sum techniques using the Kirkwood confidence intervals
predicted approximately one third of all months during the sur-
veillance period as epidemic (average 31.7%, range 14.8% to
42.8 %) (Table 2; Figure 3a-c). Strict statistical evaluation
between the remaining techniques is difficult because of the
problem of retrospectively determining what months were true
epidemics; thus such evaluation was simply on the criteria of
identifying the 2 years of highest cases (Figure 4). All tech-
niques identified these 2 epidemic years in Kilgoris, but only
the untransformed Cullen method with standard confidence
intervals detected both epidemic years in Kisii and Tabaka as
well.

Discussion
Reports of epidemics in the highlands of western Kenya

increased in frequency in the early 1990s (10,12,54,55); as a
consequence, detection and control of epidemics became a pri-
ority for the recently launched national malaria strategic plan
(23). This initiative forms part of a broader international effort
to develop surveillance and warning systems for epidemic
detection in Africa as part of the WHO Roll Back Malaria ini-
tiative (24,56). The definition of epidemics continues to con-
fuse many public health practitioners specializing in common
diseases such as malaria. Epidemics are more often defined in
response to political necessity rather than by examining empir-
ical data. Little critical examination of long-term clinical data
against proposed methods for epidemic interpretation in nomi-
nally epidemic-prone areas of sub-Saharan Africa has
occurred. To address this, we examined time series of pediatric
malaria admission data during the late 1980s and 1990s from
three hospitals located in districts of the western highlands of
Kenya identified by the Ministry of Health as prone to
epidemics. 

Application of three primary epidemic detection methods
indicated alert signals in most years of the test period with or
without modifications. Rather than representing an inadequacy
in the methods, this reflected the restricted utility of these
approaches in areas of acutely seasonal malaria case burdens,
characterized by a large degree of between-year variability in
the timing of seasonal onset and a gradual increasing trend in
admissions. Clearly, having such frequent epidemic alert sig-
nals makes the usefulness of such techniques in this particular
area of the western Kenyan highlands questionable.

A further characteristic of this area is between-year vari-
ability in malaria incidence. During the 1990s, at least two

Figure 3. Time-series of child admissions and epidemic alerts for the
three study hospitals.Time-series of child admissions (<15 years) for
Kilgoris (a) Kisii (b), and Tabaka (c) for the 1980-1999, 1987–2000, and
1981–2000 time periods, respectively. The results of the “epidemic” pre-
diction techniques are shown for the World Health Organization, Cullen,
and c-sum techniques in red, blue, and black lines, respectively. For the
Cullen and c-sum methods, the top line represents untransformed data
with standard confidence intervals; the second line is untransformed
data with confidence intervals adjusted for small sample sizes; the third
line shows log10 transformed data with standard confidence intervals;
and the fourth line shows log10 transformed data with confidence inter-
vals adjusted for small sample sizes.
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important and dramatic seasonal rises in malaria occurred at
each of the three hospitals (Figure 4). Sharp rises occurred
during the months of February, and more commonly April or
May (with the onset of the rains [Figure 2b]). Plotting monthly
cumulative cases provided a more informative tool than tradi-
tional time-series plots to show seasonal deviations from pre-
vious years and simultaneously represented overall annual
malaria cases. For the two exceptional years at each of the hos-
pitals, the most sensitive of the “epidemic” detection methods
shown in Figure 3 was the nontransformed Cullen technique
that used standard confidence intervals. This technique, how-
ever, would also have given rise to a substantial number of
false alarms during the observation period.

Applying the statistical techniques we have outlined high-
lights several methodologic issues that deserve comment, par-
ticularly for the Cullen and c-sum techniques, and should be
considered by those advocating further application of these
tools to common vector-borne diseases. First, mosquito-borne
diseases that are sensitive to climate and hence are often sea-
sonal, can show a skewed non-normal distribution in time.
Methods that depend on arithmetic means and standard devia-
tions (with their assumptions of data normality) to define alerts
may require data transformation. Simple log10 transforms
achieved data normalization and decreased the sensitivity of
the techniques at all three facilities in this study. Second, each
technique recommends using 5 years of retrospective admis-
sions data so that standard deviations and hence alert thresh-
olds for an average month are based on only five samples. A
more appropriate formula for calculating the standard devia-
tion in such situations has been proposed (48), although apply-
ing such modifications to these health facilities made the
epidemic detection techniques substantially more sensitive.
Third, when cases are increasing over the duration of the
study, it is important to take a 5-year moving average to adjust
the magnitude of the base year accordingly. Testing for the
sensitivity of these techniques to the duration of moving aver-
age used was beyond the scope of this research but requires
future investigation. Fourth, exclusion of “epidemic years” is
an undefined procedure. For example, how many months
detected as epidemic are needed in any year to prompt that
year’s exclusion from the moving average, and after exclusion,
what data are used to define the confidence intervals for alerts?
This exercise demonstrates that many factors need to be more
fully considered before widely advocating such techniques.

Our analyses used records of severe and complicated
malaria admissions to tertiary-level health facilities, where
diagnosis is often supported by microscopy. We have not
applied the epidemiologic surveillance tools to patients with
mild, ambulatory cases of malaria treated as outpatients. These
latter data may provide a more robust tool for early detection,
but they are also subject to imprecise clinical case definitions,
where diagnosis is almost always made presumptively without
microscopy. Improvements in the provision of microscopy in
the diagnosis of outpatient malaria may facilitate improve-
ments of these surveillance tools.

Figure 4. Cumulative case graphs for child admissions in the three hos-
pitals. Cumulative child admissions (<15 years) in Kilgoris (a), Kisii (b),
and Tabaka (c). All years for which data were available are shown,
1980–1999, 1987–2000, and 1981–2000 time periods for Kilgoris, Kisii
and Tabaka, respectively. Black dashed lines are all “normal” years.
The blue line shows mean average cumulative child admissions over
all years. Red lines show epidemic years, defined as the 2 years of
highest total admissions. For Kilgoris these exceptional years are 1994
and 1998, for Kisii they are 1996 and 1997, and for Tabaka they are
1997 and 1996.
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A further important problem that needs to be addressed is
what constitutes an epidemic. Epidemic malaria was precisely
described by MacDonald as “… an acute exacerbation of dis-
ease out of proportion to the normal to which the community is
subject….Epidemics are common only in zones of unstable
malaria, where very slight modification in any of the transmis-
sion factors may completely upset equilibrium, and where the
restraining influence of immunity may be negligible or absent,
and they therefore show a very marked geographic distribu-
tion” (57,58).

The term epidemic is applied more liberally today for
malaria in the Kenyan highlands; it is essentially used for any
occurrence of cases in excess of normal. Much of the confu-
sion around defining epidemics spatially or temporally relates
to knowing what is (or should be) expected routinely. Endemic
malaria, for example can show considerable expected temporal
variation. This can relate to climate-driven variation, seasonal-
ity, interepidemic periods resulting from population dynamics,
or long-term trends (39). These factors can all operate simulta-
neously and are not epidemics, although they may have sub-
stantial public health implications. Deviations from any of
these expected variations are true epidemics if they result from

a disturbance of the normal epidemiologic equilibrium (50).
Such considerations are crucially important in the determina-
tion of the normal situation against which epidemics are mea-
sured.

The highlands of western Kenya is an area where so-called
malaria epidemics have been increasingly reported. The area
was recently highlighted by the government of Kenya as epi-
demic prone. Considerable international efforts are also being
made to develop and promote early warning and improved
case-detection systems for epidemic-prone areas (24,56,59).
These results indicate that the simple epidemic detection tech-
niques recommended to date require substantial refinement
before they can be considered operationally robust, since they
lack the required sensitivity in detecting aberrant case burdens.
The further question as to whether these techniques are appro-
priate for facilities that have pronounced and acutely seasonal
transmission of malaria is still open. The dual goals of technique
development and a more comprehensive description of the local
malaria epidemiology in this region are the subjects of ongoing
research. A related article in this issue outlines the implications
of these data for interpreting the epidemiology of P. falciparum
malaria in this highland region of western Kenya (60).

Table 1. Descriptive and skewness statistics for child admissions at three study hospitals, western Kenya

Kilgoris (1980–1999) Kisii (1987–2000) Tabaka (1981–2000)

Transformation Normal Log10 Normal Log10 Normal Log10

Mean 128.30 1.86 503.85 2.61 232.80 2.29

Minimum 3.00 0.48 95.00 1.98 35.00 1.54

Maximum 1,043.00 3.02 2,229.00 3.35 1,110.00 3.05

Sum 30,793.00 446.00 84,647.00 438.00 55,871.00 549.00

Count 240.00 240.00 168.00 168.00 240.00 240.00

Standard deviation 157.46 0.48 375.87 0.28 147.80 0.26

Standard error 10.16 0.03 29.00 0.02 9.54 0.02

Skewness 2.88 -0.13 1.96 0.34 1.78 -0.08

Table 2. Comparison of total number of epidemic months detected by the World Health Organization (WHO), Cullen, and 
cumulative-sum techniques for three study hospitals, western Kenyaa

Technique Method

Kilgoris
1998–1999
N=180 (%)

Kisii
1992–2000
N=108 (%) 

Tabaka
1986–2000 
N=180 (%)

WHO Not transformed 75 (41.7) 34 (31.5) 77 (42.8)

Cullen Not transformed, SCI 26 (14.4) 11 (10.2) 23 (12.8)

Not transformed, KCI 47 (26.1) 16 (14.8) 45 (25.0)

Log10 transformed, SCI 13 (7.2) 4 (3.7) 12 (6.7)

Log10 transformed, KCI 39 (21.7) 15 (13.9) 36 (20.0)

C-sum Not transformed, SCI 17 (9.4) 6 (5.6) 19 (10.6)

Not transformed, KCI 55 (30.6) 27 (25.0) 64 (35.6)

Log10 transformed, SCI 6 (3.3) 3 (2.8) 8 (4.4)

Log10 transformed, KCI 66 (36.7) 30 (27.8) 76 (42.2)
aFigures are number of months defined as epidemic in the monitoring period. Brackets are the percentage of the total months defined as epidemic. 
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