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Letter from the Deputy Administrator

Dear JTS Readers,

In February 2005, the Norman Y. Mineta Research and Special Programs
Improvement Act created a new U.S. Department of Transportation modal
administration, known as the Research and Innovative Technology Adminis-
tration (RITA). The mission statement for this new organization is straight-
forward: identify and facilitate solutions to the challenges and opportunities
facing America’s transportation system.

RITA’s staff came from the former Research and Special Programs Adminis-
tration’s Office of Innovation, Research and Education, the Secretary’s Office
of Intermodalism, the Bureau of Transportation Statistics, the Transportation
Safety Institute in Oklahoma City, and the Volpe National Transportation
Systems Center in Cambridge, Massachusetts. More than 750 DOT employees
make up this unique organization.

RITA will enable DOT to more effectively coordinate and manage the
Department’s research portfolio and expedite implementation of crosscutting
innovative technologies. Secretary Mineta’s vision of RITA is part university
research lab and part Silicon Valley entrepreneurial company. He wants this
administration to foster the exchange of ideas and information in a high-
priority incubator committed to research and move these innovative ideas
from the laboratory into the field. We look forward to Journal of Transpor-
tation and Statistics (JTS) readers coming along and even participating in
our journey of discovery.

RITA is dedicated to the advancement of DOT priorities for innovation and
research in transportation technologies and concepts. These innovations will
improve our mobility, promote economic growth and safety, and ultimately
deliver a more integrated transportation system.

RITA is not intended to displace the R&D activities of the various DOT oper-
ating administrations, neither will it intervene with their associations with
particular transportation entities or modal communities. While the offices
assigned to RITA continue their current, vital work, they will grow. This
growth will afford DOT the opportunity to realize greater collaboration,
information sharing, coordination, support, and advocacy for its widespread
research efforts.



As the first Deputy Administrator of RITA, I thank all the JTS readers for
their continued interest in this publication. Please feel free to share this publi-
cation with others. We look forward to expanding our readership through
you, our valued readers. I hope you find this publication and our new admin-
istration a valued resource.

Please do not hesitate to contact me or the JTS editorial staff with your ques-
tions and comments about either this publication or other transportation
interests.
Sincerely,

ERIC C. PETERSON

Deputy Administrator
Research and Innovative Technology Administration

vi



The Dynamics of Aircraft Degradation and Mechanical Failure

LEONARD MACLEAN" "
ALEX RICHMAN?

STIG LARSSON'
VINCENT RICHMAN?®

' School of Business Administration
Dalhousie University
Halifax, Canada B3H 3J5

2 AlgoPlus Consulting Ltd.
Halifax, Canada B3H 1H6

% Sonoma State University
Rohnert Park, CA 94928-3609

ABSTRACT

This paper looks at the predictability of system fail-
ures of aging aircraft. We present a stochastic,
dynamic model for the trajectory of the operating
condition with use. With failure defined as the
operating condition below a critical level, the
dynamics of the number of failures with accumu-
lated use is developed. The important factors in the
prediction of mechanical failures are the number of
previous repairs and the time since last repair.
Those factors are related to repair procedures, with
the time of repair and the extent of repair (fraction
of good-as-new) being variables under the control
of the operator. The methodology is then applied to
data on non-accident mechanical failures affecting
safety that result in unscheduled landings.

INTRODUCTION

An aircraft is a complex machine composed of
many interrelated parts, components, and systems.
Electrical and mechanical systems are designed
with an expected life length, where length refers to
time units (hours) of use. As the aircraft and sys-
tems age and their use accumulates, they gradually
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degenerate until they are no longer able to perform
the functions for which they were designed; that is,
the system is in a failed state.

A nonfunctional part, component, or system can
be upgraded through replacement or repair, in
which case the condition of the aircraft is restored
to some degree. Maintenance can be based on the
condition; that is, items are repaired when they fail.
However, failure during operation can have serious
consequences, so detection of items with a high
probability of failure through periodic inspection
becomes a major component of maintenance.

The failure rate (the probability of failure at a
point in time) for a degenerating system increases
with use and age. Figure 1 depicts alternative pat-
terns of failure rates for an aircraft that undergoes
periodic maintenance (a similar figure appears in
Lincoln 2000). In case A, the aircraft has an increas-
ing failure rate with age and reaches an acceptability
threshold, at which point the aircraft would need to
be replaced. The failure rate declines with periodic
maintenance, but the improvement through mainte-
nance diminishes over time. The threshold is not
reached in case B, likely because of increased effort
and cost put into maintaining the aircraft.

The cost of maintenance required to keep aircraft
airworthy (below the threshold) is a major concern
of operators. Although replacement time was set by
manufacturers at 20 years for many aircraft models,
this life length was extended by operators. An
assumption has been made that aircraft operating
condition can be kept at an acceptable level beyond
the intended life through maintenance, but costs are
high.

In 1997, 46% of U.S. commercial aircraft were
over 17 years of age and 28% were over 20 years.
In 2001, 31% of the U.S. commercial fleet were
over 15 years of age, and those aircraft accounted
for 66% of the total cost of maintenance per block
hour.! Although aging (the degeneration in operat-
ing condition with accumulated use) inevitably
occurs, it is modified by a number of factors: quan-
tity and quality of repair work; intensity of use;
deferral of the schedule for planned maintenance;

YA block hour refers to flying time in hours, including
takeoff and landing.

FIGURE 1 Probability of Failure of a Single Aircraft

Case A: Increasing Failure Rate
Probability
of failure

Threshold
t, t, t3
Age

Case B: Constant Failure Rate
Probability
of failure

Threshold

t t, t,

Age
Sources: AlgoPlus, 2004, available at http://www.cislpiloti.org/
Technical/GAIN/WGB; and AvSoft, 2004, available at http://
www.avsoft.co.uk/.

and the environment (Alfred et al. 1997). It should be
noted, however, unscheduled maintenance accounts
for up to 60% of the overall maintenance workload
(Phelan 2003).

In addition to the possibility of maintaining an
airworthy operating condition, other reasons exist
for not retiring an aircraft from the fleet: the high
cost of new aircraft; the increase in demand requir-
ing an expanded fleet; and an earlier shortage of
production capacity for new planes (Friend 1992).
These and other factors result in a large number of
aircraft in use beyond their planned retirement. A
claim could be made that commercial aircraft are
being strained to perform well beyond their
intended operating life. Of course, if this is true we
would expect that either the rate of aircraft failure

2 JOURNAL OF TRANSPORTATION AND STATISTICS VS8, N1 2005



would show a corresponding increase or the operat-
ing hours per aircraft would decrease because planes
would be out of service for repairs more frequently.

In the United States, Service Difficulty Reports
(SDRs) contain records of the safety problems an
aircraft experiences during operation. This data-
base, maintained by the Federal Aviation Admin-
istration, is considered a potential source of
important information on aircraft failures (Sampath
2000). A study comparing failure rates by carrier
identified significant factors that explain the differ-
ences in the rate of SDRs across carriers (Kanafani
et al. 1993). Because accumulated aircraft use (age)
was not included in that study, degradation with age
and differences over time in the safety of individual
aircraft were not considered.

A THEORY OF DEGRADATION
AND REPAIR

With age and accumulated use, the many inter-
related parts and components in an aircraft can be
assumed to degrade. The operating condition or
airworthiness of the aircraft is based on the status of
individual parts, components, and systems, with the
items that are most degenerated being the main
determinants. A certain level of degeneration
implies failure; that is, the item is no longer opera-
tional. As well, failure of certain components or
combinations of components may render the air-
craft not airworthy, which means the aircraft is in
a failed state. To address the failure of operating
systems, airline management undertakes a program
of maintenance, with scheduled preventive mainte-
nance and unscheduled repair/replacement of failed
parts, components, and systems. This section pre-
sents a conceptual model for the degradation and
repair of aircraft. The model provides a foundation
for hypotheses about operations that can be tested

with field data.

Degradation

To characterize the degradation process, consider
that the operating condition of an aircraft is cap-
tured by an unobserved health status index. The
value of the index is derived from the condition of
the various parts, components, and systems in the

aircraft. Let ¢ be the age of an aircraft, defined by
the accumulated hours of use, and let

Y(¢) = the health status of an aircraft at age ¢.

The status is a dynamic stochastic process, with
the change in status at any age being a random vari-
able. Assume that the average condition declines
with age, but at any point variation in the status,
based on environmental factors and operating char-
acteristics, can occur. The dynamics of degradation
at a point in time can be represented by a stochastic
differential equation as

dY(t) = p,dt+0,dZ, (1)

where

u, < 0is the degradation rate,

0, > 0is a scaling factor, and

dZ, is an independent random process.

For example, if the random process is white
noise, the stochastic differential equation defines a
Wiener process, and the distribution of the health
status at a given age is Gaussian (Aven and Jensen
1998). So, with starting state y, and constant
parameters u and o, the distribution of status after
¢ time periods is Normal,

Y(t) o« N(vo +ut, 10°) 2)

Mechanical Failure

In this degradation framework, at any age (hours of
use) the possibility exists that the status of a item
during operation will drop below the critical level for
functionality and the component reaches a failure
state. Degradation and failure of components lower
the value of the health status index Y. In particular,
failure of parts and components included on a mini-
mum equipment list (MEL) indicates the aircraft
remains airworthy. Beyond the MEL, moderate
mechanical failures that occur during aircraft opera-
tion would render the aircraft not airworthy.
Assume that the critical health status level y* defines
airworthiness. Then an aircraft failure occurs when
Y(t) <y*.

Based on the stochastic model, the many parts,
components, and systems have a probability of fail-
ure during operation and, therefore, the aircraft has
a probability of failure. For an airworthy aircraft,
the important variable is the time to failure. Let T be

MACLEAN, RICHMAN, LARSSON & RICHVMIAN 3



the length of life (hours of use before failure) of
an aircraft, with the probability distribution
F(t) = Pr(T<t), and the corresponding density
f(#). Then

A(t) =

1-F(1)
is the failure rate at time ¢ (Aven and Jensen 1998).
The failure time distribution is determined by the
failure rate because

F(t) = 1- exp{jé/l(s)ds} .

In the example, where the state dynamics are
defined by a Wiener process, the failure time is
inverse Gaussian with density

2
1 ((yo—y*)—ut)J
f) = —= RO IR A k2
0= == exp[ - 3)
Repair

Failure during operation may precipitate unsched-
uled maintenance, particularly when items beyond
the MEL fail and consequently the aircraft is not
airworthy. The repair/replacement of failed items is
called on-condition repair. On-condition repair
brings the system back to the operating status
expected of the system given its age, that is, the
same status as just prior to failure. With these mini-
mal repairs (Block et al. 1985), the aircraft failure
rate is unchanged since other parts, components,
and systems are still in the degraded state attained
just before repair. Typically, moderate mechanical
failures result in such minimal repair.

In addition to unscheduled maintenance, the
whole system is subject to time-based or block
repair, where items are inspected and replaced/refur-
bished before failure. This scheduled preventive
maintenance improves the operating condition to a
status greater than expected for its age and corre-
spondingly reduces the system failure rate (Brown
and Proschan 1983). To incorporate repair into the
degradation model, the age variable is partitioned
into intervals based on the block repair times.
Assume that the first scheduled block repair is at age
(hours of use) 7, and subsequent block repairs are
at regular intervals of 6 hours of use, where d <.
Then age ¢ can be written as

t=It+k0+r, (4)

where I = 1ift>1, I =0ift<r;

k:}t—gz[ ft>7,k=0ift<7; and
r=t-It-ko.

The notation ]x[ defines the greatest integer
less than x. Equation (4) gives the age in terms
of (I + k) = the number of repairs, and r = the use
since the last block repair. The intervention with a
block repair improves the health status of an air-
craft above the level expected for its age. Let the
improvement level from a block repair at age ¢ be
up to the line

y(t) = a+pt, (S)

where a > y* and f<0.

The repair line is theoretical and the important
parameter is 8, which describes the repair policy to
return the aircraft to a fraction of good-as-new at
scheduled times. If 8 = 0, then repair always brings
the plane to the same health status regardless of age.

To simplify the presentation, repair policies that
are equivalent in terms of the total repair effort will
be considered. Let

L = the expected length of the operating life of
an aircraft.

Assume that all feasible repair policies have the
same total repair over the expected life of the air-
craft. That is,

jg(a +pt)dt = a*L,

for some constant a*. With this condition, the
repair policy is determined by 8, which also deter-
mines the distribution of repair over the aircraft’s
lifetime.

The partition of age at block repairs generates
renewal cycles for the degradation process, with the
first cycle starting at the initial status vy, and subse-
quent cycles beginning at the status defined by the
repair line:

yj(Taéaﬂ) = a+ﬁt/’3 (6)

where ¢, = 7+ (j—1)0,j = 1,...k. The repair pol-
icy is defined by:  — the hours of use until the first
block repair; 0 — the hours of use between subse-
quent block repairs; and §— the repair fraction.
Using the definitions of ¢; and y;, the increase in the
health status at each block repair from f can be
calculated. The policy determines the starting state
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FIGURE 2 Aircraft Degradation and Repair
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Sources: AlgoPlus, 2004, available at http://www.cislpiloti.org/
Technical/GAIN/WGB; and AvSoft, 2004, available at http://
www.avsoft.co.uk/.

and length of renewal phases or cycles for the
degeneration process. Figure 2 illustrates the cycles
of degradation and repair for an aircraft.

NUMBER OF FAILURES

In each renewal phase of the degradation model,
there is a chance that the aircraft fails; that is, its sta-
tus drops below the critical level y* . Let T} = time to
critical condition y* in cycle j starting from y; 4,
j = 1,2,... . The failure time distribution for T; is
written as F,(s|z,d,$), with density f(s|z,9,8),
where the repair policy (r,0,8) determines the
starting status. Given the failure time distribution,
the failure rate in the jth cycle is

__[(s]n,8.8)
Ai(s]t,0,pB) = m v

Consider

N(#) = the number of aircraft failures to age ¢
for repair policy (7,96, 8). (8)
Because
t
[A(s|z,0.8)ds = —In(1- F(2))
0

the expected number of failures is
E(N(t)) = I(=In(1-Fy(t)))

k
=Y In(1-F;,4(8))

j=1

~In(1-Fy o). (9)

In the failure rate for each renewal phase, the proba-
bility distribution for the time to failure has the
same form, but the starting state in each phase
declines if B<0. With ¢, = 7+(j-1)0, and the
starting state in phase j + 1 as

. L
y; = a+fti=a*+p r+(/—1)6—§),

define

Y(x,y;) = ~In(1-F;,1(x)). (10)
Thus, y(x, y;) is the expected number of failures

between times 0 and x in phase j + 1, with failure

time distribution F;,; and starting state y;. Then

E(N(2)) = I - ¥(7.y0)

k
+ 3 P0.y) + (7, V1) -
i=1

The degradation process and repair policy are
determined by parameter values, and those policies
determine the properties of the expected number of
failures over time. Let y,; and y;
derivatives of 1 with respect to x and y, respec-
tively. Thus, v,
with use (degradation) within a phase, and ¥, is
the change with respect to the phase starting state,
determined by the block repair policy. The follow-
ing general results establish the expectations for

(11)

denote first

is the change in expected failures

mechanical failures when the degeneration model
applies.

Proposition 1 (degeneration): If the health status
of an aircraft degenerates with use, then between
block repairs, the failure rate with use increases, as
does the expected number of failures in a fixed-
width use interval.

In the dynamic model, degeneration follows from
u < 0. With degradation, ¥, = A>0,and v, >0,
which implies an increasing failure rate between
repairs.

Proposition 2 (imperfect repair): If the block
repair is imperfect, then the failure rate with use
since the last repair is nondecreasing with the num-
ber of previous block repairs, and the expected
number of failures in a fixed (use since last repair)
interval is nondecreasing with the number of
repairs. If the repair fraction decreases over time,
then the expected number of failures is increasing.

In the model, y; >0.1If @<y, = 0, then the
expected number of failures in a fixed interval is

MACLEAN, RICHMAN, LARSSON & RICHMAN 5



constant after the initial block repair. If <0, then
the starting state y decreases, with increasing failure
rates in successive phases between block repairs.

Proposition 3 (repair interval): If the imperfect
repair fraction is decreasing over time, then the
expected number of failures in a fixed-use interval
increases/decreases as the block repair interval
increases/decreases.

Block repair increases the health status above
that expected for accumulated use, so more block
repairs (shorter times between block repairs) raise
the expected value of y and decrease the failure rate
and number of failures.

FAILURE MODEL

The link between the latent state model for degrada-
tion/repair and the model for the number of failures
shows how the operating practices of airlines can
manifest themselves in mechanical failures, safety
problems, and unscheduled maintenance. Historical
data on failures and maintenance will have that
complex relationship embedded. The information
on failures and block repairs is available, but the
degradation rate and extent of repair (fraction of
good-as-new) are unknown. However, from Propo-
sition 1, the time since the last block repair reflects
degradation, and from Proposition 2, the extent of
the repair is directly related to the number of block
repairs. The transformation of equation (11) for the
expected number of failures to an expression in
terms of the number of block repairs and the time
since the last block repair is achieved by a series
approximation to the function for E(N(z)).

From the model, the average level of repair is a*.
Consider the first order approximation to ¥(d,y)
around (3, a*):

Y(3,y,) = Co(t,0,a*) + Cy(7, 0, a*) x . (12)

In the last (incomplete) phase, a second order
approximation to the number of failures around
(0, a*) is reasonable, assuming the failure rate is
increasing monotonically with use. Then

W(rye.1) = Do(t, 0, a*) + Dy(7, 0, a*)k
+ Dy(7, 0, a*)r

+Dy(1, 0, a*)r’ . (13)

The coefficients in the approximating functions
are defined by derivatives of v, evaluated at
(7, 9, a*) . Substituting the approximations in equa-
tions (12) and (13) into equation (11), the expected
number of failures has the form

E(N(t)) ~ By + Byl + B,k + Byk®

+Byr+ B’ (14)
k 2
(Note that >i= k';k )

j=1
A representation of the number of failures is
shown in figure 3.

FIGURE 3 Number of Failures in an
Observation Window
N

/ T } N(t,t)

0 T tv T+ t, T+20

Sources: AlgoPlus, 2004, available at http://www.cislpiloti.org/
Technical/GAIN/WGB; and AvSoft, 2004, available at http://
www.avsoft.co.uk/.

Thus, By is the expected number of failures in the
first phase. {B,, B3} capture the expected number of
failures in subsequent phases, and {B,, B} capture
the expected number in the last (incomplete) phase.
The coefficients in the expected number function
that relate to the propositions are B; and Bg. If the
block repair is imperfect, then B;>0. Figure 3
shows this effect with the failure function starting
above the origin at block repair times. An acceler-
ated failure rate between block repairs implies
Bs >0, which is shown with a steeper slope in suc-
cessive phases between repairs.

The approximating equation for the expected
number of failures is in a very suitable form for
analysis. Consider an observation window (interval)
(t15ty), where t,—#, <0 . With #; = [T+ k0 +7,
and t, = I,t + k,0 +r,, the number of failures in
the interval (¢,t,) is approximately

n = E(N(%y,t,)) = E(N(t,)) - E(N(#,)),

6 JOURNAL OF TRANSPORTATION AND STATISTICS VS8, N1 2005



so that
n = By(I,—1;)+By(k, —ky) + B3(/e§— ki)
+ By(ry—11) + Bs(rs—11) . (15)

This change model relates the number of failures in
an observation window to the degeneration and
the block repairs in the window. In equation (15),
(I, = I) = 1 if the first repair is in the interval, and
zero otherwise; (k, — k) = 1 if a later repair occurs
in the window, and zero otherwise.

MODEL TESTING

We used data from AlgoPlus (2004) to test the fail-
ure model on operating failures and AvSoft (2004)
on aircraft use. For the purposes of this study, an
operating failure is defined as an unscheduled
landing due to mechanical problems affecting safety.
Thus, an unscheduled landing is a record of an
operating condition at or below a critical or inter-
vention level. In figure 2, the unscheduled landings
(failures) occur when the health status drops to the
critical level, where airworthiness fails. It is also
possible that components fail and the event does not
lead to an unscheduled emergency landing. As men-
tioned earlier, a minimum equipment list details
which components may fail without the need for an
unscheduled landing. In terms of the degradation/
repair model, the critical condition line is below the
condition for failures on the MEL, so that reaching
the critical line implies unsafe operation and a need
to interrupt the flight of an aircraft.

Data

The record of unscheduled landings over time pro-
vides an information base for analyzing the degen-
eration in the operating condition of an aircraft.
The AlgoPlus data contain detailed records on all
unscheduled landings as reported in the Service
Difficulty Reports for all commercial aircraft in
the United States. The AvSoft data maintain
records on departures and flying hours for all com-
mercial aircraft in North America. Both datasets
have the serial number, chronological age, model,
and carrier/operator for each aircraft.

An observation window from 1990 to 1995
inclusive was chosen, and all aircraft operating

during that time for three operators and two models
were selected for this study. For each aircraft, the
following information was recorded: 1) model; 2)
operator; 3) age on December 30, 1995; 4) use
(block hours, cycles) by month from January 1990
to December 1995; 5) dates out of service for at
least one month between 1990 and 1995; and 6)
number of unscheduled landings between 1990 and
1995. We interpreted the out-of-service period in
the observation window as a time when scheduled
repair was undertaken. The identification of these
periods is within a record of otherwise continuous
use. Outside the observation window, the block
repair (preventive maintenance) cycle was set at 10
years for the first block repair and 8 years for subse-
quent block repairs. This is based on the recommen-
dations for D-check cycles.2 Of course, in practice
the time of block repairs would be variable across
aircraft and using a fixed value (outside the win-
dow) could reduce the power of the fitted models.
Table 1 presents a brief description of the aircraft
in the dataset. For the aircraft in the study group,
table 1 shows substantial differences across models
and operators in the age of aircraft as of December
1995 and the number of unscheduled landings
between January 1990 and December 1995.

TABLE 1 Description of the Study Sample
Average
Average unscheduled

Operator Model Number age (yrs) landings
0 M; 230 10.43 3.15
M, 34 5.17 1.82
O, M, 221 7.74 1.35
M, 0 — —
0O, M, 73 10.83 0.96
M, 83 6.93 0.77

The definition of age in the degradation of air-
craft refers to hours of use rather than chronological
age. However, an aircraft operator might make little
distinction between airworthy aircraft of varying
ages when making decisions on use. To consider
this point, we looked at the relationship between

2 A D-check refers to the major maintenance and overhaul
programs in which the aircraft is completely stripped
down and inspected, with many parts and components
replaced or refurbished.
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flying hours per month and chronological age in
the data for the period 1990 to 1995. The correla-
tion in the data between monthly flying hours and
age is r = 0.07. The intensity of use appears almost
constant across age, indicating that aircraft are not
being used less as they age. With constant use per
unit time, the accumulated hours of use are almost
a scalar multiple of chronological age. So, calendar
time was used in the model for predicting the num-
ber of failures; that is, the time between block
repairs and the time since the last repair will be
measured in calendar time rather than accumulated
hours of use.

Regression Model

The formulation of a change model for the number
of failures creates a framework suitable for observa-
tion and statistical analysis. Based on the model in
equation (15), consider the regression model

N(ty,8) = ﬁijxl +ﬂgX2 +ﬁgX3
+BiX, +piXs+e, (16)

where
N(t,t;) = the number of failures between ages #;
and t,,

X = the indicator for the first 7 -repair in the
interval,

X, = the indicator for the kth 0 -repair in the
interval, k > 1,

X3 = the difference between the squared number of
repairs, k§ - ki ,

X, = the difference in residual times, 7, — 74,

X = the difference in squared residual times,
ro—1r2, and

¢ = the random error.

In the regression model, assume that the unsched-
uled landings and item failures from degradation
are directly related to the number of block repairs
and the time since the last block repair. There are
also other factors such as repair skill level, mainte-
nance philosophy, and operational environment
involved in unscheduled landings (Phelan 2003). We
will assume that these other factors are associated
with the operator. As well, the aircraft model is a
factor in failure rates. So, the coefficients in the
regression model depend on the aircraft model and

the aircraft operator. This is reflected in the regres-
sion model with a superscript g on the coefficients.

The coefficients in the regression model are coun-
terparts of the coefficients in the failure model, and
appropriate tests characterize the role of degrada-
tion and repair on failures for a particular model
and operator combination. Table 2 displays the rele-
vant research hypotheses.

TABLE 2 Research Hypotheses

Regression model

hypothesis Interpretation
H:B1-87>0 Block repair is incomplete; not to
Ba=F: good-as-new.

H: ﬂé’ >0 The repair fract'ion of good-as-
new is decreasing.

H: IBZ >0 The fa}Iure rate increases with the
time since block repair.

H: ﬁg >0 There is an accelerated failure

rate with increasing time since
repair.

A comparison of the coefficients for different
model and operator combinations would reveal dif-
ferences in model degeneration rates and/or differ-
ences in operator maintenance practices. To include
comparisons, an expanded regression equation is
defined. Consider the indicator variables:

U =1 for model M; and 0 otherwise
V, =1 for operator O; and 0 otherwise
V, =1 for operator O, and 0 otherwise.

The regression equation for defining model and

operator effects is

5 2 3

N(t, 1) = 3 BX;+ |3 > 4 ViX;

j=1 i=1j=1

2
+ Y i UX5, | +e. (17)
j=1

An equivalent formulation, which reveals the

effect on coefficients, is

3 2
N(ty, 1) = 3] [ﬂ/+ z}”i/‘VJXf

j=1 i=1
2

+Z(ﬂ3+/+ViU)X3+7'+3. (18)
j=1

To simplify notation, consider the vectors
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B1 Ap Ay 0
B2 A1z A2z 0
B =|Ps|iAr= Al hp = |Aps|sy = 0
Ba 0 0 71
Bs 0 0 Y2

Table 3 shows the variations on the regression
equation.

TABLE 3 Model Variations

q ViU Parameters

1 000 B =p

2 100 B =B+

3 010 B =B+

4 001 B =p+y

5 101 ﬁs =fB+A+y
6 011 B° = B+iy+y

Table 4 presents the hypotheses for testing the
effect of differences in models and operators.
TABLE 4 Comparison Hypotheses

Hypotheses
H:21,#0

Interpretation

Repair effect for operator O, differs
from others

H:A,#0 Repair effect for operator O, differs
from others
H:y#0 The failure rate since repair depends

on the aircraft model

Fitted Model

The maintenance policies of a carrier as well as the
particular design (components and systems) in an
aircraft model are major factors in the operating
characteristics of an aircraft. Selecting a single air-
craft model from a single carrier removes the com-
plication of varying models and carriers, and thus
the assumption of constant degradation and repair
parameters is reasonable. This experimental setting
is ideal for focusing on the degradation of the oper-
ating condition with accumulated use. As such, the
data for operator O, were used with degradation
model (16), because the O, fleet consisted only of
B737 aircraft.

Because the number of failures is a counting vari-
able, the error variance is not likely to be constant.
Therefore, an iteratively reweighted least squares
estimation method was used, where the weights
were reciprocals of the fitted values (McCullagh and
Nelder 1989). The effect of weighting was minimal,
so the unweighted sums of squares are reported.
The results from fitting the degradation model to
the operator O, data are given in table 5.

TABLE 5 Fitted Failure Model

Variable Parameter Estimate T P
X, B1 -154  -652 0.000
X B2 6.39 5.03 0.000
X, Ba 0.12 6.02 0.000
X; Bs 0.02  10.86 0.000
ANOVA

Source SS df F P
Regression 615.79 4 96.22 0.000
Error 347.21 217

Total 963.00 221

Clearly the overall fit of the change model is
strong (F = 96.22). Furthermore, the individual
components in the model are highly significant.
Maintenance in the observation window and time
since maintenance are important factors in predict-
ing the number of unscheduled landings that occur
in the window. Of particular significance is the
acceleration in the number of repairs (increasing
failure rate) as time since repair increases
(ﬁAS =0.02, T = 10.86). With reference to Proposi-
tion 1, the regression provides the following result.

Result 1 (degradation): The rate of unscheduled
landings increases with time since the last block
repair.

Furthermore, there is evidence that the block
repair is not as good-as-new, because the sign on
X, = I, - I, is negative and the sign on X, = k, - k; is
positive. A test on the difference f,-4, = 7.93 is
highly significant (P < 0.001) . However, the data did
not allow for a test of diminishing repair fraction.
The aircraft in the operator O, fleet are relatively
new and the maximum is k = 1. The regression gives
the analogous result for Proposition 2.

MACLEAN, RICHMAN, LARSSON & RICHMAN 9



Result 2 (imperfect repair): The rate of unsched-
uled landings decreases after a block repair, with the
decrease greater for the initial repair than for subse-
quent repairs.

To consider the issue of differential effects for the
aircraft model and operator, the additional terms
with indicator variables were included. Table 6 pre-
sents the regression results. The additional sum of
squares for models and operators indicated in table
6 are considered after including other effects. That
is, the outcome (number of unscheduled landings)
was adjusted for the model effect when considering
the operator effect, and it was adjusted for the oper-
ator effect when considering the model effect. In
both cases, the effects are statistically significant
(i.e., there is a differential effect for operators and
models). In the context of the regression equation,
the effect of maintenance on unscheduled landings

TABLE 6 Comparison of Models and Operators

Variable Parameter Estimate T P
X B1 146  —4.73 0.000
X, B2 2.84 219 0.029
X, B4 0.18 7.51  0.000
Xs Bs 0.014 713 0.000
Vi X, Y11 2.44 6.04 0.000
Vi Xo V12 1.88 1.39 0.166
VoXo V22 3.52 157 0.116
Ux, A -0.14  -3.06 0.002
UX; Ay 0.004 0.99 0.325
ANOVA (OPERATOR)

Additional
Source SS df F P
Operator 131.12 3 13.125 0.000
Error 2,104.73 632
Total 4,964.00 641
ANOVA (MODEL)

Additional
Source SS df F P
Model 40.91 2 6.143  0.002
Error 2,104.73 632
Total 4,964.00 641

was not the same for the operators in the study. As
well, the effect of the time since maintenance was
not the same for the models selected.

Result 3: The relationship between the rate of
unscheduled landings and the time since the last
block repair and the number of block repairs
depends on the aircraft model and operator.

Using the indicator variables, it is possible to
write out the fitted equation for each (operator
and model) type. The estimates for equation
parameters are given in table 7. The equation for
operator O,(g = 3) is slightly different from the
equation using only O, data, owing to the greater
variation in using multiple operators and models.
However, it is a good reference for understanding
the changes in the equation with the operator/model
variations. The biggest operator effect is the differ-
ence of O;(q = 2,5) from the others on the estimate
B, . For aircraft models, the estimate of 3, is most
affected.

TABLE 7 Comparison of Estimates

g ViU gl B B ps

1 000 -1.46 2.84 0.18 0.014
2 100 0.99 4.70 0.18 0.014
3 010 -1.46 6.35 0.18 0.014
4 001 -1.46 2.89 0.04 0.018
5 101 0.99 4.70 0.04 0.018
DISCUSSION

The operating condition of aging aircraft has been a
hotly discussed topic for more than a decade. The
Federal Aviation Administration’s position is that
the operation of older aircraft is an economic deci-
sion and not a safety issue; that is, aircraft can be
repaired to a safe operating condition and the cost
of those repairs is the issue.

This study considers the trajectory of the health
status of an individual aircraft, with an emphasis on
episodes where flights are interrupted because of
mechanical failures affecting safety. In the context of
a model for mechanical failure, two experiments
were carried out. In the first experiment, a single
model and carrier were analyzed for the potential
impact of aircraft age (accumulated use) and repair
on schedule reliability. The study assumes that all
the selected aircraft are equivalent except for age,
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and the fleet management practices of the carrier
remain consistent over time. In this setting, the vari-
ability in the failure rate (unscheduled landings) can
be partly attributed to the aging of the aircraft and
incomplete repair during preventive maintenance.
The second experiment involved multiple operators
and aircraft models. With the same failure model,
the differential effect of operational practices and
aircraft design can be studied.

The following can be concluded from the results
of this study.

1. The percentage of variation in unscheduled
landings that can be explained by degradation
with age and incomplete repair is high.

2. Age (accumulated hours of use) has a statisti-
cally significant effect on failures (unscheduled
landings), with an increasing failure rate as age
increases.

3. The improvement in the operating condition
with planned preventive maintenance is not to
good-as-new.

4. The relationship between failures and degrada-
tion differs from model to model.

5. The relationship between failures and repair
differs from operator to operator.

The clear relationship between unscheduled
landings and degradation/repair in the regression
model has implications for the maintenance poli-
cies of operators. The operator has control over
the repair intervals—(7,0) and the repair effort
B —the fraction of good-as-new. The dependence of
the regression coefficients on the maintenance
parameters (7, 0, 8) is implied in this paper, but that
connection can be made more explicit by using the
actual derivatives in the series approximations. In
that way, changes in the values of the maintenance
parameters would translate into changes in the rate
of unscheduled landings. Therefore, an operator
could explore the outcome (in terms of unscheduled
landings) of changes in the repair parameters, for
example, the block repair interval.

The purpose of our research was to establish
the feasibility of predicting unscheduled landings
from data on use and maintenance. An earlier
study (Nowlan and Heap 1978) found that 89% of
aviation mechanical malfunctions were unpredicted
using operating limits or undertaking repeated
checks of equipment. The results of this work indi-
cate that important problems in the operation of
aircraft can be studied with existing field data. Use
of these results in the management of an airline
would require additional study, but a step in that
direction has been taken here.
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ABSTRACT

This paper presents forecasting trends for numbers
of air passengers and aircraft movements at the three
main airports in Switzerland: Zurich, Geneva, and
Basel. The case of Swiss airports is particularly inter-
esting, because air traffic was affected in the recent
past not only by the September 11, 2001, terrorist
attacks but also by the bankruptcy of the national
carrier, Swissair, that same year. A structural time
series model (STS) is created using Stamp software to
facilitate forecasting. Results, based on readily avail-
able data (i.e., passengers and movements), show
that STS models yield good forecasts even in a rela-
tively long run of four years.

INTRODUCTION

Airports are now widely recognized as having a
considerable economic and social impact on their
surrounding regions. These impacts go far beyond
the direct effect of an airport’s operation on its
neighbors and extend to the wider benefits that
access to air transport brings to regional business
interests and consumers.

The economic benefits of air transport may be
assessed by looking at the full extent of the industry’s
impact on the overall economy, from the movement
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of passengers and cargo to the economic growth that
the industry’s presence stimulates in a local area.

In this respect, Switzerland represents an inter-
esting case. First, half of the earnings of the Swiss
economy come from abroad. Fast, direct access to
the different markets around the world is therefore
very important, especially when Switzerland’s
dependence on exports will increase in the future. In
this economy, the industry with the highest share of
exports is metallurgy and mechanical engineering.
Around 75% of its production is exported. In the
Swiss tourism industry, exports represented by the
expenses of foreign tourists are also important. Of a
total tourism revenue of 22.2 billion Swiss francs
(CHF) in 2003 (Swiss Federal Statistical Office
2004), 12.6 billion CHF (60% of the amount) came
from foreign tourists.

Second, Swiss air transport has recently been
facing rapid change. During the last half of the
1990s, Swiss airports revisited their respective strat-
egies following the decision made by the national
carrier, Swissair, in 1996 to concentrate all long-
haul flights at Zurich-Unique Airport (ZRH). Also
at this time, the Basel/Mulhouse Airport (BSL)
made plans to become a European hub or a spoke
for Swissair, and, therefore, decided on significant
expansion investments. This obliged Geneva
International Airport (GVA) to adopt an open-
sky policy, where foreign air carriers could benefit
from so-called “fifth-freedom” rights, enabling
them to provide intercontinental services to and
from Geneva. The Swissair bankruptcy in 2001
changed the context, calling the expansion policy
of ZRH airport into question.

This study uses the data from the three main
Swiss airports—ZRH, GVA, and BSL—to show the
overcapacity of two of the three by forecasting these
series to 2006. The average share of overall aircraft
movements at the three airports was: 46% (+5),
32% (£3), and 22% (+£3); for passengers, the share
was 59% (£5), 32% (+4), and 9% (=3), respectively.

The structure of the paper is as follows: the next
section describes the data used for this analysis, then
we provide the forecasts based on three models (one
for each airport) to a horizon of 2006. All sections
use structural time series (STS) models and the
Stamp software for STS (Koopman et al. 2000). The

last section provides conclusions based on these
results.

DATA

For our analysis, we obtained data from the statis-
tical department of each airport studied. Each pro-
vided yearly observations from 1949 to 2003,
except for GVA, whose data began in 1922. We
considered two principal indicators: air movements
and passengers.

Traffic Forecasts

We built bivariate models for each airport using the
vector of variables

)
Ve = )’

where m, denoted the number of movements for a
given airport, and p, denoted the number of passen-
gers. The choice of the bivariate model seems
appropriate, because aircraft and passengers belong
to the same economic system and this kind of model
allows for interaction between the two variables.
These models are called Seemingly Unrelated Time
Series Equations (SUTSE) and are an extension of
univariate forms, with the advantage of allowing for
cross-correlation leads between variables. In Stamp,
SUTSE are particularly appealing because, on the
one hand, models with common factors emerge as a
special case; on the other, the direct analysis of the
unobservable components provides a more efficient
forecast and inference (see appendix 1 for details).
In this study, the variables are transformed to loga-
rithms so that the model is multiplicative. Such a
transformation allows for percentage changes rather
than absolute changes in traffic levels and also helps
to stabilize the variances of the variables.

Analysis for GVA

For GVA, while annual data are available from
1922, the first major facility was built in 1949.
Given that the period 1949 to 1952 was one of
transition, we used data from 1953 to 2002. The
observation for 2003 was used to evaluate the
probability of a structural break using the post-
predictive features of Stamp (Koopman et al. 2000,
pp. 39-40).
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Table 1 shows the hyper-parameters of the model
(table A1 in the appendix provides an interpretation
of these values). Table 2 shows statistics tests nor-
mally used to evaluate the goodness-of-fit of the
model. In the case of GVA, only the Box-Ljung (test
of residual serial correlation) statistic is slightly sig-
nificant (p-value = 0.08) for passengers. The model is
a local linear trend and a common cycle (table 3).

Table 1 also provides the list of intervention vari-
ables.! There is no intervention for passenger series,
but there are two interventions in the aircraft move-
ment component. The first occurs in 1956 and is a
positive level shift, probably explained by the
increase of movements owing to the start of the jet
aircraft era. The outlier intervention (AO) in 1967 is

! Gee appendix 1 for the definition of the intervention
variables.

difficult to explain; however, we retained it in the
model for consistency.

The analysis of the components obtained in the
STS modeling (i.e., trend, slopes, and cycles) high-
lights some interesting features of the phenomena
under study. Figure 1 shows some of the components
of the models. First, the slopes are parallel in loga-
rithms, suggesting that the rates of growth, though
different, have a parallel evolution. In statistical
terms, it means that the system composed of the pas-
sengers and movements is co-integrated to an order
of (2,2) and there is a combination that is stationary
(see Koopman et al. 2000, p. 86; Song and Witt
2000, p. 56). As the data are in logarithms, this
component represents the rate of growth and can be
read as tracking its acceleration and deceleration.

TABLE 1 Hyper-Parameters Given as Standard Deviations and Interventions
Airports
GVA ZRH BSL
Variable Passengers Movements Passengers Movements Passengers Movements
Level 3.95E-02 7.3E-03 nil nil 3.9E-02 2.0E-03
Slope 1.2E-02 8.6E-03 1.9E-02 6.7E-03 1.8E-02 2.2E-02
Cycle p =0.83 p =0.88 p =0.98
2.1E-02 1.6E-02 1.2E-02 2.4E-02 3.6E-02 3.0E-02
Irregular 0.0E+00 2.5E-02 1.9E-02 6.7E-03 9.8E-03 3.5E-02
Interventions nil +LS 1956** +AO 1957** —-AO 1957~ nil nil
nil +AO 1967* -LS 2002*** -LS 2002** nil nil
Model LLT+cycle Smooth trend LLT+cycle
Cointegration C(2,2)+common cycles nil C(2,2)
Key: *** = p-value < 0.01; ** = p-value < 0.05; and * = p-value < 0.1; the sign in the intervention row indicates the sign of its

coefficient.

TABLE 2 Statistical Values of the Goodness-of-Fit Test

Airport

GVA (1953-2002)

ZRH (1953-2003) BSL (1956-2002)

Passengers Movements

Passengers Movements

Variable Passengers Movements
Standard error 5.17E-02 4.43E-02
Normality 5.92 0.12
Heteroskedasticity 0.51 0.37
Durbin-Watson 1.98 1.92
Box-Ljung 11.20* 6.45
R-squared 0.36 0.64

4.39E-02 3.75E-02 7.61E-02 8.00E-02
3.92 2.31 2.52 0.61
1.62 0.51 0.44 0.31
1.89 1.89 1.51 1.78
7.59 12.84* 5.40 7.64
0.63 0.34 0.51 0.48

Key: * = p-value < 0.1.
Note: For definitions, see the appendix.
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TABLE 3 Cycle Parameters and Final Growth Rates for Three Swiss Airports

Cycles Slope
Growth rate
Amplitude at the  Period at the end of
Airport Variable end of the series (years) Covariance the series
Passengers 22 11.90 1.0 29
GVA (1953-2002)
Movements 1.6 1.0
Passengers 3.6 8.96 4.2E-01 -0.9
ZRH (1953—-2003)
Movements 7.2 1.1
Passengers 18.2 9.11 9.8E-01 2.0
BSL (1956—2002)
Movements 111 -1.9

FIGURE 1 Slope Components and Cycles for Aircraft Movements and Passengers at GVA: 1953-2002
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The growth rates gradually declined from the  rates clearly reflects the increase in the jet aircraft
mid-1950s to the mid-1970s and then stabilized at  era. The mid-1950s brought the prospect of com-
about 3% for passengers and 1% for movements  mercial jet airliners in the near future, with all it
(see the last column in table 3). This difference in ~ would entail in terms of longer runways and greater
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terminal capacity. The Swiss and French authorities
reached an agreement concerning an exchange of
land with France. Provision was also made for a
sector of the future terminal to become a “French
Airport,” linked to Ferney-Voltaire in France by an
extra-territorial connection. The agreement was
ratified by the Federal Assembly in 1956 and by the
French Parliament in 1958.

Other important features summarized in table
3 for GVA are the existence of a cycle of approxi-
mately 12 years that is stochastic, but with a cor-
relation of 1; this means that the two cycles
(passengers and air movements) move together. The
table also shows that the amplitude of the cycle (at
the end of the series) is less than 2.5% of the trend
for passengers and less than 2% for movements.
Figure 2 shows the trend and the actual values in
logs with the contribution of the cycles.

Table 4(A) shows the number of passengers fore-
cast and observed for 2003 and 2004. The forecasts
underestimate the observed figures by about 3% for
2003 and 6% for 2004. Table 4(B) shows that air-
craft movements observed and forecast are very
close for both 2003 and 2004, both approximately
1.6 hundreds of thousands.

In spite of the slightly high error for passengers,
table 4(A) shows that the numbers observed remain
inside the confidence interval of one standard error,
and therefore the model does not need to be
reviewed. In 2003, GVA outperformed the 2000
record for passengers; this upward tendency was
confirmed in 2004. This increased passenger level
can be explained by the innovative policy carried
out by the GVA authorities and the reinforcement of
the presence of low-cost carriers that have a high
passenger load rate for their flights. As an example,
on April 22, 2004, the GVA Board decided to adopt
a loyalty policy for both the old and new companies
operating in the airport. Under this policy, GVA
would return up to 40% of the airport taxes
(excluding the share relating to security) to all com-
panies that signed a commitment to operate from
the airport for three to five years. At the same time,
GVA decided to segment its terminals. The principal
terminal remains a conventional one, and GVA ren-
ovated the old terminal and offered to let all compa-
nies (even though low-cost companies suggested this

FIGURE 2 Trend Plus Cycle and Actual Values (in
Logarithms) for Movements and
Passengers at GVA: 1953-2002
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measure) use it at a lower tax level than the princi-
pal one. Table 4 (B) shows that GVA will need more
than two years to return to the maximum level of
movements registered in 2000 (1.71 hundreds of
thousands).

Figure 3 also shows the forecasts for 2004 to
2006, which indicate a strong upward trend for pas-
sengers and a slight upward trend for aircraft move-
ments. Once more, this difference in the speed of
evolution between movements and passengers can
be explained by the aggressive GVA policy in trying
to capture the low-cost market (e.g., easyJet, which
has an excellent aircraft occupancy rate). Thus, with
25% of the market share of GVA traffic in 2003,
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TABLE 4 Forecasts of Numbers of Passengers and Aircraft Movements
A. PASSENGERS (millions)

Airport Year 2003 2004 2005 2006
Forecast 7.86 8.05 8.29 8.19
Observed 8.09 8.59
GVA (1953-2002) RMSE 0.43 0.69 1.02 1.33
Error —2.84% —6.29%
Forecast in sample 16.41 16.55 16.59
Observed 17.02 17.25
ZRH (1 —2.
(1953-2003) RMSE in sample 1.62 2.41 3.27
Error in sample —4.87%
Forecast 2.85 2.84 3.07 3.49
Observed 2.48 2.59
BSL (1 —2002
SL (1956-2002) RMSE 0.23 0.44 0.70 0.10
Error 14.92% 9.65%
B. AIRCRAFT MOVEMENTS (hundreds of thousands)
Airport Year 2003 2004 2005 2006
Forecast 1.64 1.66 1.67 1.69
Observed 1.63 1.67
GVA (1953-2002) RMSE 0.07 0.10 0.14 0.17
Error 0.61% —0.60%
Forecast in sample 2.78 2.95 3.16
Observed 2.69 2.67
ZRH (1953-2003
( ) RMSE in sample 0.20 0.29 0.37
Error in sample 4.12%
Forecast 1.01 0.97 0.99 1.04
Observed 1.00 0.78
BSL (1956-2002
( ) RMSE 0.09 0.15 0.22 0.30
Error 1.00% 24.36%

Key: RMSE = root mean squared error.

easyJet has become, for the first time, the most
important carrier in Geneva. The market share of
the national airline, Swiss, amounted only to

21.3%.

Analysis for ZRH Airport

For ZRH airport, we considered data from 1953,
which coincided with the formal inauguration of the
present location (also called Kloten Airport). During
the 1980s and 1990s, the airport experienced rapid
expansion. The number of passengers reached 12
million in 1990 and 22 million in 2000. Thus, in
1995 the Ziirich electorate accepted a further expan-
sion program for the airport, with a new terminal, a
new airside center (linking the different terminals)

and underground facilities. Initially, the expectation
was to complete the expansion by 2005, with the
capacity of the airport increasing from 20 million to
40 million passengers per year. As a consequence of
the events of 2001, which form the object of this
analysis, this extension phase is being implemented
more slowly and Terminal B (capacity of about §
million passengers) has been closed down.

The model calculated on the sample data from
1953 to 2002 shows that the observed totals for
2003 lay outside the forecast confidence interval of
one standard deviation. Therefore, the authors
reviewed the model, taking 2003 as the last obser-
vation, and a level shift intervention in the model
for 2002. Table 1 shows that the intervention has a
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FIGURE 3 Forecast Figures for Movements and
Passengers at GVA
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significant negative coefficient for both series, pas-
sengers and movements, indicating that the shift in
both trends is decreasing. The model is a smoothed
trend with a drift.

Figure 4 shows the slope, namely the rate of
growth for the series. For movements, the range was
about 5% (from 6% to 1%) and was quite steady.
For passengers, the range was about 19% (from
18% to —1%). The figure also shows the external
shocks for both series. Indeed, the rate of growth
ZRH passengers becomes negative in the same year
that Swissair went bankrupt.

Analysis for BSL Airport

The analysis of BSL airport uses observations from
1956 to 2002. The reason for chosing 1956 is that
at that time the facilities development process was
quite mature. When the airport reached 3 million
passengers per year at the end of 1998, expansion
seemed to be essential and urgent. Extension work
on the terminal buildings will allow for further
expansion in the number of passengers in the future,
to a capacity of 5 million per year.

The model is a local linear trend, plus a cycle,
having a common slope, which means a cointegra-
tion (2,2) for the two series. The estimated growth
rate of the fitted stochastic trend is positive for
passengers (about 2%) and negative for movements
(—2%) at the end of the sample period.

Table 4(A) shows a high error in the overestima-
tion for passengers in 2003, which could be due to
the drastic reduction of flights by the national car-
rier, Swiss (elimination of 11 destinations and 7
transfer flights since March 2003), which strongly
affected the number of transit passengers. The good
performance in the forecast of movements could be
explained, in part, by the increasing number of
charters (over 3% against 2002) following the
arrival of new carriers (EuroAirport 2004).

The 2004 forecast is better for passengers than for
movements, nevertheless both forecast figures
remain inside the confidence interval of one standard
deviation. On the one hand, the number of passen-
gers on scheduled flights increased by 8% against
2003, given the arrival of easy]et offering four new
destinations. On the other hand, the decrease in the
number of movements is explained by the increasing
load rate and the use of aircraft with larger capacity
(EuroAirport 2005). The former fact explains the
apparent contradiction of the increasing number of
passengers despite a decreasing number of move-
ments. Finally, this high error in the forecast suggests
that Basel Airport is in a structural change phase
(i.e., the percentage of transit passengers in 2004 was
2%, whereas in the past it was approximately 28%).
Nevertheless, BSL seems to be growing once again
owing to a policy centered more on low-cost carriers
and charters and much less on its original vocation
of being a Euro-Hub.
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FIGURE 4 Slope Components for the Zurich Airport Model with
External Shocks Chronology: 1953—-2002

Slope
0 p
Cuban
17.5 missile crisis
Iraqi invasion
15.0 of Kuwait
12.5
Slope for OPEC ol
10.0 | Passengers embargo U.S. stock 9/11.and
: market crash Swissair
75 bankruptcy
5.0 -\“\ /“/\/ /\\
25 Slope for ~====l-e____._ L *\
0 movements ‘\‘_‘
_25 | | | | | | | I | |
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

CONCLUSION

The forecasts here show that neither ZRH nor BSL
seems likely to return to the level of the record year
of 2000, either for passengers or for aircraft move-
ments, by 2006. The only airport that was able to
beat the record numbers achieved in 2000 was
GVA, but only in the case of passengers.

The innovative policy carried out by GVA was a
good solution to overcome the 2001 crises of the
bankruptcy of Swissair and the U.S. terrorist
attacks. This being said, GVA had begun to rethink
its strategy earlier than the other two airports,
owing to the decision of the national carrier to
concentrate all long-haul flights at ZRH in 1996.

The high errors in the forecast figures for BSL
are a result of the structural changes taking place at
that airport since 2003; namely, an evolution away
from being a spoke and toward becoming a city-to-
city European airport. Therefore, the analysis of
those differences could be a tool for assessing the
effectiveness of the measures undertaken by BSL. In
fact, table 4(A) shows that a slightly decreasing
trend was forecast for passengers between 2003
and 2004, whereas the observed figures show the
opposite. This may be due, at least in part, to the
success of the new policy adopted by the Board of
BSL.

Finally, the use of Stamp software on the series of
passengers and movements through a SUTSE model
appears to be an interesting tool for forecasting air

transportation data. On the one hand, the forecasts
are good if there are no structural changes (as in the
case of BSL); on the other hand, analysis of the com-
ponents (i.e., trends, slopes, and cycles) gives a good
insight into the dynamic of the series. Moreover, the
data used (i.e., passengers and movements) are easily
available.
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APPENDIX

The structural time series model aims to capture the
salient characteristics of stochastic phenomena, usu-
ally in the form of trends, seasonal or other irregular
components, explanatory variables, and intervention
variables. This model can reveal the components of a
series that would otherwise be unobserved, greatly
contributing to thorough comprehension of the
phenomena. We describe here only the elements
necessary for this study; for a complete description
see Harvey (1990) and Koopman et al. (2000). An
STS multivariate model may be specified as:
Observed variables = trend + cycle
+ intervention + irregular

The algebraic form for the N series is:
Ve =pm Y+ AL +e,

e,~NID(0,2%) t=1..T (1)

Unless otherwise stated, the elements in equation (1)

are (N x 1) vectors,

where vy, = the vector of observed variables,

M, = the stochastic trend,

¥, = the cycle,

A =the N x K* matrix of coefficients for the inter-
ventions, and

I,=the K x1 vector of interventions.

The stochastic trend is intended to capture the long-

trend movements in the series and trends other than

linear ones, and is composed of two elements: the

level (2) and the slope (3). The trend described

below allows the model to handle these.

un = ﬂt—l+ﬂt—l+'lt

n,~NID(O,%) t=1.,T (2)
ﬂt = ﬁt—l+s\t
s,~NID(0,2}) t=1..,T (3)

If the variances of the irregular components &, in
(1), the disturbances of the level #, in (2), and at
least one of the slope terms §, are simultaneously
strictly positive, the model is a local linear trend.

When the level component is fixed and different
from zero, and when the two other variances are
not zero, the model is called a “smoothed trend
with a drift.”

For a univariate model, the cycle @, has the fol-
lowing statistical specification:

Y, | _ | cosA, sind ||y, g L] K
W) —sini, cosA ||y, , K, q|
t=1,.T (4)

where A, is the frequency, in radians, in the range
0<A,<1,k,, and k,_, , are two mutually uncorre-
lated white noise disturbances with zero means and
common variance ai ,and p is the damping factor.
The period of the cycle is 2z /4, .

Cycles can also be introduced into a multivariate
model. The disturbances may be correlated; the
same, incidentally, can occur with any components
in multivariate models. Because the cycle in each
series is driven by two disturbances, there are two
sets of disturbances and Stamp assumes that they
have the same variance matrix (Koopman et al.

2000, p. 76), that is:

E(ki’)=01=1,.. T (5)

where Z_ isa N x N variance matrix.
Stamp has pre-programmed the following exoge-
nous intervention variables used in this study:

1. AOQ: it is an unusually large value of the
irregular disturbance at a particular time. It
can be captured by an impulse intervention
variable that takes the value of the outliers as
one at that particular time, and zero else-
where. If #,, is the time of the outlier, then
the exogenous intervention variable I, has

the following form: “

lift=t,
I, = t=1.,T
fao {0 ift=z,,
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2. LS: this kind of intervention handles a struc- =

tural break in which the level of the series
shifts up or down. It is modeled by a step
intervention variable that is zero before the
event and one after it. If 7 is the time of
the level shift, then the exogenous interven-
tion variable L has the following form:

[
Oift<t
L =4 " ioalT
LS lLift>¢;
Output "
Table A-1 illustrates the nature of the outputs used
in the main text. The figures are taken from table 1
in the text.
[
Diagnostics

The diagnosis test statistics for a single series in an
STS model are the following (see Koopman 2000,
pp. 182-183):

Normality test: the Doornik-Hansen statistic,
which is the Bowman-Shenton statistic with the
correction of Doornik and Hansen. Under the
null hypothesis that the residuals are normally
distributed, the 5% critical value is approximately
6.0.

Heteroskedasticity test: A two-sided F-test that
compares the residual sums of squares for the
first and last thirds of the residuals series.

DW: The Durbin-Watson statistic for residual
autocorrelation; under the null hypothesis, it is
distributed approximately as N(0,1/T), T being
the number of observations.

Box-Ljung QO-statistic: A test of residual serial cor-
relation, based on the first P residual autocorrela-
tions and distributed as chi-square, with P-n+1
df, when # parameters are estimated.

TABLE A-1 Interpretation of the Hyper-Parameters of the Model

for Geneva International Airport

Variables Passengers Movements Comments
Level 3.95E-02 7.3E-03 Variances of level terms
Slope 1.2E-03 8.6E-03 Variances of slope terms
Cycle p =0.83 Damping factor
2.1E-02 1.6E-02 Variances of cycles
Irregular 0.0E+00 2.5E-02 Variances of irregular terms
Interventions nil +LS 1956** Interventions: timing and coefficient's
nil +AO 1967+ SIgn (+1-)
Model LLT+cycle
Cointegration C(2,2)+common cycles

Key: ** = p-value < 0.05.
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ABSTRACT

This paper describes recent improvements in mea-
suring ton-miles for the air, truck, rail, water, and
pipeline modes. Each modal estimate contains a dis-
cussion of the data sources used and methodology
employed, presents a comparison with well-known
existing estimates for reference purposes, and dis-
cusses the limitations of the data. The resulting esti-
mates provide more comprehensive coverage of
transportation activity than do existing estimates,
especially with respect to trucking and natural gas
pipelines.

INTRODUCTION

The Bureau of Transportation Statistics (BTS) is
improving some of its basic estimates of transporta-
tion activity. This paper describes proposed ton-mile
estimates for the air, truck, rail, water, and pipeline
modes. Each modal estimate contains a discussion of
the data sources used and methodology employed,
presents a comparison with well-known existing
estimates for reference purposes, and discusses the
limitations of the data. This paper should be viewed
as part of a continuing series of steps forward. Addi-
tional planned work will allow BTS to further
improve its basic estimates of transportation activity.

KEYWORDS: Transportation measurement, ton-miles.
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CONCEPT

Ton-miles is the primary physical measure of freight
transportation output. A ton-mile is defined as one
ton of freight shipped one mile, and therefore
reflects both the volume shipped (tons) and the dis-
tance shipped (miles). Ton-miles provides the best
single measure of the overall demand for freight
transportation services, which in turn reflects the
overall level of industrial activity in the economy. In
addition, a ton-mile estimate is necessary in order to
construct other estimates of transportation system
performance, such as energy efficiency and accident,
injury, and fatality rates.

Domestic ton-mile estimates are usually devel-
oped by aggregating data for individual freight
transportation modes. Data for air freight, railroad,
and water transportation are readily available as a
result of government provision of infrastructure or
residual economic regulation. Comprehensive pipe-
line data are difficult to obtain, because a significant
percentage of pipeline traffic is “in-house” transpor-
tation for companies that produce and refine oil.
Ton-mile data for the trucking sector are even more
problematic due to the large number of shippers,
receivers, and trucking firms, as well as the substan-
tial percentage of in-house trucking traffic. All data
sources suffer, at least to some degree, from gaps in
the desired scope of coverage.

The Eno Transportation Foundation has pub-
lished historical ton-mile estimates for many years
(Eno 2002, p. 42), but no longer does so. In more
recent years, BTS has provided alternative estimates
in National Transportation Statistics (NTS) (USDOT
BTS 2003). But due to the problems described
above, these well-known sources do not appear to
provide complete, reliable estimates of this basic
transportation measure. BTS, therefore, undertook a
research program to address these shortcomings.
This paper presents the results of this research.

DATA SOURCES

BTS developed its improved estimates of domestic
ton-miles (traffic within and between the 50 states,
the District of Columbia, Puerto Rico, and the U.S.
Virgin Islands) to maintain compatibility with other
U.S. Department of Transportation Strategic Plan

data. These annual ton-mile estimates illustrate

long-term trends. Comprehensive coverage is
achieved by combining reported data from estab-
lished sources, estimates from surveys, and calcula-
tions based on certain assumptions. Table 1 briefly
compares the scope of the improved BTS ton-mile
estimates with the NTS and Eno estimates, while
figure 1 presents all three estimates for all modes
(also see appendix table A1). The NTS and Eno esti-

mates are not available for the most recent years.

Air

Figure 2 shows air freight ton-mile data from the
three datasets (also see appendix table A2). The
improved BTS data are compiled in Air Carrier
Traffic Statistics Monthly (USDOT BTS 1990-
2003), which presents the results of the T-100
reporting system, supplemented by special tabula-
tions of data on domestic all-cargo operators from
the Federal Aviation Administration (FAA).

The T-100 data represent the population of all
domestic freight traffic for Section 401 air carriers,
which operate planes with a passenger seating capac-
ity of more than 60 seats or a maximum payload
capacity of more than 18,000 pounds. These data
include the vast majority of all domestic air freight
traffic. As a result of a BTS rulemaking, data for
smaller carriers have been included in this source
starting with the fourth quarter of 2003. The inclu-
sion of smaller carriers does not substantially affect
the value of the data series. Domestic all-cargo oper-
ators (Section 418 carriers) have been gradually
integrated into Air Carrier Traffic Statistics
Monthly. The FAA data captured those carriers who
had not yet reported in Air Carrier Traffic Statistics
Monthly, thus allowing representation of the full
population of domestic all-cargo operators.

BTS’s proposed estimates of air freight ton-
miles are essentially the same as the Eno estimates.
Neither estimate includes private carriage of air
freight or air freight forwarders who do not use
T-100 These
account for well under 5% of all air freight traf-

reporting carriers. exceptions
fic. The substantial difference between the two
data series in 2001 is due apparently to Eno’s use

of preliminary data.
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TABLE 1 Comparison of Annual Data Coverage
Mode Improved BTS NTS Eno
Air Section 401 carriers Section 401 carriers ~ Section 401 carriers
Section 418 carriers Section 418 carriers
Excludes Section 418
carriers
Excludes private carriage Excludes private Excludes private carriage
and some freight carriage and some and some freight
forwarders freight forwarders forwarders
Truck Excludes household, Excludes intracity Excludes intracity traffic
retail, service, traffic
government, and certain
noncommercial freight
shipments
Railroad  All traffic Excludes small All traffic
railroads
Water All domestic traffic All domestic traffic Excludes coastal traffic
and traffic to and from
Alaska, Hawaii, and Puerto
Rico
Pipeline  Oil and oil products Oil and oil products  Oil and oil products
pipelines pipelines pipelines
Natural gas pipelines
Excludes chemical and Excludes natural gas, Excludes natural gas,
coal slurry pipelines chemical, and coal chemical, and coal slurry
slurry pipelines pipelines
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FIGURE 2 Air Freight, Express, and Mail Revenue Ton-Miles
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Truck FIGURE 3 Development of Truck Ton-Mile

) ] . Estimates
Oak Ridge National Laboratory produced estimates

of truck ton-miles based on the 1993 and 1997 Ton-miles (billions)

Commodity Flow Surveys (CFS) (USDOT and  '3%

USDOC 1993 and 1997), supplemented with data -
on farm-based shipments and imports arriving by 1,200 o
truck from Canada and Mexico. Transportation Sta- 1997 base /«"/

tistics Annual Report provides this 1997 estimate of 4 109 otiad

truck ton-miles (USDOT BTS 2000, p. 124). To pro- /993 base

duce the improved BTS estimate, the 1993 and 1997 1,000 / el

estimates were updated and backdated using inter- /o’

city and intracity vehicle miles-traveled (VMT) for /

single-unit and combination trucks, as reported in 900 /,’/

Highway Statistics (USDOT FHWA 1990-2003).

Figure 3 presents the resulting estimates (also see 800 I ' ' ' ' ' IQ
appendix table A3). The trend in both series is the ,9%0 ,\qqq/ ,\ng‘ ,gq@ ,\%q% (,900 (,9&(,90%

same, because the same VMT data were used to  key: b - prefiminary.
update each series. After making these adjustments

for different time periods and population coverage, The CFS captures export movements, as well as
the difference between the 1993 and 1997 estimates ~ movements of imports once they reach their first
is less than 2%. " domestic destination, such as a warehouse. In order

to provide a more complete estimate of truck traffic,
1 . . . X .

The VMT data include a substantial amount of truck the data in figure 3 were further adjusted to reflect
traffic that is outside the scope of the CFS, e.g., shipments

by households and retail, service, utility, and government . o ] o
establishments (including the U.S. Postal Service); and cer- reaching their first domestic destination. The

truck ton-miles from maritime movements prior to

tain noncommercial freight shipments, e.g., construction =~ number of loaded 20-foot equivalent unit (TEU)
traffic and municipal solid waste. The VMT data can,  gntainers shipped through U.S. ports is reported

therefore, be taken to provide a reasonable estimate of the . . .
trend in truck ton-miles, but not the level, and should not in U.S. Waterborne Container Traffic by Port (U.S.

be used to make inferences about operational parameters Army Corp of Engineers WCSC 2003). These fig-
such as empty mileage or average load per truck. ures were then divided by 2.4 to convert them to an
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equivalent number of 48-foot trucks. Estimates of
the percentage of import traffic, the truck share of
import traffic, miles to the first domestic destina-
tion, and tons per truck for East, Gulf, and West
Coast ports were obtained through interviews with
port personnel in New York, Houston, and Los
Angeles, respectively. The resulting estimates added
between 7 billion and 12 billion truck ton-miles
each year. This represents approximately 1% of all
truck ton-miles currently estimated.

Figure 4 shows trucking ton-mile estimates (also
see appendix table A4). The improved BTS estimates
are based on the Oak Ridge National Laboratory
supplement to the 1997 study, which is the more
recent of the two studies. The improved BTS esti-
mate is about 10% higher than the NTS and Eno
estimates, each of which reflects only intercity truck
traffic. Therefore, the improved BTS estimate pro-
vides a more comprehensive estimate of truck traffic.

The CFS data used to construct the improved
trucking ton-miles estimate exclude shipments by
households and retail, service, utility, and govern-
ment establishments (including the U.S. Postal Ser-
vice); and certain noncommercial freight shipments,
such as construction traffic and municipal solid
waste. The existing NTS and Eno estimates do not
include intracity traffic. Therefore, it appears that a
significant percentage of truck VMT and a some-
what smaller percentage of truck ton-miles are not
included in any of these estimates. Clearly more
work is needed in this area.

Railroad

BTS developed its improved railroad ton-miles esti-
mates using data from the Carload Waybill Sample
(USDOT STB 1990-2003). The population esti-
mate in this source is based on a 500,000 record
sample of all traffic terminating on all railroads in
the United States. The sample implicitly includes
traffic originating on U.S. railroads and terminating
on Mexican railroads, because almost all such traf-
fic is rebilled to U.S. border crossings.”

% Traffic originating on U.S. railroads and terminating on
Mexican railroads is treated for accounting purposes as if
it terminated at the U.S. border crossing, and is therefore
included in the Carload Waybill Sample. This practice is
known as rebilling.

FIGURE 4 Truck Ton-Miles
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Population data on the tonnage of railroad
shipments originating in the United States and ter-
minating in Canada come from Transportation in
Canada (Transport Canada 1990-2002) for years
prior to 2003. The average length of haul for U.S.
railroad shipments was applied to this tonnage to
obtain an estimate of U.S. railroad ton-miles for
shipments terminating in Canada. This assumption
seems reasonable, because even though much of this
traffic originates in states bordering Canada, more
distant states such as California, Texas, and Georgia
are also among the 10 largest originating states. The
Carload Waybill Sample’s improved coverage of
Canadian terminations of rail shipments originating
in the United States allows estimates of all railroad
ton-miles for 2003 and subsequent years.

Figure 5 illustrates the railroad ton-mile estimates
(also see appendix table AS). From 1998 to 2001
(the most recent years for which all three estimates
are available), the improved BTS estimates are
about 5% greater than the NTS estimates, which
include only Class I railroads; about 1% greater
than the Waybill estimates, which do not include
Canadian terminations; and almost identical to the
Eno estimates, which include both non-Class I rail-
roads and Canadian terminations. The increase in
the improved BTS estimates relative to the other esti-
mates is probably due to better coverage of the rap-
idly growing railroad shipments originating in the
United States and terminating in Canada. Further,
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FIGURE 5 Railroad Ton-Miles
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while Eno’s ton-mile estimates for non-Class I rail-  Pipeline

roads are based on financial survey data, the
improved BTS estimates are based on actual ton-
mile data and should be considered more reliable.
Finally, railroad ton-mile data may not include
shipments originating in Mexico and terminating in
Canada. Based on data from Transport Canada, it
appears that these shipments account for less than
one tenth of one percent of all U.S. railroad traffic.

Water

Domestic waterborne ton-mile estimates are pre-
sented in figure 6 (also see appendix table A6). The
current NTS estimates of annual water transporta-
tion ton-miles were taken from Waterborne Com-
merce of the United States (U.S. Army Corps of
Engineers 2003). Data in this source are developed
from lock data and individual trip reports that must
be filed with the U.S. Coast Guard. Therefore, this
source represents the entire population of all domes-
tic water traffic, including inland waterways, coast-
wise, Great Lakes, and intraport traffic, along with
traffic to and from Alaska, Hawaii, and Puerto
Rico. The NTS and Eno estimates differ substan-
tially, because NTS includes coastwise (domestic
ocean) traffic and Eno does not. Thus, the current
NTS data, which are proposed for use here, are
more comprehensive than Eno’s estimates.

Figure 7 shows pipeline ton-miles (also see appen-
dix tables A7(a) and A7(b)). Annual oil and oil
products pipeline ton-miles were obtained from
Shifts in Petroleum Transportation (Association of
Oil Pipelines 2003). These data represent the entire
population of crude petroleum and petroleum
products carried in domestic transportation by
both federally regulated and nonfederally regulated
pipelines. Both NTS and Eno currently use these
data, which we also propose for use here.

FIGURE 6 Waterborne Ton-Miles
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FIGURE 7 Pipeline Ton-Miles
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Natural gas pipeline ton-miles are also presented
in figure 7. These new estimates are based on natu-
ral gas deliveries reported in the Annual Energy
Review (USDOE 2003a). BTS first converted the
gas deliveries, measured in cubic feet, to metric tons
and then to tons using a standard conversion factor
of 48,700 cubic feet per metric ton as reported in
the International Energy Annual (USDOE 2001).

There are no data available on the length of haul
for natural gas shipments, because natural gas is
drawn from a common pipeline rather than shipped
to a specific consignee. Origination and termination
data indicate that natural gas has a distribution pat-
tern similar to oil and oil products (USDOE 2003b
and 2003c¢). The oil and natural gas pipeline net-
works are also very similar. Therefore, the length of
haul for oil and oil products was applied to the ton-
nage of natural gas to estimate natural gas ton-miles
in transmission lines.’

Natural gas ton-miles in distribution lines (i.e.,
local utilities) were estimated using 5% of transmis-
sion length of haul, which is approximately half the
diameter of a major metropolitan area. Natural gas
ton-miles in gathering lines (i.e., from well to pro-
cessing plant) were estimated using the same length
of haul as in distribution lines. The ton-miles for
gathering, transmission, and distribution lines were

3 The 2000 to 2003 oil pipeline length of haul data are
somewhat suspect; thus, the average length of haul from
1990 to 1999 was used in place of these data.

then summed to provide an estimate of total natural
gas ton-miles. Natural gas ton-miles, which have
not to our knowledge been previously estimated,
represent nearly as much traffic as that carried on
the inland waterway system. These new estimates
fill a substantial gap in the existing ton-mile data.

The natural gas pipeline data do not include gas
used to repressurize gas fields or power the pipe-
line itself, because these uses do not represent gas
carried in revenue transportation. The pipeline
data also exclude coal slurry, ammonia, and other
types of pipelines. There are only a few such pipe-
lines, which tend to have either short haul or low
volume, and appear to account for well under 1%
of all pipeline ton-miles. BTS will investigate the
recent decline in the oil pipeline ton-mile data and
the resulting reduction in the estimate of natural
gas ton-miles in order to improve the most recent
estimates.

CONCLUSION

The improved ton-mile estimates for the air, truck,
rail, water, and pipeline modes described in this
paper are both more comprehensive and more reli-
able than well-known existing estimates. The
improvements are most noticeable with respect to
trucking and natural gas pipelines. Additional work
will allow BTS to further improve these basic esti-
mates of transportation activity.

BTS has already incorporated these improved
estimates of domestic freight ton-miles into the
Transportation Statistics Annual Report (USDOT
BTS 2004, p. 213).4 BTS plans to extend the
improved estimates back to 1980 in the fall 2005
update to National Transportation Statistics.’
Future research will be conducted to further extend
the improved estimates back to 1960 where data are
available.
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APPENDIX
TABLE A1 All Ton-Miles

Improved BTS Ton-Miles

(billions)

Mode 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Air 10 10 11 12 12 13 14 14 14 15 16 13 14 15
Truck 854 874 896 936 996 1,042 1,071 1,119 1,149 1,186 1,203 1,224 1,255 1,264
Railroad 1,064 1,042 1,098 1,135 1,221 1,317 1,377 1,391 1,448 1,504 1,546 1,599 1,606 1,604
Water 834 848 857 790 815 808 765 707 673 656 646 622 612 606

Coastwise 479 502 502 448 458 440 408 350 315 293 284 275 264 279

Lakewise 61 55 56 56 58 60 58 62 62 57 58 51 54 48

Internal 292 290 298 284 298 306 297 294 295 305 303 295 293 278

Intraport 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pipeline 822 824 844 856 860 882 905 904 902 899 874 859 879 868

Qil and ol 584 579 589 593 591 601 619 617 620 618 577 576 586 590

products

Natural gas 238 245 255 263 269 281 286 288 283 281 297 283 293 278
TOTAL 3,584 3,597 3,706 3,727 3,904 4,061 4,131 4,136 4,186 4,259 4,285 4,317 4,366 4,357
Key: p = preliminary.

NTS Ton-Miles
(billions)

Mode 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Air 9 9 10 11 12 13 13 14 14 14 15 13
Intercity truck 735 758 815 861 908 921 972 996 1,027 1,059 1,074 1,051
Class | railroad 1,034 1,039 1,067 1,109 1,201 1,306 1,356 1,349 1,377 1,433 1,466 1,495
Water 834 848 857 790 815 808 765 707 673 656 646 622

Coastwise 479 502 502 448 458 440 408 350 315 293 284 275

Lakewise 61 55 56 56 58 60 58 62 62 57 58 51

Internal 292 290 298 284 298 306 297 294 295 305 303 295

Intraport 1 1 1 1 1 1 1 1 1 1 1 1
Pipeline 584 579 589 593 591 601 619 617 620 618 577 576

Oil and ol 584 579 589 593 591 601 619 617 620 618 577 576

products

Natural gas — — — — — — — — — — — —

TOTAL 3,196 3,233 3,337 3,364 3,527 3,648 3,725 3,682 3,710 3,781 3,778 3,757

(continued on next page)
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TABLE A1 All Ton-Miles (continued)

Eno Ton-Miles

(billions)
Mode 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Air 10 10 11 12 12 13 14 14 14 15 16 15
Intercity truck 735 758 815 861 908 921 972 996 1,027 1,059 1,074 1,051
Railroad 1,091 1,100 1,138 1,183 1,275 1,375 1,426 1,421 1,442 1,499 1,534 1,558
Water 353 345 353 340 356 366 355 356 357 362 360 348
Rivers/canals 292 290 298 284 298 306 297 294 295 305 303 297
Great Lakes 61 55 56 56 58 60 58 62 62 57 58 51
domestic
Pipeline 584 579 589 593 591 601 619 617 620 618 577 576
Oil and ol 584 579 589 593 591 601 619 617 620 618 577 576
products
Natural gas — — — — — — — — — — — —
TOTAL 2,774 2,792 2,906 2,989 3,142 3,276 3,386 3,404 3,459 3,552 3,561 3,548

TABLE A2 Airline Freight, Express, and Mail Revenue Ton-Miles
(billions)

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003°

Air(mproved ~ 10.420  9.960 10.990 11.540 12080 12720 13760 13900 14.140 14500 15810 13.288 13837 15.096
BTS)"

Air (NTS)° 9.064  8.860 9.820 10.675 11.803 12,520 12.861 13.601 13.840 14.202 14.983 13.088
Air (Eno)* 10420 9.960 10.990 11.540 12.030 12.720 13.760 13.900 14.140 14500 15.810 15.180

'us. Department of Transportation, Bureau of Transportation Statistics, Office of Airline Information, Air Carrier Traffic Statistics Monthly (Washington, DC: 1990-2003), Freight, Express, and Mail
Revenue Ton-Miles table, p. 2, line 3.

2 Federal Aviation Administration, supplementary statistics.
3u.s. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics (Washington, DC: 2003), table 1-44.
“Eno Transportation Foundation, Transportation in America (Washington, DC: 2002).

Key: p = preliminary.
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TABLE A3 Development of Truck Ton-Mile Estimates

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Oak Ridge National Lab 910 1,109
estimate (biIIions)1
Single-unit truck VMT 52 53 54 57 61 63 64 67 68 70 71 72 76 78
(billions)?
Combination truck VMT 94 97 100 103 109 115 119 125 128 132 135 137 139 138
(billions)?
Total truck VMT (billions) 146 150 153 160 170 178 183 191 196 203 206 209 215 216
Truck VMT index, 0.915 0.935 0.959 1.000 1.065 1.114 1.144 1.197 1.228 1.268 1.285 1.307 1.342 1.350
1993 base
Estimated truck traffic, 1993 832 851 873 910 968 1,014 1,041 1,089 1,117 1,153 1,169 1,189 1,221 1,228
base (billion ton-miles)
Truck VMT index, 0.764 0.782 0.802 0.836 0.890 0.931 0.956 1.000 1.026 1.059 1.074 1.092 1.122 1.128
1997 base
Estimated truck traffic, 1997 848 867 889 927 987 1,033 1,060 1,109 1,138 1,175 1,191 1,212 1,244 1,251
base (billion ton-miles)
Tus. Department of Transportation, Bureau of Transportation Statistics, Transportation Statistics Annual Report (Washington, DC: 2000), p. 124.
2us. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: 1990-2003), table VM-1.
Key: p = preliminary; VMT = vehicle-miles traveled.
TABLE A4 Truck Ton-Miles
(billions)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003°
Intercity truck 735 758 815 861 908 921 972 996 1,027 1,059 1,074 1,051
(NTS, Eno)'+2
All truck, 1997 base 854 874 896 936 996 1,042 1,071 1,119 1,149 1,186 1,203 1,224 1,255 1,264

(improved BTS)

Tus. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics (Washington, DC: 2003), table 1-44.

2Eno Transportation Foundation, Transportation in America (Washington, DC: 2002), p. 42.

Key: p = preliminary.
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TABLE A5 Railroad Ton-Miles
(billions, unless otherwise noted)

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003°

Waybill ton-miles, U.S.
terminations'
U.S.-Canada

terminations (million
metric tons)2
Conversion to short
tons (millions)
Average U.S. length
of haul (miles)S

Ton-miles, U.S.-Canada
terminations

Waybill ton-miles
all traffic
Waybill tons, all traffic

(millions)
Waybill tons, traffic
within U.S. (millions)
Mileage in Canada
Canadian ton-miles

Railroad ton-miles
(improved BTS)

Class | ton-miles
(NTS)*

Railroad ton-miles
(Enof

1,055

11.479

12.654

726

9.183

1,064

1,034

1,091

1,033

10.398

11.462

751

8.611

1,042

1,039

1,100

1,089

11.362

12.525

763

9.550

1,098

1,067

1,138

1,124

12.482

13.759

794

10.927

1,135

1,109

1,183

1,208

14.502

15.986

817

13.057

1,221

1,201

1,275

1,303

15.391

16.966

843

14.295

1,317

1,306

1,375

1,362

16.474

18.160

842

15.285

1,377

1,356

1,426

1,374

18.403

20.286

851

17.261

1,391

1,349

1,421

1,433

17.099

18.849

835

15.740

1,448

1,377

1,442

1,490

15.175

16.728

835

13.966

1,504

1,433

1,499

1,530

17.624

19.427

843

16.383

1,546

1,466

1,534

1,581

19.813

21.840

859

18.750

1,599

1,495

1,558

1,587

19.606

21.612

853

18.435

1,606

1,621

2,078

1,965

150
17
1,604

Tus. Department of Transportation, Surface Transportation Board, Carload Waybill Sample (Washington, DC: 1990-2003).

2 Transport Canada, Transportation in Canada (Ottawa, Ontario, Canada: 1990-2002), Addendum, table A6-10.
8 Association of American Railroads, Railroad Facts (Washington, DC: Various years), p. 36.
‘us. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics (Washington, DC: 2003), table 1-44.
5 Eno Transportation Foundation, Transportation in America (Washington, DC: 2002), p. 42.

Key: p = preliminary.
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TABLE A6 Waterborne Ton-Miles

(billions)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003°

Water (NTS, 834 848 857 790 815 808 765 707 673 656 646 622 612 606

improved BTS)’

Coastwise 479 502 502 448 458 440 408 350 315 293 284 275 264 279

Lakewise 61 55 56 56 58 60 58 62 62 57 58 51 54 48

Internal 292 290 298 284 298 306 297 294 295 305 303 295 293 278

Intraport 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Water (Eno)2 353 345 353 340 356 366 355 356 357 362 360 348

Rivers/canals 292 290 298 284 298 306 297 294 295 305 303 297

Great Lakes, 61 55 56 56 58 60 58 62 62 57 58 51

domestic

'us. Army Corps of Engineers, Waterborne Commerce of the United States (Washington, DC: 2003), Part V, Section 1, Table 1-4, Total Waterborne Commerce.

2 Eno Transportation Foundation, Transportation in America (Washington, DC: 2002), p. 42.

Key: p = preliminary.
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TABLE A7(a) Oil and Oil Products Pipeline Ton-Miles

(billions)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Oil pipeline (NTS, 584 579 589 593 591 601 619 617 620 618 577 576 586 590
improved BTS, Eno)1 2

TABLE A7(b) Natural Gas Pipeline Ton-Miles

(billions, unless otherwise noted)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003P

Total consumption, 19.174 19.562 20.228 20.790 21.247 22.207 22.609 22.737 22.246 22.405 23.333 22.239 23.018 21.894
cubic feet (triIIion)S
Lease and plant fuel, 1.236 1.129 1.171 1.172 1.124 1.220 1.250 1.203 1.173 1.079 1.151 1.119 1.114 1.123

cubic feet (triIIion)3
Pipeline fuel, 0.660 0.601 0.588 0.624 0.685 0.700 0.711 0.751 0.635 0.645 0.642 0.625 0.667 0.635
cubic feet (triIIion)3

Gas to consumers, 17.278 17.832 18.469 18.994 19.438 20.287 20.648 20.783 20.438 20.681 21.540 20.495 21.237 20.136
cubic feet (trillion)

Gas to consumers, tons* 0.391 0.404 0.418 0.430 0.440 0.459 0.467 0.471 0.462 0.468 0.488 0.464 0.481 0.456
Oil pipeline ton-miles’ 584 579 589 593 591 601 619 617 620 618 577 576 586 590
Oil pipeline tons? 1.057 1.048 1.061 1.067 1.064 1.081 1.114 1.108 1.116 1.131 — — — —
Length of haul (miles) 553 552 555 556 556 556 556 556 555 546 554 554 554 554

Gas transmission 216 223 232 239 245 255 260 262 257 256 270 257 267 253
pipeline ton-miles
Gas gathering pipeline 11 11 12 12 12 13 13 13 13 13 14 13 13 13

ton-miles (estimated)5
Gas distribution 11 11 12 12 12 13 13 13 13 13 14 13 13 13
pipeline ton-miles
(es;timated)5
Total gas pipeline ton- 238 245 255 263 269 281 286 288 283 281 297 283 293 278

miles (improved BTS)

1 Association of Oil Pipelines, Shifts in Petroleum Transportation (Washington, DC: 2003), table 1.

2Eno Transportation Foundation, Transportation in America (Washington, DC: 2002), p. 42.

Sus. Department of Energy, Energy Information Administration, Annual Energy Review (Washington, DC: 2001), table 6.5.
4 Conversion factor from U.S. Department of Energy, Energy Information Administration, International Energy Annual (Washington, DC: 2001), table C-1.
5 Estimated at 5% of transmission ton-miles.

Key: p = preliminary.
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ABSTRACT

This research investigates the transferability of
person-level disaggregate trip generation models
(TGMs) in time and space using two model specifi-
cations: multinomial linear regression and Tobit.
The models are estimated for the Tel Aviv and
Haifa metropolitan areas based on data from the
1984 and 1996/97 Israeli National Travel Habits
Surveys. The paper emphasizes that Tobit models
perform better than regression or discrete choice
models in estimating nontravelers. Furthermore,
the paper notes that variables and file structures in
household surveys need to be consistent. Results of
the study show that the estimated regression and
Tobit disaggregate person-level TGMs are statisti-
cally different in space and in time. In spite of the
transferred forecasts, the aggregate forecasts were
also similar.

INTRODUCTION

Trip generation models (TGMs) are used as a first
step in classical four-step travel demand modeling
and, therefore, any over- or underprediction of trip
generation rates can cause errors throughout the
entire transportation planning process. Inappropri-
ate decisionmaking due to these types of errors can
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account for premature investments in infrastruc-
ture in the case of overprediction and loss of labor
hours, pollution, and low levels of service in the
case of underprediction.

TGMs are usually estimated based on periodic
surveys of the travel habits of individuals or house-
holds. They are expensive and difficult to perform
and are not conducted often. For our research, we
used the last Israeli National Travel Habits Surveys
collected in 1984 and 1996/97. Transportation
planners use models previously estimated and
sometimes in different contexts. The planners can
perform forecasts for the same areas and, if justifi-
able, transfer the models to other areas. Hence, it is
important to know whether these models can be
transferred in time and in space.

Recently, researchers and planning agencies
began to implement tour-based activity modeling
systems rather than trip-based modeling systems.
The advantage in using an activity modeling
approach is the ability to model each individual’s
tours. However, in this paper, we were only able to
investigate the stability of individual predictions of
trips. This research presents the characteristics of
trip generation in Israel and tries to answer the ques-
tion of whether linear regression and Tobit TGMs
can be transferred in time and space, given the
dynamic changes in metropolitan areas and socio-
economic characteristics. The TGMs estimated and
analyzed in this research include only vehicular trips.

We estimated the models for the geographically
diverse metropolitan areas of Haifa and Tel Aviv in
Israel and tested them for transferability in space
and in time. The topography of Haifa is hilly, with
the core of the city poorly connected to the rest of
the metropolitan area. Tel Aviv lies on level topogra-
phy, with a well connected road network. The met-
ropolitan areas also differ structurally: Tel Aviv is
interconnected like a spider web, including several
minor cores with high-density population and
employment concentrations. On the other hand,
Haifa’s less connected road network and rolling ter-
rain give it a lower level of accessibility. When com-
paring the areas by land use, the Tel Aviv

Y Tours refer to a sequence of trips usually starting and
ending at home. Trips refer to just the movement between
an origin and destination.

metropolitan area consists of neighborhoods that
combine residential shopping and personal business
areas. Haifa, on the other hand, contains highly sep-
arated areas with each area consisting of a uniform
land use.

Given the difference in accessibility and land use,
the calibrated models were restricted to demo-
graphic and socioeconomic variables. The average
number of daily trips per person was higher in the
Haifa metropolitan area (2.14 in 1984, and 2.03 in
1996/97) than in the Tel Aviv metropolitan area
(1.83 in 1984, and 1.91 in 1996/97). The difference
in the average trip rates may be explained based on
the variation in land uses. The lack of mixed land
uses in Haifa may encourage the generation of more
trips. Furthermore, Haifa’s hilly topography may
encourage more vehicular trips than in Tel Aviv,
where shorter trips are probably done on foot. The
comparison between these metropolitan areas and
the calibrated models is possible due to the simi-
larity of the distribution of most demographic and
socioeconomic variables. (See table 1 for a partial
presentation of the comparison.) A more detailed
comparison of Haifa and Tel Aviv characteristics is
presented in Cotrus (2001).

LITERATURE REVIEW

Over the last few decades, several papers have dis-
cussed the transferability of trip generation models.
The debate among researchers, in general, focused
not only on the transferability of models in space
and time but also on the model specification and
level of aggregation. The aggregation levels are usu-
ally defined as area (zonal), household, and person.
Estimating the models (see, e.g., Ortuzar and Wil-
lumsen 1994) at more disaggregate levels improves
the transferability of TGM.

Atherton and Ben-Akiva (1976) emphasized that
disaggregated models tend to maintain the variance
and behavioral context of the response variable
and, therefore, are expected to give better estimates
when transferred. Downes and Gyenes (1976)
pointed out that when the explanatory power of
the model is of interest rather than the aggregate
forecasts, the disaggregate level should be selected.
Wilmot (1995) indicated that disaggregate models
are preferred because of their independence from
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TABLE 1 Demographic Characteristics by Metropolitan Area and Year

Haifa Tel Aviv
1996 1996
Household and personal In terms:, In terms:, In termf In termf
characteristics of 1996 of 1984 1984 of 1996 of 1984 1984
HOUSEHOLDS
Total (thousands) 245 160 130 766 678 522
Persons in household (%)
1 15.8 17.3 20.7 16.7 17.3 18.8
2 25.6 29.9 29.3 24.3 25.4 26.0
3-4 36.0 37.1 32.6 35.5 35.2 34.1
5-6 18.4 14.4 14.8 20.3 19.4 18.2
7+ 4.3 1.2 2.6 3.1 2.7 3.0
Car availability
0 38.4 36.7 51.6 34.3 33.8 51.1
1 42.0 40.7 40.3 40.0 39.9 39.1
2 11.4 12.3 7.4 17.5 17.5 9.4
3+ 1.6 1.9 — 2.6 2.8 —
Not known 6.6 8.4 — 5.6 6.0 —
Households with vehicles (%) 55.0 54.9 48.4 60.1 60.2 48.9
TOTAL POPULATION
Total (thousands) 803 470 380 2,477 2,145 1,632
Age (%)
0-7 13.5 11.0 14.8 13.7 13.0 14.8
8-17 18.5 15.8 15.7 17.3 16.8 17.6
18-29 18.0 17.7 16.3 18.2 18.3 17.7
30-64 38.2 40.1 39.4 39.5 39.8 37.9
65+ 11.8 15.4 13.8 11.4 12.0 12.0
POPULATION AGED 8+
Total (thousands) 695 419 324 2,138 1,866 1,390
Sex (%)
Men 485 48.1 479 48.3 48.2 497
Women 51.5 51.9 52.1 51.7 51.8 50.3
Years of schooling (%)
0-8 31.3 24.2 34.7 26.5 25.8 39.2
9-12 37.9 37.8 40.7 41.0 41.0 40.1
13+ 25.1 30.1 24.6 27.4 27.6 20.7
Not known 57 7.9 — 5.0 55 —
POPULATION AGED 15+
Total (thousands) 589 367 281 1,833 1,609 1,177
Employed (%)
Total 47.3 46.8 491 51.3 51.2 50.3
Men 57.8 55.1 61 54.1 53.5 61.5
Women 422 44.9 39 45.9 46.5 38.5
POPULATION AGED 17+
Total (thousands) 559 351 270 1,752 1,540 1,127
Those having a driver’s license (%) 53.0 54.2 46.6 59.8 60.0 49.8
Men (%) 63.0 59.7 64.8 58.6 57.9 66.0
Women (%) 37.0 40.3 35.2 41.4 421 34.0

* In terms of 1984 refers to the geographic definition of the metropolitan area in that year. In term of 1996 refers to the geographic
definition of the metropolitan area that year.
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zonal definitions. In Supernak et al. (1983) and
Supernak (1987), the person level was preferred for
TGM because of the identity of the response factor
(trip) and the generative (the person). One advantage
of disaggregate person-level models is the reduced
amount of data required for model estimation. (For
more details, see Fleet and Robertson 1968; and
Ortuzar and Willumsen 1994.) Other types of model
specification techniques include cross-classification,
regression, logit-based models, artificial neural net-
works, fuzzy logic, and simulations.

A number of studies found spatial transferability
of models satisfactory (Wilmot 1995; Atherton and
Ben-Akiva 1976; Supernak 1982, 1984; Duah and
Hall 1997; Walker and Olanipekun 1989; Rose and
Koppelman 1984; Caldwell and Demetsky 1980;
and Kannel and Heathington 1973). On the other
hand, Smith and Cleveland (1976) and Daor (1981)
found spatial transferability unsatisfactory. We
should emphasize that Smith and Cleveland pointed
out that although the explanatory variables are dis-
tinctive, their effects vary in space. A number of
researchers found the transferability of models in
time (i.e., their temporal stability) satisfactory
(Downes and Gyenes 1976; Yunker 1976; Walker
and Peng 1991; Kannel and Heathington 1973; and
1997). Unsatisfactory
results, however, were obtained in other studies
(Doubleday 1977; Smith and Cleveland 1976; and
Copley and Lowe 1981).

While several international studies explored
model transferability in time and space, in Israel the

Karasmaa and Pursula

transferability of discrete mode choice models has
been the main focus (Prashker 1982; Silman 1981).
This study deals with the investigation of trip genera-
tion characteristics but also provides local estimates
of TGMs and their validation for transferability in
time and space. The study also explores the imple-
mentation of Tobit models in TGM.

We often approach trip generation from an eco-
nomic viewpoint, where trips are defined as the
product and the person/household as the customer.
The strongest argument to model trips on a disag-
gregate level is that any zonal outcome is based on
the aggregation of several customers, ignoring the
heterogeneity among them. The explanatory vari-
ables for the power of consumption of each person/

household can be found in several categories includ-
ing demographic, geographic, and economic.

As discussed above, several approaches exist to
model trip generation, including regression-based
models such as multiple linear regression (Wilmot
1995) and cross-classification (Walker and Olanipe-
kun 1989); discrete choice models such as probit,
logit, and ordered probit (Zhao 2000); simulations
such as Smash, Amos, and the Starchild System;
fuzzy logic models; and artificial neural networks
(Huisken 2000). Clearly, the issue of trip generation
can be approached from several directions and
tested for transferability in time and space. There-
fore, researchers will choose the modeling approach
based on the size of the database at hand, the nature
and structure of the variables, the aggregation level
desired, as well as other considerations. The main
problem with using a regression model is the treat-
ment of trip rates as continuous rather than discrete
variables. Discrete choice models and spatially
ordered response models may better account for the
behavioral process of trip generation. However, due
to practical reasons, in most models to date, the
dependent variable is treated as a continuous vari-
able. For this reason, we perform our analysis on
such models.

METHODOLOGY

In this research, we first estimated regression models
for each metropolitan area for each year, taking into
account the inconsistency of the household surveys
(table 2). We then estimated Tobit TGMs based on
the same variables and tested whether these models
are suitable for trip generation estimation and for
transferability. The regression model form is pre-
sented in equation 1.
Vi = a+frexyi+Paexy i tfrexy i +8;
Vi=1,.,n
VE = 1,2,k (1)

where

y; = trip rate generated by individual 7,

xp,,; = explanatory variable & for individual
n = the number of observations,

k = number of explanatory variables, and

¢; = error term of the ith observation.
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TABLE 2 Differences Among the 1972, 1984, and 1996/97 Traveling Habits Surveys

No. Topic 1972 survey 1984 survey 1996/97 survey
1 Trip modes surveyed Motorized trips only, Motorized and nonmotorized = Only motorized trips
although data on travel on trips
foot were also gathered
2 Survey population Permanent residents of Permanent residents of Israel Permanent residents of Israel,
Israel including Jews domiciled in
Judea, Samaria, and Gaza.
Israeli residents abroad for  Israeli residents abroad for Israeli residents abroad for less
less than 1 year less than 2 months than 1 year
Potential immigrants: Immigrants and potential Immigrants who reached Israel
persons who were eligible for immigrants who arrived in before the survey date
immigrant cards and wished Israel before June 1983
to stay in Israel for more than
3 months
Tourists, volunteers, and Same as in 1972 Tourists, volunteers, and
temporary residents in Israel temporary residents in Israel
for more than 1 year for more than 3 months
Excluding diplomats and UN Same as in 1972 Same as in 1972
personnel
Age 5+ 8+ 8+
Tenants of Including institutions where 5  Institutions not included Including students dormitories,
institutions or more persons spend the immigrant-absorption centers,
night and sheltered housing
Gross sample size 56,000 households 5,000 households 17,700 households
Geographic spread  Countrywide (excluding Two expanded conurbations Countrywide
and locality type Judea, Samaria, and Gaza) and Jerusalem and its
surroundings
Localities with populations of Not including Arab localities in  Not including Druze localities
10,000+ Judea District on the Golan Heights,
institutional local cities, and
areas outside settled area,
including Bedouin tribes in the
Negev
Small localities directly Not including kibbutzim and Including kibbutzim and
related to the conurbation villages villages
7 Investigation period  November 1972—-June 1973; January 1984-May 1985; 2 March 1996—February 1997;
not including summer month interruption: July— supplementary period: March—
months and holidays August 1984 August 1997.
8 Number of One 24-hour day, starting at 1.5 24-hour days, starting on  3—4 investigation days, starting
investigation days 14:00 on day preceding day preceding enumerator’s at beginning of day preceding
enumerator’s visit and visit and ending at time of visit enumerator’s visit and ending
ending at time of visit at end of day after
enumerator’s visit
9 Investigation days Sunday-Thursday; the entire  Same as in 1972 All days of the week; holidays

period from Thursday
evening to Sunday noon was
not investigated; holiday
eves were not investigated;
Sundays were investigated
at the previous day level, and
Thursday at the current day
level
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were investigated; Thursdays
were not investigated at the
previous day level; Sundays
were not investigated at the
next-day level; and Friday—
Saturday were not investigated
at the current-day level
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TABLE 2 Differences Among the 1972, 1984, and 1996/97 Traveling Habits Surveys (continued)

No. Topic 1972 survey 1984 survey 1996/97 survey
10 Investigation Demographic and economic  Same as in 1972 Same as in 1972
variables variables of household and
individual
Travel-related variables: Same as in 1972 Same as in 1972
origin, destination, hour, etc.
Variables related to vehicles Same as in 1972 Same as in 1972, plus
available to household: variables related to parking
number of vehicles, type of
vehicles, etc.
11 Investigation method Questionnaire filled in by Same as in 1972 Questionnaire filled in by
enumerator enumerator and diary left with
respondents to fill in
12 Geographic regions  Tel Aviv and Haifa Tel Aviv and Haifa Division into geographic
conurbations conurbations and Jerusalem  regions performed only at
and its surroundings survey data analysis phase:
Tel Aviv metropolitan area,
Haifa metropolitan area,
planned metropolitan area of
Beer Sheva, and Jerusalem
and its surroundings
Tel Aviv conurbation: 27 Tel Aviv conurbation: 41 Tel Aviv metropolitan area: 259
localities localities (4 more were added localities
during the survey, for a total of
45)
Haifa conurbation: 8 Haifa conurbation: 14 Haifa metropolitan area: 101
localities localities; Jerusalem and its localities
surroundings: 12 localities
Planned metropolitan area of
Beer Sheva: 130 localities
13 Trips Several actions—switching A trip was defined by its main  Same as in 1972
vehicles, stopping and purpose even if there were
exiting vehicle, switching stops on the way
drivers, and changing travel
routes—were defined as
having created two separate
trips
Reaching the destination by
two means of transport or
along two routes was
considered one trip
14 Means of transport ~ One means of transport per  Possibility of more than one Same as in 1972

trip

means of transport per trip

Source: Israeli Ministry of Foreign Affairs, Central Bureau of Statistics, 1996/97 Household Survey: Description of Survey (English in

origin).

Hald (1949) first presented the model that, in its
final form, is called the Tobit model (1958). Tobit
models differentiate from regression models by the
incorporation of truncated or censored dependent
variables. Tobit analysis assumes that the dependent
variable has a number of its values clustered at a
limiting value, usually zero. The Tobit model can be
presented as a discrete/continuous model that first
makes a discrete choice of passing the threshold
and second, if passed, a continuous choice regard-
ing the value above the threshold. This approach is

appropriate for trip generation, as an individual
must decide whether to make any trips and, if so,
how many trips to make.

Tobit analysis uses all observations when estimat-
ing the regression line, including those at the limit
(no trips) and those above the limit (those who chose
to travel). As shown by McDonald and Moffitt
(1980), Tobit analysis can be used to determine the
changes in the value of the dependent variable if it is
above the limit, as well as changes in the probability
of being above the limit. Since the surveys include
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observations at the limit (i.e., persons that are not
traveling), it was also interesting to find out how
well the Tobit model can predict persons doing no
travel at all. The Tobit model form is presented in

equation 2:
yi = X;eB+¢; if X;ef+;>0
y; =0 if X;eB+E;<0
Vi=123,.,(N-1),N (2)
where

N = number of observations,

y; = trip rate generated by observation i,

X; = vector of independent variables,

B = vector of coefficients, and

¢ = independently distributed error term ~ (0, 02) .

Because Tobit models have not been used previously
in the context of trip generation, this research inves-
tigates their suitability for that purpose. We also
compared the predictions obtained using regression
models with those produced using the analogous
Tobit model. The best specification of the regression
model is not necessarily the best specification of the
Tobit model. However, in order to allow for basic
comparisons of the model parameters, we estimated
the regression models first; then, after the determina-
tion of the final variables in the model, we estimated
Tobit models with the same variables.

All models were estimated at the disaggregate
person level. At the person level of modeling, we
maintained the heterogeneity among observations
and kept a good identity between the consumer of
the product (the person) and the outcome (number
of daily trips taken by the person). As discussed
above, disaggregate models tend to show better
transfer results than aggregate models and also
incorporate the power to understand and control
the production of trips. The models were estimated
for a 24-hour period” and tested for transferability
in space and in time. Figure 1 presents the sequence
of the analysis.

Statistical tests were conducted to determine the
spatial and temporal stability of the estimated mod-
els by assessing the transferability of the coefficients
from one area to another, and for each metropolitan

% The 1984 household survey contained 1.5 days of data
for each person; the 1996/97 survey contained 3 to 4 days
of data for each person.

area between the two survey years. Transferability
was also tested by comparing the overall aggregate
prediction obtained by the transferred model with
the local model. Furthermore, we analyzed the
ability of Tobit models to represent and evaluate
nontravelers, that is, people who do not generate
trips based on the given survey data.

Data Sources and Descriptions

The Israeli Central Bureau of Statistics (CBS) con-
ducted some limited scope3 Traveling Habits Surveys
in the 1960s. Comprehensive National Traveling
Habits Surveys have been conducted by CBS every
12 years since 1972. Because the 1972 survey is not
available on magnetic media, it was not possible to
do a computer-based statistical analysis. Therefore,
we based this research on the 1984 and 1996/97
household surveys.

The main problems we encountered in doing this
research were related to the inconsistency in the
investigated variables, the structure of the surveys,
the definition of variables, the period of investiga-
tion, the geographic deployment, and the database
structure (see table 2 again). The 1984 and 1996/97
household surveys differ in several ways: the geo-
graphic deployment (number and size of jurisdic-
tions in the survey), the size of the survey (number of
households), the definitions of the investigation
period, and the variables that were excluded from
the surveys. For example, income is included in the
1984 survey but is omitted from the 1996/97 survey.

Despite definition and database differences in
the two surveys (1984 was an activity survey and
1996/97 was a trip survey), we were able to bring
the variables in the models to a common basis. In
particular, the 1984 survey included bicycle and
walking trips among the means to accomplish the
activities, while the later survey excluded them. To
resolve this difference, we excluded walking and
biking trips from the 1984 database; only motor-
ized trips were considered for each person.

The 1984 survey files included data for 5,420
persons in the Tel Aviv metropolitan area and
4,056 persons in the Haifa metropolitan area. The
final files used for model calibration after sieving

3 These surveys were restricted to work-related activities
only.
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FIGURE 1 Research Sequence of Stages
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incomplete and anomalous observations totaled
4,385 and 3,258 persons, respectively. The 1996/97
files included data for 20,436 persons in the Tel
Aviv metropolitan area and 6,417 persons in the
Haifa metropolitan area. The final files used for
model calibration totaled 15,729 and 5,041 per-
sons, respectively.

RESULTS

The selected trip generation models included six cat-
egorical variables: age, car availability, possession of
a driver’s license, employment, education, and status
in the household. Data fell into five age categories:
8-13, 14-17, 18-29, 30-64, and 65 and over.
Ortuzar and Willumsen (1994) found that life cycle
variables were an important factor for explaining
trip generation. Different trip rates can be expected
for households and people at various stages of life.
Furthermore, age should correlate with employment,
having a driver’s license, and marital status. Car
availability included three categories: 0, 1, and > 2
cars in the household. Clearly, households with more
cars available will generate more trips. The driver’s
license category has only one variable: whether the
person has a license (including motorcycle) or not.

The employment variable indicates whether the
person was employed or not. Employed persons
were expected to generate more trips, because they
usually make at least two trips: to and from work.

Household status refers to whether the person
defines himself or herself as the head of the house-
hold. This variable indicates the responsibility and
availability of household resources as an incentive
for consumption of trips.

Finally, four education categories were defined
based on the number of years of study (0, 1-8, 9—
12, and 13 or more). The literature shows good cor-
relation between education and income. In the
absence of a pure economic indicator, education is
used also as a proxy for income. Respondents with
higher education (hence higher income) were
expected to generate more trips. All variables were
found significant and the coefficients corresponded
with our expectations.

Table 3 shows the estimation results for the
regression models for 1984 for both metropolitan
areas. As can be seen from the table, all coefficients

were found to be significant at the 95% level. The
number of observations remaining in the estimation
process resulted from the limited scope of this survey
and the elimination of incomplete observations in
the original database.

Estimation results for these models show that all
variables affected trip generation as expected. The
education coefficients show that people with higher
education generated more trips. This can be
explained not only by the assumption of the rela-
tionship between education and income but also by
assuming that a person with higher education is
more likely to pursue culture and perhaps leisure
activities. Also, as expected, persons with driver’s
licenses and employed persons tended to generate
more trips than the equivalent nonworking and/or
nondriving persons. Heads of household tended to
generate more trips, as assumed, because of the
responsibility and availability of resources. The
coefficients of the age categories indicate that per-
sons aged 14 to 17 travel more than people with
similar characteristics of other age groups, probably
because they are young and active and have less
household or work responsibilities.

The overall R* of the 1984 models was 0.33 for
the Tel Aviv model and 0.34 for the equivalent
Haifa model. These R* values are modest but not
anomalous for trip generation modeling. They
indicate that a substantial portion of trip genera-
tion can be explained by nonhousehold factors,
such as relative location of residence, employment,
and other parameters. Statistical Z tests (assuming
known variances, normal distributions, and inde-
pendence of populations) for the transferability of
the coefficients (without updating) show that, at a
95% level of confidence, the coefficients differ,
except for the coefficient defining the head of
household. To verify the results we also conducted
Chow tests for the transferability of the models.
The calculated statistic was 7.86 in comparison
with the critical 1.72 F-value (at a 95% level of
confidence), and yield the same conclusion that the
1984 models are not transferable in space.

Table 4 shows the results of transferring the mod-
els in space by showing the predictions from the
estimated models and the 1984 database, each
applied for both metropolitan areas. The table
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TABLE 3 Regression Models by Metropolitan Areas: 1984

Haifa Tel Aviv
Standard Standard

Variable Coefficient tstatistic error Coefficient t statistic error
Regression intercept 410 30.26 0.13 3.51 32.47 0.11
Age
8-13 0.60 4.32 0.14 0.35 3.22 0.11
14-17 0.72 4.98 0.14 0.80 6.75 0.12
18-29 0.39 3.19 0.12 0.53 5.33 0.09
30-64 0.24 2.33 0.10 0.42 4.89 0.08
65+ 0.00 — — 0.00 — —
Number of cars per
household
0 -0.83 -7.74 0.11 -0.80 -10.25 0.08
1 -0.39 —-4.22 0.09 —-0.46 —6.71 0.07
2+ 0.00 — — 0.00 — —
Driver’s license
No license -0.99 -11.23 0.09 -0.67 -9.80 0.07
License 0.00 — — 0 — —
Employed
Not employed -1.06 -13.17 0.08 -1.00 -15.58 0.06
Employed 0.00 — — 0.00 — —
Household status
Head (0 = no) -0.24 -3.13 0.07 -0.24 -3.82 0.06
Head (1 = yes) 0.00 — — 0.00 — —
Education
0 years -0.77 -3.98 0.19 -0.87 -6.50 0.13
1-8 years -0.69 —-6.80 0.10 -0.68 -8.57 0.08
9-12 years -0.24 -2.95 0.08 -0.36 -5.50 0.07
13+ years 0.00 — — 0.00 — —
Overall R? 0.34 0.33
Number of
observations used 3,243 4,356

Notes: Chow test for 1984 model transferability:
Ess, = error sum of squares of Haifa set

Ess, = error sum of squares of Tel Aviv set
Ess; = error sum of squares of combined set

K = number of parameters in the model including the constant
N; = number of observations in model i

Ho:f; = B; Vi
H, = else a= 0.05

Ess3—(Essy + Essp) Ni+N,-2.K 20124 — (9351 + 10505) 3243+4356—2.13 _ , oo
K Ess, + Ess, 13 9351 + 10505 '

F(k,N1+N2—2.K) = F(13,w) = 172:>H1
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TABLE 4 Aggregate Estimation Results Using Regression Models: 1984

Haifa data Tel Aviv data
Tel Aviv Haifa Haifa Tel Aviv

model model Actual model model Actual
Average trips per 1.84 2.18 2.18 2.19 1.84 1.84
person per day
Negative estimations 24 0 — 0 32 —
Minimum trip rate -0.07 0.20 0 0.20 -0.07 0
Maximum trip rate 4.04 4.49 11 4.49 4.04 10
Total 5,973 7,060 7,059 9,525 8,007 8,019
Difference between -15.37 0.00 — 18.79 -0.15 —
model estimation
and actual values
Standard deviation 1.10 1.21 2.08 1.18 1.07 1.90

shows that the Haifa model overpredicts the actual
trip rate when applied to the Tel Aviv database, in
comparison with the Tel Aviv model applied to the
Haifa database. This was expected, as the Haifa trip
rate is higher than that for Tel Aviv.

Table 5 presents the estimation results for the
1984 Tobit models using the 1984 household survey
data. When we transferred the estimated Tobit
models in space and used them to predict the aver-
age trip rate in the other city, we found that the
Haifa Tobit model overestimated the trips in Tel
Aviv by 21.9% (table 6). When we used the esti-
mated Tel Aviv Tobit model to predict the average
trip rate for Haifa, we found that it underestimated
the total trips by 27.5%. However, transferability #-
tests at a 95% level of confidence showed that most
of the coefficients are not significantly different in
space, except for the license variable and the 8-13
and 30-64 age category variables. On the other
hand, y° tests at the 95% level of confidence
strengthen the alternative hypothesis, that the
models vary in space (Xis 095 = 22.36 < 91-198) .

An important issue was to find out whether the
Tobit model could explain and capture the nontrav-
elers in the population. As can be seen in table 7,
the results are not consistent for the two models.
The Haifa 1984 model correctly estimated only
13.5% of the observed nontravelers in the Haifa
data and 18.5% in the Tel Aviv data. The Tel Aviv
model obtained better results estimating correctly

41.9% of the observed nontravelers in the Tel Aviv
data and 34.7% in the Haifa data. These results
encourage further research.

Table 8 presents the estimation results of the
1996/97 regression models. As can be seen, the
1996/97 coefficients differ substantially from those
of 1984, and most of the coefficients are significant
at the 95% confidence level. The best model speci-
fication for 1984 was found to be also the best
specification for the 1996/97 model, indicating
that the most important variables affecting trip
generation are similar in both models. The main
problem raised during the basic comparison was
the difference in the geographic scope (definition
of the metropolitan survey area) for the two.

The overall R? of the 1996/97 models, 0.21 for
the Tel Aviv model and 0.23 for the equivalent
Haifa model, are even smaller than the values
achieved for the 1984 models. But they are still not
anomalous in the field of trip generation modeling.
Statistical Z-tests conducted at the 95% level of
confidence show that none of the coefficients are the
same for the two metropolitan areas; that is, the
coefficients differ in space. To verify the results, we
conducted Chow tests for the transferability of the
models. The calculated statistic was 6.91 in compar-
ison with the 1.72 tabular F-value (at a 95% level of
confidence), thus yielding the same conclusion, that
the 1996/97 models are not transferable in space.
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TABLE 5 Tobit Models by Metropolitan Areas: 1984

Haifa Tel Aviv
Variable Coefficient t statistic Coefficient t statistic
Regression 3.91 41.67 3.15 40.23
Age
8-13 1.25 7.79 0.81 6.01
14-17 1.46 7.97 1.76 10.74
18-29 0.95 6.95 1.30 11.08
30-64 0.63 6.36 0.99 11.43
65+ 0.00 — 0.00 —
Number of cars per
household
0 -1.10 -11.30 -1.11 -12.76
1 -0.48 -4.91 -0.57 -6.77
2 0.00 — — —
Driver’s license
No license -1.12 -13.24 -0.89 -11.92
License 0.00 — 0.00 —
Employed
Not employed -1.65 -19.80 -1.67 -22.20
Employed 0.00 — 0.00 —
Household status
Head (0 = no) -0.36 -4.29 -0.42 -5.85
Head (1 = yes) 0.00 — 0.00 —
Education
0 years -1.70 -5.36 -1.70 —7.04
1-8 years -1.06 -9.82 -1.02 -11.14
9-12 years -0.32 -3.38 -0.41 -4.79
13+ years 0.00 — 0.00 —
Standard error of U 2.40 2.50
Overall pseudo R? 0.33 0.32
Number of 3,243 4,356
observations used
Log likelihood —5,742.89 -7,173.62
Log likelihood —6,453.65 —-8,134.61

constant only
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TABLE 6 Aggregate Estimation Results Using Linear Tobit Models, by Year

Haifa data Tel Aviv data

Tel Aviv Haifa Haifa Tel Aviv
1984 data and models model model Actual model model Actual
Average trips per person per day 1.84 2.18 2.18 2.18 1.84 1.84
Observations with negative 24 0 — 0 0 —
estimates
Minimum trip rate 0 0 0 0 0 0
Maximum trip rate 4.43 5.21 11.00 5.21 4.86 10.00
Total 5,115 7,321 7,059 9,772 7,883 8,019
Difference between model —27.54 3.71 — 21.85 -1.69 —
estimation and actual values
Standard deviation 1.30 1.52 2.08 1.50 1.48 1.90

Haifa data Tel Aviv data

Tel Aviv Haifa Haifa Tel Aviv
1996/97 data and models model model Actual model model Actual
Average trips per person per day 1.93 2.02 2.07 2.21 2.06 2.07
Observations with negative
estimates 0 0 — 0 0 —
Minimum trip rate 0 0 — 0 0 —
Maximum trip rate 4.30 457 11.00 5.05 4.41 11.00
Total 9,672 10,184 10,414 34,797 32,363 32,455
Difference between model -7.13 2.20 — 7.21 -0.28 —
estimation and actual values
Standard deviation 1.28 1.42 2.08 1.42 1.29 1.99

TABLE 7 Tobit Model Estimation of Nontravelers: 1984

Haifa data Tel Aviv data
Tel Aviv Haifa Haifa Tel Aviv
model model Observed model model Observed
Estimated 752 277 1,655 244 635 1,014
nontravelers (persons) (3799%3 of total (31 .27% of total
observations) observations)
Observed 575 224 — 188 425 —
nontravelers predicted
as nontravelers
Right estimation (%) 34.7 13.5 — 18.5 41.9 —
Common observed 76.5 80.6 — 77.0 66.9 —

and estimated (%)

Key: Right estimation = observed nontravelers predicted as nontravelers / observed * 100 ;
common = observed nontravelers predicted as nontravelers / estimated * 100.
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Table 9 presents the predicted average daily trips
using the 1996/97 data for each model and each
metropolitan area. As in 1984, the 1996/97 Haifa
model overpredicts trips compared with the Tel Aviv
model, however, the differences are smaller. One
should remember that in regression models, the
regression line always passes through the average
(center of gravity of the observations). Since the
observed average number of trips (in Tel Aviv and
Haifa) was equal in the 1996/97 metropolitan files,
the estimation difference was expected to be smaller.

However, the similar predicted aggregate trip rates
indicate overrepresentation of particular sections of
the population. For example, the calculated average
car availability per household in metropolitan Tel
Aviv was higher in the 1996/97 surveys than in
metropolitan Haifa (0.60 > 0.55), but in 1984 the
average car availability per household was almost
the same (0.489 =~ 0.484). Statistically, different
definitions of the sampling areas could affect the
transferability of the estimated models

Table 10 shows the Tobit model results for 1996/
97. A comparison with table 8 shows the resem-
blance in the effect of the explanatory variables and
the difference in the magnitude of the coefficients
between the Tobit and the regression models.
Transferring the models in space and evaluating
the estimated average trip rate from the models, for
1996/97, we found that the Haifa Tobit model over-
estimated the trips in the Tel Aviv file by 7.2% and
the Tel Aviv Tobit model underestimated the trips in
the Haifa file by 7.1% (table 6). These values are
quite similar to the over- and underprediction of
the equivalent regression models shown in table 9.
Spatial transferability #-tests held at the 95% level
of confidence show that most of the coefficients are
not significantly different between the metropolitan
areas, except age categories and the education
“non-educated” category. y° tests for the spa-
tial transferability of the models at the same
level of confidence reach the same conclusion
(xis, 005 = 22.36 < <82.01) ,

In table 11, the 1996/97 Tobit model prediction
of nontravelers is even worse than in the analogous
1984 models. When trying to represent nontravelers,

the Haifa 1996/97 Tobit model captured only 6.8%
of the observed nontravelers in the Tel Aviv file and
11.8% in the Haifa file. The Tel Aviv 1996/97 Tobit
model captured only 3.8% of the nontravelers in the
Haifa file and 9.8% in the Tel Aviv file. A point
worth mentioning is the resemblance in the propor-
tion of nontravelers in the two surveys (about 35%
of the persons represented in the sample files did not
generate trips). Finally, about 70% to 75% of the
estimated nontravelers are observed nontravelers.

Table 12 shows the estimation results for tempo-
ral transferability of the regression and Tobit models.
When we tested for temporal transferability using
the 1984 models to predict 1996/97 trip rates, we
observed that the 1984 Tel Aviv regression model
underestimated the observed total number of trips
in Tel Aviv in 1996/97 by 7%. The Haifa 1984
regression model overestimated the observed total
number of trips in 1996/97 Haifa data by only
2.8%. Taking into account that the average number
of daily trips in the Haifa 1984 survey was 2.17 and
in the 1996/97 survey it was 2.07, the difference is
not surprising. However, it may also be affected by
the different definition of the geographic scope of
the two household surveys.

Chow tests of the temporal stability of the 1984
models compared with the 1996/97 show that the
statistic for the 1984 Tel Aviv model was 4.53,
bigger than the 1.72 tabular F-statistic at the 95%
level of confidence, meaning that the 1984 coeffi-
cients differ from the 1996/97 coefficients. The sta-
tistic for the temporal stability of the 1984 Haifa
model was 8.39 compared with the 1.72 tabular F,
reaching the same conclusion. Transferability y°
tests of the Tobit models in time show that, at the
95% level of confidence, we can reject the null
hypothesis; that is, the models for the two time
points are different (X 53, 095 = 22.36 < 128-72) .

CONCLUSIONS

In our research, statistical tests indicated that the
regression and Tobit models estimated for two met-
ropolitan areas and two time periods differ statisti-
cally in time and in space. One exception was the
Tobit transferability in space, where the coefficients
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TABLE 8 Regression Models by Metropolitan Area: 1996/97

Haifa Tel Aviv
Standard Standard

Variable Coefficient tstatistic error Coefficient t statistic error
Regression coefficient 3.34 29.67 0.11 3.30 55.10 0.06
Age
8-13 0.19 1.62 0.12 0.14 2.11 0.07
14-17 0.73 5.70 0.13 0.40 5.55 0.07
18-29 0.45 4.65 0.10 0.36 6.54 0.05
30-64 0.55 6.35 0.09 0.34 7.00 0.05
65+ 0.00 — — 0.00 — —
Number of cars per household
0 —-0.81 -9.50 0.08 -0.73 -16.76 0.04
1 -0.40 -5.52 0.07 -0.35 -9.96 0.03
2+ 0.00 — — 0.00 — —
Driver’s license
No license -0.79 -10.51 0.07 -0.68 -16.59 0.03
License 0.00 — — 0.00 — —
Employed
Not employed -0.84 -11.93 0.07 -0.78 -20.74 0.04
Employed 0.00 — — 0.00 — —
Household status
Head (0 = no) -0.33 -5.28 0.06 -0.34 -10.12 0.03
Head (1 = yes) 0.00 — — 0.00 — —
Education
0 years 0.39 3.39 0.11 0.15 2.29 0.07
1-8 years -0.40 -4.25 0.09 -0.39 -7.16 0.05
9-12 years -0.06 -0.90 0.07 -0.19 -5.32 0.04
13+ years 0.00 — — 0.00 — —
Overall R2 0.23 0.21
Number of observations 5,027 15,689
used

Notes: Chow test for 1984 model transferability:

Ess, = error sum of squares of Haifa set

Ess, = error sum of squares of Tel Aviv set

Essy = error sum of squares of combined set

K = number of parameters in the model including the constant
N; = number of observations in model i

1 2
Ho:B; = B;
H, = else a= 0.05

Ess3—(Essy + Essp) Ni+N,-2.K 65202 (16635 +48285) 5027 + 15689 -2.13 _ o,
K Ess, + Ess, 13 16635 + 48285 '

F(k,N1+N2—2.K) = Fusw = 172=H;
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TABLE 9 Aggregate Estimation Results Using Regression Models: 1996/97

Haifa data Tel Aviv data
Tel Aviv Haifa Haifa Tel Aviv

model model Actual model model Actual
Average trips per person per day 1.93 2.07 2.07 222 2.07 2.07
Observations with negative
estimates 0 0 — 0 0 —
Minimum trip rate 0.37 0.16 — 0.16 0.37 —
Maximum trip rate 3.67 3.89 11.00 4.28 3.80 11.00
Total 9,748 10,450 10,414 34,788 32,341 32,455
Difference between model -6.39 0.35 — 719 -0.35 —
estimation and actual values (%)
Standard deviation 0.91 1.00 2.08 1.01 0.92 1.99

from the two models for the same year were not sig-
nificantly different. The distinction cannot be well
explained, but it might be due partially to geo-
graphic, demographic, socioeconomic, and spatial
structure differences between the two metropolitan
areas. The smaller sample size and scope of the
1984 household survey compared with the 1996/97
household survey (as shown in table 2) did not
allow us to represent the ethnicity of the survey
participants, a variable believed to be related to trip
generation. Also, the incorporation in the models of
a pure economic variable such as income was not
possible, because it was not included in the 1996/97
survey.

We ascribed the temporal instability of the esti-
mated models to changes in the structure and
development of the metropolitan areas of Tel Aviv
and Haifa, changes in lifestyle and socioeconomic
variables that are not all accounted for in the model,
as well as the inconsistency of the two surveys. A
partial explanation may be that 1984 was an eco-
nomically unstable year, featuring high inflation
rates and uncertainty, while 1996/97 was consid-
ered to be economically stable.

An important conclusion based on our results is
that in order for trip generation models to be trans-
ferable they need to account for variables not
included in the current models: income, land use and
spatial structure, the economy, the transportation
system and accessibility, and more detailed socioeco-
nomic and life style variables. If we could estimate a
perfect disaggregate model accounting for all factors

that affect trip generation and with appropriate seg-
mentation, it would likely be transferable. With this
data lacking, models are not transferable, because
unobserved variables affect coefficients of observed
variables with which they are correlated.

Another conclusion is that household surveys
conducted on a regular basis will be more useful if
the design stays constant. Differences in the structure,
variables, range, investigation period, definition of
the variables, and database structure affect the
transferability of the estimated models.

We also would emphasize the need for further
research on the implementation of Tobit models in
the context of trip generation. Tobit models tend to
represent the mechanism of trip generation more
realistically, capturing and estimating (partially)
nontravelers. As a combination of regression and
discrete choice models, the Tobit model may be
more suitable for implementation in TGM than
discrete choice or regression models, particularly
because Tobit is better formulated to differentiate
nontravelers from travelers. The underestimation of
nontravelers may be partly due to the fact that we
did not necessarily estimate the best Tobit model.

For the linear regression models, almost all vari-
ables were significant at the 95% confidence level,
but the coefficients were shown to vary in time and
space. For the Tobit model, while almost all variables
were significant at the 95% confidence level, the
coefficients of the models of the two metropolitan
areas were statistically similar but they differed in
time for each city.
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TABLE 10 Tobit Models by Metropolitan Areas: 1996/97

Haifa Tel Aviv
Variable Coefficient t statistic Coefficient t statistic
Regression intercept 3.00 36.84 3.04 68.47
Age
8-13 0.62 3.69 0.46 5.03
14-17 1.53 8.93 0.85 9.14
18-29 1.02 8.83 0.76 12.14
30-64 1.07 12.10 0.68 14.20
65+ 0.00 — 0.00 —
Number of cars per household
0 -1.20 -12.68 -1.07 -20.42
1 -0.52 —6.09 -0.47 -10.40
2+ 0.00 — 0.00 —
Driver’s license
No license -1.08 -12.89 -0.97 -21.38
License 0.00 — 0.00 —
Employed
Not employed -1.36 -17.25 -1.27 —29.96
Employed 0.00 — 0.00 —
Household status
Head (0 = no) —-0.56 -7.42 -0.48 -11.66
Head (1 = yes) 0.00 — 0.00 —
Education
0 years 0.50 4.21 0.21 3.14
1-8 years -0.77 -7.27 —-0.60 —10.06
9-12 years -0.12 -1.34 -0.19 —4.21
13+ years 0.00 — 0.00 —
Standard error of U 2.85 2.67
Overall pseudo R? 0.23 0.21
Number of 5,026 15,689
observations used
Log likelihood -9,060.98 —28,376.08
Log likelihood -9,806.57 -30,515.70

constant only

* Pseudo R? is a measure of goodness of fit similar to RZin ordinary least squares. The residuals are calculated
based on the maximum likelihood estimators. For details of its calculation, see the EasyReg manual, available at

http://econ.la.psu.edu/~hbierens/EasyRegTours/ TOBIT_Tourfiles/TOBIT.PDF.
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TABLE 11 Tobit Estimation of Nontravelers by Metropolitan Areas: 1996/97

Haifa data Tel Aviv data

Haifa Tel Aviv Tel Aviv Haifa

model model Observed model model Observed
Nontravelers 293 90 1,769 722 505 5,167
(persons) (35.19%) (32.93%)
Observed nontravelers 209 67 — 504 353 —
predicted as nontravelers
Right estimation (%) 11.81 3.78 — 9.75 6.83 —
Common observed and 71.33 74.44 — 69.80 69.90 —

estimated (%)

Key: Right estimation = observed nontravelers predicted as nontravelers / observed * 100;
common = observed nontravelers predicted as nontravelers / estimated * 100.

TABLE 12 Temporal Transferability Results of the 1984 Models in the 1996/97 Files

Haifa data Tel Aviv data
1996/97 1996/97
TEL AVIV 1984 Tel Aviv Tel Aviv 1984 Tel Aviv Tel Aviv
REGRESSION model model Actual model model Actual
Average trips per 1.76 1.94 2.07 1.92 2.06 2.07
person per day
Negative estimations 545 — — 1,464 — —
Minimum trip rate -0.40 0.37 0 -0.40 0.16 0
Maximum trip rate 4.04 3.67 11 4.04 3.80 11
Total 8,850 9,748 10,414 30,190 32,341 32,455
Difference between -15.01 -6.4 — -6.98 -0.35 —
model estimation and
actual values (%)
Standard deviation 1.27 0.91 2.07 1.28 0.92 1.99
1996/97 1996/97
1984 Tel Aviv Tel Aviv 1984 Tel Aviv Tel Aviv
HAIFA REGRESSION model model Actual model model Actual
Average trips per 21.30 2.08 2.07 2.31 22.20 2.07
person per day
Negative estimations 0 0 — — 0 —
Minimum trip rate 0.11 0.16 0 0.11 0.16 0
Maximum trip rate 4.49 3.89 11 4.49 4.28 11
Total 10,710 10,450 10,414 36,287 34,788 32,455
Difference between 2.84 0.35 — 11.80 719 —
model estimation and
actual values (%)
Standard deviation 1.34 1.00 2.07 1.35 1.01 1.99

(continues on next page)
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TABLE 12 Temporal Transferability Results of the 1984 Models in the 1996/97 Files (continued)

Haifa data Tel Aviv data
1996/97 1996/97
1984 Tel Aviv Tel Aviv 1984 Tel Aviv Tel Aviv
TEL AVIV TOBIT model model Actual model model Actual
Average trips per 1.83 1.92 2.07 2.06 1.98 2.07
person per day
Minimum trip rate 0 0 0 0 0 0
Maximum trip rate 4.86 4.30 11 4.41 4.84 11
Total 9,203 9,671 10,414 32,363 31,155 32,455
Difference between -11.60 -7.12 — 0.28 -4.00 —
model estimation and
actual values (%)
Standard deviation 1.58 1.28 2.07 1.30 1.61 1.99
1996/97 1996/97
1984 Tel Aviv Tel Aviv 1984 Tel Aviv Tel Aviv

HAIFA TOBIT model model Actual model model Actual
Average trips per 2.39 2.03 2.07 2.22 2.32 2.07
person per day
Minimum trip rate 0 0 0 0 0 0
Maximum trip rate 5.20 4.57 11 5.05 5.20 11
Total 12,036 10,184 10,414 34,796 36,381 32,455
Difference between 15.58 2.20 — 7.22 12.09 —
model estimation and
actual values (%)
Standard deviation 1.28 1.42 2.07 1.43 1.75 1.99

The nature of the local household surveys raises a
need to validate the results of this study in future
research. In particular, further research can identify
what makes two study areas “similar enough” to
justify transferring a model from one to the other.
We also suggest further research incorporating Tobit
models in TGM and for investigating the character-
istics of nontravelers.
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ABSTRACT

The Intermodal Surface Transportation Efficiency
Act (ISTEA) of 1991 mandated the consideration
of safety in the regional transportation planning
process. As part of National Cooperative Highway
Research Program Project 8-44, “Incorporating
Safety into the Transportation Planning Process,” we
conducted a telephone survey to assess safety-related
activities and expertise at Governors Highway Safety
Associations (GHSAs), and GHSA relationships
with metropolitan planning organizations (MPOs)
and state departments of transportation (DOTs).
The survey results were combined with statewide
crash data to enable exploratory modeling of the
relationship between GHSA policies and programs
and statewide safety. The modeling objective was to
illuminate current hurdles to ISTEA implementation,
so that appropriate institutional, analytical, and
personnel improvements can be made. The study
revealed that coordination of transportation safety
across DOTs, MPOs, GHSAs, and departments of
public safety is generally beneficial to the implemen-
tation of safety. In addition, better coordination is
characterized by more positive and constructive atti-
tudes toward incorporating safety into planning.

KEYWORDS: Transportation planning, transportation
safety, structural equation modeling.
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INTRODUCTION

The Intermodal Surface Transportation Efficiency
Act (ISTEA) of 1991 is, in many ways, a benchmark
of federal transportation legislation. Along with the
subsequent 1998 Transportation Efficiency Act for
the 21st Century (TEA-21), not only did it define
the post-interstate transportation program, it also
broadened the types of issues that were to be consid-
ered as part of the transportation planning process.

By mandating the consideration of a broader
range of issues to address in planning, the projects
and strategies surviving the planning and program-
ming processes should relate to those issues. There
are challenges in meeting this mandate, however,
due in part to “institutional inertia” in many state
departments of transportation (DOTs) and metro-
politan planning organizations (MPOs) to continue
the programming emphasis on capital-intensive
projects. ISTEA reinforced the change in focus away
from capital-intensive projects with the requirement
for six management systems, one of which targeted
safety. By introducing a process to identify system
deficiencies, analyze and evaluate prospective
improvement strategies, and monitor implemented
projects and strategies, it is possible to determine
whether anticipated effects occurred.

Major stakeholders in the transportation and
safety fields are varied and have no tradition of
interacting within the context of the planning pro-
cess. Our interest here is whether MPOs and DOTs
interact with their respective Governors Highway
Safety Association (GHSA) representatives, who are
often the focal point for state initiatives dealing
with issues such as drunk driving, seat belt use, and
teenage driving. Furthermore, it is important to
know whether GHSA and MPO/DOT coordination
makes a difference in terms of statewide safety.

The inspiration for GHSA dates back to the
Highway Safety Act of 1966, which established
state offices of highway safety. In an effort to share
information among state safety offices, the National
Conference of Governors’ Highway Representatives
was created. GHSA grew out of this and, in 1974, it
incorporated. GHSA includes highway safety pro-
gram managers from all 50 states, the District of
Columbia, Puerto Rico, the Northern Marianas, all
U.S. territories, and the Indian Nation. The member

agencies are tasked to develop, implement, and
oversee highway safety programs using behavioral
strategies such as training and educating motorists,
pedestrians, bicyclists, and school children on safe
behavior, and by addressing impaired driving,
speeding, aggressive driving, and safety restraint
use. Given the mission of the GHSAs, their impact
on statewide safety is vital, and their cooperation
and coordination with MPOs and DOTs may play a
pivotal role in the ultimate success of incorporating
safety into the transportation planning process.

This paper presents the results of a telephone sur-
vey designed and administered to state GHSA offices
to capture the characteristics, attitudes, and activities
of these agencies. (The survey was part of National
Cooperative Highway Research Program (NCHRP)
Project 8-44, “Incorporating Safety into Long-Range
Transportation Planning.”) Specific objectives of the
survey include:

1. understanding if and how the agencies’
mission statements, goals, and/or objectives
address various safety issues;

2. characterizing the nature of the implemented
programs;

3. determining whether an agency considered
integrating the state safety program with
specific transportation-related activities; and

4. the extent of GHSA participation in regional
transportation planning and interaction with
MPOs and DOTs.

Two research questions of particular interest arose
from the survey.

1. Are the depth and breadth of programs com-
mensurate with statewide safety? In other
words, does the safety level within a state
drive the adoption of programs? Will a state
with a poorer safety record have broader and
more extensive safety programs, for example,
and does that indicate that GHSA activities
and funding are out of step with safety or are
lagging?

2. Do GHSA perceptions of the benefits of
transportation planning influence program-
ming efforts and/or statewide safety levels?
In other words, does cooperation between
GHSAs, DOTs, and MPOs lead to more
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extensive statewide safety programming

and/or improved safety?
We used latent variable models to look for answers
to these research questions in a quantitatively rigor-
ous way. We chose this type of model because of
the type of data in the study—many variables are
not directly observable (latent), and thus their
proxies (variables we can measure directly) suffer
from measurement errors.

While latent variables and measurement errors of
their proxies are widespread in social science
research, they are relatively uncommon in transpor-
tation research. Latent variables refer to unobserv-
able or unmeasured variables, such as intelligence,
education, social and political classes, and attitudes.
Often proxies can be used to indirectly measure
latent variables, such as IQ score and grade point
average, as measures of the latent variable intelli-
gence. Certain effects of these latent variables on
measurable variables are observable, along with
some random or systematic errors, collectively called
measurement errors. Everitt (1984) pointed out that
it was indeed one of the major achievements in the
behavioral sciences to develop methods that assess
and explain the structure in a set of correlated,
observed variables, in terms of a small number of
latent variables.

In this study, the variables indicating attitudes of
GHSA personnel, their planning and programming
efforts, and coordination with MPOs and DOTs are
not directly measurable. While the survey responses
aim to measure these underlying latent variables,
some of their dimensions may remain unexplored.
This paper presents various latent variable analysis
techniques used to examine and extract relationships
in the data, including factor analysis (exploratory)
and structural equation modeling.

THE SURVEY

During fall 2002 and spring 2003, the research
team conducted telephone surveys of GHSA per-
sonnel in the 50 states and the District of Columbia
to capture their planning attitudes, types of pro-
grams, goal-setting criteria, coordination efforts,
and perceived influence on transportation planning.
Respondents were asked a series of formal survey
questions aimed at understanding the relationships

between planning efforts and safety issues, as well
as several open-ended questions intended to capture
the unique viewpoints, activities, and perspectives
of each of the individual agencies. The survey
instrument was pre-tested in two states, and the
final survey instrument was revised based on the
pretest results. The survey instrument appears in the
appendix of this paper.

While individuals designated as the Governor’s
Representative for Highway Safety in a specific state
were initially targeted as the appropriate agency
respondents, conversations with actual governors’
representatives soon revealed that the individuals
actually managing the development and imple-
mentation of GHSA programs were often not the
designated representatives themselves, who were
typically high-level personnel in other state agencies.
Instead, in many cases, individuals hired for the
express task of managing these programs were
interviewed.

The respondent recruitment effort consisted of
multiple attempts to contact each of the respon-
dents via telephone, followed by an email contact
to encourage each individual’s participation. Ulti-
mately, telephone surveys, averaging 20 minutes
in length, were completed for 43 of the 51 potential
respondents. Two of the states completed the survey
electronically, bringing the total number of states
surveyed to 45. Despite an exhaustive effort to
reduce survey nonresponse, responses for six states
were not obtained. However, among the 45 com-
pleted surveys, item nonresponse was not a problem.

The survey was designed to capture six major
characteristics of a GHSA.

B the types of planning-related activities under-
taken;

B attitudes toward planning as reflected by GHSA
efforts to include specific safety issues in trans-
portation planning activities, as well as how
much GHSA participated in the regional trans-
portation planning process;

B whether the GHSA office is affiliated with
another state agency;

B the extent of coordination with other agencies;
B the planning time horizons of the agency; and

B the number of agency staff.
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SUPPLEMENTAL STATE-LEVEL DATA

In addition to the survey responses, state-level safety
data were obtained. These data from the National
Highway Traffic Safety Administration (NHTSA)
included total fatalities, alcohol-related fatalities,
and pedestrian and bicycle-related fatalities for cal-
endar year 2001 (USDOT 2001). To compensate
for exposure to risk, crash rates were taken into
account rather than the total crash statistics. In
other words, a state with a large population and
relatively higher vehicle-miles traveled (VMT) can
be expected to experience a greater number of
crashes than a smaller state. Hence, to minimize
bias imposed by population size, fatality rates per
100 million VMT were considered for total as well
as alcohol-related crashes. We used fatality rates
per 100,000 population for pedestrian and bicycle

crashes. The crash rates are used as observed
endogenous variables and served as proxies for the
latent variable RISK (motor vehicle safety-related
risk) across states. Better metrics for pedestrian and
bicycle exposure are theoretically possible but are
not generally available.

In addition to these data, this research utilized
various other sources of information, including
enacted legislation in the states covering seat belt
laws, laws related to impaired driving, helmet
laws, child restraint laws, and so forth (IIHS
2004). Despite a priori expectations, these variables
were not found to be statistically significant in the
modeling efforts. Table 1 presents the descriptive
statistics of various observed variables employed in
the final model.

TABLE 1 Summary of Survey Response

Variable Variable Scale

name Question number type range Average Minimum Maximum Variance
PEDS2 Q-2a Yes/No 0-1 0.67 0 1 0.227
BIKE2 Q-2b Yes/No 0-1 0.60 0 1 0.245
DRIVED2 Q-2c Yes/No 0-1 0.27 0 1 0.200
SCHOOLED2 Q-2d Yes/No 0-1 0.47 0 1 0.254
ENFORCE2 Q-2e Yes/No 0-1 0.84 0 1 0.134
COOPDQT2 Q-2f Yes/No 0-1 0.67 0 1 0.227
COCPLOC2 Q-2g Yes/No 01 0.71 0 1 0.210
COOPPLAN2 Q-2h Yes/No 0-1 0.40 0 1 0.245
SAFDES2 Q-2i Yes/No 0-1 0.27 0 1 0.200
SAFOPS2 Q-2j Yes/No 0-1 0.22 0 1 0.177
DATA2 Q-2k Yes/No 0-1 0.80 0 1 0.164
STAFF3 Q-3 Ratio scale NA 8.36 0 19 22.916
ENG4 Q-4a Yes/No 0-1 0.18 0 0.149
PLAN4 Q-4b Yes/No 0-1 0.33 0 1 0.227
OPS4 Q-4c Yes/No 0-1 0.31 0 1 0.219
ENF4 Q-4d Yes/No 0-1 0.76 0 1 0.188
EDU4 Q-4e Yes/No 0-1 0.76 0 1 0.188
MKTG4 Q-4f Yes/No 0-1 0.67 0 1 0.227
PERFMS5 Q-5 Ordinal 1-5 4.84 4 5 0.134
SHAREPM6 Q-6 Yes/No 0-1 1.02 0 9 3.249
PERFTGT7 Q-7a Yes/No 0-1 0.98 0 1 0.022
TGTYEAR7 Q-7b Ratio scale NA 5.02 1 30 20.113
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TABLE 1 Summary of Survey Response (continued)

Variable Variable Scale
name Question number type range Average Minimum Maximum Variance
AGYHZNS Q-8 Ratio scale NA 5.38 1 30 26.331
PEDEDU9 Q-9a Yes/No 0-1 0.64 0 1 0.234
PEDCRWK9 Q-9%b Yes/No 0-1 0.40 0 1 0.245
PEDSCHL9 Q-9c Yes/No 0-1 0.62 0 1 0.240
BIKEDU10 Q-10a Yes/No 0-1 0.69 0 1 0.219
BKHELM10 Q-10b Yes/No 0-1 0.53 0 1 0.254
BKLITE10 Q-10c Yes/No 0-1 0.29 0 1 0.210
BKBRK10 Q-10d Yes/No 0-1 0.09 0 1 0.082
DOT12 Q-12a Ordinal 0-4 3.96 3 4 0.043
SPOLCE12 Q-12b Ordinal 0-4 3.82 0 4 0.695
LPOLCE12 Q-12c Ordinal 0-4 3.96 2 4 0.088
PLAN12 Q-12d Ordinal 04 1.80 0 4 2.300
LEGS12 Q-12e Ordinal 04 2.67 0 4 2.363
GOvi2 Q-12f Ordinal 04 2.84 0 4 1.907
HWY12 Q-12g Ordinal 04 0.62 0 4 1.695
ENGNR12 Q-12h Ordinal 0-4 1.24 0 4 2.098
SCHOOL12 Q-12i Ordinal 0-4 2.87 0 4 2.345
LOCAL12 Q-12j Ordinal 0-4 3.22 0 4 1.722
SDWLK13 Q-13a Yes/No 0-1 0.33 0 1 0.227
CRSWLK13 Q-13b Yes/No 0-1 0.42 0 1 0.249
BIKE13 Q-13c Yes/No 0-1 0.51 0 1 0.255
SPEED13 Q-13d Yes/No 0-1 0.58 0 1 0.249
TURN13 Q-13e Yes/No 0-1 0.47 0 1 0.254
RDSIDE13 Q-13f Yes/No 0-1 0.53 0 1 0.254
MONITR13 Q-13g Yes/No 0-1 0.58 0 1 0.249
MPO14 Q14a Yes/No 0-1 0.38 0 1 0.240
RURAL15 Q15a Yes/No 0-1 0.24 0 1 0.188
STP16 Q16a Yes/No 0-1 0.67 0 1 0.186
INFLU17 Q17 Ordinal 0-2 0.69 0 1 0.674
TOLFTVMT Total fatality rate per  Ratio scale NA 1.59 0.96 2.32 0.128

100 million VMT
ALCFTVMT Any alcohol-related Ratio scale NA 0.66 0.29 1.27 0.042

fatality rate per 100

million VMT
PEDFTPOP Pedestrian fatality rate Ratio scale NA 1.48 0.47 2.98 0.331

per 100,000 persons
BIKFTPOP Bike-related fatality Ratio scale NA 0.22 0 0.77 0.025

rate per 100,000

persons

Key: VMT = vehicle-miles traveled.
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METHODOLOGY

An exploratory factor analysis followed by struc-
tured equation modeling (SEM) was used to model
structured relationships between latent variables.
Latent variable models have been widely applied in
various fields, but rarely in transportation; for
example, in sociology by Amato and Alan (1995),
in psychology by Ostberg and Hagekull (2000)
and Rubio et al. (2001), and in construction man-
agement by Molenaar et al. (2000).

While few applications exist in transportation,
Ben-Akiva et al. (1991), working in the area of
pavement management, introduced the concept of
latent performance in terms of several observable
performance indicators and used measurement as
well as structural models to model relationships.
The results of this model were then used for deci-
sions on, for example, optimal maintenance and
inspection policies, expected number of inspections
for the optimum policies, and the minimum
expected cost of inspecting and maintaining a facility
over various planning time horizons. Another
important study in transportation by Golob and
Regan (2000) used confirmatory factor analysis to
look at the interrelationship among the latent policy
evaluations through several exogenous variables
defining differences in freight operations.

In statistical modeling, applying knowledge of the
underlying data-generating process is a critical step
when developing a “starter specification.” However,
in the absence of well developed theories, it is often
difficult for an analyst to specify a priori which
observed variables affect which latent variable. In
this context, Loehlin (2004) discussed exploratory
factor analysis (EFA) as a method to discover and
define latent variables as well as a measurement
model that can provide the basis for a causal analysis
of relationships among the latent variables.

Methodological Details

As described in Washington et al. (2003), EFA is not
a statistical model and there is no distinction
between dependent and independent variables in this
analysis. For the EFA is to be useful, there are K < 7
factors or principal components, with the first factor
given as

F oo, tayp-1)Yp-1t Yy )

which maximizes the variability across individuals,
subject to the constraint

2 2 2
ay +ap+agg+ .. +ay,

2 2
+ o +aj,_1ytay, =1 (2)

where observed variables are denoted by (p x 1)
column vector y, and (g x 1) column vector x, and
influence the latent endogenous and exogenous
variables, respectively. Thus, VAR[Z,] is maximized
given the constraints in equation (2), with the con-
straints imposed to ensure determinacy. A second
factor, Z,, is then sought to maximize the variability
across individuals, subject to the constraints
a§1+a§2+a§3+ ....... +a§(p_1)+a§p =1

and COR[Z,Z,] = 0, and so on, such that
COR[Z4, Z,.......Zg] = 0 for up to K factors. In this
paper, the various survey responses are the
observed variables, and they are used to identify the
underlying latent variables. Manly (1986), Johnson
and Wichern (2002), and Washington et al. (2003)
provide additional details of EFA.

After identifying useful factors from EFA, SEMs
are developed. A SEM is defined with two compo-
nents, a measurement model and a structural model.
SEMs are a natural extension of factor analysis and
are used to identify structural relationships between
latent as well as observed variables. The measure-
ment model portion of a SEM correlates the
observed variables with latent dependent, as well as
independent, variables. Observed variables influenc-
ing latent endogenous and exogenous variables are
denoted by a (px1) column vector of y and
(g x1) column vector of x, such that

y=Ap+e 3)
x = AE+D (4)
where

A, (p xm) and A, (g xn) are the coefficient matri-
ces that show the relation of y to n and x to &,
respectively, and e(px1), and d(gx1) are the
errors of measurement for y and x, respectively
(Washington et al. 2003). For example, if statewide
safety is a latent dependent variable of interest, it is
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denoted as 5 and all the observed variables, such as

alcohol-related fatalities, pedestrian and bicycle-

related fatalities, etc., would constitute the y vector.
The structural component of a SEM is given as

n =Byp+TE+s (5)

where

n is an (m x 1) vector of latent endogenous ran-
dom variables,

& is a vector of (nx1) latent exogenous random
variables,

B is an (m xm) coefficient matrix reflecting the
influence of the latent endogenous variables on each
other,

I' is an (m x n) coefficient matrix for the effects of
& onn,and

s is the vector of regression errors for which
[E(s) = 0] and is uncorrelated with £. In addition,
the error terms of the measurement models are
assumed to be uncorrelated with & and s.

From the previous simultaneous equation (35),
and treating all the observed variables as dependent
variables in the model, the covariance matrix is
given as

0) = GU-B) ypy(I-p G’ (6)

where G is the selection matrix containing either
zero or one to select the observed variables from
all the dependent variables in #. Once the SEM
model is identified (statistically), the parameters are
estimated using a discrepancy function based on the
hypothesized model X = 3(6), where X is esti-
mated by the sample covariance matrix S. The role
of this discrepancy function is to minimize the dif-
ference between the sample variance-covariance
matrix and the model-implied variance-covariance
matrix, and is given as

F = F(S,3(6)) (7)

It is important to note that the observed variables
in this study are mainly categorical in nature and
are not approximated well by normal distributions.
According to Bollen (1989), the weighted least
squares (WLS) estimator has the desirable property
of making minimal assumptions about the distri-
bution of observed variables, unlike maximum
likelihood estimators (MLEs), which presuppose

the underlying data to be approximately normally
distributed. Hence, we used the WLS estimator
instead of MLE for this research. The fitting func-
tion for WLS is

Fyrs = [s—0(6)]'W '[s-0(6)] (8)

where

sisa 12(p + q)(p + g + 1) vector containing the
polychoric and polyserial correlation coefficients for
all pairs of latent endogenous and observed exoge-
nous variables,

0(0) is the corresponding same-dimension vector
for the implicated covariance matrix, and

W is a consistent estimator of the asymptotic covari-
ance matrix of s.

Goodness-of-Fit Measures

To evaluate the overall goodness of fit of the esti-
mated models, ° fit, the root mean square error of
approximation (RMSEA), normed fit index (NFI),
and Tucker-Lewis index (TLI) were calculated and
used to guide final model selection. In this context,
it is important to mention that goodness of fit in
SEM is an unsettled topic for which many
researchers have presented a variety of viewpoints
and recommendations. While a detailed explanation
of them is beyond the scope of this paper, a brief
description about each measure of fit used in this
paper is provided.

As described by Washington et al. (2003), a use-
ful feature of discrepancy functions is that they can
be used to test the null hypothesis H, : 3'(0) = %,
and (n — 1) times the discrepancy function evaluated
at 0 is approximately y* distributed. The degrees of
freedom are 1/2(p + q)(p + g + 1) — t, where p and q
are as described previously, and # is the number of
free parameters in 6. This x° divided by model
degrees of freedom has been suggested as a useful
goodness-of-fit measure. However, in this context,
the logic of significance testing is different from
significance of coefficient testing in a regression
equation (Bollen 1989). In the classical application,
we hope to reject the null hypothesis, whereas in the
SEM (for the y° test) the null hypothesis assumes
that the implied model is equal to the true model
and we do not wish to reject it. As a result, a large
x° and small p value suggests model lack of fit.
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Thus, a relatively large p value and small y° is
sought and corresponds to a good fit of the model-
implied variance-covariance with the observed one.

Another class of goodness-of-fit measures avail-
able in SEM is based on the population discrepancy
function as opposed to the sample discrepancy
function, such as RMSEA. The RMSEA is obtained
by taking the square root of the population-based
discrepancy function divided by its degrees of free-
dom. Practical experience indicates that a value of
RMSEA of about 0.05 or less indicates a good fit of
the model.

The remaining two goodness-of-fit measures are
based on comparisons with a baseline model. The
NFI proposed by Bentler and Bonett (1980) indi-
cates the level of improvement in the overall fit of
the present model compared with the baseline
model and is given as

-1_EF
NFI=1-2 (9)

b
where F and F,, are the discrepancy functions of the
fitted and baseline models. The TLI is similar to
this concept, but in addition to the discrepancy
functions, the degrees of freedom associated with
the fitted model (df), as well as the baseline model
(dfy), are considered in calculating the index, thus a
penalty can be imposed for larger models similar to
an adjusted R” in regression. The index is given as
TLI = F,/df,—E/df
F,/df, -1

More information on SEM estimation, goodness of
fit, variable selection, specification, and interpreta-
tion can be found in Bollen (1989), Arminger et al.
(1995), Hoyle (1995), Schumacker and Lomax
(1995), Kline (1998), and Washington et al. (2003).

SEM MODEL STARTER SPECIFICATION

The hypotheses mentioned previously, and described
in greater detail here, helped to provide the research
team with an initial SEM specification.

Hypothesis 1. The breadth and depth of state-
wide programs should in theory influence statewide
safety, albeit with a time lag. It is hypothesized that
states with relatively poor safety records will have
broad and intensive safety programs, in response to
a needed safety improvement. This finding would
reflect an appropriate allocation of federal funds for

improving safety across states. Because changes in
statewide safety typically are not immediate, and
because program benefits tend to lag program
investments, it is assumed that depth and breadth of
safety programming will be negatively associated
with statewide safety. This anticipated relationship
is aggregate in nature and exceptions may occur.

Hypothesis 2. GHSAs that perceive benefits from
participating in the transportation planning process
will be more likely to adopt a coordinated approach
to safety and will, consequently, be more likely to
identify new opportunities for addressing safety,
thereby vyielding increased safety performance.
Understanding how these agencies develop their per-
ceptions of planning activities is difficult to assess.
For instance, an unfavorable attitude could represent
an institutional unwillingness to coordinate with
other agencies or may be the result of a previously
unsuccessful attempt at coordinating with other
agencies. Alternatively, a positive perception of
planning may be the result of successful experiences
in previous coordination attempts or may simply
represent an appreciation for the potential benefits
of a coordinated approach. It could also represent a
latent agency willingness to adopt new and innova-
tive approaches to transportation safety, even if
the agency has never previously attempted to
coordinate their efforts with planning entities. It is
hypothesized that in aggregate, agencies with a
positive perception of planning are expected to be
willing to introduce a broad range of programs
addressing safety, as well as yield better than average
safety records.

Although these hypotheses represent a priori
beliefs about the relationships between latent vari-
ables and guided the specification of the structural
relationships in the SEM models, the latent factors
were identified through an EFA. The survey
response—observed endogenous variables (endoge-
nous because they are influenced by the underlying
latent variables)—form the x and y vectors in equa-
tion (1) and may be related to one or more latent
variables. The factor loadings give an indication of
how many distinctly different “dimensions” exist in
the data.

The exploratory factor analysis output (table 2)
clearly shows significant loadings for some variables
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TABLE 2 Results of the Exploratory
Factor Analysis

Observed

variables Factor 1 Factor 2 Factor 3
PEDEDU9 0.584 -0.197 0.348
PEDS2 0.893 0.052 0.101
SDWLK13 0.518 0.034 0.735
CRSWLK13 0.408 0.035 0.643
MPO14 -0.037 —-0.052 0.883
BIKE2 0.708 0.073 0.155
BIKEDU10 0.783 —-0.086 0.332
TOLFTVMT —0.081 0.864 -0.037
ALCFTVMT -0.062 0.868 0.035
PEDFTPOP 0.048 0.525 —-0.052
BIKFTPOP 0.102 0.491 0.162

on a specific factor compared with others. For
example, the variable PEDS2 loads significantly on
the first factor but not on the second and third
factors. These differences in factor loadings help the
analyst to determine which observed variables are
influenced by a common underlying factor, how
many latent variables to consider in a SEM, and how
to specify the measurement portion of a SEM (e.g.,
which observed endogenous variables measure the
latent variables). The EFA in this study produced
strong evidence in support of three latent variables,
which are described as:

1. Breadth of the programs (PROGRAM in
figure 1). This latent variable reflects the
extent of programs reported by GHSAs
around the United States. The questions that
loaded heavily (were influenced by breadth
of programs) on this factor included Q2a-
Q2e, Q9a-Q9c, and Q10a-Q10d, survey
responses that describe agency goals for
pedestrian and bike safety programs, educa-
tion, and enforcement.

2. Attitude of the agencies toward planning
(ATTITUDE_PLN in figure 1). This latent
variable influences collectively the responses
to questions Q13a-Q13g, Q14a, Q15a, and
Q16a, which represent attitudinal and per-
ception-related questions.

3. Risk. This latent variable is strongly associ-
ated with variables such as total and alcohol-
related crash rates and pedestrian and bicycle-
related crash rates. Thus, the variable reflects
the amount of motor vehicle-related risk

across the states. It is worthwhile to note that
the observed crash rates measure the degree
that something is not safe, and thus the latent

variable is labeled RISK.

RESULTS

Using Mplus software, we obtained the results of
the SEM estimated on the survey and statewide
crash data. The relationships among the observed
and latent variables are shown in figure 1. For ease
of understanding, the observed endogenous vari-
ables are shown as rectangles, while both latent
endogenous and exogenous variables appear as
ellipses. The circles represent the unobserved mea-
surement error terms. Arrows in the diagram suggest
the direction of influence, thereby identifying the
endogenous and exogenous variables. For example,
the base of an arrow is attached to an exogenous
variable while the variable to which it points is
endogenous. A similar concept is also valid for the
error terms. A 0 next to a variable indicates that its
mean is set to 0 and the 1 near the arrow means the
regression weight is given as 1. There must also be at
least two observed endogenous variables pointing to
a latent variable for identifiability of the model (a
necessary condition for ensuring that sufficient infor-
mation exists to estimate the model parameters).

Overall Model Goodness-of-Fit

As discussed previously, the hypothesized relation-
ships between variables were used to identify
structural relationships, while survey questions and
state-level crash data were used to formulate the
measurement portion of the model. The latent
variables in the starter specification model were
loaded with all the significant variables obtained
from the exploratory factor analysis based on the
factor loadings. A variable with a factor loading of
greater than 0.5 was considered significant and
included in the model. However, including all of the
significant observed variables in the measurement
model resulted in non-identifiability of the model
(too many model parameters relative to the data to
estimate).

As a result, an iterative process was adopted
where the “least” significant variables were removed
and an improved SEM model was obtained based on
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FIGURE 1 Final Model Specifications
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the model fit and convergence criteria. Note that

changes during this process were made only to the
measurement model and not to the structural model
relating latent variables. For example, TOLFTVMT,
which presents the total number of crashes per
VMT, was dropped from the final model, because a
better fitting model was achieved using three other
accident-related variables explaining the latent vari-
able RISK. Deleting TOLFTVMT from RISK was
not detrimental to model fit, as it explains the total
crash including pedestrian, bike, and alcohol-related
accidents, and these were already taken into con-
sideration by the other three observed variables.
The problem of restricting the measurement models
to a few select variables was dependent on sample
size and model complexity and is addressed in the
section on further research.

Table 3 shows the final SEM specification results.
The interpretation of the results in the table is
straightforward and consistent with the arrows-
between-variables explanation of figure 1. The
first row in table 3 shows that the latent variable
PROGRAM acts as an exogenous variable on the
latent variable RISK with a coefficient estimate of
0.026, standard error of 0.021, and # value of
1.226. The second part of table 3 presents the

estimated intercepts of the observed endogenous
variables.

Table 4 shows various goodness-of-fit statistics
used during model selection. The chi-square value
for the final model is 15.455 with 17 degrees of
freedom (p value of 0.5627), which indicates the
model fit cannot be rejected at p = 0.05. Because
the chi-square goodness-of-fit test is used to test for
differences between the implied model variance-
covariance matrix and the observed one, a model
that will not reject the null hypothesis is a desired
outcome. The RMSEA for the final model was
0.003, which clearly indicates a close-fitting model.
Also, the calculated NFI and TLI are close to 1,
indicating considerable improvement over the base-
line model.

General Findings

The model results suggest a two-way relationship
between risk and the program efforts by GHSAs, or
that these two aspects are mutually endogenous.
Risk affects programming, and programming also
affects risk. States with high safety risk actively imple-
mented a wide variety of safety programs resulting in
a breadth of the programs being positively associ-
ated with safety risk. This finding agreed with
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TABLE 3 Weighted Least Squares Estimate of the Model

Regression Standard Critical

SEM regression weights weights error ratio

RISK <--------m------ PROGRAM 0.026 0.021 1.226
PROGRAM <---------- RISK 7.081 6.278 1.128
PROGRAM <---- ATTITUDE_PLN 0.563 0.093 6.043
SDWLK13 <--==----- ATTITUDE_PLN 1.926 0.806 2.391
MPO14 <----------- ATTITUDE_PLN 1.000 0.000 —
PEDEDU9 <-------------- PROGRAM 1.000 0.000 —
BIKE2 <------------- PROGRAM 1.169 0.102 11.463
BIKEDU10 <---------------- PROGRAM 1.163 0.119 9.769
ALCFTVMT <-------------- RISK 1.000 0.000 0.000
PEDFTPOP <-----=--=----- RISK 7.168 3.753 1.910
BIKFTPOP <-------=--=---- RISK 2.048 1.074 1.910
Intercepts Estimate

PEDEDU9 —0.370

SDWLK13 0.431

MPO14 0.311

BIKE2 —-0.253

BIKEDU10 —0.493

ALCFTVMT 0.663

PEDFTPOP 1.480

BIKFTPOP 0.219

Key: SEM = structural equation model.

TABLE 4 Overall Goodness-of-Fit Measures
for the Model

Description Final model (p value)
Chi-square 15.455 (0.5627)
RMSEA 0.003
Normal fit index 0.999
Tucker-Lewis index 0.999

Key: RMSEA = root mean square error of approximation.

expectations that relatively higher safety risk drives
the allocation of federal funding and thereby sup-
ports a broad range of safety programs targeted
toward safety improvements. Also, the effect of risk
on programming is significantly larger than the
effect of programming on risk. This suggests there is
a considerable lag between safety investments and
risk reductions, or the combinations of safety pro-
grams do not bring about risk reductions propor-
tionate to the effect of risk on programming. The
squared multiple correlations (R” statistics) for the

latent variables RISK and PROGRAM are 0.686
and 0.431, respectively, indicating that the model
explains 68% of the variance in PROGRAM and
43% of the variance in RISK.

The latent variable ATTITUDE_PLN, which
captures GHSAS’ attitudes toward integrating state
safety programs with transportation-related activ-
ities, as well as their participation in regional
transportation planning, was positively associated
with PROGRAM. The model also suggests that the
attitude of GHSAs directly affects the latent variable
PROGRAM and indirectly affects the exogenous
variable RISK through PROGRAM. These findings
imply that a positive attitude toward safety planning
within GHSAs results in a broader and more exten-
sive implementation of safety programs by GHSAs.
This result again confirmed a priori expectations
that agencies active in safety planning would be
likely to implement a broad range of programs to
improve statewide transportation safety.
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CONCLUSIONS
ISTEA and the TEA-21 legislation raised the visi-

bility of safety conscious planning in the United
States. While safety-related planning has historically
been reactive, new initiatives and investments are
intended to change the status quo and encourage a
new approach for considering safety at the trans-
portation planning level. In particular, the NCHRP
8-44 project is oriented toward contributing and
understanding tools for proactive planning among
DOTs, MPOs, and GHSAs. This paper presents an
exploratory analysis aimed at better understanding
the relationships between GHSA-implemented safety
programs and the actual safety scenario, as well as
the effect of coordination among the various agencies
on statewide safety.

The study revealed that coordination of transpor-
tation safety across DOTs, MPOs, GHSAs, and
departments of public safety appears to be generally
beneficial to safety, particularly in the long term. In
addition, better safety planning coordination is
characterized by positive attitudes toward incorpo-
rating safety into planning and also implementing a
wide range of programs to improve safety. Further-
more, mechanisms for improving cooperation,
coordination, and collaboration among the agencies
also appear to be worthwhile investments.

FUTURE WORK

The results presented in this paper are exploratory
due to a lack of a well-articulated theory regarding
the subject matter. Additional information and some
controlled data-collection would be required to
draw more definitive conclusions. For example,
panel data over a period of 5 to 10 years would be
required to examine the lag between safety invest-
ments and risk, as well as attitudes and programs
implemented over time. Additional data from all 50

states would sufficiently increase the number of
observations necessary to improve the WLS esti-
mates obtained in this analysis, allowing for more
“complex” models. The WLS estimator requires at
least 1/2(p + q)(p + q + 1) observations where (p + gq)
are the number of observed dependent variables.
Hence, the explanatory power of the model greatly
depends on the number of observations.

This study was restricted to three main latent
variables and a few carefully selected observed
endogenous variables in the measurement model,
due partly to data limitations. A larger study would
enable the research team to focus on perhaps other
relevant variables critical to statewide safety perfor-
mance, such as the types of programs implemented.
As a result, the present model remains speculative
and further data are needed to validate it. Further-
more, the results are time dependent, due to the
observed response from the 2002 to 2003 time
periods. As mentioned previously, there is every
possibility of a lagged effect of safety improvement
programs on state safety performance, which is not
properly captured in this modeling effort. Regard-
less, some initial insights into relationships among
agencies were found and are encouraging for the
successful implementation of ISTEA and TEA21

legislation targeted towards national safety
improvements.
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Survey Question 1: Is your agency located within, or directly affiliated with, another state agency,

such as the Department of Transportation?
1a. affil1—Affiliated with another state agency?
1=Yes
0=No
1b. agency1—Name of affiliated agency.
1c. agcycod—Coding of agency affiliation.
0 = No affiliation
1 = State DOT
2 = State police
3 = Department of Public Safety
4 = Department of Motor Vehicles
5 = Other affiliation

(survey questionnaire continues on next page)
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Survey Question 2: Do your agency’s mission statement, goals, or objectives explicitly address any of
the following issues?

2a. peds2—Pedestrian safety.
2b. bikes2—Bicycle safety.
2c. drived2—Driver education.
2d. schooled2—Safety education in school.
2e. enforce2—Traffic law enforcement.
2f. coopdot2—Cooperation with the state DOT.
2g. cooploc2—Cooperation with local officials.
2h. coopplan2—Interaction with regional or local transportation planners.
2i. safdes2—Incorporating safety into the design of transportation facilities.
2j. safops2—Incorporating safety into transportation facility operation.
2k. data2—Collecting safety-related data.
1=Yes
0=No

Survey Question 3: How many professional staff members (i.e., those focused on highway safety, not
clerical or support staff) does your agency have?

Staff3—Number of agency employees.

Survey Question 4: Do any members of your staff have expertise in the following areas?
4a. Eng4—Transportation engineering.
4b. plan4—Transportation planning.
4c. ops4—Traffic operations.
4d. enf4—Law enforcement.
4e. edu4—Education.
4f. mktgd—Marketing/media relations.
1=Yes
0=No

Survey Question 5: Federal regulations require Governors Highway Safety agencies to develop
annual plans, as well as performance measures for evaluating program effectiveness. How important
are these performance measures in influencing the types of projects and programs implemented by
your organization?
perfms5—Importance of annual performance measures on agency projects.

5 = Very important

4 = Somewhat important

3 = No opinion

2 = Not very important

1 = Not at all important

Survey Question 6: Are your agency’s performance measures shared by other agencies responsible
for the transportation system (e.g., by the state DOT or by regional transportation planning agencies in
your state)?
6a. Sharepm6—Other agencies sharing performance measures.
1=Yes
0=No
6b. agency6—Names of agencies sharing performance measures, if any.
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Survey Question 7: Does your agency develop longer term performance targets beyond the federally
required 1-year targets?
7a. perftgt7—Performance targets beyond federal requirements.
1=Yes
0=No

7b. tgtyear7—Furthest target year in future.

Survey Question 8: What is the planning time horizon for your agency?
Agyhzn8—Agency planning horizon.

Survey Question 9: Which of the following pedestrian-related safety programs does your agency
implement?
9a. Pededu9—Education on safe street crossing.
9b. pedcrwk9—Crosswalk enforcement.
9c. pedschl9—Safe routes to schools program.
1=Yes
0=No

9d. other9—Other pedestrian programs, if any.

Survey Question 10: Which of the following bicycle-related safety programs does your agency
implement?
10a. Bikedu10—Bicycle education campaigns.
10b. bkhelm10—Bicycle helmet programs.
10c. bklite10—Lights on bicycles at night.
10d. bkbrk10—Bicycle brake requirements.
1=Yes
0=No

10e. other10—Other bicycle programs, if any.

Survey Question 11: Has your agency undertaken any innovative safety programs using federal
flexible funds, such as Section 407 funds that provide flexible incentive grants for programs aimed at
increasing highway safety?
11a. Innov11—Innovative programs using flexible funds.
1=Yes
0=No
11b. prgrm111—Name of innovative program 1, if any.
11c. effct111—Effectiveness of program.
5 = Very effective
4 = Somewhat effective
3 = No opinion
2 = Somewhat effective
1 = Not effective
11d. prgrm211—Name of innovative program 2, if any.
11e. effct211—Effectiveness of program 2.
5 = Very effective
4 = Somewhat effective
3 = No opinion
2 = Somewhat effective

1 = Not effective
(survey questionnaire continues on next page)
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Survey Question 11 (continued): Has your agency undertaken any innovative safety programs using
federal flexible funds, such as Section 407 funds that provide flexible incentive grants for programs
aimed at increasing highway safety?

11f. prgrm311—Name of innovative program 3, if any
11g. effct311—Effectiveness of program 3.

5 = Very effective

4 = Somewhat effective

3 = No opinion

2 = Somewhat effective

1 = Not effective
11h. prgrm411—Name of innovative program 4, if any.
11i. effct411—Effectiveness of program 4.

5 = Very effective

4 = Somewhat effective

3 = No opinion

2 = Somewhat effective

1 = Not effective
11j. prgrm511—Name of innovative program 5, if any.
11k. effct511—Effectiveness of program 5.

5 = Very effective

4 = Somewhat effective

3 = No opinion

2 = Somewhat effective

1 = Not effective

Survey Question 12: This study seeks to understand how often your agency interacts with other
individuals, agencies, or groups that may have an influence on highway safety issues. For each of the
following, please indicate whether your agency interacts with them monthly, once every three months,
once every six months, once per year, or not at all.

12a. Dot12—Frequency of interaction with the state DOT.
12b. spolce12—Frequency of interaction with the state police.
12c. Ipolce12—Frequency of interaction with the local police.
12d. plan12—Frequency of interaction with MPOs.
12e. legs12—Frequency of interaction with state legislators.
12f. gov12—Frequency of interaction with the governor’s staff.
12g. hwy12—Frequency of interaction with highway contractors.
12h. engnr12—Frequency of interaction with engineering consultants.
12i. school12—Frequency of interaction with school officials.
12j. local12—Frequency of interaction with local officials.

4 = At least monthly

3 = Once every three months

2 = Once every six months

1 = Once per year

0 = Never
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Survey Question 13: Has your agency considered integrating state safety programs with any of the
following transportation-related activities:

13a. Sdwlk13—Considered sidewalk provisions.
13b. crswik13—Considered crosswalk signals.
13c. bike13—Considered bike signals.
13d. speed13—Considered design strategies to reduce speeding.
13e. turn13—Considered design strategies to prevent turning movements.
13f. rdside13—Considered eliminating roadside hazards.
13g. monitr13—Considered using monitoring systems.
1=Yes
0=No

Survey Question 14: Every urbanized area in a state must have a comprehensive regional
transportation planning process. For such areas in your state, has your agency participated in the
regional transportation planning process during the last 5 years?

14a. mpoi14—~Participated in regional transportation planning during the last 5 years.

1=Yes
0=No
If mpo14 =0
14b. birp14—Benefited from participating in MPO long-range planning process (if no 14mpo).
1=Yes
0=No

14c. bgopm14—Benefited from developing MPO goals, objectives, and performance measures
(if no 14mpo).

1=Yes
0=No
14d. bpep14—Benefited from participating in MPO project evaluation and programming (if no
14mpo).
1=Yes
0=No

Survey Question 15: Many states have regional planning agencies that represent rural,
non-urbanized portions of a state. Has your agency participated in the transportation planning process
for rural areas during the last 5 years?

15a. Rural15—~Participated in rural planning process during the last 5 years.

1=Yes
0=No
If rural1t5=0

15b. blrp15—Benefited from participating in rural long-range planning process (if no 15rural).
15c. bgopm15—Benefited from developing rural goals, objectives, and performance measures (if

no 15rural).
15d. bpep15—Benefited from participating in rural project evaluation and programming (if no
15rural).
1=Yes
0=No

(survey questionnaire continues on next page)
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Survey Question 16: Every state has a statewide transportation planning process that, at a minimum,
is responsible for producing a state transportation plan. Has your agency participated in the statewide
transportation planning process during the last 5 years?

16a. 16stp—Participated in state transportation planning process during the last 5 years.

1=VYes
0=No
If stp16 =0

16b. blrp16—Benefited from participating in state long-range planning process (if no 16stp).
16c. bgopm16—Benefited from developing state goals, objectives and performance measures (if

no 16stp).
16d. bpep16—Benefited from participating in state project evaluation and programming (if no
16stp).
1=Yes
0=No

Survey Question 17: To what extent does the transportation planning process in your state influence
the programs or initiatives undertaken by your agency?

Influ17—Influence of transportation planning process on highway safety programs.
2 = Strongly influences
1 = Moderately influences
0 = Does not influence
9 = Don’t know
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ABSTRACT

This paper analyzes the characteristics of vehicle
breakdown duration and the relationship between
the duration and vehicle type, time, location, and
reporting mechanisms. Two models, one based on
fuzzy logic (FL) and the other on artificial neural net-
works (ANN), were developed to predict the vehicle
breakdown duration. One advantage of these meth-
ods is that few inputs are needed in the modeling.
Moreover, the distribution of the duration does not
affect the results of the prediction. Predictions were
compared with the actual breakdown durations
demonstrating that the ANN model performs better
than the FL model. In addition, the paper advocates
for a standard way to collect data to improve the
accuracy of duration prediction.

INTRODUCTION

A traffic incident is a nonrecurrent event. It is not a
planned closure of a road nor a special event; there-
fore, there is no advanced notice. Examples include
vehicle breakdowns, accidents, natural disasters,
and those caused by humans. An accident is a spe-
cific type of incident that normally involves human
injury or casualty.
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Incidents have become one of the main causes of
traffic congestion. Lindley (1987) showed that
between 50% and 75% of the total traffic conges-
tion on urban motorways in the United States is
incident-induced. Moreover, there is a symbiotic
relationship between incidents and congestion. As
incidents cause more congestion, more congestion
brings with it more incidents. Traffic incidents have
other impacts: the risk of secondary crashes for other
road users and those dealing with the incident; and
possible reductions in air quality due to increased
fuel consumption caused by the congestion.

In recent years, investment in developing systems
to manage incidents has increased. The Federal
Highway Administration defines incident manage-
ment as the systematic, planned, and coordinated
use of human, institutional, mechanical, and techni-
cal resources to reduce the duration and the impact
of incidents, and improve the safety of motorists,
crash victims, and incident responders (USDOT
2000). Therefore, incident duration prediction
becomes an important tool for incident manage-
ment. Reliable duration prediction can help traffic
managers apply appropriate management strategies,
and it can also be used to evaluate the efficiency of
the management strategies that are implemented.
Furthermore, duration prediction can provide accu-
rate and essential information to road users.

Vehicle breakdown is one type of incident that
often occurs on motorways and represents more
than 80% of all types of incidents. In this paper, we
analyze the characteristics of vehicle breakdowns
and develop vehicle breakdown duration models
based on fuzzy logic (FL) and artificial neural net-
works (ANN). We use incident data collected from
the M4 motorway in the United Kingdom to vali-
date our models.

LITERATURE REVIEW

Incident duration is the time period between the
occurrence and clearance of an incident. During this
period, the following activities occur: incident detec-
tion, verification, response, clearance, and recovery.
Components of incident management include traffic
management and traffic information. To accomplish
this, information is exchanged between the different

parties involved, including the police and the break-
down recovery service.

Golob et al. (1987) analyzed data from over
9,000 accidents involving large trucks and combina-
tion vehicles collected over a two-year period on
freeways in the greater Log Angeles area. They
found that accident duration fitted a log-normal dis-
tribution. The factors used in their accident duration
model were collision type, accident severity, and lane
closures. Their data were shown to be more statisti-
cally significantly similar to the log-normal than the
log-uniform distribution. However, the sample size
of each group was small (between 21 and 57).

Giuliano (1989) extended the research of Golob
et al. by applying a log-normal distribution in the
incident duration analysis of 512 incidents in Los
Angeles. The author found that the factors affecting
incident duration were incident type, lanes closed,
time of day, accident type, and whether or not a
truck was involved. The variance within each cate-
gory was large making it difficult to forecast the
incident duration.

Jones et al. (1991) made further improvements
by imposing a conditional probability; that is, given
that the incident has lasted X minutes, it will end in
the Yth minute. The authors analyzed 2,156 inci-
dents in the metropolitan Seattle area and found that
the duration of incidents conformed to a log-logistic
instead of log-normal distribution (they applied a
hazard duration model to estimate the incident dura-
tion). However, some factors used in their model,
such as the age of the driver, were found to be
impractical, because this information was often not
available when the incident occurred. They stated
that more appropriate and accurate data are very
important in incident duration analysis.

Nam and Mannering (2000) further developed
the hazard duration model in an analysis of inci-
dent duration. They analyzed 681 incidents in
Washington state, collected over two years. They
continued to use the log-logistic model of Jones et
al. (1991) but removed the impractical variables
and applied hazard-based functions to estimate the
incident duration. This study provided evidence that
hazard-based approaches are suited to incident anal-
ysis for the individual stage of the incident, including
detection time, response time, and clearance time.
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However, one drawback, highlighted by the authors,
is that they could not draw definitive conclusions
concerning the actual duration of the incident
because data were insufficient.

Sethi et al. (1994) developed a decision tree to
predict incident duration. They based their research
on the statistical analysis of 801 incidents from the
Northwest Central Dispatch. This
method was very easy and practical to use; however,

prediction

all the unknown incident durations were set to 23
minutes, and this oversimplification of the model
was detrimental to the accuracy of the predictions.

Other papers that present complementary statis-
tical analyses of incident duration include Wang
(1991), Sullivan (1997), Cohen and Nouveliere
(1997), Garib et al. (1997), Smith and Smith (2000),
and Fu and Hellinga (2002).

FL has been used in the transportation field since
the theory was first developed by Zadeh (1965).
The method offers much potential in the traffic and
transport field, because many problems and param-
eters are characterized by linguistic variables. More-
over, many problems in this field are ill defined,
ambiguous, and vague. Such situations are difficult
to model using traditional methods. A review by
Teodorovic (1999) of state-of-the-art FL systems for
transport engineering clearly showed the potential
for the application of FL.

Choti (1996) was the first researcher to use an FL
system to predict incident duration. He used incident
data on vehicle problems, types of assistance, and
the location of disabled vehicles to demonstrate the
suitability of FL for solving problems characterized
by elements of uncertainty and ambiguity. Moreover,
the FL system was shown to perform well with fewer
variables compared with the statistical models.

Kim and Choi (2001) updated the model and
improved the performance by refining the fuzzy sets.
However, the authors did not categorize the type of
incidents, and this may have a significant effect on
incident duration. Another shortcoming of this work
is the limited incident data available to validate the
model.

Wang et al. (2002) used FL to model vehicle
breakdown duration by analyzing the characteris-
tics of the breakdown by vehicle type, time of day,
and location. Over 200 incident records from the

M4 Motorway in the United Kingdom were used to
demonstrate the credibility of the FL approach for
estimating incident duration.

A number of studies have reported the increasing
popularity of the application of the ANN theory to
transportation. A review by Dougherty (1995)
reported its wide application in a number of areas
(e.g., traffic control, vehicle detection, driver behavior
analysis, traffic pattern analysis, traffic forecasting,
and parameter estimation). More recent applications
include incident detection analysis by Teng and Qi
(2003) and Yuan and Cheu (2003). The theory of
ANN is presented later in this paper.

In summary, incident duration research has been
developed gradually over the last decade. Various
methods have been applied, including statistical
analysis and fuzzy logic. However, comparing pre-
vious research results is difficult for a number of
reasons: different variables have been used by the
researchers; the data were collected from different
areas in the world; and each dataset had its own
characteristics. This review has provided us with the
foundation on which we developed an alternative
approach to model traffic incident duration using
ANN. The results are presented here and are com-
pared with those of an FL model, building on the
earlier work of Wang et al. (2002).

DATA DESCRIPTION

For this research, the incident duration data were
collected from one of the busiest roads in the United
Kingdom, the M4 between Junction 22 and Junction
49. The average traffic flow on this section of the
M4 was 65,000 vehicles per day, with a maximum
flow of 102,000 vehicles per day in 2001 (Depart-
ment for Transport 2002).

The MANTAIN CYMRU Traffic Management
and Information Centre (TMIC), developed by a
public/private partnership led by the National
Assembly of Wales, provides a cost efficient method
of improving traffic management. TMIC’s responsi-
bility includes 129 kilometers of motorway and
parts of other trunk roads, as illustrated by figure 1.
TMIC collects information using several media
including: a closed circuit television system, traffic
sensors, roadside meteorological systems, probe
vehicles, police traffic reports, and other sources.
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FIGURE 1 Map of the M4 Motorway
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Source: Available at www.traffic-wales.com.

The Road Network Master Database (RNMD)
stores all the information, which can be processed,
transferred, and published to a third party as well as
the public (James and Wainwright 2002).

We obtained 1,080 incidents records from
RNMD for May 2000 to April 2001. The incidents
were divided into three types: crashes, vehicle break-
downs, and other incidents. The majority of inci-
dents were vehicle breakdowns, 64% of all the
traffic incidents on the motorways. Crashes and
other incidents made up the remainder, 20% and
16% of all incidents, respectively.

This paper reports the results of 695 vehicle
breakdowns. Many of the records were incomplete;
that is, the end time of the incidents was often not
recorded. An in-depth look at the data gave us 213
complete incident records, which we present in this
paper.

Figure 2 shows the distribution of the incident
duration. A Kologorov-Smirnov test shows that it
conforms to a Weibull distribution (sig. = 0.432),
instead of a log-normal distribution (sig. = 0.043),
which is consistent with the research of Nam and
Mannering (2000).

Figure 3 demonstrates that incident duration dis-
plays a relationship to the time of day and shows
peaks during the morning and evening rush hour.
The figure also shows that vehicle breakdown dura-

FIGURE 2 Distribution of Vehicle Breakdown
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tion tends to be longer at night. These characteristics
are consistent with the higher traffic flow that causes
congestion during the day and the poorer quality of
recovery service during the late evening and over-
night when traffic flows are substantially lower.
Figure 4 compares the arithmetic and geometric
means of the vehicle breakdown data according to
vehicle type. As expected, the geometric mean is
consistently smaller than the arithmetic mean for all
vehicles, because most incidents are of short dura-
tion. So the distribution is skewed to the right. The
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FIGURE 3 Vehicle Breakdown Duration and
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FIGURE 4 Vehicle Breakdown Duration and
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Key: HGV = heavy goods vehicle (over 3,500 kg or 7,716 Ibs
design, gross vehicle weight).

duration of a tanker breakdown is the greatest,
which is not surprising. The latter interpretation,
however, should be viewed with caution due to the
small sample size for this type of incident.

Based on the available data and discussions with
the operators in the traffic control center, the poten-
tial variables to be considered in the vehicle break-
down duration model were vehicle type, location,

TABLE 1 Kruskal-Wallis Test of

Vehicle Breakdown Duration

Significance
Variable Chi-square  df level
Report 16.7 1 0.44*10E—4
mechanism
Vehicle type 171 3 0.67*10E-3
Location 8.5 2 0.014
Time of day 12.8 5 0.025

time of day, and report mechanism. We investigated
the difference between the incident duration cate-
gories using the Kruskal-Wallis test, the results of
which are shown in table 1. This test indicates that
the overall differences between the categories are sta-
tistically significant, in particular the vehicle types
and report mechanisms categories had a significance
level of less than 0.001.

VEHICLE BREAKDOWN DURATION
MODELING

In this section, we present two vehicle breakdown
duration models. The first is based on FL, while the
second uses the ANN approach.

The Model Based on FL

This research used the Mamdani-type FL system.
Mamdani (1974) proposed this method in an
attempt to control a steam engine and boiler combi-
nation by synthesizing a set of linguistic control
rules obtained from experienced human operators.
The Mamdani-type inference expects the output
membership functions to be fuzzy sets. After the
aggregation process, the fuzzy set for the output
variable needs defuzzification. The inputs of the
incident duration were vehicle type, location, time
of day, and report mechanism. The dependent vari-
able was the vehicle breakdown duration. These are
detailed in table 2.

Figure 5 illustrates the structure of the FL system.
The system comprises four elements: the fuzzifier
that maps the crisp value into a fuzzy set; the rule
base that saves the fuzzy rules; the interface that gen-
erates the fuzzy output from the input based on the
fuzzy rules; and finally the defuzzifier that transfers
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TABLE 2 Variables in the Fuzzy Logic Model

Variable Fuzzy set

Input Vehicle type Small
Medium
Big
Very big
At node

Close to node

Location

Far from node
Night

Early morning

Time

Morning
Afternoon
Afternoon peak time
Evening

Report mechanism ETS used
No ETS used

Output Duration Very short
Short
Medium
Long

Very long

Key: ETS = emergency telephone service.

FIGURE 5 Structure of the FL System
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the fuzzy output into a crisp value. The detailed
explanation of the FL theory can be found in
Pedrycz and Gomide (1998).

This research was based on the fuzzy sets of each
variable, the characteristics of the data presented
above, and the fuzzy rules derived from an under-
standing of the experience of the operators at the

MANTAIN CYMRU TMIC gained in the interview
surveys. One example of the 112 fuzzy rules used in
this work is the following:
If the vehicle is CAR, and location is AT
THE JUNCTION, and the time is
MORNING, and the report mechanism
is ETS (emergency telephone service),

then the vehicle breakdown duration is
SHORT.

There are many defuzzification methods, includ-
ing the mean of the range of maximal values and the
center of the area that returns the center of gravity
of the area under the curve. The latter is the most
popular method used in defuzzification and the one
adopted in this study.

Matlab was used to generate the model and sim-
ulate the results (Biran and Breiner 1999). Figure 6
shows the model surface depending on the vehicle
type and time of day and clearly illustrates the non-
linear relationship between the inputs and outputs.

Figure 7 displays the value predicted using FL
compared with the observed value. The model
shows promise as an estimator of breakdown dura-
tion and the pattern of results is consistent with the
research by Cohen and Nouveliere (1997).

The Model Based on the ANN System

An ANN is a massively parallel distributed pro-
cessor that has a natural propensity for storing
experiential knowledge and making it available for
use (Aleksander and Morton 1990). The knowledge
is acquired through a learning process and is stored
as synaptic weights. The structure of the ANN is
described later in this section.

The advantages of the ANN are as follows. First,
the ANN is nonlinear, thus it can be applied to
model a nonlinear physical mechanism easily. Sec-
ond, the learning process enables the ANN to be
modified, in accordance with an appropriate statis-
tical criterion, to minimize the difference between
the desired response and the actual response of the
network driven by the input. This makes the ANN
a suitable candidate to model incident duration.

In this research, a multilayer perceptron network
was used, in which IW{n,1} is the input weight
matrix; LW{n,1} is the layer weight matrix; and b{n}
are bias vectors, where # is the layer number. The
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FIGURE 6 Surface of the FL System
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choice of the neurons in the ANN is based on the
number of inputs, outputs, and the sample size. The
neuron number is determined following the guide
by NeuralWare (1993). In this research, to maintain
simplicity and avoid redundant architecture the
ANN model has 17 neurons in one hidden layer
(figure 8).

The output of each layer, which is the input for
the next layer, is calculated using the following for-
mula:

N-1
yi=f[2wi,-xi—9,] 0<j<N,;-1
i=0

where
y; = the jth output,
6, = the bias in the nodes,
wj; = the weight,
N = the number of inputs, and
N = the neuron number.
In this research, the transfer function of the first
hidden layer was the sigmoid function:

flx) = —2

l+e

X

In the output layer, a linear function is used as the
transfer function to generate the desired output.

The inputs to the ANN system were vehicle type,
location, time of day, and report mechanism. The
output was vehicle breakdown duration. The ANN
model was trained with the back-propagation

FIGURE 7 Result of the FL Model
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FIGURE 8 Structure of the ANN System
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training algorithm (Lau 1992), which is a generali-
zation of the least mean squares algorithm. It uses a
gradient search technique to minimize the mean
square difference between the desired and the actual
outputs.
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FIGURE 9 Result of the ANN Model
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Of the 213 vehicle breakdown incidents, 113 inci-
dents were used to train the model and 50 were used
in validation during the training. The remaining 50
incidents were used to test the performance of the
model. Figure 9 compares the ANN prediction with
the observed value with encouraging results. It
demonstrates that the performance was better than
that of the FL model, because the predicted value
was closer to the observed value. However, it also
shows that the ANN model systematically gener-
ated the same durations when the observed values
were different. In general, the ANN in this case
failed to predict the larger values and outliers. One
reason for this was that the number of explanatory
variables was insufficient. Therefore, the ANN
model could not be trained to perform well. This
problem could be solved by including additional
variables and is a subject of future research.

In order to estimate the influence of the input
variables on the output of the model, we conducted
a sensitivity test. This was achieved by excluding
one input variable at a time and quantifying the
deterioration of the performance of the prediction
caused by the missing variable. The performance
measure used was defined as the percentage change
in the root mean square error (RMSE). The RMSE
gives a measure of the difference between the
observed and modeled value. It is defined as:

where
f,, = the modeled value,
v,, = the observed value, and
N = the number of observations.
The percentage change of the error P% is given by

RMSE, ,-RMSE

P% = RMSE, = x 100%
where
RMSE,, = the RMSE of the model with all »
inputs.

The sensitivity test showed that all four variables
influenced the performance of the ANN vehicle
breakdown duration model, as the error consis-
tently increased when each input was removed from
the model. In particular, the report mechanism was
found to have the greatest effect, because the error
increased by 23% when it was removed from the
model. The location had the least effect, with a 12%
increase (table 3).

TABLE 3 Sensitivity Test of the ANN Input Variables

Error
Model RMSE increase
ANN model with all four inputs 19.5
ANN model without 241 23%
report mechanism
ANN model without 23.8 22%
vehicle type
ANN model without 22.5 15%
time of day
ANN model without location 22.0 12%

Key: RMSE = root mean square error.

COMPARISON OF THE RESULTS OF
FL AND ANN

We conducted statistical tests to compare the perfor-
mance of these two models. In this paper, the R test
and the RMSE were applied. These methods are
commonly used to evaluate the relative performance
of traffic models (Clark et al. 2002).

The coefficient of variation R is shown in table
4. We tested two ANN models, one with 17 neu-
rons in the hidden layer and one with 10 neurons
in the hidden layer, and found that the number of
neurons affects the performance of the model. The
table shows that the ANN model with 17 neurons
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TABLE 4 Comparison of the FL and ANN Models

Adjusted
Model R? R? Sig. RMSE
FL model 0265 0262  0.000 24.0
ANN model 1*  0.414  0.411  0.000 195
ANN model 2 0215 0211  0.000  24.1

* ANN model 1 has 17 neurons in the hidden layer.
** ANN model 2 has 10 neurons in the hidden layer.

Key: RMSE = root mean square error.

performed best, while the performance of the FL
model fell in the middle of the two ANN models. At
the time that an incident occurs, the operator in the
control center estimates the anticipated duration of
the resulting congestion, based on engineering judg-
ment and experience. The RMSE of this estimation
is 42 minutes. It shows that both the ANN models
and the FL model gave better estimates than the
operators judgment.

Both ANN and FL methods show promise in pre-
dicting the incident duration. However, given that
the R? value is not very high, and the RMSE value is
large, the performance needs to be improved. This
can be addressed by including more variables in
the model. However, this requires more data to be
collected and the cooperation of the operators and
those responsible for motorway incident manage-
ment. Future work will be concentrated in these
areas. Despite the fact that the significance levels of
the three models are low, the modeled values are
consistently better than the estimated values by the
operators. Therefore, these results are of interest to
the motorway incident management team.

CONCLUSIONS

This paper analyzed the characteristics of vehicle
breakdown duration and the main factors that may
affect the duration. Two models, one based on FL
and the other on ANN, were developed and their
performances compared.

The research demonstrated that FL and ANN
can provide reasonable estimates for the breakdown
duration with few variables. They consistently out-
perform the existing method based solely on the
engineering judgment of the operators. Also, for the
specific data used in this research, the ANN model

performed better than the FL model according to
the characteristics of statistical parameters. How-
ever, both models had difficulties in predicting the
outliers. As further data characterizing the outliers
become available, the relative performance of ANN
and FL may change.

Finally, the research highlights the need to collect
information required for incident management in a
standard way to improve the accuracy of predic-
tion, enhance the management of incidents, and
enable the authorities to share the data. Current
research, using a specially designed electronic data-
base tool, will improve the quantity and quality of
the data records and thus begin to explain more of
the variation in the data. In the future, the combined
FL-ANN approach can be used to analyze incident
duration, because this method can combine the
experiences of the experts and the statistical charac-
teristics of ANN.
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ABSTRACT

This paper presents the use of binary and multino-
mial generalized estimating equation techniques
(BGEE and MGEE) for modeling route choice. The
modeling results showed significant effects on
route choice for travel time, traffic information,
weather, number of roadway links, and driver age
and education level, among other factors. Each
model was developed with and without a covari-
ance structure of the correlated choices. The effect of
correlation was found to be statistically significant in
both models, which highlights the importance of
accounting for correlation in route choice models
that may lead to vastly different travel forecasts and
policy decisions.

INTRODUCTION

How and when travelers make decisions about
what route they will take to their destination is an
area of great interest to researchers and decision-
makers alike. In this paper, binary and multinomial
generalized estimating equation techniques (BGEE
and MGEE) are used to model route choice.

Binary and multinomial route choice models
may have two different kinds of correlation. First,
repeated observations may be correlated. This is

KEYWORDS: Route choice, repeated observations, over-
lapping routes, BGEE, MGEE, logit.
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usually the case for studies that use surveys/sim-
ulations where each respondent/subject provides
repeated responses. Second, the overlapping distance
between alternative routes may be correlated in mul-
tinomial route choice models. In a multinomial route
choice model, the case is further complicated when
the data structure includes both types of correlation.

In the 1980s, most discrete choice models were
calibrated using binary logit (BL) and multinomial
logit (MNL) models (Yai et al. 1997). BL and MNL
models characterize the choice of dichotomous or
polytomous alternatives, made by a decisionmaker
(in our study, the driver) as a function of attributes
associated with each alternative as well as the char-
acteristics of the individual making the choice.

An advantage of both BL and MNL models is
their analytical tractability and ease of estimation.
However, a major restriction of MNL models is the
Independence from Irrelevant Alternatives (IIA)
property, which arises because all observations are
assumed to have the same error distribution in the
utility term based on a Gumbel distribution (ITA
arises because the assumption of being Independent
and Identically Distributed is made for the Gumbel).
Therefore, BL. and MNL models assume indepen-
dence between observations, which is not true if
each subject/driver has more than one observation.
Also, MNL models assume independence between
alternatives, which is not true when routes overlap.

A major statistical problem with cluster-
correlated data, for which BL/MNL models do not
account, arises from intracluster correlation or the
potential for cluster mates to respond similarly. This
phenomenon is often referred to as overdispersion
or extra variation in an estimated statistic beyond
what would be expected under independence. Anal-
yses that assume independence of the observations
will generally underestimate the true variance and
lead to test statistics with inflated Type I errors
(Louviere and Woodworth 1983).

Gopinath (1995) demonstrated that different
model forecasts result when the heterogeneity of
travelers is not considered. Delvert (1997) argued
that models of travel behavior in response to
Advanced Traveler Information Systems must
address heterogeneity in behavior. When we cannot
consider the observations to be random draws from

a large population, it is often reasonable to think of
the unobserved effects as parameters to estimate, in
which case we use fixed-effects methods. Even if we
decide to treat the unobserved effects as random
variables, we must also decide whether the unob-
served effects are uncorrelated with the explanatory
variables, which is the case in many situations. To
draw accurate conclusions from correlated data, an
appropriate model of within-cluster correlation
must be used. If correlation is ignored by using a
model that is too simple, the model would under-
estimate the standard errors of modeling effects
(Stokes et al. 2000).

This paper reviews the existing methodologies for
route choice modeling that account for one or both
types of correlation mentioned above. The advan-
tages and drawbacks of each methodology are
stated. The main objective of this paper is to suggest
a methodology (used in other fields) that accounts
for correlation in binary and multinomial route
choice modeling. BGEE and MGEE techniques are
introduced with a binomial logit link function for
BGEE and polytomous logistic link function for
MGEE. The advantage of these techniques is that
they account for correlation using a simple logistic
link function instead of the probit function, which
needs tremendous computational effort and cannot
be used for relatively high numbers of alternatives or
with large networks in multinomial models.

METHODOLOGIES THAT ACCOUNT FOR
CORRELATION

Repeated Observations

Statisticians and transportation researchers have
developed several methodological techniques to
account for correlation between repeated obser-
vations made by the same traveler in binary and
multinomial route choice models. Louviere and
Woodworth (1983) and Mannering (1987) corrected
the standard errors produced in a repeated
responses regression model by multiplying the stan-
dard errors by the square root of the number of
repeated observations. Kitamura and Bunch (1990)
used a dynamic ordered-response probit model of
car ownership with error components. Mannering
et al. (1994) used an ordered logit probability
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model and a duration model with a heterogeneity
correlation term. Morikawa (1994) used logit
models with error components to treat serial corre-
lation. Abdel-Aty et al. (1997) and Jou (2001)
addressed this issue using individual-specific random
error components in binary models with a normal
mixing distribution. The standard deviation of the
error components were found significant in both
studies, which clearly showed the need for some
formal statistical corrections to account for the
unobserved heterogeneity. Jou and Mahmassani
(1998) used a general probit model form for the
dynamic switching model, allowing the introduction
of state dependence and serial correlation in the
model specification.

At the multinomial level, Mahmassani and Liu
(1999) used a multinomial probit model framework
to capture the serial correlation arising from
repeated decisions made by the same respondent.
Garrido and Mahmassani (2000) used a multino-
mial probit model with spatial and temporally corre-
lated error structure.

Overlapping Alternatives

The correlation between alternative routes due pri-
marily to overlapping distances has attracted many
researchers to overcome the limitations of MNL
models. The nested logit (NL) model (proposed by
Ben-Akiva 1973) is an extension of the MNL model
designed to capture correlation among alternatives.
It is based on the partitioning of the choice set into
different nests. The NL model partitions some or all
nests into subnests, which can in turn be divided
into subnests. This model is valid at every layer of
the nesting, and the whole model is generated recur-
sively. The structure is usually represented as a tree.

Clearly, the number of potential structures
reflecting the correlation among alternatives can be
very large. No technique has been proposed thus
far to identify the most appropriate correlation
structure directly from the data (apart from using a
heteroskedastic extreme value choice model as a
search engine for specification of NL structures). The
NL model is designed to capture choice problems
where alternatives within each nest are correlated.
No correlation across nests can be captured by the
NL model. When alternatives cannot be partitioned

into well separated nests to reflect their correlation,
the NL model is not appropriate.

Cascetta et al. (1996) introduced the C-logit
model as a MNL model that captures the correlation
among alternatives in a deterministic way. The
authors use a term called “commonality factor,”
which they add to the deterministic part of the utility
function to capture the degree of similarity between
the alternative and all other alternatives in the choice
set. The lack of theory or guidance on which form of
commonality factor should be used is a drawback of
the C-logit method.

McFadden (1978) presented the cross-nested
logit (CNL) model as a direct extension of the NL
model, where each alternative may belong to more
than one nest. Similar to the NL model, the choice
set is partitioned into nests. Moreover, for each
alternative i and each nest 1, parameters «;,,, , rep-
resenting the degree of membership or the inclusive
weight of alternative 7 in nest 72, have to be defined.
A CNL model is not appropriate for high numbers
of alternatives.

Vovsha and Bekhor (1998) proposed and used a
link-nested logit model as an application of the
CNL model. The largest network they used con-
tained 1 origin-destination pair, 8 nodes, 11 links,
and 5 routes. Papola (2000) estimated a CNL model
for intercity route choice with a limited number of
alternative routes. Swait (2001) proposed the choice
set generation logit model, in which choice sets form
the nests of a CNL structure. The author acknowl-
edged the computational difficulties of estimating
this model when the choice set is large. It was con-
cluded that, for a realistic size network and a realistic
number of links per path, the CNL model and its
applications become quite complex and therefore
computationally onerous.

NL, C-logit, and CNL models are all extensions
of the MNL models that use a logit utility function.
An alternative technique is the multinomial probit
(MP) model, which is derived from the assumption
that the error terms of the utility functions are nor-
mally distributed. It uses a probit link function
instead of a logit function. The MP model captures
explicitly the correlation among all alternatives.
Therefore, an arbitrary covariance structure can be
specified. Mostly, this covariance structure was
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proportional to overlap length. Routes were also
assumed to have heteroskedastic error terms where
variance was proportional to route length or
impedance. Yai et al. (1997) introduced a function
that represents an overlapping relation between
pairs of alternatives. The difficulty in implementing
the probit model is that no closed form exists for
the Gaussian cumulative distribution function, so
numerical techniques must be used. Estimating an
MP model is difficult even for a relatively low
number of alternatives. Moreover, the number of
unknown parameters in the variance-covariance
matrix grows with the square of the number of
alternatives (McFadden 1989).

Ben-Akiva and Bolduc (1996) introduced a multi-
nomial probit model with a logit kernel (or hybrid
logit) model, which combines the advantages of
logit and probit models. It is based on a utility func-
tion that has two error matrices. The elements of the
first matrix are normally distributed and capture
correlation between alternatives. The elements of
the second matrix are independent and identically
distributed. These combined models have the same
computational difficulties as pure MP. In general,
any application of hybrid logit or probit to large-
scale route choice is questionable in terms of the
computational effort needed for estimating the
parameter coefficients and their marginal effects,
especially for large networks.

Based on the above review, a clear need exists for
a methodology that accounts for the two kinds of
correlation in binary and multinomial route choice
models with a computationally easy and statistically
efficient technique, both for small and large net-
works. This paper applies BGEE and MGEE with
logit functions (binary and polytomous) to account
for correlation between repeated observations in
binary models and correlation between repeated
observations and overlapping routes in multinomial
models.

Applications

Route Choice and Switching

Pre-trip and en-route route switching is a direct
response to Advanced Traveler Information Systems
(ATIS). Network conditions, travel time, travel time
variability, delays associated with congestion and

incidents, and traveler attributes are significant
determinants of route choice (Spyridakis et al. 1991;
Adler et al. 1993; Mannering et al. 1994; Abdel-Aty
et al. 1995a, b, 1997). Some studies proved that
providing information induces greater switching in
route choice behavior (Mahmassani 1990; Conquest
et al. 1993; Abdel-Aty et al. 1994b). For example,
Conquest et al. (1993) reported that 75% of com-
muters change either departure time or route in
response to information. Liu and Mahmassani
(1998) concluded that travelers were more likely to
change their route when their current choice would
cause them to arrive late. They also concluded that
drivers exhibited some inertia in route choice,
requiring travel time savings of at least one minute
on the alternative route.

Benefits of ATIS

Many studies have examined the potential benefits
of providing pre-trip and en route real-time infor-
mation to travelers. Much research focuses on the
effects of ATIS on all types of travel decisions. A
number of studies show that ATIS results in
reduced travel time, congestion delays, and incident
clearance time (Wunderlich 1996; Abdel-Aty et al.
1997; Sengupta and Hongola 1998). Empirical evi-
dence supports the hypothesis that travelers alter
their behavior in response to ATIS (Bonsall and
Parry 1991; Zhao et al. 1996; Mahmassani and
Hu 1997). Reiss et al. (1991) reported travel time
savings ranging from 3% to 30% and reduction in
incident and congestion delays of up to 80% for
impacted vehicles.

Drivers’ Familiarity with the Network
and Diversion

Polydoropoulou et al. (1996) and Khattak et al.
(1996) concluded that drivers exhibit some inertia
and tend to follow the same route, especially for
home-to-work trips. Polydoropoulou et al. found
that drivers are more likely to divert to another
route when they learn of a delay before a trip. Drivers
are less likely to divert during bad weather, as alter-
native routes may be equally slow. Prescriptive
information greatly increases travelers’ diversion
probabilities, although similar diversion rates are
attainable by providing real-time quantitative or pre-
dictive information about travel times on usual and
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alternative routes. The authors suggest that drivers
would prefer to receive travel time information and
make their own decisions. Abdel-Aty et al. (1994a)
showed that ATIS has great potential to influence
commuters' route choice even when advising a route
different from the usual one.

Studies also indicate that traffic information
should be provided along with alternative route
information. Streff and Wallace (1993) reported
differences in information requirements between
commuting, noncommuting trips, and trips in an
unfamiliar area. Khattak et al. (1996) found that
travelers who were unfamiliar with alternative routes
or modes were particularly unwilling to divert. This
confirms the work of Kim and Vandebona (2002),
which concluded that drivers who were familiar
with an area had a high propensity to change their
preselected routes. Further, accurate quantitative
information might be able to overcome behavioral
inertia if commuters are willing to follow advice
from a prescriptive ATIS (Khattak et al. 1996;
Lotan 1997). Adler and McNally (1994) found that
travelers who were familiar with the network were
less likely to consult information. Bonsall and Parry
(1991) found that user acceptance declined with
decreasing quality of advice in an unfamiliar net-
work, and in a familiar network, drivers were less
likely to accept advice from the system. However,
Allen et al. (1991) found that familiarity does not
affect route choice behavior.

GENERALIZED ESTIMATING EQUATIONS

The generalized estimating equations (GEE) tech-
nique analyzes discrete and correlated data with
reasonable statistical efficiency. Liang and Zeger
(1986) introduced GEE for binary models (BGEE)
as an extension of generalized linear models (GLM).
Lipsitz et al. (1994) extended the BGEE methodol-
ogy to model correlation between repeated multi-
nomial categorical responses (MGEE).

The GEE methodology models a known function
of the marginal expectation of the dependent vari-
able as a linear function of the explanatory variables.
With GEE, the analyst describes the random compo-
nent of the model for each marginal response with
a common link and variance function, similar to
what happens with a GLM model. However, unlike

GLM, the GEE technique accounts for the covari-
ance structure of the repeated measures. This
covariance structure across repeated observations is
managed as a nuisance parameter. The GEE method-
ology provides consistent estimators of the regression
coefficient and their variances under weak assump-
tions about the actual correlation among a subject’s
choices.

In the following section, we provide a brief
explanation of the BGEE models. The MGEE
methodology is included in the appendix at the end
of this paper.

Binary Generalized Estimating Equations

Suppose a number of 7, choices are made by subject
i, where the total number of subjects is K, and y;;
dle<notes the jth response from subject i. There are
S, total choices (measurements). Let the vector

=1 of choices made by the ith subject be

Y; = (yil""'yinl)
and let V; be an estimate of the covariance matrix of
y;- Let the vector of explanatory variables for the jth
choice on the ith subject be X;;; = (0%, "

The GEEs for estimating the (1 x p) vector of
regression parameters f is an extension of the inde-

!

pendence estimating equation to correlated data
and is given by

K au!
> o Vi i) = 0 (1)
i=1

where p is the number of regression parameters,

Since g(u;;)
derivatives of the mean with respect to the regres-

= x;; f3, the p x n; matrix of partial

sion parameters for the ith subject is given by

Xi11 Xind
g'my) ,
! g (//Linl)
ou;
At S 2
Xi1p Yinp
g'(u;) g’( in)
1
where i

g is the logit link function g(u) = log(p(1-p)),
which is the inverse of the cumulative logistic distri-
bution function, which is:
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1 (3)

l+e™

Working Correlation Matrix in BGEE

F(x) =

Let Ry (a) be an n;xn; correlation
matrix that is fully specified by the vector of param-
eters a (the correlation between any two choices).
The (j, k) element of R,(«) is the known, hypothe-
sized, or estimated correlation between y;; and ;.
The covariance matrix of Y; is modeled as
1 1
V, = pAIR(a0)A! (4)

“working”

where

A;is an n; x n; diagonal matrix with v(u,;) as the
jth diagonal element.

¢ s a dispersion parameter and is estimated by

~

1 K 7 2 K
¢ = _pZZew N=3%n (5)
i=1

i=1j=1
R is the working correlation matrix. It is the same
for all subjects, is not usually known, and must be
estimated. The estimation occurs during the itera-
tive fitting process using the current value of the
parameter matrix 8 to compute appropriate func-
tions of the Pearson residual

e = Yij—Hij
Jru)

If R,() is the true correlation matrix of Y}, then
V; is the true covariance matrix of Y;. If the working
correlation is specified as R = I, which is the identity
matrix, the GEE reduces to the independence esti-
mating equation. The exchangeable correlation
structure introduced by Liang and Zeger (1986)
assumes constant correlation between any two
choices within a subject/cluster. This exchangeable
correlation structure can be used in the BGEE where

the correlation matrix of each subject/cluster is

defined as: .
CO"”()’;‘,', Vi) = { L l,= k }
a, j£k
laa
Ryss=lala (6)
€g., —> aal
where
a = z > eijein and
p)¢,_1,¢,<
K
N* = Z n(n;— (7)

DATA COLLECTION AND EXPERIMENT
DESCRIPTION

We used the travel simulator, Orlando Transporta-
tion Experimental Simulation Program (OTESP), to
collect dynamic pre-trip and en-route route choice
data. OTESP is an interactive windows-based com-
puter simulation tool. It simulates a commuter
home-to-work morning trip. OTESP provides five
scenarios (levels) of traffic information to the sub-
jects. In scenario #1, subjects receive no traffic
information. Pre-trip information without and with
advice are presented in scenarios #2 and #3, respec-
tively. En route information, keeping the pre-trip
information, without and with advice is presented
in scenarios #4 and #35, respectively. The subject is
required to choose his/her link-by-link route from a
specified origin to a specified destination. The sub-
ject has the ability to move the vehicle on different
segments of the network using the computer’s
mouse. Driving and riding one of two available bus
routes are the travel modes used in OTESP. How-
ever, this study focuses only on the drive option.

In this study, we used a real network with histor-
ical congestion levels and weather conditions (figure
1). Intersections, recurring congestion, nonrecurring
congestion (incidents), toll plazas, and weather con-
dition delays are considered. The Moore’s shortest
path algorithm (Pallottino and Grazia 1998) was
employed in the OTESP code to determine the
travel-time-based shortest path, which is intro-
duced as advice to the subjects in some scenarios.
The simulation starts and ends with a short survey
to collect the subjects’ sociodemographic character-
istics, preferences, perceptions, and feedback. A
four-table database was created to capture all the
information/advice provided and the traveler deci-
sions. The program presents 10 simulated days (2
days for each scenario) after familiarizing the sub-
jects with the system by introducing a training day
for each scenario. Figure 1 shows a spot view of
OTESP in its third scenario as an example.

Network

Figure 1 presents a portion of the city of Orlando
network captured from a geographic information
system database. The network has a unique origin-
destination pair, where the assumed origin is the
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FIGURE 1

Sample View of a Screen from the Orlando Transportation

Experimental Simulation Program (Scenario #3)
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subject’s home and the assumed destination is the
subject’s work place. The network consists of 25
nodes and 40 links. This network portion was
carefully chosen from the entirety of the Orlando
network. It comprises different types of highways,
including six-lane principle arterials, four-lane prin-
ciple arterials, six-lane minor arterials, two-lane
minor arterials, and local collectors. The network
also includes two expressways.

Subjects

Subjects were recruited based on an experiment to
guarantee the inclusion of groups of drivers that
represent different incomes (two levels), ages (three
levels), gender, familiarity with the network (two
levels), and education (two levels). Because the sub-
jects drove for their morning home-to-work trips,
they were instructed that their main task was to
minimize the overall trip travel time by deciding
when and when not to follow the information and/
or advice provided. Subjects were asked not to go
through the simulation unless they had at least 30
minutes to devote to it (the average simulation took
23.77 minutes) and felt they could concentrate on it.
Moreover, during the simulation, the subjects’

response times were measured without notifying
them, to ensure that they were paying attention. A
total of 65 subjects participated in the simulation
for 10 trial days each. Twenty-two subjects were
under the age of 25 while 24 subjects were between
25 and 40 years of age, and 19 subjects were over
40 years old. Of the subjects, 24 were female and 41
were male. Two of the 65 subjects were excluded
from this study, because their response times were
outliers in the normal distribution (Z = 3.21 and
3.78, Zo = 2.57).

BGEE APPLICATION

Subjects viewed the level of congestion of every
link in quantitative (travel time) and qualitative
(green, yellow, and red links for free flow, moder-
ate, and congested links, respectively) forms. The
simulator also provided the shortest path from the
subject’s current position to the destination as
advice. The information/advice level the subject
received depended on the scenario, as mentioned
above. At each node, the subject had to decide and
choose between the two upcoming links. We consid-
ered this choice positive if the subject picked the link
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that had a lower level of congestion than the others
(the delay on a link was equal to the difference
between actual travel time at a specific movement—
when a decision is made—and free flow travel
time). A choice was considered negative if the sub-
ject picked the link with a higher level of congestion.
We focused on the delay on a link when a particular
movement occurred instead of travel time, because
the links are different in length and speed limit.

Sixty-three subjects completed 10 trial days

each, for a total of 539 trial days in the drive mode
(the remainder of the trial days were in the transit
mode). During the trial days, 4,753 movements
(decisions) were made on the 40 network links. Out
of the 4,753 movements, 1,667 were excluded from
the analysis, because the driver had no choice but
to proceed onto a unique coming link. The remain-
ing 3,086 link choices make up the data used for
the BGEE model with binomial logistic function.
The model was correlated because each subject had
multiple choices in the data structure. The response
variable was binary with the value of one for posi-
tive choices and zero for negative choices. The
explanatory variables follow:

1. Information familiarity: one if the subject, in
real life, uses pre-trip and/or en route informa-
tion usually or everyday, zero otherwise.

2. Information provision: one for trial days
where en route information was provided,
zero otherwise.

3. Same color: one if the two coming links had
the same color (qualitative congestion level),
zero otherwise. This variable tests the effect of
qualitative vs. quantitative information.

4. System learning: one for the second five trial
days of the simulations, zero for the first five.
This is based on the assumption that the sub-
ject in the last five simulation runs is more
familiar with the information system and can
use and benefit from it more effectively.

5. Heavy rain: one for heavy rain conditions;
zero for light rain or clear sky conditions.
Weather conditions were provided as part of
the information.

6. Number of movements from the origin: repre-
senting the closeness to the destination.

Table 1 presents the results of the BGEE model
for the independent case (no correlation is consid-
ered) and for the proposed exchangeable correlation.
The differences in the results are due to the effect
of correlation. By comparing the overall F statistic
values for the two models, the exchangeable model
was favored over the independent model. This indi-
cates that the model has correlation that should be
accounted for.

The modeling results showed that, in general, the
provision of en route information increases the likeli-
hood of making a positive link choice. This means
that the en route short-term information has a good
chance of being used. When the two coming links
had the same qualitative level of congestion, drivers
were less likely to make a positive choice. Thus, the
qualitative information is more likely to be used than
the quantitative information. Therefore, it is not
enough to provide the driver with the expected travel
time or that there is congestion, but providing the
driver with information on the level of congestion is
also necessary.

The following effects/interactions increase the
likelihood of following the en route short-term
information:

1. Being familiar with traffic information;

2. Learning and being familiar with the system

that provides the information;

3. Heavy rain conditions;

4. Being away from the origin, that is, close to
the destination (presented by the number of
movements since the origin);

5. Providing qualitative information in heavy
rain conditions; and

6. Being away from the origin and being familiar
with the device that provides the information.

MGEE APPLICATION

The long-term route choices of the subjects in the
experiment were used as the database for estimating
this model. The 539 routes that were chosen during
the 539 trial days (each subject chooses one route
each trial day) were identified and categorized by
the sequence of links that were traversed on a given
trial day. The network used consists of four west-
east expressway/arterials that connect the origin to
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TABLE 1 Modeling Results for the BGEE Model with and without Correlation
Without correlation With correlation

Parameter Coefficient t statistic Coefficient t statistic
Intercept —-3.682 -20.29 —-3.699 —20.11
Information familiarity: 1 if subject uses 0.406 10.12 0.421 9.94
pre-trip and/or en route traffic

information usually or everyday, 0

otherwise

Information provision: 1 for scenario 4 0.236 2.07 0.243 2.1
where en route information is provided

without long-term advice, 0 otherwise

Same color: 1 if the two coming links -0.467 —4.20 -0.476 -4.28
had the same color (qualitative

congestion level), 0 otherwise

System learning: 1 for the second 5 trial 3.469 15.75 3.598 15.70
days of the experiment, 0 for the first 5

trial days

Heavy rain: 1 for heavy rain condition, 0 0.415 3.24 0.402 3.17
for light rain or clear sky

Number of movements since the origin 0.610 9.78 0.634 9.61
Interaction terms

Heavy rain X Same color 0.453 2.25 0.536 2.16
Number of movements since the 0.406 6.14 0.511 6.06
origin X System learning

Summary statistics df F statistic df F statistic
Overall model 9 6,742.27 10 8,543.12

the destination: named here MR1, MR2, MR 3, and
MR4.

MRI1 represents the expressway alternative on
the network. MR2 is a six-lane arterial while MR3
is mainly a four-lane arterial with a relatively high
number of traffic lights. MR4 is primarily a rural,
two-lane, two-way arterial with a speed limit
approximately equal to that of MR2 and MR3.
MR1 has the highest speed limit among the four
alternatives with few traffic lights, because it consists
mainly of expressway links. The network has also
five local collectors that allow the subject to divert
from one main route to another.

In order to come up with a reasonable number of
alternatives, in the analysis phase, the route choices
made during the trial days were aggregated into the
above four main routes. We considered that each
chosen route belonged to a main route if most of the

chosen route’s links belong to this main route. That
is, a chosen route was assigned to a certain main
arterial if, and only if, the chosen route overlaps
with this main arterial for a longer distance than it
does with any of the other three main arterials. As a
result, the four main routes MR1, 2, 3, and 4 were
chosen 374, 99, 37, and 29 times, respectively.

The proposed MGEE method with a generalized
polytomous logit function was employed to model
correlated route choices. The categorical dependent
variable has four alternatives, MR1, MR2, MR3,
and MR4. These four alternatives form the fixed
choice set available for all subjects at all trial days.
The reference alternative for which all attributes in
the analysis are set equal to zero is MR4. This
route was chosen because it was picked with lesser
frequency over the other three main routes. The
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dependent variable takes on a value of one to four.
The independent variables include:

1. Age: one if the subject’s age is over 30, zero
otherwise;

2. Income: one if household income is greater
than $65,000, zero otherwise;

3. Education: one if the subject has a graduate-
level degree or higher, zero otherwise;

4. Shortest 1: one if MR1 was the shortest path,
zero otherwise;

5. Shortest 2: one if MR2 was the shortest path,
zero otherwise;

6. Shortest 3: one if MR3 was the shortest path,
zero otherwise;

7. Advised 2: one if MR2 was the shortest path
and the trial day was under scenario #3 or #5
(i.e., MR2 was the suggested route), zero oth-
erwise;

8. Advised 3: one if MR3 was the shortest path
and the trial day was under scenario #3 or
#5 (i.e., MR3 was the suggested route), zero
otherwise;

9. Travel time 1: travel time on MR1;

10. Travel time 2: travel time on MR2;

11. Travel time 3: travel time on MR3;

12. Travel time 4: travel time on MR4.

Tables 2 and 3 show the modeling results using
the MGEE model for the independent case (no
correlation is considered) and for the proposed
exchangeable correlation, respectively. The differ-
ences in the results are due to the effect of correla-
tion. By comparing the overall F statistic values for
the two models, the exchangeable model was
favored over the independent model (83,417.09 vs.
11,464.98). Also, as expected, the independent
MGEE model underestimated the standard errors of
the modeling effects that lead to inflated ¢ statistic
values (table 2).

In table 3, the ¢ statistics were lower when com-
pared with the corresponding values in table 2 (for
most of the effects), indicating that the proposed
methodology has also adjusted this error. This
means that the proposed methodology overcomes
the disadvantage of underestimating the standard
errors for models that do not account for correla-
tion. A number of studies reported this disadvantage
(Louviere et al. 1983; Mannering 1987; Gopinath

1995; Abdel-Aty et al. 1997; and Stokes et al. 2000).
The model produced three logistic equations for the
four alternatives (MR1 vs. MR4; MR2 vs. MR4,
MR3 vs. MR4). These equations are:

|og[7fLR1j = —65.12 + 3.42Age + 2.36Income

TMRY | 5 00 Education + 22.1551
+11.6552 + 13.2353 + 29.60A1
_4.70A2 - 4.87A3-6.00TT1
_2.35TT2-0.67TT3+9.56 TT4

Iog(JfMRZJ = 3539 +2.41Age + 1.01Income

TMRY) |1 99Education + 21.6251
+12.1782 - 7.0153 + 5.56 A1
+11.34A2 — 25.95A3-4.28TT1
~2.18TT2-0.36TT3 +7.36TT4

|Og[7fMR3J = -3.63+9.38Age +2.491ncome

TMRY | 12 37 Education—10.49S1
_48.6152 + 22.6753 + 3.69A1
_4456A2 + 1.41A3-0.79TT1
_0.10TT2-1.00TT3 + 1.89TT4

where the symbols Sx, Ax, and TTx refer to the
effects “Shortest x,” “Advised x,” and “Travel time
x,” respectively, where x is the main route number.
Using the above equations, the probability of
choosing an alternative given a set of values for the
independent variables is simple compared with
using any probit link function (probit models).
Moreover, computing a certain marginal effect of
any variable on choosing an alternative is straight-
forward and simple regardless of the number of
alternatives used in the model, which is not the case
for the corresponding multinomial probit models.

In the above equations, exponentiating the esti-
mated regression coefficient yields the odds of
choosing the corresponding alternative vs. choosing
the base alternative MR4 for each one-unit increase
in the corresponding explanatory variable. For
example, the ratio of odds for a one-unit change in
the travel time on MR2 is equal to =18~ 0.11.
This shows the ease of this model compared with
the corresponding probit models.

Tables 2 and 3 also show the parameter coeffi-
cients for each equation with the corresponding ¢
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TABLE 2 Modeling Results for the MGEE Model without Correlation

Equation 1 Equation 2 Equation 3
MR1 vs. MR4 MR2 vs. MR4 MR3 vs. MR4
Parameter Coefficient t statistic Coefficient t statistic Coefficient tstatistic
Intercept —41.31 -12.17 —24.93 -8.14 6.02 1.64
Age 0.04 1.15 0.42 0.55 6.70 5.50
Income 2.27 3.42 3.85 4.50 2.44 2.98
Education level 0.22 0.21 -2.36 -1.26 8.73 7.01
Shortest 1 12.71 9.92 13.37 10.64 —-18.65 —-17.52
Shortest 2 11.65 9.84 13.07 10.23 -23.48 -12.32
Shortest 3 1.65 1.83 —7.66 -5.63 22.67 16.71
Advised 1 7.93 9.24 21.79 16.86 3.69 3.67
Advised 2 7.26 5.12 12.95 8.22 —6.38 —2.98
Advised 3 -6.81 —-7.04 -18.10 -11.33 1.41 1.35
Travel time 1 -6.07 —24.52 —4.35 -11.27 -0.89 -10.73
Travel time 2 -2.34 -19.66 -2.23 -20.18 -0.17 -2.82
Travel time 3 -0.67 -19.72 -0.36 -5.89 —-0.96 -18.87
Travel time 4 9.44 26.15 7.36 13.34 1.89 22.90

Overall Summary Statistics

df F statistic
Overall model 42 11,464.98
Intercept 3 80.11
Age 3 12.10
Income 3 7.96
Education level 3 20.44
Shortest 1 3 197.39
Shortest 2 3 117.23
Shortest 3 3 167.53
Advised 1 3 96.60
Advised 2 3 44.95
Advised 3 3 57.78
Travel time 1 3 202.42
Travel time 2 3 151.75
Travel time 3 3 400.09
Travel time 4 3 478.48

statistic of each effect. Furthermore, tables 2 and 3
present the F statistic for each effect in the overall
MGEE model. These values indicate the individual
significance of every effect in the overall model and
determine if changing the value of this effect statisti-
cally changes the probability of choosing a certain
alternative. A certain effect may appear significant

in one equation but be insignificant in another. All
13 effects included were found significant.

The parameter coefficients in table 3 show that
older drivers (>30), those with larger household
incomes, and those with a high level of education
are, in general, more likely to choose MR1, MR2,
or MR3 than MR4; that is, they are more likely
to choose the expressways and/or the multilane
arterials. Recall, MR4 is a two-lane, two-way rural
arterial. However, the increase in this likelihood in
some cases is not statistically significant. For exam-
ple, these three socioeconomic factors above do not
affect the probability of choosing MR2 vs. MR4 (¢
statistics = 1.07, 0.45, 0.74 < 1.96).

“Shortest 1,” “Shortest 2,” and “Shortest 3”
measure the effect of providing information without
advice to the subjects. The significance of “Shortest
1” in the first equation, with a positive coefficient
parameter (22.15), shows that the probability of
choosing the first alternative, MR1, increases if this
route is the travel-time-based shortest route on the
network, even with providing advice-free informa-
tion. This means that the subjects were able to use
and benefit from the qualitative and quantitative
information provided to them. Moreover, they
might be able to identify and then take the shortest
route themselves using the travel times given to
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TABLE 3 Modeling Results for the MGEE Model with Correlation

Equation 1 Equation 2 Equation 3
MR1 vs. MR4 MR2 vs. MR4 MR3 vs. MR4
Parameter Coefficient t statistic Coefficient 1 statistic Coefficient t statistic
Intercept —65.12 -3.80 -35.39 -1.89 -3.63 -0.29
Age 3.42 2.56 2.41 1.07 9.38 3.87
Income 2.36 1.12 1.01 0.45 2.49 1.69
Education level 5.00 2.43 1.99 0.74 12.37 4.48
Shortest 1 22.15 2.74 21.62 3.51 -10.49 -1.62
Shortest 2 11.65 212 12.17 3.56 —48.61 -12.12
Shortest 3 13.23 5.04 —7.01 -3.13 22.67 6.57
Advised 1 29.60 3.85 5.56 0.76 3.69 0.67
Advised 2 —-4.70 -1.22 11.34 3.79 —-44.56 -10.03
Advised 3 —4.87 -0.64 —25.95 —2.98 1.41 0.24
Travel time 1 —6.00 -8.80 -4.28 —4.04 -0.79 -3.33
Travel time 2 -2.35 —5.61 -2.18 —6.03 -0.10 -0.67
Travel time 3 -0.67 -3.58 -0.36 —2.31 -1.00 -5.14
Travel time 4 9.56 7.03 7.36 3.99 1.89 3.24

Overall Summary Statistics

df F statistic
Overall model 43 83,417.09
Intercept 3 22.05
Age 3 10.31
Income 3 2.21
Education level 3 10.93
Shortest 1 3 79.65
Shortest 2 3 703.45
Shortest 3 3 57.34
Advised 1 3 21.51
Advised 2 3 48.55
Advised 3 3 19.91
Travel time 1 3 100.18
Travel time 2 3 36.34
Travel time 3 3 15.80
Travel time 4 3 81.22

them by the information system. The same interpre-
tation applies to the coefficient parameters of the
effects “Shortest 2” and “Shortest 3” in equations 2
and 3, respectively. By comparing these three coeffi-
cients (22.15, 12.17, 22.67), differences can be seen.
This indicates that the marginal effects of these vari-
ables are not the same. However, they measure the

same independent variable for different alternatives.
Thus, it can be concluded that providing traffic
information to drivers increases the likelihood that
they will choose the shortest path (identified by them
or given to them by an information system), but the
odds differ between the shortest path and another,
depending on the characteristics of each route.

To measure the effect of advising drivers to take a
particular route, in addition to providing traffic
information on all links of the network, the three
effects, “Advised 1,” “Advised 2,” and “Advised 3”
were employed. Advising MR1 or MR2 to the sub-
jects increased the likelihood of their being their
chosen (coefficients of 29.60 and 11.34, respec-
tively). However, advising MR3 as the shortest path
for a certain trial day does not affect its probability
of being chosen (¢ statistic = 0.24). This result was
not surprising, because MR3 is well known for its
regular congestion due to its high accessibility and
many traffic lights (most of the subjects were famil-
iar with the network).

Similar to the effect of information without
advice, the coefficient parameters “Advised 1” in
equation 1, “Advised 2” in equation 2, and
“Advised 3” in equation 3 (29.60, 11.34, 1.41,
respectively) show that it is unclear that advising
drivers to take a certain route increases the likeli-
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hood they will chose to do so. The characteristics of
the route itself seem to be a factor in the decision. In
this analysis, advising drivers to use an expressway
or six-lane arterial increased the likelihood of it
being chosen (MR1 and MR2). When drivers were
advised to use a four-lane arterial with high density
and traffic lights it did not affect the likelihood of
that route being chosen. From these data, we can
conclude that the characteristics of a certain route
affect whether it is chosen even if the information
advises drivers to use it.

The effect of travel time was represented in our
model by the variables TT1, TT2, TT3, and TT4.
The first three variables have negative coefficients in
the three equations, with significant effects for TT1
in equation 1, TT2 in equation 2, and TT3 in equa-
tion 3. This clearly shows that the probability of
choosing a certain route decreases as travel time
increases. The effect TT4, the travel time of the base
route MR4, showed up as a positive significant vari-
able in the three equations. Therefore, the proba-
bility of choosing the other route (not choosing this
base route) increases as travel time rises for the base
alternative.

CONCLUSIONS

The proposed BGEE and MGEE techniques add
new and useful methodology to the family of mod-
els that account for correlation in discrete choice
models, especially for route choice applications. The
literature review illustrated that a methodology was
needed to account for correlation between repeated
choices and/or between overlapping alternatives
with simple computational effort and that can be
applied to large networks. The proposed model
proved to account for both types of correlation with
simple computational effort and reasonable statisti-
cal efficiency for small and large networks. This
makes BGEE and MGEE superior to the existing
methodologies.

As a BGEE application, this paper presents a
model of short-term route choice in compliance
with ATIS. The paper also presents a multinomial
route choice model (as an MGEE application). Both
applications were developed with and without
accounting for correlation. In both applications, the
effect of correlation was tested statistically and

found significant, which shows the importance of
accounting for correlation in route choice models
that may lead to different travel forecasts and policy
decisions. This also shows the importance of our
proposed methodology for large networks where
the efficiency of the existing methodologies is ques-
tionable, as discussed in the literature review.

In this paper, we interpreted the modeling output
of the BGEE and MGEE applications. The short-
term route choice (BGEE) modeling results show
that the provision of en route information increases
the likelihood of making a positive link choice. The
qualitative short-term information is more likely to
be used than the quantitative information. Other
effects were found to increase the usage of en route
short-term traffic information: being familiar with
the system that provides the information, heavy rain
conditions, and proximity to the destination.

The multinomial route choice (MGEE) modeling
results show that the subjects were able to use and
benefit from the qualitative and quantitative infor-
mation provided to them. Moreover, they might be
able to identify the shortest route themselves using
the travel times given to them. Finally, the odds of
choosing a certain shortest route (advised or recog-
nized by drivers using the advice-free traffic infor-
mation provided) varied from one route to another
and depended on the characteristics of the route
itself. For example, the analysis in this paper
showed that advising the use of the expressway or
the six-lane arterial increase the likelihood of the
route being chosen (MR1 and MR2). While advising
the use of a four-lane arterial with a large number of
traffic lights does not affect its likelihood of being
chosen.
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APPENDIX

Multinomial Generalized Estimating
Equations (MGEE)

Suppose a number of # repeated choices are made by
subject i (i = 1,...,N), the total number of repeated
choices for subject i is T}, and K is the total number
of alternatives available for all subjects at all obser-
vations. Two-level indicator variables can be formed
as y;u;, Where y;,, = 1 if subject 7 had the choice k at
time ¢, while y;,, = 0, otherwise. A (k — 1) vector
V= [yilt,...,y,»,K,l,t]/ can be formed to show the
choice of subject i at time z. Each subject has T;

1
covariate vectors x;,, where an x;, vector contains all
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the relevant covariates including the intercept,
between- and within-subject covariates. Therefore,
each subject has a matrix of covariates

'
Xi = [xil,...,xiTi]

of dimension T; x p , where p is the total number of
covariates excluding the intercept.

The distribution of y,, is multinomial with the
probability function

K vkt
f(yit|xit’ﬂ)= H”ikt (8)
k=1

where 7, = E(ire| i B) = p7{yips = Llx;n B} s
the probability that subject 7 had choice k at time ¢,
and B is a p x 1 vector of parameters. When vy, is
binary, 7, is usually modeled with a logistic or
probit link function (Zeger et al. 1988). When k > 2
with non-ordered response, the generalized polyto-
mous logit link is appropriate (Lipsitz et al. 1994).

The matrix of coefficient parameters 8 is associ-
ated with the [(K-1)x1] marginal probability
vector

!

E(Y,-t|X,-) = ”it(ﬂ) = [ﬂitl’""”i,(K—l),t:| (9)

These marginal probability vectors can be grouped
together to form the [T,(K - 1) x 1] vector

E(Y;|X)) = m(pB) =[ Tigseen ”i'T,»]

where

’

!

Y, = [ Vi i,Ti:| (10)

The GEE:s of the following form can be used to esti-
mate $ (Liang and Zeger 1986; Lipsitz et al. 1994)

”@ = %ﬂ%{’fﬁi—ﬂ =0 (11)
i=1

where V; is the covariance matrix of Y;. This cova-
riance matrix, Vj, is a function of 8 and other nui-
sance parameters a, which is a function of the
correlation between repeated choices made by the
same subject i. Also, V; depends on the correlation
between overlapped (or correlated)
routes. This covariance matrix, V, has [T;x T;]
blocks. Each block has [(K —1) x (K —1)] elements.

alternative

Estimating the Covariance Matrix

To get a general form of V,, the correlation matrix
of the elements of Y; must be developed or estimated
first. Therefore, the pairwise correlation between
the (K — 1) elements of Y;, and Y,,, which accounts
for correlation between observations s and ¢ of sub-
ject i, must be determined. A typical element of the
correlation matrix of the elements of Y; is, for any
pair of responsive levels j and k and pair of times s
and ¢,
Corr(Ye Yi)) = Elejis €yl

Yikt_nikt

1/2
|:7[ikt(l - ﬂikt):|

The element e;;, is the residual for Yjy,. This residual

where ¢, =

(12)

e 1s a typical element of the residual vector
172
e = Ay |:Yit - nit:|

where Aj; is a function of f and is equal to:
Ay = Diag[nilt(l i)
---’”i,K-l,t(l—”},K-l,t)} (13)

- 1/2
Az‘tl/z = Di“g[(”ilt(l—”ilt)) ey

(7 g, (1=7T5 y, t))l/z] (14)

The correlation matrix of Y; = R,(«) with e, as
a typical element can be written as
Corr(Y;) = R(a) = var(e;)

= A7 Pvar(Y,) A (15)
or
var(Y,) = V, = A;?Corr(Y)A}? (16)
where
e, = [éi ,...,éiTl], and
A = Dlag‘[Ail""’AiTJ

Then, var(Y;) depends on  and R,(«) where the
latter takes the effect of correlation in computing
the covariance matrix var(Y;). The matrix R;(«) is
a T, by T, block diagonal matrix. Each block is a
[(K-1)x (K-1)] matrix. The ¢th diagonal block
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of Ri(a) is A;/*V,A;}"?, also the sth-row and tth-
column off-diagonal block p;,(a) is

pist(a) = A;sl/zE[(Yis_nis)

.(yh_ng]ff” (17)

1t

where
V., = var(Y;,) = Diag[n;,]-mn,,7}

and Diag[n,,] denotes a diagonal matrix with ele-
ments of 7;, on the main diagonal and zero off-
diagonal elements. The diagonal blocks of R;(«)
depend only on 7,(8) . In these diagonal blocks, the
diagonal elements are:

Corr(Yap Yias) = 1 (18)

and the off-diagonal elements are
COU(Yi/t’ Yikt)
“12
{7/ (1 =), (L —70;,) }
_”i/‘t ikt

(L= ) (L)} 2 (19)

CO””(YW Yikt) =

Recall that these off-diagonal elements of the diag-
onal blocks of R;(«) depend only on the #th choice
of subject i from the K alternatives available. This
clearly takes care of any correlation among the
different alternatives of the multidimensional route
choice model, usually due to overlapping distances
between different routes. Thus, the unknown
elements of R,(a) are the elements of its off-
diagonal blocks p; ,(«) . This must be estimated.

If p,,(@) is known, then R;(a) is known. The
only unknown term in equation 11 then is . The
estimated B can be obtained by a Fisher scoring
algorithm until convergence,

Am+l  Am | N d[”i ﬁm} -

A 2

. [Yi_n,.(/}’”)] (20)

where m is the iteration number. A starting 8 can
be obtained by applying the regular MNL model.
. . g om+l m
Iteration should continue until S =f and
"t = &, where & is the estimated p,,, () in

the mth step.

Estimating the Off-Diagonal Blocks
of the Correlation Matrix

Lipsitz et al. (1994) extended the exchangeable
correlation structure, introduced by Liang and
Zeger (1986), used in BGEE for multidimensional
models. They used the same assumption that any
two observations on the same subject/cluster 7 and
category k are equally correlated. Under this
assumption, p;.,(«) can be estimated as

N n A
Z D €isCir
@ = pila) = == (21)
Y O5T(T,-1)|_,

i=1

where p is the total number of independent vari-
ables, including any interactions. The residual vector

N ~-1/2 A
e, = Air |:Yit_ni12|3

which is estimated by plugging ﬁ from a previ-
ous step of iteration into A;, and x,,. It is worth
mentioning that the elements of the sth-row and
tth-column off-diagonal block p,,(¢) do not
depend on the times s and #, but they do depend
on the levels j and k.
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BOOK REVIEWS

Economic Impacts of Intelligent Transportation
Systems: Innovations and Case Studies

E. Bekiaris and Y.J. Nakanishi, editors

Elsevier

July 2004, 655 pages

ISBN 0762309784

$95 €150 £100

This new addition to the series, Research in Trans-
portation Economics, is dedicated to the economic
valuation of intelligent transportation systems (ITS)
and telematics. The editors include the papers of
close to 50 authors, thus ensuring comprehensive
coverage of the topic. ITS technologies typically
have short life cycles; they are rapidly evolving and
have minimal historical data associated with them.
Recognizing that ITS life cycles and cost structures
differ greatly from that of regular infrastructure,
techniques to address these issues are presented. The
book covers a wide range of ITS technologies,
including freeway management, electronic toll col-
lection, advanced driver assistance systems, and
traveler information systems.

The introductory chapter of this book recaps
the goals and objectives of ITS as envisioned in
landmark legislation. The chapter presents a
Mitretek (2003) compilation of recent cost-benefit
analysis that draws on experiences up to 2003.
Also provided are definitions for acronyms
directly downloaded from an ITS architecture
website. Distinctly absent, however, is a critique
of ITS implementations over the past two
decades. This type of discussion would have given
the readers some perspective on the topic.

The section on “Relevant Technologies and
Market” identifies the marketplace for various ITS
technologies. Two articles are included: the first, by
Panou and Bekiaris, puts forth a taxonomy of tech-
nologies into clusters in the United States and over-
seas; the second, by Kauber, assesses the emerging
markets through 2010.

The centerpiece of the volume is really the sec-
tion on “Evaluation Technologies/Methodologies,”
commanding no less than 120 pages. Aside from
traditional techniques such as cost-benefit analysis, I

am pleased to see contributions on “Analytical
Alternatives” (Haynes and Li), and I am equally
delighted to see microsimulation being used in eval-
uating “Variable-Message-Signs Route Guidance”
(Ozbay and Bartin).

While the methodologies section is cut and dried,
the articles in the “Case Studies” sections make
them come to life. They include:

B Incident Freeway Management,

m Electronic Toll Collection and Commercial
Vehicle Operation,

® Public Transport, and

B Advanced Driver Assistance Systems (ADAS) and
Driver/Traveler Information.

Aside from the “Evaluation Technologies/Method-
ologies” section, I view these 300 pages among the
most useful parts of the book, covering the key
components of ITS.

In the section on “Assessing the Impact of ITS
on the Overall Economy,” Kawakami et al. put
forth a compact general equilibrium model to
measure the implications of ITS. Gillen et al. eval-
uate the productivity gains from using Automatic
Vehicle Location. I would have liked to have seen
more contributors in this section, because it
addresses a key objective of this volume; in fact it
is the basic premise of the book.

Among the finishing touches, the book includes
policy recommendations. Again, I rank this section
of the book very highly. I am particularly partial to
the guidelines laid down for implementations. For
example, recommendations are made by Bekiaris
et al. for two ADAS technology clusters: advanced
cruise control and intelligent speed adaptation.

I am a bit disappointed, however, with the brev-
ity of the conclusions chapter, which says nothing
new or important. Considering the richness of the
contributions of so many authors, surely the editors
could have summarized them better and in more
detail.

I am also disappointed in the lack of a subject
index, which discounts the usefulness of the book.
More importantly, it reinforces the impression that
there is only a limited amount of editorial oversight.

Overall, this is a welcome addition to the
Research in Transportation Economics series. Many
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of the 50 authors included in the volume are
respected figures in this field, and the separate papers
provide much useful information. Integrating the
chapters into a book entitled Economic Impacts of
ITS, however, falls a bit short of my expectations.

Reference

Mitretek Systems. 2003. ITS Benefits and Costs: 2003 Update,
prepared for the Federal Highway Administration, U.S.
Department of Transportation.

Reviewer address: Yupo Chan, Professor and Founding
Chair, Department of Systems Engineering, University of
Arkansas at Little Rock, 2801 South University, Little
Rock, AR 72204-1099. Email: yxchan@ualr.edu.
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Principles of Transport Economics
Emile Quinet and Roger Vickerman
Edward Elgar Publishing Company
2004, 385 pages

ISBN 1-84064-865-1

$120 hardback ($60 paperback)
£75 hardback (£35 paperback)

Instructors of upper-level undergraduate transpor-
tation economics courses have typically been frus-
trated searching for a suitable textbook. The
traditional transportation books are long on institu-
tional description and short on analytical method.
A recent pair of books attempted to remedy this.
Kenneth Boyer’s Principles of Transportation Eco-
nomics (Addison Wesley, 1998, $124.40) is well
written but pitched at too low a level for students
who have completed intermediate microeconomics.
Patrick McCarthy’s Transportation Economics
(Blackwell, 2001, $108.95) is the opposite. There is
too much detail for a typical undergraduate who is
not specializing in transportation, and it is a tough
read in places. In my class, I have been using José
Gomez-Ibanez, William Tye, and Clifford Winston’s
edited volume Essays in Transportation Economics
and Policy: A Handbook in Honor of John R.
Meyer (Brookings Institution, 1999, at the attractive

price of $22.95 in paperback), which is a mixed
bag and really does not function as a textbook.

To this mix is added a new text by Quinet and
Vickerman. Actually, it is an updated English-
language version of an earlier book in French by
Quinet. The addition of Vickerman from England
has given the book a more pan-European feel. The
limitation of nearly all applied economics texts is
that their examples are parochial. European students
have limited interest in the detailed economics of the
Mackinac Straits bridge in Michigan or the Linden-
wold transit line in Philadelphia, and conversely
the Channel Tunnel and the externality costs of
truck traffic in Switzerland do not stir the imagina-
tion of American students. Therefore, Quinet and
Vickerman face a tough task in breaking into the
North American market.

The book is divided into three sections. The first
fifth (in terms of pages) deals with putting transpor-
tation in its wider context in relation to economic
activity, location theory, and urban economics. The
next quarter deals with the basics of demand and
cost. The remaining pages cover market equilib-
rium, market failure, and public policy intervention.

Overall, I consider the book to be a pedagogical
failure. For example, within the first 40 pages there
is a quick gallop through price elasticities (page 17),
cost functions and the envelope theorem (page 27),
and the throw away parenthetical comment on page
37 while discussing a model of interregional trade
that “there is no trade initially (infinite transport
costs).” All of this while the reader has yet to be
introduced to basics of transportation demand and
supply.

With my students, I consider it to be a major
success if they can interpret and use elasticities,
understand how a cost function is derived and esti-
mated, and fully understand the role of transporta-
tion in trade equilibria and how a demand function
for freight transportation can be derived. This book
is not supportive of the crucial material that I feel is
essential for my students to understand. While the
first section contains important concepts, I felt that
the material could have been better organized, and
perhaps combined with topics covered later in the
book, to produce a more logical and instructive
narrative.
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I found the second section dealing with demand
and costs to be the strongest part of the book. The
chapter on demand contains a particularly good
description of the underpinning of traditional four-
stage demand models. However, it deals with pure
theory. There is no discussion of the practical econo-
metrics of estimation or any empirical results. This
is in contrast to McCarthy’s text that has extensive
practical discussion of this topic. However, the most
amazing thing is that after 45 pages of discussing
passenger demand models, freight traffic models are
considered in under a page. Of course, this is not
entirely the authors’ fault. The profession has not
lavished the attention on freight demand models the
way that it has for passenger movement. This is a
sad state of affairs in the North American context
given the importance of freight railroads and com-
petition with trucks, barges, and pipelines.

The chapter on costs is also quite good and dis-
cusses social costs as well as production costs. To
my tastes, I felt there should have been a more
extensive industrial organization-style analysis of
production costs. After all, production costs drive
firm behavior and market equilibrium. For example,
on page 147 there is only passing reference to the
difference between economies of firm size, econo-
mies of density, and economies of scope. And the
discussion is based on ill-defined equations and not
supported by any intuition. Yet, with my students, I
find that driving home these distinctions produces
greater appreciation of the differences between
transportation modes and the debate concerning
regulatory reform.

The final section of the book is a random walk
through market equilibria and public policy. Again
the book fails pedagogically by giving short shrift to
important tools in transportation economics. Con-
cepts such as Ramsey pricing (in the cost chapter,
page 153), an undefined “Mohring effect” (also in
the cost chapter, page 158), cost-benefit analysis
(page 239), and reaction functions and the conduct
parameter (page 266) are all mentioned in passing
but not given the full treatment that undergraduates
require. Overall, the chapters in the final section of

the book are adequate and cover most of the impor-

tant issues. However, I felt they lacked a structure
that students could use to guide their studies.

Overall, one can say that the book touches on all
of the topics usually found in an upper level trans-
portation economics course, however, the ordering
of material detracts from the learning experience.
One can always quibble about the organization of
the material, and I would accept that this is partly a
matter of taste, and there will be deficiencies in
almost any ordering. However, I would suggest that
McCarthy and (especially) Boyer have got it right by
using the structure of a typical intermediate micro-
economics textbook as a guide to a logical sequence
of topics.

The other failure of this book is in explaining
and illustrating the principal tools of transportation
economics in a way that undergraduates would find
useful. One might consider that there are three
main types of academic writing that do not report
original research results. One is a handbook chapter
presenting core reference material for a knowledge-
able new researcher in a field. The second is a
“handbook chapter on steroids” prepared for
knowledgeable insiders and published in places such
as the Journal of Economic Literature. The third is
textbook writing designed for newcomers to the
field who only have basic economic training. The
authors of this book have failed; they have pitched
the book somewhere in the middle and thereby sat-
isfied none of the three markets.

How did this happen? The basic problem is that
the market for a post-intermediate microeconomics
text on transportation is very small. Publishers are,
therefore, unwilling to invest resources in extensive
use of referees, prepublication testing in a class-
room setting, copy editors, graphic designers, and
the preparation of end-of-chapter exercises. Edward
Elgar, the publisher of this book, is not a major
player in the mass-market textbook publishing
business. Consequently the authors did not get the
feedback they should have received at an early
stage that would have allowed them to make this a
more pedagogically useful tool.

Reviewer address: Ian Savage, Department of Economics,
Northwestern University, 2001 Sheridan Road, Evanston
IL 60208, USA. Email: ipsavage@northwestern.edu.
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Data Review

Employment in the Airline Industry

Airlines report employment levels to the federal gov-
ernment on a monthly basis.! The release of the
employment numbers on the Bureau of Transporta-
tion Statistics (BTS) website and through monthly
press releases allows tracking of employment trends
in the industry resulting from the financial crises
experienced by many airlines after the terrorist and
recession events of 2001. The employment num-
bers reflect the resultant reduction in the network
carriers’ operations and the subsequent growth of
low-cost and regional carriers.

BTS makes year-end (December) airline employ-
ment data available online.” These data are sup-
plemented by the monthly press releases, which BTS
began reporting in March 2005.% Using these BTS
data, analyses of the changes in the number of air-
line employees can be performed by business model,
revenue size, or individual carrier.

The best representation of the current airline
industry structure is a business model definition,
which contains three carrier groupings: network,
low cost, and regional. Network carriers use a tradi-
tional hub-and-spoke system for scheduling flights.
Low-cost carriers operate under a generally recog-
nized low-cost business model, which may include
a single passenger class of service, standardized air-
craft utilization, limited in-flight services, use of
smaller and less expensive airports, and lower
employee wages and benefits. Regional carriers
provide service from small cities and primarily use
smaller jets. Regional carriers are also used to sup-

! This includes all carriers that operate at least 1 aircraft
with a carrying capacity of 18,000 pounds (passengers,
cargo, and fuel). Regional carriers were excluded from
reporting until 2003.

% Available at www.bts.gov/programs/airline_information/
number_of_employees/.

3 Available at www.bts.gov/press-releases.

port larger network carrier traffic into and out of
smaller airports to the network carriers’ hub air-
ports.

The BTS online database uses an operating rev-
enue classification system with three major cate-
gories: majors, nationals, and mgionals.4 Major
carriers have annual operating revenues above $1
billion, national carriers have operating revenues
between $100 million and $1 billion, and regional
carriers have operating revenues less than $100
million. The regional category may not include the
same carriers under the revenue size definition and
the business model definition.

Using the business model classification, there are
seven network carriers (Alaska Airlines, American
Airlines, Continental, Delta, Northwest, United,
and US Airways) and eight low-cost carriers (Air
Tran, America West, ATA, Frontier, Independence,
JetBlue, Southwest, and Spirit). December 2004
employment data provided by the airlines shows
that American Airlines was the largest employer
(71,232 full-time personnel) in the industry (table
1). American became the largest employer in 2001,
the year it acquired the assets of Trans World Air-
lines. United was the second largest network
employer in December 2004 with 54,460 full-time
employees, followed by Delta (53,394). The
remaining network carriers all employed less than
40,000 full-time personnel each.

* This system of classification emerged during the indus-
try’s pre-deregulation era.

Review by: Jennifer Brady, Analyst, Bureau of Transporta-
tion Statistics, Research and Innovative Technology
‘Administration, U.S. Department of Transportation, 400
Seventh St. SW, Room 3430, Washington, DC 20590.
Email address: jennifer.brady@dot.gov.
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TABLE 1 Airline Employees by Business Model and
Size Classification: 2004

All Full-time Business model Size
Carrier employees employees classification  classification
American 82,222 71,232 Network Major
United 61,092 54,460 Network Major
Delta 59,972 53,394 Network Major
Northwest 39,784 37,572 Network Major
Continental 35,395 28,227 Network Major
US Airways 26,169 23,180 Network Major
Alaska Airline 9,857 8,747 Network Major
Southwest 31,274 30,749 Low cost Major
America West 12,654 10,129 Low cost Major
JetBlue 7,399 5,956 Low cost National
AirTran 6,072 5,754 Low cost National
ATA 6,268 5,625 Low cost Major
Frontier 4,492 3,620 Low cost National
Independence 4,301 4,014 Low cost National
Spirit 2,627 2,339 Low cost National

Source: U.S. Department of Transportation, Research and Innovative Technology
Administration, Bureau of Transportation Statistics, Certified Carriers (Full-time and Part-time),

available at www.bts.gov/programs/airline_information/number_of_employees.

All network carriers experienced employment
growth throughout the 1980s. After a slowdown
during the early 1990s, precipitated by the 1991
recession and the Gulf War, the number of network
carrier employees began to increase again in 1995.
However, immediately following the 2001 terrorist
events and the simultaneous mild U.S. recession,
employment decreased for the network carrier
group.

Between December 2000 and 2004, all the net-
work carriers reduced their numbers of full-time
employees; however, certain carriers were particu-
larly hard hit. The total number of US Airways full-
time personnel decreased by 44% from December
2000 to 2004, and United experienced a 40%
reduction in their full-time work force. The other
five major carriers reduced their total number of
full-time employees by approximately 20%, except
Alaska Airlines, which sustained a 4% loss.

Southwest Airlines employs the most personnel
among the low-cost carriers. Its December 2004
employment rolls indicate more than twice the num-
ber of full-time employees (30,749) worked for
Southwest than the next largest employer, America

West (10,129). The remaining low-cost carriers
employed less than 10,000 full-time personnel each.

As a demonstration of the growing strength of
low-cost carriers, Southwest, America West, and
ATA generate sufficient revenues to qualify as major
carriers. Furthermore, Southwest employs more
people than two of the network carriers (US Air-
ways and Alaska Airlines).

It is difficult to analyze historic trends for the
airline industry because of an evolving carrier pop-
ulation and the financial demise of previously
qualifying airlines. Among the network airlines
operating in 1970, most had their highest employ-
ment levels before 2001. From December 2000 to
2004, the number of full-time personnel employed
by network carriers decreased 31%° (table 2).
During the same time period, employment among
seven low-cost carriers reporting to BTS through-
out the entire period (excluding Independence Air)
increased 17%.

5 December 2000 and 2001 data include statistics for
TWA, which was purchased by American Airlines in
2001.

108 JOURNAL OF TRANSPORTATION AND STATISTICS VS8, N1 2005



TABLE 2 Airline Employees: 2000-2004

(all data are from December of a given year)

Type of Percentage
carrier 2000 2001 2002 2003 2004 change1
Network 399,971 348,882 334,444 286,940 276,812 -31%
Low cost 54,746 53,258 59,803 64,048 64,172 17%

! Among those airlines reporting in 2000 and 2004.

Source: U.S. Department of Transportation, Research and Innovative Technology Administration,
Bureau of Transportation Statistics, Certified Carriers (Full-time and Part-time), available at
www.bts.gov/programs/airline_information/number_of_employees.

New BTS monthly employment statistics show
that the reduction in the number of network carrier
employees has slowed, as has growth among low-
cost carriers. In December 2004, January 2005,
February 2005, and March 2005, full-time employ-
ment among network carriers showed decreases
ranging from 3.5% to 5.3% (table 3). (The data
comparisons presented here are for the same
months in 2003 and 2004 or 2004 and 2005, not a
full year of data.) Even low-cost carrier full-time
employment experienced negative growth in the
most recent period (March) at -0.3%.

Regional carrier data are also available in BTS
press releases and online. However, not all of the
currently reporting carriers were required to report
until 2003, thus only 8 reported in 2000 and 13
reported in 2004, making comparisons over time
problematic.

Raw data on airline employment are available
on the BTS website (see footnote 2). Certificated
Carriers (Full-time and Part-time) provides employ-

ment data beginning in 1970, and P10—Annual
Employee Statistics by Labor Category, covering
1998 through 2003, provides detailed information
for each airline by labor category and geographic
groupings. Among the 15 labor categories detailed
in the P10 database are pilots and co-pilots, main-
tenance staff, and cargo handling and other flight
personnel. The four geographic groupings in the
P10 database are domestic, Atlantic, Latin America,
and Pacific. Low-cost carriers are almost exclusively
domestic operators.

BTS will continue to issue monthly press releases
with the most current data and employment trends.
Using these press releases, it is possible to supple-
ment the online databases with monthly data.
Finally, the press releases provide documentation of
business model changes by carriers, resulting in new
groupings.

For further information on this topic, send email
to answers@bts.gov or call 1-800-853-1351.

TABLE 3 Percentage Change in Airline Employment

Type of December January February March
carrier 2003 and 2004 2004 and 2005 2004 and 2005 2004 and 2005
Network -3.5 -4.5 -5.0 -5.3

Low cost 6.5 0.3 -0.3

Source: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau
of Transportation Statistics, Table 1: Passenger Airline Employment, monthly press releases, 2005,

available at www.bts.gov/press-releases.
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