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Executive Summary 

Introduction 

Mathematics teaching is an extraordinarily complex activity involving interactions 
among teachers, students, and the mathematics to be learned in real classrooms (Cohen, 
Raudenbush, & Ball, 2003). It involves making choices about material and tools to use, 
planning ways to group and interact with students of differing backgrounds and with 
differing interests and motivation. It is within this set of areas that some of today’s most 
pressing and debated questions about mathematics instruction are situated. 

 
The Instructional Practices (IP) Task Group needed to consider the challenges that 

this complexity creates while determining what might be learned from research studies on the 
teaching of mathematics. Not all of the questions that teachers, policymakers, and the public 
wish to have answered are easily studied or lend themselves to experimental and quasi-
experimental research, types of research from which generalizations to practice or for policy 
can be made. Moreover, many important questions that could be studied using these methods, 
unfortunately, have not been addressed in these ways. This limits what can validly be said 
about possible effective practices for the teaching of mathematics. The Task Group’s 
undertaking was to marshal the scientific evidence to make policy recommendations and, 
thus, only experimental and quasi-experimental studies could be examined. 

 
This situation is hardly unique to mathematics education, or educational research in 

general. It is—and has been—true in the development of scientific research in any field from 
engineering to economics to clinical psychology to public health. The accumulation of 
findings is slow at first, with the expensive experimental designs employed only after a 
certain amount of knowledge has emerged. Research on teaching and learning is a relatively 
young field. 

 
With these caveats in mind, the overarching question the Task Group approached is: 

What instructional practices enable students to learn mathematics most successfully? 

Fortunately, while the knowledge base is not uniformly deep, there has been some progress at 
assembling evidence about questions of causal impact that has implications for practice and 
for policy within specific areas of mathematics instructional practice.   
 

Therefore, within this general question, the Task Group identified six questions for 
investigation, addressing topics that were deemed important by the field, often including 
issues that have been hotly debated. Questions were identified within all three of the types of 
interactions comprising teaching as indicated in Figure 1; the Task Group recognizes that 
most of the questions here engage all three types of interactions specified in the figure, but 
have classified them according to the types of interactions that seem most salient. 
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Figure ES-1: Instructional Triangle 

 

Source: Adding It Up, National Research Council, 2001, p. 314. 

 
The Task Group realizes that by no means is the list of questions discussed below a 

comprehensive list of questions about each of these three types of interactions; indeed, it only 
begins to scratch the surface about what might be learned to inform mathematics teaching 
practice through research. The Task Group was aware that there are many widely used 
instructional practices that might have been examined here but that were not included 
because of limitations of time, resources, and available research. Nonetheless, it is a list of 
specific issues that will allow the Task Group to draw some conclusions from a small set of 
rigorous research studies, thereby setting the foundation for a far more expansive program of 
rigorous research that would fill the gaps in the research on these issues and also take up the 
many other issues that practitioners face in improving mathematics teaching and learning. 

 
The methodology used in the Instructional Practices Task Group research review 

process, including an account of how the topics were selected, and the criteria for standards 
of evidence, are discussed in the full report introduction and in Appendix A. 

Interactions Between Teachers and Students 

Most contemporary perspectives on instruction argue that finding the best form for 
those interactions is a complex problem that is dependent on teachers’ backgrounds, 
students’ characteristics, school culture, the mathematical topics being addressed, and the 
instructional materials being used. One advantage of rigorous experimental research is that, 
over time, the professional community can discern which practices tend to be effective across 
a broad array of teacher and learning characteristics and a broad array of mathematical 
topics. One major goal of the Task Group’s effort is to critically review the research literature 
for the small body of rigorous experimental studies and to discern patterns of findings that 
suggest specific means for improving instructional practice.   
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It is agreed that there is no single, ideal form in which students and teachers should 
consistently interact. Nonetheless, there are certain “positions” taken by various 
organizations and individuals arguing in favor, or in opposition to, such practices as direct 
instruction, cognitive-strategy instruction, student-centered approaches, cooperative learning, 
discovery learning, guided inquiry, situated cognition approaches, collaborative learning, and 
lecture-recitation.  

 
A less polarizing issue, but one that is of great importance to classroom teachers of 

mathematics, is the challenge of how to best interact with low-achieving students and 
specifically with students having learning disabilities. A major challenge of mathematics 
teaching for teachers is to find the combination of instructional approaches and materials that 
will best meet the needs of the diversity of students in their classrooms.  

 
Research was examined that addresses two basic questions about the forms of teacher 

and student interactions. 
 

How Effective Is Teacher-Directed Instruction in Mathematics in 

Comparison to Student-Centered Approaches, Including Cooperative and 

Collaborative Groups, in Promoting Student Learning? 

A controversial issue in the field of mathematics teaching and learning is whether 
classroom instruction should be more teacher directed or student centered. These terms have 
come to incorporate a wide array of meanings, with teacher directed ranging from highly 
scripted direct instruction approaches to interactive lecture styles, and with student centered 
ranging from students having primary responsibility for their own mathematics learning to 
highly structured cooperative groups. Schools and districts must make choices about 
curricular materials or instructional approaches that often seem more aligned with one 
instructional orientation than another. This leaves teachers wondering about when to organize 
their instruction one way or the other, whether certain topics are taught more effectively with 
one approach or another, and whether certain students benefit more from one approach than 
the other. The review was limited to studies that directly compared these two positions. The 
studies in the review compare an instructional regime in which teachers do more teaching 
(and therefore students less) with one in which students do more teaching and teachers less.  

 
Only eight studies were found that met the Task Group’s standards for quality that were 

consistent with this definition. The studies presented a mixed and inconclusive picture of the 
relative impact of these two forms of instruction. High-quality research does not support the 
contention that instruction should be either entirely “child centered” or “teacher directed.” 
Research indicates that some forms of particular instructional practices can have a positive 
impact under specified conditions. All-encompassing recommendations that instruction should 
be entirely “child centered” or “teacher directed” are not supported by research. The limited 
research base of rigorous research does not support the exclusive use of either approach. 

 
One of the major shifts in education over the past 25–30 years has been advocacy for 

the increased use of cooperative learning groups and peer-to-peer learning (e.g., structured 
activities for students working in pairs) in the teaching and learning of mathematics. 
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Cooperative learning is used for multiple purposes: for tutoring and remediation, as an 
occasional substitute for independent seatwork, for intricate extension or collaborative 
groups has been advocated in various mathematics education reports, policies, and state 
curricular frameworks and instructional guidelines. 

 
Research has been conducted on a variety of cooperative learning approaches. One 

such approach, Team Assisted Individualization (TAI) has been shown to significantly 
improve students’ computation skills. This instructional approach involves heterogeneous 
groups of students helping each other, individualized problems based on student performance 
on a diagnostic test, and rewards based on both group and individual performance. Effects on 
conceptual understanding and problem solving were not significant. There is evidence 
suggesting that working in dyads with a clear structure also improves computation skills in 
the elementary grades. However, additional research is needed. 

 

What Instructional Strategies for Teaching Mathematics to Students  

With Learning Disabilities and to Low-Achieving Students Show the 

Most Promise? 

A major challenge of mathematics teaching for teachers is to find the combination of 
instructional approaches and materials that will best meet the needs of the diversity of 
students in their classrooms. The Task Group chose to examine research that specifically 
looks at issues addressing students who bring a range of diversity to mathematics 
classrooms—those students with learning disabilities and those students who struggle with 
learning mathematics but who do not have a mathematics learning disability. 

 

Obviously this topic has been of high interest for special educators, but increasingly, 
surveys of teachers have indicated that, as increasing numbers of students with learning 
disabilities (LD) receive their mathematics instruction in their regular classroom, strategies 
for teaching these students have become a high priority for all educators. Fortunately, there is 
an appreciable body of research on this topic that meets the standards for rigorous scientific 
research established by this Task Group. 

 
A review of 26 high-quality studies, mostly using randomized control designs, was 

conducted. These studies provide a great deal of guidance concerning some defining features of 
effective instructional approaches for students with LD as well as low-achieving (LA) students.   

 
Explicit systematic instruction typically entails teachers explaining and 

demonstrating specific strategies, and allowing students many opportunities to ask and 
answer questions and to think aloud about the decisions they make while solving problems. 
It also entails careful sequencing of problems by the teacher or through instructional 
materials to highlight critical features. More recent forms of explicit systematic instruction 
have been developed with applications for these students. These developments reflect the 
infusion of research findings from cognitive psychology, with particular emphasis on 
automaticity and enhanced problem representation. 
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This analysis of the body of research indicated that explicit methods of instruction are 
consistently and significantly effective with students with learning disabilities in the 
performance of computations, solving word problems, and solving problems that require the 
application of mathematics to novel situations.  

 
Only a small number of studies were located that investigated the use of visual 

representations or student “think alouds.” Therefore, no inferences about their effectiveness 
can be drawn. The research suggests that they are most useful when they are integrated with 
explicit instruction.  

 
Based on this admittedly small body of research, the Task Group concludes that 

students with learning disabilities and other students with learning problems should receive 
some time on a regular basis with some explicit systematic instruction. There is no reason to 
believe that this type of instruction should comprise all the mathematics instruction these 
students receive. However, it does seem essential for building proficiency in both 
computation and the translation of word problems into appropriate mathematical equations 
and solutions. Some of this time should be dedicated to ensuring that students possess the 
foundational skills and conceptual knowledge necessary for understanding the mathematics 
they are learning at their grade level. 

Interactions Between Students and the  

Mathematics They Are Learning 

In discussions about effective mathematics instruction, there are multiple questions 
about the ways the curriculum, instructional materials, and resources for mathematics 
learning influence student performance in mathematics. The Task Group chose to focus the 
research review on three controversial areas of this domain: a curricular issue concerning 
how the mathematics is presented; an issue about the impact of tools as a means of 
interacting with the mathematics; and a curricular organization issue about the pace and 
nature of the mathematics for gifted students. 

 

Do ‘Real-World’ Problem Approaches to Mathematics Teaching, and 

Efforts to Ensure that Students Can Solve ‘Real-World’ Problems, Lead to 

Better Mathematics Performance Than Other Approaches? 

The importance of addressing this topic as an especially controversial “hot button” 
issue in the field was stressed, both by Task Group members, as well as by members of the 
public in testimony to the Panel. Many textbooks begin each unit with “real-world” problems 
and consider this a potentially motivating approach. Some instructional materials use “real-
world” contexts as a means of introducing mathematical ideas. State and national standards 
typically include as goals students’ ability to apply mathematics to situations that occur in a 
child’s life, or that might occur in future jobs. Consequently, high-stakes assessments such as 
the National Assessment of Educational Progress (NAEP) and many state tests include “real-
world” problems. There are strong perspectives both in support of, and in opposition to, the use 
of “real-world” problems as a means for students to interact with the mathematics they are to 
learn. For these reasons, a serious examination of the research on this topic seemed warranted.  
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The research review focused on two key issues. The first was the extent to which 
problems that authors call “real-world” problems do, in fact, pique students’ interest and 
engage them more fully in exploration of mathematical concepts, with a goal of learning 
mathematics. A related issue is the extent to which use of “real-world” problems in 
instruction increases students’ ability to transfer the mathematical knowledge they possess to 
novel situations. Unfortunately, there is no agreed upon definition of “real-world” problems; 
the terminology is used in very different ways by researchers, teachers, mathematicians, and 
mathematics educators. And, the matter that what is a “real-world” problem to one student 
may not be a “real-world” problem to another is an issue. Conducting research in this area is 
complex; fidelity of the teachers’ implementation of the instructional materials or 
instructional strategy is difficult to assess. Although not addressed in the studies we 
examined, teachers’ knowledge and capacity to use such problems effectively varies greatly. 
Given these caveats, the Task Group addressed the question of whether using “real-world” 
contexts to introduce and teach mathematical topics and procedures is preferable to more 
typical instructional approaches.  

 
The body of high-quality studies for this topic is small. Five studies addressed the 

question of whether the use of “real-world” problems as the instructional approach led to 
improved performance on outcome measures of ability to solve “real-world” problems, as 
well as on more traditional assessments. Four of these were similar enough to combine in a 
meta-analysis. The meta-analysis revealed that if mathematical ideas are taught using “real-
world” contexts, then students’ performance on assessments involving similar problems is 
improved. However, performance on assessments of other aspects of mathematics learning, 
such as computation, simple word problems, and equation solving, is not improved. 

 
For certain populations (upper elementary and middle grade students and remedial 

ninth-graders) and for specific domains of mathematics (fraction computation, basic equation 
solving, and function representation), instruction that features the use of “real-world” 
contexts can have a positive impact on certain types of problem solving. Additional research 
is needed to explore the use of “real-world” problems in other mathematical domains, at 
other grade levels, and with varied definitions of “real-world” problems.  

 

What Is the Relative Impact on Mathematics Learning When Students Use 

Technology Compared to Instruction That Does Not Use Technology? 

There are several types of educational technology that provide opportunities for 
students to interact with mathematics. The review includes focus on computer software, 
calculators, and graphing calculators. 

 
Among the many categories of technology, calculators, including graphing 

calculators, have generated the greatest amount of debate. Some have championed their use 
in developing problem-solving abilities, by allowing students to perform far more, and more 
complex, arithmetic operations than would have been possible without technology. Others 
believe that calculators may reinforce independent skill mastery, or even that they should, 
along with mental arithmetic, replace some of the paper-and-pencil calculations that 
dominate elementary school mathematics. On the other hand, some have bemoaned their 
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misuse. One concern is that calculators may have an insidious effect on paper-and-pencil 
arithmetic and algebraic skills. Some are concerned that reliance on calculators can preclude 
the development of proficiency with standard calculation algorithms and thus deprive 
students of an understanding and appreciation of the mathematics that underlies the standard 
algorithms, as well as ability to quickly retrieve basic arithmetic facts.  

 
A review of 11 studies that met the Task Group’s rigorous criteria (only one study 

was less than 20 years old) found limited to no impact of calculators on calculation skills, 
problem solving, or conceptual development over periods of up to one year. Unfortunately, 
these studies cannot be used to judge the advantages or disadvantages of multiyear calculator 
use beginning in the early years because such long-term use has not been adequately 
investigated. The Task Group cautions that to the degree that calculators impede the 
development of automaticity, fluency in computation will be adversely affected. 

 
The Task Group found that computer-assisted instruction (CAI) drill and practice, if 

of high quality, can improve students’ performance compared to conventional instruction. 
Drill and practice programs can be useful tools in developing students’ automaticity, or fast, 
accurate, and effortless performance on computation, freeing working memory so that 
attention can be directed to the more complicated aspects of complex tasks. 

 
Research has demonstrated that tutorials (CAI programs, often combined with drill and 

practice) that are well designed and implemented can have a positive impact on mathematics 
performance. CAI tutorials have been used effectively to introduce and teach new subject-
matter content. However, these studies also suggest several important caveats. Care must be 
taken that there is evidence that the software to be used has been shown to increase learning in 
the specific domain and with students who are similar to those who are under consideration. 
Educators should critically inspect individual software packages and studies that evaluate them 
critically. Furthermore, support conditions to use the software effectively (sufficient hardware 
and software; technical support; adequate professional development, planning, and curriculum 
integration), should be in place, especially in large-scale implementations, to achieve optimal 
results. 

 

Research indicates that computer programming improves students’ performance 
compared to conventional instruction on both mathematics achievement in general and on 
problem solving. However, computer programming by students can be employed in a wide 
variety of situations using distinct pedagogies, not all of which may be effective (e.g., 
integration into the mathematics curriculum may be required for substantial effects). Therefore, 
the findings are limited to the careful, targeted application of computer programming for 
learning used in the studies reviewed.  

 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-xx 

What Instructional Arrangements for Engaging with Mathematics Are 

Most Promising for Mathematically Gifted Students? 

Zimmer, Christina, Hamilton, and Weber Prine (2006) noted that, in a recent survey of 
teachers implementing the No Child Left Behind Act (NCLB), over half the teachers surveyed 
felt that implementation of the law resulted in improved learning opportunities for low-
performing students, but that teachers and administrators at all levels of schooling worried 
about high-achieving students receiving adequate instructional challenge in all curricular areas. 
This review of the research literature explored the immediate and delayed impacts of gifted 
education approaches aimed at accelerating students’ mathematics instruction (e.g., by 
covering two, or even four years of high school mathematics in 15 months) and those that 
attempt to provide enrichment or extension activities for mathematically precocious students. 
This question is addressed in the category of student-mathematics interactions because it is 
very much about the pace and structure for engaging gifted students with mathematics content. 

 

The Task Group’s review of the literature about the kind of mathematics instruction 
would be most effective for gifted students focused on the impact of programs involving 
acceleration, enrichment, and the use of homogeneous grouping. The extensive literature 
searches we conducted yielded few studies that met the Task Group’s methodologically 
rigorous criteria for inclusion. Thus for this topic—and this topic only—we relaxed these 
criteria in order to fulfill our charge of evaluating the “best available scientific evidence.” 
One randomized control trial study and seven quasi-experimental studies were located. All 
but one of these studies have limitations. 

 
Despite the flaws in any one study, the set of studies suggests there is value to 

differentiating the mathematics curriculum for students who are gifted in mathematics and 
possess sufficient motivation, especially when acceleration is a component (i.e., pace and 
level of instruction are adjusted). A small number of studies suggest that individualized 
instruction, where the pace of learning is increased and often managed via computer 
instruction, produces gains in learning. 

 
Gifted students who are accelerated by other means not only gained time and reached 

educational milestones earlier (e.g., college entrance) but appear to achieve at levels at least 
comparable to those of their equally able same-age peers on a variety of indicators even 
though they were younger when demonstrating their performance on the various achievement 
benchmarks. One study suggests that gifted students also appear to become more strongly 
engaged in science, technology, engineering, or mathematical areas of study.  

 
Some support also was found for supplemental enrichment programs. Of the two 

programs analyzed, one explicitly utilized acceleration as a program component and the other 
did not. This supports the view in the field of gifted education that acceleration and 
enrichment combined should be the intervention of choice. We believe it is important for 
school policies to support appropriately challenging work in mathematics for gifted and 
talented students.  
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Interactions Between Teachers and Mathematics 

Teachers engage with the mathematical content that they teach in various aspects of 
teaching practice: in planning and designing lessons, in interpreting and responding to 
student questions, and in the work of assessing their students’ mathematical knowledge. 
Fortunately, formative assessment is an area of great contemporary interest and is also an 
area with a rich set of rigorous experimental field studies.  

 

What Is the Impact of Use of Formative Assessment in 

Mathematics Teaching? 

Educators at all levels realize the importance of assessing their students’ progress during 
the year. Formative assessment—the ongoing monitoring of student learning to inform 
instruction—is generally considered a hallmark of effective instruction in any discipline. Interest 
in formative assessment has dramatically increased since No Child Left Behind required states 
to establish accountability systems. Teachers’ interpretation and use of the data available to 
them from instructionally embedded, in-class assessments in the context of teaching, along with 
high-stakes assessments are critical for improving outcomes for all students. However, many 
different systems have been established and touted for use as formative assessments. These 
range from the end-of-unit and mastery tests that accompany major commercial textbook series, 
to more contingent and informal probes of students’ understandings to be used while they solve 
problems, to weekly tests that sample from the year’s instructional objectives in mathematics. 
The Task Group examined rigorous experimental studies of the impact of teachers’ use of 
formative assessment on students’ growth in mathematics proficiency. The Task Group’s 
review of the high-quality studies of this topic produced several conclusions. 

  
Teachers’ regular use of formative assessment is marginally significant in improving 

their students’ learning. This is especially true if teachers have additional guidance on using 
the assessment to design and individualize instruction.  

 
Although the research base is smaller, and less consistent than that on the general 

effectiveness of formative assessment, the research suggests that several specific tools and 
strategies can help teachers use formative assessment information more effectively. The first 
promising strategy is providing formative assessment information to teachers (via technology) 
on content and concepts that require additional work with the whole class. The second 
promising strategy involves using technology to specify activities needed by individual 
students. Both of these aids can be implemented via tutoring, computer-assisted instruction, or 
help provided by a professional (teacher, mathematics specialist, trained paraprofessional).  

 
The Task Group cautions that only one type of formative assessment has been studied 

with rigorous experimentation. These are assessments that include random sampling of items 
that address state standards. These assessments tend to take between 2 and 8 minutes to 
administer and thus are practical for regular use.  
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The regular use of formative assessment particularly for students in the elementary 
grades is recommended. These assessments need to provide information not only on their 
content validity but also on their reliability and their criterion-related validity (i.e., 
correlation of these measures with other measures of mathematics proficiency). For 
struggling students, frequent (e.g., weekly or biweekly) use of these assessments appears 
optimal, so that instruction can be adapted based on student progress. 

 
Research is needed regarding the content and criterion-related validity and reliability 

of other types of formative assessments (such as unit mastery tests included with many 
published mathematics programs, performance assessments, and dynamic assessments 
involving “think alouds”). This research should include studies of consequential validity (i.e., 
the impact they have on helping teachers improve the effectiveness of their instruction). 

 
Use of formative assessments in mathematics can lead to increased precision in how 

instructional time is used in class and can assist teachers in identifying specific instructional 
needs. Formative measures provide guidance as to the specific topics needed for assistance. 
Formative assessment should be an integral component of instructional practice in mathematics. 

Conclusion 

Mathematics instruction is a complex professional practice. The educational research 
community has made important forays into several of the most controversial and pressing 
questions about the effectiveness and impact of various types of instructional practice, and in 
particular have conducted some studies that examine the effects of various interpretations and 
implementations of practices that have been advocated in the “reform” documents in 
mathematics education over the past two decades.  

 
The question asked by the Task Group is: What can be learned from a review of the 

best available evidence in six important aspects of practice? These practices included: the 
use of “real-world” problems in mathematics teaching, the use of technology, the enrichment 
and acceleration of instruction for mathematically precocious students, the use of cooperative 
groups and peer instruction, the use of direct instruction with learning disabled students, and 
the use of formative assessment. 

 
For none of the areas examined did the Task Group find sufficiently strong and 

comprehensive bodies of research to support all-inclusive policy recommendations of any 

of the practices addressed. Nor did the Task Group find sufficient evidence to support 

policy recommendations favoring the status quo in mathematics teaching.   

 
Across all of the areas, the Task Group found that several instructional practices in 

mathematics teaching show some promise, in comparison to typical practice, for 

affecting student learning. In each case the “promising” practice is clearly specified, 
somewhat prescriptive, and involves a mix, or combination, of particular distinct practices. 
Thus, for example, it cannot be said that cooperative learning is a practice whose 
effectiveness is supported by research—but the Team Assisted Individualization (TAI) 
approach, with particular students in a particular area of mathematics does appear to be 
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effective. Although formative assessment to inform instruction is useful, it is enhanced when 
teachers use assessment tools with known validity and reliability. For students performing in 
the lower third of grade level expectations, explicit instruction using clear models of 
proficient performance, many opportunities to verbalize their problem-solving strategies, and 
adequate practice and review should be a part of the mathematics program. It is not 
surprising that what the Task Group found about effective instructional practice is far more 
subtle and nuanced than direct answers to the starkly stated questions investigated.   

 
The Task Group found some rather robust findings, but these findings must be 

accompanied by a caveat. When a practice is demonstrated by high-quality experimental 
research to have some promise, it is critical to be clear about the promise “for what aspects of 
mathematics proficiency.” Different practices and approaches impact different kinds of 
outcomes, ranging from computational performance, to “real-world” problem solving, to 
identifying extraneous problem information, to long-term participation and interest in 
studying mathematics.  

 
Because researchers and practitioners use different definitions to describe their 

interventions, it is conceptually problematic to place too much stock in generalizing that a 
broad category of practice (e.g., using technology or using “real-world” problems) has 
impact because a set of studies working on the same particular component of this category 
has impact, which was the case in some of the Task Group’s reviews.  

 
The Task Group’s process included asking mathematicians and mathematics 

education reviewers to examine the mathematical content of the research studies—to look at 
the assessments and interventions, to the extent possible, based on the published reports. 
They expressed important concerns, including the possibility that an outcome measure item 
purported to measure computation might not do so because it really measures ability to use 
the context, for instance. They expressed concern that some topics were underdeveloped (i.e., 
failed to help students access the underlying mathematics in the topic covered), or that items 
were mislabeled (e.g., as “problem solving”) when the mathematics expert might classify 
them otherwise. However, they also did note that several of the studies reviewed seemed to 
help students increase their knowledge of mathematics and how to apply that knowledge to 
novel situations in a way that is valid from a mathematical perspective.  

 
Seeing how few robust findings emanated from a review of the rigorous research on 

the topics addressed, it is clear that most practitioners would like more guidance for several 
areas of instruction. Yet even the inconclusive and limited findings can provide a real service 
to the profession. If an administrator, a developer or a parent comments, “Research says that 
lessons must start with ‘real-world’ problems,” or “Students will really learn mathematics 
only if they are taught using direct instruction,” consumers and professionals now know that 
research is inconclusive on these topics.  

 
This is a necessary step in the evolution of educational research into a more mature 

science. The paucity of findings and the paucity of high-quality experimental research in the 
field led the Task Group to realize, early on in the process, that few definitive answers to the 
research questions posed would be found.  
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What Would the Instructional Practices Task Group  

Say to the Practitioner?   

There is no one ideal approach to teaching mathematics; the students, the 
mathematical goals, the teacher’s background and strengths, and the instructional context, all 
matter. The findings here do suggest that it is especially important to: 

 
• monitor what students understand and are able to do mathematically;  
• design instruction that responds to students’ strengths and weaknesses based on 

research when it is available; and 
• employ instructional approaches and tools that are best suited to the mathematical 

goals, recognizing that a deliberate and conscious mix of strategies will be needed. 
 
Also, it is important for teachers, school administrators, and the public to understand 

the importance of helping to formulate research questions and being willing to participate in 
the types of experimental and quasi-experimental studies that are described here.  

What Would the Instructional Practices Task Group  

Say to the Researcher? 

More research that can identify causal claims is needed to guide both policy and practice. 
Building the mathematics education research portfolio to include this work will involve: 

 
• Formulation of research questions that are of interest to practitioners and policy-

makers; 
• Collaborations among mathematicians, mathematics education researchers, 

methodologists, and psychometricians; and 
• Motivation to design and undertake rigorous studies. 

 
The work of this Task Group has substantiated understanding of the complexity and 

challenge of effective mathematics instruction. It is now up to practitioners, policymakers, 
mathematicians, and mathematics education researchers to take up the challenges of 
clarifying the definitions of mathematics instructional practices, debunking myths about 
mathematics instruction, and formulating the types of research studies that can answer the 
pressing questions that need to be addressed. 

 
In conclusion, instructional practice should be informed by high-quality research, 

when available, and by the best professional judgment and experience of accomplished 
classroom teachers.  
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I. Introduction 

A. Instructional Practices 

Mathematics teaching is an extraordinarily complex activity involving interactions 
among teachers, students, and the mathematics to be learned in real classrooms (Cohen, 
Raudenbush, & Ball, 2003). It involves making choices about material and tools to use, 
planning ways to group and interact with students of differing backgrounds and with 
differing interests and motivation. It is within this set of areas that some of today’s most 
pressing and debated questions about mathematics instruction are situated. 

 
The Instructional Practices Task Group needed to consider the challenges that this 

complexity creates while determining what might be learned from research studies on the 
teaching of mathematics. Not all of the questions that teachers, policymakers, and the public 
wish to have answered are easily studied or lend themselves to experimental and quasi-
experimental research, types of research from which generalizations to practice or for policy 
can be made. Moreover, many important questions that could be studied using these methods, 
unfortunately, have not been addressed in these ways. This limits what can validly be said 
about possible effective practices for the teaching of mathematics. The Task Group’s 
undertaking was to marshal the scientific evidence to make policy recommendations and, 
thus, only experimental and quasi-experimental studies were examined.  

 
This situation is hardly unique to mathematics education or educational research in 

general. It is—and has been—true in the development of scientific research in any field from 
engineering to economics to clinical psychology to public health. The accumulation of findings 
is slow at first, with the expensive experimental designs employed only after a certain amount 
of knowledge has emerged. Research on teaching and learning is a relatively young field. 

 
With these caveats in mind, the overarching question the Task Group approached is: 

What instructional practices enable students to learn mathematics most successfully? 

Fortunately, while the knowledge base is not uniformly deep, there has been some progress at 
assembling evidence about questions of causal impact that has implications for practice and 
for policy within specific areas of mathematics instructional practice.   

 
Therefore, within this general question, the Task Group identified six questions for 

investigation, addressing topics that were deemed important by the field often including 
issues that have been hotly debated. Questions were identified within all three of the types of 
interactions comprising teaching as indicated in Figure 1; the Task Group recognizes that 
most of its questions here engage all three types of interactions specified in the figure, but 
have classified them according to the types of interactions that seem most salient. 
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Figure 1: Instructional Triangle 

 

Source: Adding It Up, National Research Council, 2001, p. 314. 

 
The Task Group realizes that by no means is the list of questions discussed below a 

comprehensive list of questions about each of these three types of interactions; indeed, it only 
begins to scratch the surface about what might be learned to inform mathematics teaching 
practice through research. The Task Group was aware that there are many widely used 
instructional practices that might have been examined here but that were not included 
because of limitations of time, resources, and available research. Nonetheless, it is a list of 
specific issues that will allow the Task Group to draw some conclusions from a small set of 
rigorous research studies, thereby setting the foundation for a far more expansive program of 
rigorous research that would fill the gaps in the research on these issues and also take up the 
many other issues that practitioners face in improving mathematics teaching and learning. 

 

1. Notes About Methodology and Reporting 

The methodology used in the Instructional Practices Task Group research review 
process, including an account of how the topics were selected, and the criteria for standards of 
evidence, are included in Appendix A. For ease in reading this report key points are 
summarized here. The studies used in the meta-analyses and syntheses that follow were 
designated as either Category 1 or 2. Category 1 studies are experimental and quasi-
experimental studies that meet or meet with reservations the What Works Clearinghouse 
(WWC) standards. Studies in this category provide evidence of causal claims and include 
randomized control trials (RCTs) and strong quasi-experimental studies. Some exceptions to 
the WWC criteria were allowed; these are described in Appendix A. Category 2 consisted of 
weak group comparison studies (e.g., failed RCTs and weak nonequivalent comparison 
designs; other flaws discussed in Appendix A). Category 2 studies are always open to multiple 
interpretations with regard to causal inferences; however, they are not necessarily weak studies 
for other purposes such as description. If there were no acceptable experimental studies, 
sections of the report may include brief discussion of Category 2 studies. If there is a pattern of 
findings across the studies this may also be mentioned. Panelists were free to use any type of 
research (descriptive, correlational, qualitative) to set the context for the meta-analyses.  
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For all studies that met the criteria for inclusion, the What Works Clearinghouse 
guidelines were used to calculate standardized mean differences in mathematics achievement. 
Hedges’ g standardized mean differences were calculated for each of the studies. In cases in 
which schools, teachers, or classrooms were assigned (either randomly or nonrandomly) into 
intervention and comparison groups and the unit of assignment was not the same as the unit of 
analysis, the effect size and accompanying standard error were adjusted for clustering within 
schools, teachers, or classrooms. When judged appropriate, effect sizes were pooled across 
studies meta-analytically using random effects models. Specifically, weighted mean effect 
sizes were computed using inverse variance weights to reflect the statistical precision of the 
respective studies stemming from both the subject-level and study-level sampling error. 

 
Multiple contrasts: For each study that included at least three conditions, effect sizes 

were calculated for all relevant contrasts, provided that they were orthogonal.  When pooling 
the effects using meta-analytic techniques, only independent effect sizes per study were 
included, i.e., those not based on the same participant samples.  

 
Multiple outcomes: For studies that reported effects on more than one mathematics 

achievement outcome, either one outcome was chosen, or the results from multiple outcomes 
were averaged, with decisions made by the authors on a case-by-case basis. Assessments that 
were overly aligned with an intervention were either not used or noted when used. 

 

Multiple independent samples within a study: In cases in which impacts on 
independent samples within a study were reported, all independent effect sizes were included 
separately in the pooled analysis.   

 
Throughout this report, effect sizes are reported as statistically significant only when 

p < .01. Effect sizes where p < .10 are described as “bordering on significance”. This report 
conforms with the National Math Advisory Panel (Panel) Guidelines for Standards of 

Evidence in using the following terminology: strong evidence, moderately strong evidence, 
suggestive evidence, inconsistent evidence, and weak evidence. 

 

2. Interactions Between Teachers and Students 

Most contemporary perspectives on instruction argue that finding the best form for 
those interactions is a complex problem that is dependent on teachers’ backgrounds, 
students’ characteristics, school culture, the mathematical topics being addressed, and the 
instructional materials being used. One advantage of rigorous experimental research is that, 
over time, the professional community can discern which practices tend to be effective across 
a broad array of teacher and learning characteristics and a broad array of mathematical 
topics. One major goal of the Task Group’s effort was to critically review the research 
literature for the small body of rigorous experimental studies and to discern patterns of 
findings that suggest specific means for improving instructional practice.  

 
It is agreed that there is no single, ideal form in which students and teachers should 

consistently interact. Nonetheless, there are certain “positions” taken by various 
organizations and individuals arguing in favor of, or in opposition to, such practices as direct 
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instruction, cognitive-strategy instruction, student-centered approaches, cooperative learning, 
discovery learning, guided inquiry, situated cognition approaches, collaborative learning, and 
lecture-recitation.  

 
A less polarizing issue, but one that is of great importance to classroom teachers of 

mathematics, is the challenge of how to best interact with low-achieving students and 
specifically with students having learning disabilities. A major challenge of mathematics 
teaching for teachers is to find the combination of instructional approaches and materials that 
will best meet the needs of the diversity of students in their classrooms. Research was examined 
that addresses two basic questions about the forms of teacher and student interactions. 

 

a. How Effective Is Teacher-Directed Instruction in Mathematics in Comparison to 

Student-Centered Approaches, Including Cooperative and Collaborative Groups, in 

Promoting Student Learning? 

A controversial issue in the field of mathematics teaching and learning is whether 
classroom instruction should be more teacher-directed or student-centered. These terms have 
come to incorporate a wide array of meanings, with teacher-directed ranging from highly 
scripted direct instruction approaches to interactive lecture styles, and with student-centered 
ranging from students having primary responsibility for their own mathematics learning to 
highly structured cooperative groups. Schools and districts must make choices about 
curricular materials or instructional approaches that often seem more aligned with one 
instructional orientation than another. This leaves teachers wondering about when to organize 
their instruction one way or the other, whether certain topics are taught more effectively with 
one approach or another, and whether certain students benefit more from one approach than 
the other. The review was limited to studies that directly compared these two positions. The 
studies in the review compare an instructional regime in which teachers do more teaching 
(and therefore students less) with one in which students do more teaching and teachers less.   

 
One of the major shifts in education over the past 25–30 years has been advocacy for 

the increased use of cooperative learning groups and peer-to-peer learning (e.g., structured 
activities for students working in pairs) in the teaching and learning of mathematics. 
Cooperative learning is used for multiple purposes: for tutoring and remediation, as an 
occasional substitute for independent seatwork, for intricate extension activities, for initial 
brainstorming and for numerous other purposes. Use of cooperative or collaborative groups 
has been advocated in various mathematics education reports, policies, and state curricular 
frameworks and instructional guidelines. 

 
Provided in a subsequent section of the report is a synthesis of the research that met 

Task Group criteria on the topic of teacher-directed vs. student-centered learning. The section 
includes a review of studies that compare general versions of teacher-directed and student-
centered mathematics instruction in accordance with the Task Group’s definition. There are 
only a limited number of sufficiently rigorous research studies making this comparison, 
within this definition. There is also a review of studies that examine various forms of 
cooperative and collaborative groups, including such specific approaches as Team Assisted 
Instruction and Peer Assisted Learning, as well as the use of cooperative groups with 
technology, and other approaches. 
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b. What Instructional Strategies for Teaching Mathematics to Students with Learning 

Disabilities and to Low-Achieving Students Show the Most Promise? 

A major challenge of mathematics teaching for teachers is to find the combination of 
instructional approaches and materials that will best meet the needs of the diversity of 
students in their classrooms. The Task Group chose to examine research that specifically 
looks at issues addressing students who bring a range of diversity to mathematics 
classrooms—those students with learning disabilities (LD) and those students who struggle 
with learning mathematics but who do not have a mathematics learning disability. 

 

Obviously this topic has been of high interest for special educators, but increasingly, 
surveys of teachers have indicated that, as increasing numbers of students with LD receive 
their mathematics instruction in their regular classroom, strategies for teaching these students 
has become a high priority for all educators. Fortunately, there is an appreciable body of 
research on this topic that meets the standards for rigorous scientific research established by 
this Task Group.  

 

3. Interactions Between Students and the Mathematics They Are Learning 

In discussions about effective mathematics instruction, there are multiple questions 
about the ways the curriculum, instructional materials, and resources for mathematics 
learning influence student performance in mathematics. The Task Group chose to focus the 
research review on three controversial areas of this domain: a curricular issue concerning 
how the mathematics is presented; an issue about the impact of tools as a means of 
interacting with the mathematics; and a curricular organization issue about the pace and 
nature of the mathematics for gifted students. 

 

a. Do ‘Real-World’ Problem Approaches to Mathematics Teaching and Efforts to 

Ensure That Students Can Solve ‘Real-World’ Problems Lead to Better Mathematics 

Performance Than Other Approaches? 

The importance of addressing this topic as an especially controversial “hot button” 
issue in the field was stressed, in particular, by Task Group members, as well as by members 
of the public testifying before the Panel. Many textbooks begin each unit with “real-world” 
problems and consider this a potentially motivating approach. Some instructional materials 
use “real-world” problems as a means of introducing mathematical ideas. State and national 
standards typically include as goals students’ ability to apply mathematics to situations that 
occur in a child’s life or that might occur in future jobs. Consequently high-stakes 
assessments such as the National Assessment of Educational Progress (NAEP) and many 
state tests include “real-world” problems. There are strong perspectives both in support of, 
and in opposition to, the use of “real-world” problems as a means for students to interact with 
the mathematics they are to learn. For these reasons, a serious examination of the research on 
this topic seemed warranted.  
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The research review focused on two key issues. The first was the extent to which 
problems that authors call “real-world” problems do, in fact, pique students’ interest and 
engage them more fully in exploring mathematical concepts with a goal of learning 
mathematics. A related issue is the extent to which “real-world” problems increase students’ 
ability to transfer the mathematical knowledge they possess to novel situations. Unfortunately, 
there is no agreed upon definition of “real-world” problems; the terminology is used in very 
different ways by researchers, teachers, mathematicians, and mathematics educators.  

 
b. What Is the Relative Impact on Mathematics Learning When Students Use Technology 

Compared to Instruction that Does Not Use Technology? 

There are several types of educational technology that provide opportunities for 
students to interact with mathematics. The review includes focus on computer software and 
calculators, including graphing calculators. 

 

Among the many categories of technology, calculators, including graphing 
calculators, have generated the greatest amount of debate. Some have championed their use 
in developing problem-solving ability by allowing students to perform far more, and more 
complex, arithmetic operations than would have been possible without technology. Others 
believe that calculators may reinforce independent skill mastery, or even that they should, 
along with mental arithmetic, replace some of the paper-and-pencil calculations that 
dominate elementary school mathematics. On the other hand, some have bemoaned their 
misuse. One concern is that calculators may have an insidious effect on paper-and-pencil 
arithmetic and algebraic skills. Some are concerned that reliance on calculators can preclude 
the development of proficiency with standard calculation algorithms and thus deprive 
students of an understanding and appreciation of the mathematics that underlies the standard 
algorithms, as well as ability to quickly retrieve basic arithmetic facts.  

 
c. What Instructional Arrangements for Engaging with Mathematics Are Most Promising 

for Mathematically Gifted Students? 

Zimmer, Christina, Hamilton, and Weber Prine (2006) noted that, in a recent survey of 
teachers implementing the No Child Left Behind Act, more than half the teachers surveyed felt 
that implementation of the law resulted in improved learning opportunities for low-performing 
students but that teachers and administrators at all levels of schooling worried about high- 
achieving students receiving adequate instructional challenge in all curricular areas. This 
review of the research literature explored the immediate and delayed impacts of gifted 
education approaches aimed at accelerating students’ mathematics instruction (e.g., by 
covering 2, or even 4 years of high school mathematics in 15 months) and those that attempt to 
provide enrichment or extension activities for mathematically precocious students. This 
question is addressed in the category of student-mathematics interactions because it is very 
much about the pace and structure for engaging gifted students with mathematics content. 
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4. Interactions Between Teachers and Mathematics 

Teachers engage with the mathematical content that they teach in various aspects of 
teaching practice: in planning and designing lessons, in interpreting and responding to 
student questions, and in the work of assessing their students’ mathematical knowledge. 
Fortunately, formative assessment is an area of great contemporary interest and is also an 
area with a rich set of rigorous experimental field studies.  

 
a. What Is the Impact of Use of Formative Assessment in Mathematics Teaching? 

Educators at all levels realize the importance of assessing their students’ progress 
during the year (i.e., formative assessment). Interest in formative assessment has dramatically 
increased since No Child Left Behind required states to establish accountability systems. 
Teachers’ interpretation and use of the data available to them from instructionally embedded, 
in-class assessment in the context of teaching, along with high-stakes assessments are critical 
for improving outcomes for all students. However, many different systems have been 
established and touted for use as formative assessments. These range from the end-of-unit 
and mastery tests that accompany major commercial textbook series, to more contingent and 
informal probes of students’ understandings to be used while they solve problems, to weekly 
tests that sample from the year’s instructional objectives in mathematics. The Task Group 
examined rigorous experimental studies of the impact of teachers’ use of formative 
assessment on students’ growth in mathematics proficiency.  
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II. Teacher-Directed and  

Student-Centered Instruction in Mathematics 

The Task Group, in its initial activity of formulating key flashpoint questions about 
mathematics instruction, identified the question, “Is teacher-directed instruction more 
effective than student-centered instruction?” as one needing particular attention because of 
pressures faced by teachers being urged to use one or the other of these styles exclusively.  

 
The terms “teacher-directed instruction” and “student-centered instruction” are 

sometimes used as labels to stake out starkly contrasting views in discussions about 
mathematics teaching. In their purest forms, these labels convey images of instruction that are 
in some sense polar opposites. For some, these terms convey differences of perspective about 
whether the goals of teachers or the needs of students should have primacy in determining what 
specific mathematics teaching interventions will be used in the mathematics classroom. Some 
have interpreted “student-centered” instruction to mean that students, rather than teachers, 
control the direction and content of the mathematical discussion, or that students are expected 
to somehow learn all mathematics on their own, by teaching one another. “Teacher directed” 
instruction has been interpreted in similarly extreme ways, to mean that teachers are not 
responsive to, or aware of, students’ learning issues, and instead dispense mathematics 
instruction in a way that is disconnected from the learners. The distinction has been 
summarized by some with the ubiquitous “sage on the stage rather than a guide on the side” 
maxim. The idea of the “guide on the side” is often associated with intentions of mathematics 
education reforms in the past two decades concerning the role of the teacher. 

 
The National Research Council (NRC) report Adding It Up acknowledges the 

challenge of such labels in discussing teaching: “Much debate centers on forms and 
approaches to teaching: ‘direct instruction’ versus ‘inquiry,’ ‘teacher-centered’ versus 
‘student-centered,’ ‘traditional’ versus ‘reform.’ These labels make rhetorical distinctions 
that often miss the point regarding the quality of instruction. The quality of instruction is a 
function of teachers’ knowledge and use of mathematical content, teachers’ attention to and 
handling of students, and students’ engagement in and use of mathematical tasks.” (2001, 
p. 315). This section undertakes a circumscribed treatment of what have perhaps become 
positions that have hardened into ideologies that rarely offer pragmatic guidance to teachers 
on how they should teach.   

A. Literature Review 

The caricatures of teacher-directed and student-centered instruction that have 
sometimes emerged in debates on this subject are not validated in the versions of teacher-
directed and student-centered instruction that were examined in the studies reviewed. Indeed, 
teacher-directed instruction involves assessment and careful attention to student progress—
students were very much involved in the versions of teacher-directed instruction described in 
these studies. And, teachers have a key role in the versions of student-centered instruction 
described here as well—they choose tasks, direct discussion, and work toward mathematical 
goals. The Task Group found no examples of studies in which students were teaching 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-12 

themselves or each other without any teacher guidance; nor did the Task Group find studies 
in which teachers conveyed mathematics content directly to students without any attention to 
their understanding or response. The fact that these terms, in practice, are neither clearly nor 
uniformly defined, nor are they true opposites, complicates the challenge of providing a 
review and synthesis of the literature.   

 
The literature review presented below will not end the debate over student-centered and 

teacher-centered instruction. Instead, it offers a summary of what is currently known about 
effective instructional practices in mathematics as they relate to teacher-directed or student-
centered approaches, drawing on an exhaustive search based on terms that have been used in 
the literature to describe both teacher-directed and student-centered instructional approaches. 
Using the search terms provided in Appendix B, only studies of how instruction influences 
mathematics achievement were included. Studies of how instructional approaches affect 
students’ motivation, social skills, attitudes toward mathematics, or other noncognitive 
outcomes were not reviewed. The search found 40 randomized experiments or quasi-
experiments that were determined to have a rigorous design and to be relevant to the topic.  

 
Blanket statements endorsing a philosophy of mathematics education will not be 

found. Even when examining high-quality studies, considering context is crucial to properly 
interpreting results. In other words, some approaches may be shown to be effective, but 
confidence in their effectiveness is only warranted under specified conditions. Factors such 
as the age of students, the mathematical content that is taught, the duration of the 
instructional program, the preparation of the teachers, and the outcomes that are sought must 
be taken into account. 

 
Consequently, this literature review comes with a warning. Educators should be leery 

of sweeping claims that “best practices” in mathematics instruction are known and supported 
by research. Most efforts to promote any single all-encompassing style of instruction, to the 
exclusion of any others, are based on beliefs, not science, and much of the research cited to 
promulgate those beliefs does not meet minimal standards of quality. A body of high-quality 
research simply does not exist to answer such broad questions as whether teacher-directed or 
student-centered instruction should be dominant in teaching mathematics. 

 

1. What Is Meant by Teacher-Directed Instructional Strategies? 

Interpretations of teacher-directed instructional strategies gleaned from the literature vary 
widely. Common to most is the notion that the teacher has complete control of the instruction. 
Perhaps the best-known instantiation of teacher-directed instructional strategies as conceptualized 
in the late 1960s and 1970s was in the context of Project Follow Through, and was called Direct 
Instruction (Gersten & Carnine, 1984). Project Follow Through, a part of President Lyndon 
Johnson’s War on Poverty in 1967, has been reported to be the largest and most expensive 
federally funded experiment in education ever conducted (Becker, 1977; Gersten et al., 1984). 
There were 17 distinct instructional models represented in the Follow Through evaluation 
(Stebbins, St. Pierre, Proper, Anderson, & Cerva, 1977, p. 2; see also Stallings, 1975, and 
Stallings & Kaskowitz, 1974), and Direct Instruction was one of these models.  
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Direct Instruction was a behaviorally oriented educational program using a tightly 
controlled teaching methodology and highly structured instructional materials. The 
instruction was programmed, emphasizing children’s learning of intelligent behavior through 
programmed questions and answers provided in a fast-paced fashion. “Teachers present 
specified questions.… Proper responses are reinforced and incorrect answers are corrected 
according to specified procedures” (Stebbins et al., 1977, p. 65). 

 
According to Kameenui, Carnine, Darch, and Stein (1986), the model of Direct 

Instruction, as described by Gersten and Carnine (1984) “employs clearly articulated 
teaching sequences that contain explicit, step-by-step teacher modeling and a means of 
assessing student mastery at each step of development” (p. 635). Meyer, Gersten, and Gutkin 
(1983) describe the component of the “Direct Instruction Model:” “a) consistent focus on 
academic objectives; b) high allocations of time to small-group instruction in reading, 
language, and math; c) the tight, carefully sequenced Distar curriculum; … e) a 
comprehensive system for monitoring both the rate at which students progress through the 
curriculum and their mastery of the material covered” (p. 243). 

 
In work of the same period, Good and colleagues described and studied what they 

termed “active mathematics teaching” (see Good & Grouws, 1977, 1979; Good, Grouws, & 
Ebmeier, 1983). Guidelines for instruction in this program indicate a highly structured and 
prescribed instructional sequence, including: daily review, development, seatwork, as well as 
homework assignments and special reviews. The development sequence includes 
explanations, demonstrations, and illustrations, as well as repetition and elaboration (Brophy 
& Good, 1986, p. 348). Kameenui et al. (1986) provide details about what the development 
component of active mathematics teaching involves: “The direct approach to development 
views the teacher as one who controls the instructional goals and pace, chooses the 
appropriate materials, and provides immediate and academically oriented feedback to the 
learner.” And, in this same vein, work by Slavin (1980) has examined “focused instruction,” 
which involves a “highly structured schedule of teaching, worksheet work, and quizzes.” (As 
described in Beady, Slavin, & Fennessey, 1981, p. 519).   

 
More recently, reform documents of the past two decades have argued against teacher-

directed instruction, not the same very specific, programmed kind of direct instruction of the 
1960s and 1970s but rather a more general type of instruction in which the teacher is the 
primary authority. For instance, the National Council of Teachers of Mathematics Curriculum 
and Evaluation Standards for School Mathematics notes: “In many classrooms, learning is 
conceived of as a process in which students passively absorb information, storing it in easily 
retrievable fragments as a result of repeated practice and reinforcement” (National Council of 
Teachers of Mathematics, 1989, p. 10). It is contrasted with an instructional style that 
emphasizes a “constructive, active view of the learning processes” (p. 10)—which is not 
exactly aligned with the student-centered view of the 1960s and 1970s. 

 
In summary, the hallmarks of teacher-directed instructional strategies include clearly 

prescribed instructional sequences, consistent focus on content objectives, emphasis on 
explanation, assessment and correction of errors, feedback to students and assignments and 
review, in which the teacher is doing all of these things. In addition, teacher-directed 
instruction can be manifested in the way the classroom is organized, and is often associated 
with whole group instruction. Most important is that the teacher is doing the teaching. 
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For the purpose of this review, “teacher-directed” instruction is viewed as 

instruction in which primarily the teacher is communicating the mathematics to the 

students directly and in which the majority of interactions about the mathematics are 

between the teacher and the student. 

 

2. What Is Encompassed in “Student-Centered” Approaches to 

Mathematics Instruction? 

More than a century ago John Dewey urged educators to consider the notion of what 
some have called “child-centered” education: “The teacher is not in the school to impose 
certain ideas or to form certain habits in the child, but is there as a member of the community 
to select the influences which shall affect the child and to assist him in properly responding 
to these influences” (Dewey, 1897, pp. 77–80).   

 
The emphasis on the centrality of the student in education has been interpreted in 

various ways in mathematics education over several decades, most recently in the standards 
reform movement of the late 1980s and subsequent extensions. Common to most of these 
interpretations is the notion that the students’ experience, motivation, interest, and knowledge 
needs to be a central consideration in the teachers’ design and implementation of instruction. In 
addition, the focus on teachers’ relationships with students is sometimes central. In recent years, 
numerous policies and programs have promoted a student-centered emphasis, invoking various 
theories of learning. Constructivism is one of these theories. See Cobb (2007) for a discussion of 
the ways in which theoretical and philosophical perspectives influence mathematics education. 

 
At least three of the Project Follow Through instructional strategies can be classified as 

student-centered. The Tucson Early Education Model (TEEM) was “based on the concept that 
each child has a unique growth pattern with individual rates and styles of learning” (Stebbins et 
al., 1977, p. 41). TEEM took as a premise that formal learning should have as its basis the 
experiences young children bring to the classroom. “Some classroom activities are selected and 
structured by the teacher, and others are chosen by the children” (p. 41). The second model, the 
Cognitively Oriented Curriculum model, was a Piagetian developmental model focused on 
developing children’s ability to reason. The goals included helping children sustain 
independent activity, define and solve problems, assume responsibility for decisions and 
actions, and work cooperatively (p. 2, p. 89). And, the Education Development Center (EDC) 
Open Education approach, with its roots in the philosophy of the British Infant Schools and the 
developmental theories of Piaget, provided children with a wide range of materials for learning. 

 
Another clearly defined approach to student-centered instruction was developed by 

Flanders and his colleagues, based on the Flanders Interaction Analysis Categories (FIAC) 
(see Flanders, 1970; discussed in Brophy and Good, 1986). According to Brophy and Good, 
“Flanders believed that there was too much teacher talk and not enough student talk in most 
classrooms, so that teachers should be more ‘indirect’” (p. 333). This style of instruction 
involved examining pupil attitudes and emphasized “asking questions, accepting and 
clarifying ideas or feelings, and praising or encouraging as indirect techniques” (p. 333). The 
student-centered interventions of this time period, often aimed at primary and early 
elementary age children, featured elements of free choice and developmental readiness. 
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Lampert (1990) has compared school mathematics with knowledge in the discipline 
of mathematics, noting that “few teachers engage students in a public analysis of the 
assumptions that they make to get their answers” (p. 32). She summarizes the assumptions of 
reform documents  (National Research Council, 1989; National Council of Teachers of 
Mathematics, 1989) as follows: “Reform documents recommend that mathematics students 
should be making conjectures, abstracting mathematical properties, explaining their 
reasoning, validating their assertions, and discussing and questioning their own thinking and 
the thinking of others” (p. 33). This might be viewed as a description of a “student-centered” 
approach, although of course such approaches could be in place in a teacher-directed 
classroom as well. Socratic teaching methods, for example, feature teacher-directed 
dialogues between teachers and students. Close questioning requires students to justify 
thinking out loud and to explain the logic behind their arguments and conclusions. 

 
In the National Research Council report How People Learn (National Research 

Council, 2000), the term “learner centered” is used to: 
 
…refer to environments that pay careful attention to the knowledge, skills, 

attitudes, and beliefs that learners bring to the educational setting. The term 

includes teaching practices that have been ‘culturally responsive,’ ‘culturally 

appropriate,’ ‘culturally compatible,’ and ‘culturally relevant’ (Ladson-

Billings, 1995). The term also fits with ‘diagnostic teaching’ (Bell et al., 

1980): attempting to discover what the student is thinking in relation to the 

problems on hand, discussing their misconceptions sensitively, and giving 

them situations to go on thinking about which will enable them to readjust 

their ideas (Bell, 1982). Teachers who are learner centered recognize 

building on the conceptual and cultural knowledge that students bring with 

them to the classroom (pp. 133–134). 

 
To be sure, some depictions of student-centered instruction emphasize a passive role 

for teachers. The Bureau of Labor Statistics, for example, in its Occupational Outlook 

Handbook describes the job of teaching as follows: 
 
Teachers act as facilitators or coaches, using classroom presentations or 

individual instruction to help students learn and apply concepts in subjects 

such as science, mathematics, or English. They plan, evaluate, and assign 

lessons; prepare, administer, and grade tests; listen to oral presentations; and 

maintain classroom discipline. Teachers observe and evaluate a student’s 

performance and potential and increasingly are asked to use new assessment 

methods. For example, teachers may examine a portfolio of a student’s 

artwork or writing in order to judge the student’s overall progress. They then 

can provide additional assistance in areas in which a student needs help. 

Teachers also grade papers, prepare report cards, and meet with parents and 

school staff to discuss a student’s academic progress or personal problems. 
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Many teachers use a ‘hands-on’ approach that uses ‘props’ or ‘manipulatives’ 

to help children understand abstract concepts, solve problems, and develop 

critical thought processes. For example, they teach the concepts of numbers or 

of addition and subtraction by playing board games. As the children get older, 

teachers use more sophisticated materials, such as science apparatus, 

cameras, or computers. They also encourage collaboration in solving 

problems by having students work in groups to discuss and solve problems 

together. To be prepared for success later in life, students must be able to 

interact with others, adapt to new technology, and think through problems 

logically (U.S. Department of Labor, Bureau of Labor Statistics, 2008). 

 
In summary, the elements of student-centered mathematics instruction as described in 

contemporary treatments include emphasis on student responsibility and independence; 
acknowledgment of students’ experiences, prior knowledge, and interests and motivations in 
the design of mathematics instruction; and the centrality of students’ thinking and students 
teaching other students in the classroom. Teachers facilitate, encourage, and coach but do not 
explicitly instruct by showing and explaining how things work.  

 

For the purposes of this review, “student-centered” instruction is viewed as 

instruction in which primarily students are doing the teaching of the mathematics and 

that the majority of the interactions about the mathematics occurs between and 

among students. 

 
The vague and often overlapping ways in which “teacher-directed” and “student-

centered” are used in the literature, not to mention in contemporary discourse, present 
challenges for any attempt to summarize research on the topic. A major source of the 
ambiguity stems from the use of these adjectives to modify several different nouns. As 
illustrated in the citations above, by their very nature nouns such as “education,” 
“environments,” “practices,” or “learning” comprise a collection of activities. The Task 
Group chose to focus on one element—instruction—and to search for studies that contrast 
who is doing the teaching—teachers or students? The contrast never exists in an absolute 
sense, of course, but in degree. All of the studies in our review compare an instructional 
regime in which teachers do more teaching (and therefore students less) with one in which 
students do more teaching and teachers less.   

 
This focus was chosen because teachers told the Panel that they understand the 

expectations of administrators in their districts are that they teach exclusively in teacher-
directed ways, essentially as it has been defined here. And, other teachers have said that their 
administrators are critical unless they are teaching in student-centered ways, again as it has 
been defined here. Thus, this review was undertaken to highlight these distinctions in ways that 
will hopefully help policymakers and teachers to engage in practice that is evidence based. 
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In accordance with the definitions of teacher directed and student centered being 
used, the focus is on the nature of the mathematics instruction (literally the interactions 
between the teachers and the students about mathematics). Not included are studies in which 
the nature of the curriculum (the materials for learning) might be construed as more or less 
teacher-directed or student-centered. Note that most current interpretations of what it means 
to be teacher-directed or student-centered conflate issues of instruction and curriculum. For 
example, the use of practice worksheets (a curricular device) might be associated with a 
teacher-directed approach but indeed could be highly student-centered in its design. 

 
Within the review, a number of studies were found that directly compare a form of 

teacher-directed instruction to a form of student-centered instruction. These studies are 
discussed in the first section. Later sections address studies that have looked at student-
centered classroom organizational approaches of cooperative groups and peer-tutoring 
approaches.  

 
Methodological considerations specific to this section can be found in Appendix A. 
 

3. Comparisons of Student-Centered and Teacher-Directed Approaches to 

Instruction 

Research Studies. Eight studies meeting the criteria to be considered Category 1 
studies were located that compared student-centered and teacher-directed approaches to 
instruction (see Table 1). The pattern of effects is quite complex. It is not possible to 
undertake a meta-analysis of these studies because the interventions are all of such distinct 
types, according to the above categorization, that pooling effect sizes is not meaningful. The 
specific interventions studied in the Project Follow Through evaluation study (Stebbins et al., 
1977) are treated in a separate section. 
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Table 1: Studies That Investigated the Effects of Teacher-Directed and Student-

Centered Instruction on Mathematics Achievement 

Study Design Sample Duration/Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard 

error 

Pooled problem 
solving outcomes: 

word problem solving 
(ES = 0.110), function 
word problem (ES = 

0.393), and equation 
solving (ES= -0.281) 
measures 

Overall 0.074 (ns) 0.399 

Brenner et al., 
1997a 

RCT 

128 students in six 
intact pre-algebra 

classes in three 
junior high 
schools in 

southern 
California 

20 days/ Meaningful 
thematic contexts 

used in pre-algebra 
concepts 

Guided 
discovery 

approach vs. 
Traditional 
textbook 

Pooled representation 
outcomes: function 

word problems (ES = 
0.877*) and word 
problems (ES = 0.623) 

Overall 0.750 ~ 0.403 

Low 

ability 
-0.614 (ns) 0.569 

Medium 

ability 
0.156 (ns) 0.311 Ciccelli, 1982 RCT 

64 fifth-grade 

students 

40 minutes per day 

for 9 days/ 
Probability and 
graphing 

Direct vs. 

Nondirect 
instruction 

Math achievement test 

High 

ability 
-0.374 (ns) 0.535 

Schema 

broadening 
instruction vs. 
Control 

Pooled transfer 

measures 
Overall 0.545 (ns) 0.439 

Fuchs et al., 

2006c 
RCT 

445 third-grade 

students in 30 
classrooms in 
seven schools in 

an urban district 

16 weeks/ 

Mathematical 
problem solving 
strategies 

Schema 
broadening 

instruction-real 
life vs. Control 

Pooled transfer 
measures 

Overall 1.077 * 0.464 

Boys 0.155 (ns) 0.345 Hopkins et al., 
1997 

Quasi 
34 third-grade and 
40 fifth-grade 
students 

1 30-minute session/ 
Arithmetic 

Didactic vs. 
Constructivist 
approach 

Arithmetic 
computation test Girls 1.142 *** 0.327 

Kameenui et al., 
1986 – Study 3 

RCT 
24 fourth-grade 
students  

11 daily 35-minute 
sessions/ Division 

Direct 
Instruction 

(Project Follow 
Through) vs. 
Control 

Math achievement test Overall 0.444 (ns) 0.399 

Pooled near transfer 
outcomes 

(classifications: ES =  
-0.006, sequence: ES =  
-0.346, comparison: 

ES = -0.383) 

Overall -0.245 (ns) 0.276 

Muthukrishna & 
Borkowski, 

1995 

RCT 
54 third-grade 
students 

14 consecutive class 
days/ Addition and 

subtraction word 
problems 

Guided 
discovery 

approach vs. 
Direct strategy 
instruction Pooled far transfer 

outcomes (form: 
ES =0.576*, context: 
ES =0.380) 

Overall 0.478 ~ 0.278 

Continued on p. 6-19 
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Table 1, continued 

Study Design Sample Duration/Content Contrast Measure Subgroup 
Hedge’s 

g 

Standard 

error 

Procedural learning 

test 
Overall -0.272 (ns) 0.301 

Procedural transfer 
test 

Overall -0.125 (ns) 0.300 

Discovery 

learning and 
prompts to 

explain vs. 
Direct 
instruction and 

prompts to 
explain  

Conceptual 
knowledge test 

Overall -0.458 (ns) 0.304 

Procedural learning 
test 

Overall -0.719 * 0.313 

Procedural transfer 
test 

Overall -0.085 (ns) 0.303 

Rittle-

Johnson, 2006 
RCT 

85 third- through fifth-

grade students in an 
urban parochial school 

1 40-minute session/ 

Mathematical 
equivalence 

Discovery 
learning and 
no prompts vs. 

Direct 
instruction and 
no prompts 

Conceptual 
knowledge test 

Overall 0.050 (ns) 0.303 

3rd-grade 
females 

-0.073 (ns) 0.428 

3rd-grade 
males 

0.392 (ns) 0.429 

4th-grade 
females 

-0.138 (ns) 0.431 

Rudnitsky et 
al., 1995a 

RCT 

401 third- and fourth-
grade students in 21 

classrooms in six 
schools 

18 days/ Addition  
and subtraction word 

problems 

Writing and 
discussion vs. 

Practice and 
explicit 
heuristics 

Near transfer 
posttest 

4th-grade 
males 

0.462 (ns) 0.417 

Project Follow Through Evaluation  

Stebbins 
et al., 1977—

Direct 
Instruction 
Modelb 

Quasi 

316 Project Follow 
Through and 317 Non-

Project Follow 
Through students 
enrolled in program 

from kindergarten 
through third grade in 
five districts (New 

York, NY; Grand 
Rapids, MI; W. Iron 
Co., MI; Flint, MI; and 

Providence, RI) 

Kindergarten through 
3rd grade/ General 

elementary school 
mathematics 
curriculum 

Direct 
Instruction 

Follow 
Through vs. 
Non-Follow 

Through 

Overall 
Metropolitan 

Achievement Test 
(MAT) outcome: 
computations (ES = 

0.315*), concepts 
(ES = -0.064), and 
problem solving 

(ES = 0.017) 
measures 

Overall 0.105 (ns) 0.142 

Stebbins 

et al., 1977—
Cognitive 
Curriculum 

Modelb 

Quasi 

177 Project Follow 

Through and 337 Non-
Project Follow 
Through students 

enrolled in program 
from kindergarten 
through third grade in 

five districts (New 
York, NY; Okaloosa 
Co., FL; Greeley, CO; 

Seattle, WA; and 
Chicago, IL) 

Kindergarten through 

3rd grade/ General 
elementary school 
mathematics 

curriculum 

Cognitively 

Oriented 
Curriculum 
Follow 

Through vs. 
Non-Follow 
Through 

Overall 

Metropolitan 
Achievement Test 
(MAT) outcome: 

computations (ES = 
-0.318~), concepts 
(ES = -0.355*), and 

problem solving 
(ES = -0.295~) 
measures 

Overall -0.357 * 0.167 

Stebbins 
et al., 1977—
EDC Open 

Education 
Modelb 

Quasi 

248 Project Follow 
Through and 487 Non-
Project Follow Through 

students enrolled in 
program from 
kindergarten through 

third grade in five 
districts (Philadelphia, 
PA; Burlington, VT; 

Lackawanna Co., PA; 
Morgan Comm. Sch., 
DC; and Paterson, NJ) 

Kindergarten through 
3rd grade/ General 
elementary school 

mathematics 
curriculum 

EDC Open 
Education 
Follow 

Through vs. 
Non-Follow 
Through 

Overall 
Metropolitan 
Achievement Test 

(MAT) outcome: 
computations (ES = 
0.052), concepts 

(ES = -0.081), and 
problem solving 
(ES = -0.073) 

measures 

Overall -0.037 (ns) 0.140 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c These studies use classroom-level analyses. 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-20 

The studies that produced significant effect sizes in contrasts comparing teacher-
directed to student-centered instruction will be discussed. Hopkins, McGillicuddy-De Lisi, 
and De Lisi (1997) investigated different ways of teaching third- and fifth-grade students 
how to compute with whole numbers and fractions. The experiment consisted of a single 
30-minute session in which students were taught individually. The researchers were 
interested in determining if didactic or constructivist instruction, in this case instruction 
emphasizing particular mathematical practices, benefits girls and boys differentially when 
learning mathematical computation. Two groups of children—matched on a pretest of 
computation skills, grade, and gender—were formed at third and fifth grades. In a single 30-
minute session, conducted with individual students, students were taught how to solve six 
computation problems involving addition, subtraction, multiplication, and division with 
whole numbers and fractions. Whole number operations included multiplying three digit by 
three digit numbers and the items with fractions included addition and subtraction of mixed 
numbers without a common denominator. One group was instructed using a didactic 
approach in which the mathematical practices of algorithms, rules, and solution methods 
were explicitly taught. A constructivist teaching strategy was used with the other group. In 
that setting, teachers suggested alternative mathematical practices, including ways to 
organize tasks, recasting children’s comments with tag questions requesting clarification, and 
providing demonstrations that guided students to discover solutions. Both groups were then 
post-tested on computation. No effect was found for boys, but girls in the didactic 
instructional groups made statistically significant gains over girls who received constructivist 
teaching (ES = 1.142). The gains for girls were apparent at both grade levels.  

 
The literature search uncovered two high-quality studies that found evidence of far 

transfer, under very limited conditions. Both studies investigated how to teach problem 
solving strategies, and both studies found guided discovery (a particular interpretation of 
student-centered instruction) more effective than direct instruction methods. Muthukrishna 
and Borkowski (1995) conducted an experiment consisting of 14 lessons teaching third 
graders the number family (or part-whole) strategy for solving word problems with addition 
and subtraction.  The strategy involves a part-whole schema in which one larger quantity 
(known or unknown) is thought of as a whole comprising two smaller quantities (known or 
unknown) that are parts.  For example, a student who knows that 1 + 5 = 6 can conceptualize 
6 as a whole made up of 1 and 5 as parts, with two subtraction facts, 6 - 1 = 5 and 6 - 5 = 1, 
derived from the addition fact.  Students were taught that the unknown in a word problem 
involving addition and subtraction is either a whole or a part. Students were randomly 
assigned to four conditions for instruction: direct strategy teaching, guided discovery, a 
combination of direct teaching and guided discovery, and a control condition. The number 
family schema was not taught to the control group, and students in the control condition 
primarily received instruction from their regular classroom teacher. The other groups were 
instructed by the experimenter and an assistant.  A typical guided discovery lesson consisted 
of 20 minutes working in pairs followed by whole class discussion of students’ solutions. 
Students in the guided discovery group worked with a variety of manipulative materials and 
did not engage in individual paper and pencil activities. The post-test consisted of addition 
and subtraction word problems assessing both near and far transfer of skills.   
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Additional aspects of the study may be of use in interpreting the results. Although a 
14-day period is relatively brief for studying instructional methods, it is a long time to teach a 
single problem solving strategy to third-graders. Note also that the skill emphasized here—
using the number family strategy—was used to solve mathematics problems that are typically 
far below the grade level of the students in the study. Students who had mastered solving the 
problem types used in the study were excluded, as were students who lacked the basic skills 
to solve addition and subtraction word problems not requiring regrouping or carrying.  

 
Calculation of effect sizes on the near transfer outcomes, contrasting the discovery 

group and the direct instruction group, revealed no significant effect sizes. On the far transfer 
problems, the guided discovery group outperformed the direct strategy teaching group on the 
test for form transfer (problems of a different form than those in instruction) with a 
significant effect size (ES = 0.576). There was no significant effect on the test for context 
(problems presented in a context different from what had been used in instruction) when 
contrasting the same two groups. Nonetheless, the pooled effect size on the far transfer 
measures approached significance (ES = 0.478), favoring the guided discovery group.  

 
A study by a team of researchers at the University of California at Santa Barbara 

(Brenner et al., 1997) investigated middle school pre-algebra students who were learning 
how to represent function problems in multiple formats. Problem representation involves 
constructing and using mathematical representations in words, graphs, tables, and equations, 
a difficult task particularly for many students making the transition from arithmetic to 
algebra. In pre-algebra textbooks, function word problems are typically represented by 
equations, tables consisting of ordered pairs, and graphs. 

 
The intervention consisted of a 20-day instructional unit taught to 128 seventh- and 

eighth-graders in three schools. Three teachers each had two pre-algebra classes; one class 
was randomly assigned to the treatment and the other to the control condition. Students in 
the treatment groups worked in heterogeneous groups and used manipulative materials. 
Teachers used a guided discovery approach in which students were encouraged “to explore 
different representations and to develop their own understanding of each one” (Brenner et 
al., p. 668). In the control groups, students were taught with textbooks and teachers used 
traditional direct instructional methods.  

 
Results were mixed. Five outcomes were tested in the study: word problem solving, 

function word problems, equation solving, function representation, and word problem 
representation. One effect size reached statistical significance. Students in the student-centered 
strategies groups were better able, at a significant level, to represent function problems in 
multiple ways (ES = 0.877). The subtest of the assessment instrument measuring this outcome 
awarded two points per item. For example, students were given the problem: “Mary Wong just 
got a job working as a clerk in a candy store. She already has $42. She will earn $7 per hour. 
How many hours will she have to work to have a total of $126?” (Brenner et al., p. 671). For 
the subtest for representation, students received one point for drawing a diagram, chart, table, 
or graph to represent the problem and one for writing the correct equation in the form of y = 
mx + b. Having the correct answer had no bearing on the score for the representation subtest. 
The effect size on the word problem representation outcome measure (ES = 0.623) did not 
reach statistical significance, and the pooled far transfer outcomes (using the two representation 
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outcome measures) bordered on statistical significance (ES = 0.750). On the subtests reflecting 
ability to find problem solutions correctly, effect sizes were not significant, but favored the 
guided discovery group with effect size 0.393 on function word problem outcome, and the 
traditional textbook group (ES = -0.281) on equation solving measures.   

 
In a 2006 paper, Rittle-Johnson reported on a comparison of teacher-directed 

instruction and student-centered instruction. In the comparison of the discovery learning and 
direct instruction conditions without prompts, there was a significant effect size favoring the 
direct instruction condition on the procedural learning test. 

 
Her formulation of teacher-directed is based in information-processing and cognitive 

theories about working memory capacity, while her view of student-centered instruction 
draws on Piaget and current reformers who emphasize the importance of discovery learning. 
In this study of third through fifth grade students, children were assigned randomly to one of 
four conditions, based on two factors: “direct instruction versus discovery learning” and 
prompts for self-explanation vs. no prompts. Self-explanation is “generating explanations for 
oneself” (Rittle-Johnson, 2006, p. 1). The mathematical focus was on equivalence—the ideas 
that equations represent balance and that the same quantity is on both sides. Rittle-Johnson 
points out the importance of this idea as a precursor to algebra.   

 
Assessments involved a pretest on mathematical equivalence problems, a posttest given 

immediately after the intervention, and then delayed posttest. The intervention was done in a 
single session, in which students worked one-on-one with a researcher in a 40-minute session. 
Children solved problems, reported on their solution strategies, and were provided with 
feedback. In the direct instruction condition students were told explicitly how to solve the 
problems. In the student-centered condition no instruction was given, and children were asked 
to “think of a new way to solve the problem.” Prompts for doing self-explanation were 
introduced in the two groups in that condition. The posttests measured procedural learning, 
procedural transfer, and conceptual understanding. Comparison of the discovery learning and 
prompts group to the direct instruction with prompts group yielded nonsignificant but negative 
(i.e., favoring the direct instruction group) results on all three outcome measures (note ES =  
-0.272 and -0.458 on the procedural and conceptual tests, respectively).   

 
Four additional studies involved comparisons, in some form, of teacher-directed and 

student-centered strategies, in which no significant effect sizes were found.  The studies by 
Cicchelli (1982) and Kameenui et al. (1986) introduced a direct instruction-type treatment and 
compared to more student-centered instruction. The Rudnitsky et al. (1995) and Fuchs et al. 
(2006) studies both implemented clearly specified student-centered instruction and compared 
to more of a “business as usual” condition. Effect sizes in Kameenui et al., while non-
significant (ES = 0.444) favored the direct instruction condition. In the Ciccelli study, the effect 
favored the nondirect instruction condition for low and high ability students (ES = -0.614 and  
-0.374, respectively) and the direct instruction group for medium ability students (ES = 0.156).   

 
Because this set of studies differs in terms of the nature of the intervention, pooled 

effect sizes have not been calculated. In summary, note that there is no conclusive evidence 
from this set of studies to support either a teacher-directed or student-centered approach to 
mathematics instruction. 
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4. Project Follow Through Evaluation Studies 

Three relevant models of the extensive National Longitudinal Evaluation of Project 
Follow Through (Stebbins et al., 1977) were located that met the criteria for inclusion. At 
that point in history, the evaluation of Project Follow Through (FT) was the largest and most 
expensive evaluation of any intervention conducted in education or any of the social 
sciences. Follow Through’s evaluation involved longitudinal quasi-experiments conducted 
with kindergarteners through third-graders in low-income schools across the country. The 
outcome measures testing mathematical achievement were the computations, concepts, and 
problem solving subtests of the Metropolitan Achievement Test. The three Follow Through 
models included in this report that tested teacher-directed or student-centered instruction and 
had equivalent groups at baseline were Direct Instruction, Cognitively Oriented Curriculum, 
and EDC Open Education. Results are reported in Table 1. 

 
Direct Instruction “use(d) a fast moving series of programmed … (i.e., scripted) ... 

questions and answers … teachers present specified questions to elicit a verbal child 
response. Proper responses are reinforced and wrong answers are corrected according to 
specified procedures” (Stebbins et al., 1977, p. 65). Programmed instruction materials are 
used, and students work in small homogeneous groups; frequent criterion-referenced tests are 
provided. The Task Group considers this to be a teacher-directed intervention. 

 
The EDC Open Education approach states, “Children learn at individual rates and in 

individual ways…” (Stebbins et al., 1977, p. 113). The approach has its roots in British infant 
schools and in the developmental theories of Piaget. The instruction occurs in an open setting 
and children are provided with a wide range of materials for learning. This is a student-
centered model. The Cognitively Oriented Curriculum model, also a developmental model, 
was aimed at “developing children’s ability to reason.” The curriculum is based on the use of 
learning centers in which “children choose their activities and work with teachers in small 
groups” (Stebbins et al., p. 89). This too is a student-centered intervention. 

 
Concurrent with the impact evaluation, Stallings (1975), conducted an extensive 

observational study of the activities in the Follow Through classrooms and their 
corresponding control group (i.e., business as usual) classrooms. Using a complex, reliable 
observational system, they were able to predict which classrooms were FT and which were 
control, and to discriminate between each example (FT) and control classroom with over 
80% accuracy. They consistently found significant differences between each FT approach 
and its control condition, and between the various FT models. 

 
When Stallings (1975) compared the Direct Instruction approach with “non Follow 

Through” instruction, which would have been a version of “business as usual” at the time 
they were essentially comparing a highly structured, teacher-directed intervention (based on 
principles of instructional design and concept development derived from learning theory and 
applied behavior analysis, to say nothing of the genius of Englemann) with a more general 
type of teacher-directed instruction.  
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The 1977 project evaluation (Stebbins et al., 1977) found significant effect sizes 
favoring Direct Instruction on the Computation subtest only (ES = 0.315). No other effect 
sizes were significant, nor was the overall effect on the Metropolitan Achievement Test 
Mathematics composite significant.   

 
Another Project Follow Through model study compared the Cognitively Oriented 

Curriculum to a non-Follow Through business as usual condition. The effect size on the 
Concepts subtest was significant (-0.355), and the effect sizes on the Computation and 
Problem Solving measures were marginally significant (ES = -0.318 and ES = -0.295). Note 
that all effect sizes were negative, favoring the teacher-directed control condition. The final 
study in this group involved a comparison of the Open Education program to a business-as-
usual control condition. There were no significant effect sizes.    

 
No pooling was done of these studies.  
  

5. Conclusion 

The studies produced a mix of significant effect sizes favoring student-centered 
instruction, and others favoring teacher-directed instruction, together with findings of no 
significant effects. As a result, the research does not lead to any conclusive result about the 
value of student-centered instructional strategies in comparison to teacher-directed 
instructional strategies. Under some conditions, with some groups of students, and for some 
kinds of outcomes, an isolated study may find that either teacher-directed or student-centered 
strategies are preferable. In general the evidence does not provide a case for favoring or 
promoting either strategy over the other. The Task Group points out that in only one of the 
studies reviewed is “teacher-directed” instruction the experimental treatment. 

B. Cooperative Learning and Peer Tutoring 

Cooperative learning strategies offer students an opportunity to learn from and with 
other students. However, the means by which cooperative learning plays out in classrooms 
varies along many dimensions. For instance, tasks assigned in cooperative learning groups 
range from practice on teacher-taught skills to learning methods of problem solving. Students 
can be grouped homogeneously or heterogeneously by ability. Students may be assigned 
specific roles within a cooperative group or they may decide for themselves how to 
accomplish a group task. Group and individual accountability operate differently in different 
cooperative learning settings. Slavin (1991) describe a cooperative learning strategy as when 
groups work to earn some type of recognition or award based on the individual learning of 
every group member. Group members’ individual learning is measured by success on 
assignments, quizzes, and tests. Students are motivated to help each other learn so that 
individual achievement increases and, as a result, the group receives awards or recognition. 
Cooperative learning may include individual accountability or group reward structures. 

 
Good, Mulryan, and McCaslin (1992) conclude that small-group instructional 

approaches are supported by research that indicated students need to be more active. 
“[Research] suggests that students are too passive and need to become more involved 
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intellectually in classroom activities” (p. 167). They go on to note, “Many writers interpret 
recent cognitive science research as suggesting the need for less teacher support and for more 
learner independence (see Nickerson, 1988), [although] what this means in practice is far from 
clear. For example, does heavy reliance on more talented peers mean less dependency on the 
teacher? Do different skills and concepts require different amounts of expert modeling and 
coaching so that simple statements about appropriate practice are highly misleading?” (p. 167).   

 
A number of studies compare cooperative grouping strategies to more traditional 

whole-class instruction, or in some cases, to individual practice that is part of teacher-
directed instruction. Our review is organized by the following categories: studies of very 
specific approaches to cooperative learning [Team Assisted Individualization (TAI), Student 
Teams-Achievement Division (STAD), Peer Assisted Learning (PALS)]; studies of other 
collaborative learning strategies; combination strategies involving cooperative or 
collaborative learning; and cooperative learning approaches in the context of technology.   

 
Note that our search of the literature and analyses are not concerned with affective 

outcomes, only on measures of mathematics achievement.  
 

1. Specific Approaches to Cooperative Learning Team Assisted 

Individualization (TAI) 

This strategy combines individualization with cooperative work. In TAI, students are 
grouped in heterogeneous teams of four or five persons. Each student receives a set of 
mathematics problems tailored to individual performance on a diagnostic test. Students help 
each other when needed and check each others’ work. Rewards are based on group performance 
on assignments, quizzes, and tests. Tests at the end of the unit are taken individually. 

 
Six studies, described within four separate papers, met our criteria for review and 

examined the effect of TAI on some type of mathematical outcome. The pooled effect size 
for computation outcomes on student-level analyses was significant (ES = 0.377), favoring 
the TAI condition. Slavin, Leavey, and Madden (1984) report on two studies with elementary 
school students focused on computation with decimals and fractions, and with word 
problems. In one randomized controlled trial (RCT) study, TAI was contrasted with whole-
class lectures and group-paced instruction. The second study, a quasi-experiment, involved 
fourth- through sixth-graders, with the same type of control condition. A third study (Slavin, 
Leavey, & Madden, 1984), involving 1,371 students in Grades 3 to 5, again compared TAI 
with whole class lectures. The fourth paper in this set (Xin, 1999) involved third-grade 
students in an RCT focusing on arithmetic topics including basic fact families, calculation, 
coins, and place value. A large number of mainstreamed special education students (14%) 
were involved. The TAI treatment was coupled with a CAI component; the control condition 
was whole class instruction coupled with the same CAI. 

 
All of these studies allowed for student-level analyses to examine effect sizes on an 

outcome measure of computation, the California Test of Basic Skills-Computations (CTBS) 
for the Slavin studies, and the Stanford Achievement Test-Math for the Xin study. Five 
contrasts were examined—the three in the Slavin et al. studies, and results for two groups in 
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the Xin study (regular education, and LD students). No effect sizes were significant 
separately, except for the significant effect size of 0.595 comparing TAI with computer-
assisted instruction (CAI) in the Xin study to students in the regular education group.  

 
Two additional studies, both RCTs, are reported in Slavin and Karweit (1985). One 

worked with students in Grades 4 through 6, the other with third- through fifth-graders, using 
TAI over a period of 18 and 16 weeks. The mathematics topics were decimal and fraction 
arithmetic, introduction to algebra, and word problems. The control conditions were the 
Missouri Mathematics Program (a form of teacher-directed instruction) and a business as 
usual control condition. Classroom-level effects (ES = 0.709, 0.562) on computation 
outcomes were significant and favored the TAI intervention on computation scores. In three 
of these studies a concept outcomes measure was also included. Slavin et al. (1984b) and 
Slavin & Karweit (1985)—Studies 1 and 2 included outcomes on the CTBS-Concepts test. 
Three contrasts were computed, all proving to be nonsignificant; the pooled effect size of the 
classroom-level analyses (0.018) also was nonsignificant. 

 
The studies are summarized in Tables 2a and 2b. It can be concluded that the 

implementation of TAI for students in Grades 3 through 6, in comparison to a form of whole 
class instruction, benefits computation skills. Note that this finding applies only to the very 
particular cooperative group strategy of TAI and only to computation, not concepts or 
problem solving. 

 

2. Student Teams-Achievement Division (STAD)  

This form of cooperative learning developed by Slavin and colleagues, involves four-
to-five member homogeneous teams studying together after teacher presentation. Individual 
quizzes are taken and rewards are at the team level.  

 
Four studies of STAD, all randomized controlled experiments, met our criteria for 

review. They are summarized in Table 3. No significant effect sizes were produced in this set, 
although all effect sizes were positive, favoring the STAD intervention. Jacobs (1996) examined 
the performance of third- through fifth-graders, content not specified, in a STAD condition and 
then in an individual student accountability condition, and produced non-significant effects 
favoring STAD of 0.573, 0.484, and 0.454, for third-, fourth-, and fifth-graders respectively. 
STAD did not provide any particular advantage to student participants in comparison with more 
teacher-directed classroom strategies as implemented in these four studies.   

 

3. Peer Tutoring Approaches 

The studies in this section examine the impact of a small group instruction approach 
that features peers learning from and with their peers, in variations of peer-tutoring. One 
particular version, Peer-Assisted Learning Strategies (PALS) (http://kc.vanderbilt.edu/pals/), 
“is a version of classwide peer tutoring. Teachers identify which children require help on 
specific skills and [whom] the most appropriate children are to help other children learn those 
skills. Using this information, teachers pair students in the class, so that partners work 
simultaneously and productively on different activities that address the problems they are 
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experiencing. Pairs are changed regularly, and over a period of time as students work on a 
variety of skills, all students have the opportunity to be ‘coaches’ and ‘players’.” 
(http://kc.vanderbilt.edu/pals/). The strategy also creates opportunities for a teacher to 
circulate in the class, observe students, and provide individual remedial lessons.  

 
Five studies that examine various versions of peer tutoring met our criteria for review, 

allowing for calculation of effect sizes for 20 different contrasts at the student and classroom 
levels, and for computation and concepts outcome measures. Three of the studies in this 
section use PALS. The studies are summarized in Table 4. Pooled effect sizes examining 
computation outcomes at the classroom level were significant (ES = 0.431), and approached 
significance at the student level, favoring the peer tutoring interventions. In none of these 
studies were significant effect sizes produced on concept outcome measures. Nor, when 
doing student-level analyses, were any individual effect sizes on computation significant. 

 
The pooled effect size on the computation outcomes for the three studies that used 

student-level analyses was 0.238, which approached statistical significance. In a 15-week 
randomized controlled study of kindergartners (Fuchs et al., 2001) PALS was compared to a 
control condition that was described as teacher-directed lessons and demonstrations. Positive 
but not significant effects on the Stanford Early School achievement test in student-level 
analyses were detected for special education students, low-achieving students, and medium-
achieving students (effect sizes respectively, of 0.431, 0.374, and 0.436). In a study of first- 
graders comparing PALS with a business-as-usual basal core curriculum (Fuchs, Fuchs, 
Yazdian, & Powell, 2002), no statistically significant effects were found. Ginsburg-Block 
and Fantuzzo (1998) implemented an RCT with low-achieving third- and fourth-grade 
students in an urban elementary school using a reciprocal peer tutoring (RPT) model 
(Palincsar & Brown, 1984) on the mathematics achievement of low SES students. Results 
were nonsignificant but favored the peer collaboration condition (ES = 0.590).  

  
The effect sizes of the two studies that included classroom-level analyses were also 

pooled (Fuchs et al., 1995; Fuchs et al., 1997). These examined the impact of peer-assisted 
strategies, allowing for effect size calculations on seven different contrasts. The 1995 RCT 
study was done in second through fourth grade classrooms, over a 23-week period in which 
two 25–30 minute sessions per week were done using PALS, integrated with regular 
assessments. The control condition was teacher-mediated instruction, and the topic focus 
arithmetic operations. The 1997 study, also an RCT, also worked with second- through 
fourth-grade classrooms using peer-mediated versus teacher-mediated instruction (Fuchs et 
al., 1997). They investigated the effects of a peer tutoring program in which students 
received explicit instruction on how to provide elaborated help. Students were taught to 
provide explanations that would encourage peers to solve problems for themselves (instead 
of simply giving answers), referred to as “elaborated PMI.” These interventions were 
modeled separately, with students assigned to two experimental treatments—PMI-elaborated 
and PMI elaborated plus conceptual. Both studies had both computation and conceptual 
outcome measures. 

 
In both studies contrasts were calculated for LD, low-achieving, and average-

achieving students. In the 1997 study there was also a comparison of high-achieving 
students. The results are interesting and mixed. In the 1995 study, the only significant effect 
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size was for low-achieving students (ES = 0.728), on the computation measure, favoring 
PALS. Only two other effect sizes approached significance in this set: in the 1997 study, for 
both LD and low-achieving students, on the computation tests, the effect sizes were 
appreciable (0.663 and 0.704), on the computation outcome measure only, favoring the peer-
assisted condition. No other effect sizes were significant, although all but one (in the 1997 
study, LD on the concepts outcome measure) were positive. However, when the seven effect 
sizes for classroom-level computation outcome measures were pooled for these two studies, 
the result was a significant effect size (ES = 0.431). 

 
In summary, it appears that peer tutoring strategies may be promising in teaching 

young children mathematical operations (which may not be exclusively computation 
oriented). However, this finding must be treated cautiously because the evidence is only 
suggestive. For the pooled effects of the Fuchs et al. (1995) and Fuchs et al. (1997) studies, 
there are some important limitations. The two studies were both in Grades 2–4, involve 
learning whole number operations, were possibly conducted using the same sample of 
schools, and were conducted by the same research team. The 1995 Fuchs et al. study did not 
include high-achieving students. Moreover, in the 1995 study, teachers in the peer tutoring 
condition were regularly provided with formative assessment data to guide instruction, but 
teachers in the control condition were not. Thus, the study does not provide a clear contrast 
between peer tutoring and a more teacher-directed form of instruction. The extent to which 
the positive effects that were detected were produced by formative assessment, by peer 
tutoring, or by an interaction of the two interventions cannot be determined. 

 

4. Other Collaborative Learning Strategies  

Five studies of other collaborative learning strategies met the criteria for inclusion, all 
of them RCTs. The studies are referred to as “collaborative learning” because they do not 
feature interventions as structured as the cooperative learning techniques featured above, but 
they all utilize methods of student grouping that involve student-to-student collaboration in 
learning. Two of the seven contrasts computed yielded effects that were significant.  

 
A study by Barron (2000) produced statistically significant effect sizes favoring the 

collaborative condition in solving complex video-based mathematical problems. Sixth-
graders enrolled in a public magnet school serving academically talented children were 
assigned randomly to either a group or individual condition. The task was to solve video-
based problems from The Adventures of Jasper Woodbury series. Students first viewed the 
15-minute episode, “Journey to Cedar Creek,” which describes several dilemmas facing a 
character who is considering the purchase of a boat. In the second session, students were 
asked to solve these problems either individually or in teams of three by completing exercises 
in a workbook. In the third session, students were asked to solve the problems again, this 
time individually, regardless of the condition to which they had been assigned in the previous 
session. In the fourth and final session, students viewed a 5-minute video posing a parallel 
problem to assess near transfer of the acquired skills.   

 
Students who had worked in triads solved more of the problems correctly than 

students who had worked individually at significant levels (ES = 0.472). The effect on a 
transfer task approached the level of significance (ES = 0.392).  
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In a study of the effects of a communal environment on African-American students’ 
learning of mathematical estimation (Hurley et al., 2005), effects were significant. The 
researchers drew a sample of fifth-grade African-American students from two urban public 
schools. The students had to fall within the middle 75% for their classroom and school in 
terms of academics and behavior. The children in the sample came from a low SES 
background as measured by both their school’s participation in Title I and the students’ 
participation in the free and reduced-price lunch program. 

 
Boys and girls were divided equally between two treatments though within gender 

students were randomly assigned. One experimental condition was highly communal; 
students learned estimation working in groups of three. Students sat at the same table and 
shared one set of materials. Each study session included the experimenter reading a 
communal prompt to the students. Students were asked to hold hands and were reminded that 
they were members of a group and should work hard and help one another because they were 
members of the same school and community. The other condition was low-communal; 
students studied alone in sets of three. Each student had his or her own set of materials and 
sat at his or her own desk. These study sessions included an individualized prompt to remind 
students they could earn a reward if their scores increased and to work hard on their own to 
improve their scores. Before and after their study sessions, all students took a 15-question 
test on mathematics estimation. The intervention was very brief (20 minutes). The effect size 
(ES = 0.655) favoring the triads groups was significant.  

 
The studies by Janicki and Peterson (1981), Kramarski and Mevarech (2003), and 

Peklaj and Vodopivec (1999) all compared some form of cooperative group strategies, with 
no significant effects (see Table 5).  

 

5. Strategies Combining Collaborative or Cooperative Learning With 

Other Approaches 

Also meeting the criteria were three studies that examined cooperative learning 
strategies used in conjunction with other instructional practices. Because the cooperative 
learning elements were mixed with other modifications in practice, the Task Group was not 
able to isolate the effects of cooperative learning alone. 

 
Only one of the studies yielded a statistically significant effect size, on a computation 

outcome measure. A quasi-experimental study by Busato et al. (1995) investigated Adaptive 
Instruction and Cooperative Learning (AGO),1 a Dutch model that includes curricular 
adaptations, whole class instruction to introduce a topic, small group cooperation, regular 
assessments, individual work with the possibility of students helping each other, remedial 
groups working with direct guidance from a teacher, and whole class reflection. The study 
involved 572 middle school students in the Netherlands, and the intervention lasted for one 
month. The mathematical topic was pre-algebra ideas, and the interventions were AGO 
versus “a more traditional instructional method (mainly without group work)” (p. 671). The 
effect size for boys was significant (0.681) and for girls approached significance (0.583).  

 

                                                             
1 AGO refers to the Dutch model called Adaptief Groeps-Onderwijs. 
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A quasi-experiment by Stevens and Slavin (1995) involved 1,012 elementary school 
students in Grades 2–6 in a year-long comparison of cooperative learning vs. whole class 
instruction. The nonsignificant effect on the California Achievement Test was negative, 
favoring the whole group instruction, on the applications test. The effect on the CAT 
computation (ES = 0.120) approached significance favoring the cooperative learning treatment. 
And finally, the Brenner et al. study (1997) discussed previously, small group instruction was 
compared to a control condition. The effects, favoring the small group condition, were not 
significant. The effect size for the pooled problem solving outcomes was 0.074. 

 

6. Cooperative Learning Strategies in the Technology Context   

Here the Task Group presents a review of the research that examined the use of 
cooperative learning strategies in the context of technology-based instruction. Use of some 
form of collaborative learning in computer-based instruction (CBI) is suggested by several 
positive reports from preschool to college (e.g., Leron & Lavy, 2004; Light & Blaye, 1990; 
Nastasi & Clements, 1994; Scardamalia et al., 1992; Schofield, 1995; Strommen, 1993). The 
following section discusses the eight studies identified that examined the use of cooperative 
learning strategies in the context of computers; the studies are summarized in Table 7. Only 
two of the studies produced significant effect sizes. 

 
Seven studies investigated learning on computers in groups versus learning on 

computers individually (Hooper, 1992; Hooper, Temiyakam, & Williams, 1993; Mevarech et 
al., 1991; Mevarech, 1993, 1994; Slavin & Karweit, 1984; and Xin, 1999). All participating 
students were in elementary school. Durations ranged from very short (1 week) to an academic 
year. The outcomes measured in most studies were limited to computation, but the Hooper 
(1992, 1993), and the Slavin and Karweit (1984) studies also assessed mathematical concepts.  

 
It was possible to calculate 15 different effect sizes across these studies. Only those 

that were significant are highlighted. Weiss et al. (2006) studied kindergarten students in 
Israel learning about numbers and operations. One treatment was a multimedia environment 
involving cooperation while the other was a multimedia environment involving an individual 
learning style. The outcome measure was a skills test on numbers and operations. The 
significant effect size (-0.862) favored the individual teaching style treatment. In the study by 
Xin (1999) that compared TAI involving CAI to whole-class computer-assisted instruction, 
the effect size on the Standard Achievement Test-Math for regular education students was 
significant (ES = 0.595), favoring the small group-based treatment. Effects for all but two 
studies were positive. A negative effect was found in the Weiss et al. (2006) study and for 
low- and high-achieving students in the Mevarech (1993) study. None of the other effect 
sizes calculated reached significance. 

 
In summary, implications for policy and practice do not indicate a simple solution, 

such as, “Students should work together on computers.” Positive effects of cooperative 
learning in technological contexts can be obtained, but they may be limited in size, especially 
when using simple CAI programs, and may depend on teachers’ management and guidance 
of positive interactions and collaboration. 
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C. Summary and Conclusions 

At this time a body of scientifically sound research does not exist that will quell the 
controversies about the best way to instruct students in mathematics. As evident from the 
review, however, educators are not completely in the dark about effective practice. Three 
principal findings emerge from the literature. First, some of the limitations in the studies 
reviewed in this section will be discussed. 

 
Although all of the studies discussed here met the technical criteria for inclusion, 

there were a number of issues relative to the studies that could be addressed in future 
research. In some cases, for instance, the treatments were of such brief duration that it is 
difficult to interpret the conclusions. In many cases the control condition is inadequately 
specified leaving the reader to make assumptions about exactly what is being compared to 
what. In the case of teacher-directed and student-centered instruction, the terms are so 
vaguely defined to begin with that this is a serious problem in using the research literature to 
draw conclusions that may be useful for policy. Only some of these studies actually measure 
and document the nature of the intervention, leaving questions about the fidelity and extent 
of implementation and thus lack of clarity about what might be causing the results. This body 
of work tends to include examinations of specific groups of students, which is informative 
relative to specific groups, but needs to be balanced with studies that look at broader 
populations. Finally, in some cases the team evaluating the effectiveness of the intervention 
also invented the method (although it is emphasized that all studies included in this report 
met the stringent criteria for inclusion). 

 
The review does allow us to make some key conclusions. First, Team Assisted 

Individualization (TAI), a cooperative learning strategy, has been shown to be effective in 
teaching computation skills. The finding does not extend to problem-solving skills or 
mathematical concepts. It is critical to note that the strategy involves much more than simply 
putting students into groups. Students first take diagnostic tests, and teachers utilize the 
results to prepare individualized sets of worksheets that target weak computation skills. 
Working in heterogeneous groups of four or five students, students are encouraged to work 
together to ensure that all students in the group attain mastery. Teachers work with small 
groups of students, pulled from different teams who are working on the same skill (e.g., 
division of decimals). Cooperation within groups is reinforced by group rewards given on the 
basis of final tests (for a more detailed description of TAI, see Slavin, Madden, and Leavey 
(1984) and Slavin and Karweit (1985)).  

 
Why does TAI work? Researchers of TAI have argued that several elements of the 

technique may enhance learning: students receive immediate feedback from peers (as 
compared to delayed feedback from teachers during whole class instruction); materials 
present mathematical skills in a logical, hierarchical sequence; students’ deficient areas are 
assessed, identified, and targeted with individualized materials; a group reward structure 
motivates students and encourages teamwork; the intervention blends teacher-directed and 
student-centered instruction. More research is needed to identify the precise mechanisms of 
TAI’s effectiveness. 
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A second cooperative learning strategy, generally known as peer tutoring, also 
showed signs of promise, with a significant pooled effect size favoring the peer-assisted 
condition. This finding must be treated cautiously, in that it involves only two studies, is 
limited to the study of whole number operations by students in Grades 2-4, and only reaches 
statistical significance at the class level. In one of the studies, formative assessment was a 
key component of the intervention. Studies on which student level effects could be calculated 
did not produce statistically significant findings. As with TAI, the treatment is highly specific 
and involves far more than having students work in pairs. In both of these sets of studies, it is 
important to underscore that significant effect sizes were found only for computation or 
operations, not for mathematical concepts or problem solving. 

 
The second main finding pertains to problem solving. Three studies were reviewed 

that documented successful far transfer of problem solving skills after extensive instruction. 
Muthukrishna and Borkowski (1995) studied third-graders who were taught a part-whole 
problem solving strategy in 14 lessons. Brenner et al. (1997) investigated middle school pre-
algebra students learning how to represent function problems in multiple formats. The 
program consisted of 20 lessons. In both experiments, students in the guided discovery 
condition outperformed students in the traditional instruction condition on measures of far 
transfer. These effects were not statistically significant but they bordered on significance. 
Educators considering whether to implement these interventions would have to weigh the 
limitations of the outcomes—problem solving strategies that are restricted to particular topics 
in mathematics—with the amount of instructional time spent to attain them. Whether the 
benefits of guided discovery extend to content beyond the areas examined in these studies, or 
can be accomplished in less time, has not been studied. 

 
In contrast, there were three studies (not counting the cooperative group studies) in 

which significant effects were found, favoring the teacher-directed instructional approach), 
for performance on computation outcome measures. Hopkins et al. (1997) found that the 
“didactic” treatment led to better performance by girls on an arithmetic computation test. 
And, in the Project Follow Through Evaluation, Stebbins et al. (1977) found significant 
effects favoring direct instruction, and nearly significant effects favoring the control 
treatment (in contrast to the Cognitively Oriented Curriculum) on the computation outcome 
measure. It is possible that under some conditions, with certain mathematical emphases and 
particular groups of students, the teacher-directed approaches can lead to better performance 
on computational assessments than more student-centered approaches. 

 
That leads to the final principal finding. Much more research is needed that directly 

compares the effectiveness of student-centered and teacher-directed instruction, and that 
provides clear operational definitions for these terms. In particular, research is needed with 
teacher-centered instruction as the experimental condition. Almost all of the research reviewed 
here investigated experimental modes of instruction that are student-centered—whether guided 
discovery, cooperative learning, or peer tutoring—with the control condition described as 
“teacher-directed” or “traditional” or “direct instruction.” Experiments with better specified 
teacher-directed interventions would enhance our understanding of how to improve classroom 
instruction in mathematics. A comprehensive program of research might succeed in 
transforming what has been a clash of ideologies into a search for effective practice.  
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Table 2a: Studies That Investigated the Effects of Team Assisted Individualization 

(TAI) on Computation Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Computation Outcomes 

Student-level analyses  

Slavin,  

1984—
Study 1b 

RCT 

504 students in Grades 3–5, 

including 6% who were 
receiving special education 

services, in 18 mathematics 
classes in six schools in a 
suburban Maryland school 

district 

8 weeks/ Addition, 

subtraction, 
multiplication, division, 

numeration, decimals, 
fractions, and word 
problems 

TAI vs. 

whole class 
lectures and 

group paced 
instruction 

CTBS—

Computations 
Overall 0.103 (ns) 0.460 

Slavin,  

1984—
Study 2b 

Quasi 

375 students in Grades 4–6, 

including 27% who were 
receiving special education 
services, in 16 mathematics 

classes in four schools in a 
suburban Maryland school 
district 

10 weeks/ Addition, 

subtraction, 
multiplication, division, 
numeration, decimals, 

fractions, and word 
problems 

TAI vs. 

whole class 
lectures and 
group paced 

instruction 

CTBS—

Computations 
Overall 0.109 (ns) 0.460 

Slavin et al., 
1984b 

Quasi 

1,371 students in Grades 3–5, 
including 8% that received 

special education services, in 
59 mathematics classes in 
eight schools in a suburban 

Maryland school district 

24 weeks/ Unspecified 
math curriculum (likely 

same topics as above) 

TAI vs. 
whole class 

lectures and 
group paced 
instruction 

CTBS—
Computations 

Overall 0.147 (ns) 0.331 

Regular 

education 
0.595 ** 0.210 

Xin, 1999 RCT 
118 third-grade students in 

six mathematics classes in 
three schools 

Daily for one semester/ 

Basic fact families 
including addition, 
subtraction, multiplication, 

and division; coin 
recognition, place value, 
concepts, number patterns 

TAI w/CAI  

vs. whole 
class w/CAI 

Stanford 

Achievement 
Test—Math Learning 

disability 
0.338 (ns) 0.390 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g 
Standard 

Error 

2.265 4 0.271 0.687 

Pooled ES (four studies, five effect sizes) 

0.377 ** 0.145 

Classroom-level analyses  

Slavin & 

Karweit, 
1985—
Study 1 

RCT 
345 students in Grades 4–6 

in 15 mathematics classes 

18 weeks/ Addition, 

subtraction, 
multiplication, division, 
numeration, decimals, 

fractions, ratios, statistics, 
introduction to algebra, 
and word problems 

TAI vs. 

Missouri 
Mathematics 
Program  

CTBS—

Computations 
Overall 0.709 *** 0.143 

Slavin & 

Karweit, 
1985—
Study 2 

RCT 
480 students in Grades 3–5 

in 22 mathematics classes in 
and around Hagerstown, MD 

16 weeks/ Addition, 

subtraction, 
multiplication, division, 
numeration, decimals, 

fractions, ratios, statistics, 
introduction to algebra, 
and word problems 

TAI vs. As-Is 

Control  

CTBS—

Computations 
Overall 0.562 *** 0.138 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g 
Standard 

Error 

0.548 1 0.459 0.000 

Pooled ES (two studies, two effect sizes) 

0.633 *** 0.099 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 2b: Studies That Investigated the Effects of Team Assisted Individualization 

(TAI) on Concepts Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Concepts Outcomes 

Student-level analyses 

Slavin, 

1984b 
Quasi 

1,371 students in 

Grades 3–5, 
including 8% that 
received special 

education services, in 
59 mathematics 
classes in eight 

schools in a suburban 
Maryland school 
district 

24 weeks/ 

Unspecified 
math curriculum 
(likely same 

topics as above) 

TAI vs. whole 

class lectures 
and group 
paced 

instruction 

CTBS—

Concepts 
Overall 0.098 (ns) 0.331 

Classroom-level analyses 

Slavin & 

Karweit, 
1985— 
Study 1 

RCT 
345 students in 

Grades 4–6 in 15 
mathematics classes 

18 weeks/ 

Addition, 
subtraction, 
multiplication, 

division, 
numeration, 
decimals, 

fractions, ratios, 
statistics, 
introduction to 

algebra, and 
word problems 

TAI vs. 

Missouri 
Mathematics 
Program  

CTBS—

Concepts 
Overall -0.003 (ns) 0.139 

Slavin & 
Karweit, 
1985— 

Study 2 

RCT 

480 students in 
Grades 3–5 in 22 
mathematics classes 

in and around 
Hagerstown, MD 

16 weeks/ 
Addition, 
subtraction, 

multiplication, 
division, 
numeration, 

decimals, 
fractions, ratios, 
statistics, 

introduction to 
algebra, and 
word problems 

TAI vs. As-Is 
Control  

CTBS—
Concepts 

Overall 0.038 (ns) 0.134 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

0.045 1 0.832 0.000 
Pooled ES (two studies, two effect sizes) 

0.018 (ns) 0.097 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 3: Studies That Investigated the Effects of Student Teams-Achievement  

Divisions (STAD) 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard  

Error 

Alkhateeb & 
Jumaa, 2002a 

RCT 

111 eighth-grade 
students in four 

classes in two 
schools in the 
United Arab 

Emirates 

3 weeks/ 
Algebraic 

expressions 

STAD vs. 
Whole Class 

Instruction 

Algebra test Overall 0.108 (ns) 0.479 

Third 

grade 
0.573 (ns) 0.492 

Fourth 

grade 
0.484 (ns) 0.487 

Jacobs, 

1996a 
RCT 

266 students in 

Grades 3–5 at a 
large private 
Christian/ 

fundamentalist 
elementary school in 
the Southeast 

9 weeks/ 

Unspecified 
3rd grade 
curricular 

unit 

STAD vs. 

Direct 
Instruction 
with rewards 

and student 
individual 
accountability  

Curriculum 

specific math 
test 

Fifth 

grade 
0.454 (ns) 0.486 

Madden & 

Slavin, 
1983a 

RCT 

183 third-, fifth-, 

and sixth-grade 
students, including 

40 special education 
students, in six 
math classes in the 

Baltimore City 
schools 

7 weeks/ 

Unspecified 
3rd-, 5th-, 

and 6th-
grade 
curricular 

units 

STAD vs. 

Focused 
Instruction 

(whole class 
lectures, 
individual 

practice, 
quizzes, and 
individual 

recognition) 

Curriculum 

specific math 
test 

Overall 0.124 (ns) 0.402 

Slavin & 

Karweit, 
1984a 

RCT 

588 ninth-grade 

students in 25 math 
classes in 16 inner 
city Philadelphia 

junior and senior 
high schools 

One school 

year/ 
Unspecified 
9th-grade 

general math 
curriculum 

STAD vs. 

Focused 
Instruction 
(students 

worked 
individually 
and did not 

receive team 
recognition) 

CTBS, 

Shortened 
version 
(computation, 

concepts and 
applications 
subscales) 

Overall 0.113 (ns) 0.221 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.384 5 0.926 0.000 
Pooled ES (four studies, six effect sizes) 

0.227 (ns) 0.152 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 4: Studies That Investigated the Effects of Peer Assisted Learning 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Computation Outcomes 

Student-level analyses 

Special 
education 

0.431 (ns) 0.524 

Low 
achieving 

0.374 (ns) 0.454 

Medium 
achieving 

0.436 (ns) 0.270 

Fuchs et al., 
2001a 

RCT 

168 Kindergarten 
students in 20 

classes in five 
schools in a 
Southeastern 

metropolitan area 

15 weeks/ 
Kindergarten 

core curriculum 

PALS vs. Teacher-
directed lessons 

and demonstrations 

Stanford Early 
School 

Achievement Test 

High 
achieving 

-0.162 (ns) 0.380 

Fuchs et al., 

2002a 
RCT 

327 first-grade 

students in 20 
classrooms in a 
Southeastern 

metropolitan 
public school 
system 

16 weeks/ 

Addition, 
subtraction, 
counting, sets, 

geometry, and 
measuring 

PALS vs. As-is 

basal core 
curriculum 

Stanford 

Achievement Test 
Overall 0.055 (ns) 0.223 

Ginsburg-
Block & 
Fantuzzo, 

1998 

RCT 

104 low-
achieving third- 
and fourth-grade 

students in an 
urban elementary 
school 

Two 30-minute 
sessions per 
week for 7 

weeks/ Addition, 
subtraction, 
multiplication, 

and division 
computation and 
word problems  

Peer collaboration 
dyads vs. Control 

Curriculum based 
computation test 

Overall 0.590 (ns) 0.389 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

3.361 5 0.645 0.000 

Pooled ES (three studies, six effect sizes) 

0.238 ~ 0.134 

Classroom-level analyses 

Learning 
disability 

0.260 (ns) 0.311 

Low 
achieving 

0.728 ** 0.320 
Fuchs et al., 
1995 

RCT 

40 Grade 2–4 
classrooms in 
nine elementary 
schools in a 

Southeastern, 
urban school 
district 

Two 25-30 
minute sessions 
per week for 23 
weeks/ Grade 

level’s annual 
operations 
curriculum 

PALS integrated 
with regular 
assessments vs. 
Teacher-mediated 

instruction  

Acquisition 
learning: Math 
Operations Test—
Revised 

Average 
achieving 

0.297 (ns) 0.312 

Learning 
disabilities 0.663 ~ 0.386 

Low 
achieving 0.704 ~ 0.388 

Average 
achieving 0.177 (ns) 0.378 

Fuchs et al., 
1997 

RCT 

40 Grade 2–4 
classrooms in a 

Southeastern 
metropolitan 
public school 

system 

18 weeks/ 
Number 

concepts, 
counting, word 
problems, 

charts/graphs, 
money, 
measurement, 

geometry, and 
computation 

Peer-mediated 
instruction vs. 

Teacher-mediated 
instruction 

Comprehensive 
Mathematics 

Test—Operations 

High 
achieving 0.242 (ns) 0.378 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.904 6 0.821 0.000 

Pooled ES (two studies, seven effect sizes) 

0.431 ** 0.132 

Continued on p. 6-37 
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Table 4, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Concepts Outcomes 

Classroom-level analyses 

Learning 
disability 

0.199 (ns) 0.311 

Low 
achieving 

0.063 (ns) 0.310 
Fuchs et al., 
1995 

RCT 

40 Grade 2–4 
classrooms 
in nine 

elementary 
schools in a 
Southeastern, 

urban school 
district 

Two 25–30 minute 
sessions per week for 
23 weeks/ Grade 

level’s annual 
operations curriculum 

PALS integrated 
with regular 
assessments vs. 

Teacher-mediated 
instruction  

Acquisition 
learning: Math 
Concepts and 

Applications 
Average 
achieving 

0.307 (ns) 0.312 

Learning 
disabilities -0.016 

(ns) 
0.377 

Low 
achieving 0.515 

(ns) 
0.383 

Average 
achieving 0.139 (ns) 0.377 

Fuchs et al., 
1997 

RCT 

40 Grade 2–4 
classrooms in 

a Southeastern 
metropolitan 
public school 

system 

18 weeks/ Number 
concepts, counting, 

word problems, 
charts/graphs, money, 
measurement, 

geometry, and 
computation 

Peer-mediated 
instruction vs. 

Teacher-mediated 
instruction 

Comprehensive 
Mathematics Test-

Concepts 

High 
achieving 0.099 (ns) 0.377 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.406 6 0.965 0.000 

Pooled ES (two studies, seven effect sizes) 

0.186 (ns) 0.130 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 

 

Table 5: Studies That Investigated Other Cooperative Learning Strategies 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard  

Error 

Solutions to story 

problems—mastery 
Overall 0.472 * 0.205 

Barron, 
2000 

RCT 

96 sixth-grade 
students in a public 

magnet school for 
academically 
talented children 

Four 1-hour 

sessions/ Contextual 
problem solving 

Problem solving 

collaboratively in 
triads vs. Problem 
solving individually 

Solutions to story 

problems—transfer 
Overall 0.392 ~ 0.204 

Hurley 
et al., 2005 

RCT 

78 African-
American fifth-
grade students in 

two urban public 
schools 

One 20-minute 
session/ Math 

estimation 

Triads worked together 
in a high-communal 

setting vs. Individuals 
worked in a low-
communal setting 

Math estimation 
task 

Overall 0.655 ** 0.230 

Janicki & 
Peterson, 

1981a 
RCT 

117 fourth- and 
fifth-grade students 

2 weeks/ Fractions 

Small group direct 
instruction vs. 

Individual direct 
instruction 

Researcher 
developed test on 

fractions 

Overall -0.041 (ns) 0.188 

Metacognitive and 
cooperative groups vs. 
Metacognitive and 

individual 

Graph 
interpretation test 

Overall 0.355 (ns) 0.387 Kramarski 
& 
Mevarech, 

2003a 

RCT 

384 eighth-grade 
students in 12 
classrooms in four 

Israeli junior high 
schools 

2 weeks/ Linear 
graphing 

Cooperative groups vs. 

Individual work 

Graph 

interpretation test 
Overall 0.105 (ns) 0.388 

Peklaj & 

Vodopivec, 
1999a 

RCT 

373 fifth-grade 

students in 15 
classes from nine 
primary schools in 

Slovenia 

One lesson per 

week for seven 
months/ Basic 

concepts, measure 
transformation, 
calculations, 

problem solving 

Cooperative learning 

vs. Individual work 

Teacher 

developed math 
test 

Overall 0.317 (ns) 0.251 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 6: Studies That Investigated Multiple Strategies—Cooperative Learning 

Combined With Other Instructional Practices 

Study Design Sample Duration/Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard  

Error 

Brenner et al., 
1997a 

RCT 

128 students in six 
intact pre-algebra 

classes in three 
junior high 
schools in southern 

California 

20 days/ Pre-
algebra ideas such 

as the functional 
relationship 
between two 

variables and 
contextual 
translation and 

application 

Anchored 
instruction 

using small 
groups vs. 
Control 

Pooled problem 
solving outcomes: 

word problem 
solving (ES = 
0.110), function 

word problem 
(ES = 0.393), and 
equation solving 

(ES = -0.281) 
measures 

Overall 0.074 (ns) 0.399 

Boys 0.681 * 0.227 

Busato et al., 

1995a 
Quasi 

572 middle school 

students in 23 
classes in six 

schools in the 
Netherlands 

Unspecified 

duration/ Existing 
Dutch math 

curriculum 

AGO model 

curriculum vs. 
Traditional 

curricula 

Test of math 

achievement Girls 0.583 ~ 0.235 

California 
Achievement 
Test—CAT 

computations 

Overall 0.120 ~ 0.068 

Stevens & 
Slavin, 1995c 

Quasi 

1,012 elementary 
students in Grades 
2–6 in five 

schools in a 
suburban 
Maryland school 

district.  Two of 
the schools were 
cooperative 

elementary 
schools and three 
schools were more 

traditional 
elementary 
schools 

1 year/ Math 
computation 

Cooperative 
learning 
school vs. 

Whole class 
instruction 

California 

Achievement 
Test—CAT—
application 

Overall -0.050 (ns) 0.068 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c To be more comparable with other studies, the data presented for this study are data only after the first year, although two years of data 

were available. 
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Table 7: Studies That Investigated Cooperative Learning Strategies in the Context 

of Computers 

Study Design Sample Duration/Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard  

Error 

Hooper, 1992 RCT 

115 fifth- and 
sixth-grade 

average or high-
ability students 
from a suburban 

middle school 

1 week/ Calculation 
of number of sides of 

a three-dimensional 
object and classifying 
objects as examples 

or nonexamples of a 
concept 

Cooperative 
learning with 

computer 
based 
instruction 

(CBI) vs. 
Individual 
learning with 

CBI 

Math test 
including fact, 

application, 
generalization, 
and problem-

solving 
questions 

Overall 0.335 ~ 0.201 

Hooper, 1993 RCT 

175 fourth-

grade average or 
high-ability 
students from 

six classrooms 
in a suburban 
middle school 

3 weeks/ Calculations 

using the four basic 
arithmetic operations 
using symbols to 

represent constants 
and operations 

Cooperative 

learning with 
computer 
based 

instruction 
(CBI) vs. 
Individual 

learning with 
CBI 

Math test 

including fact, 
application, 
generalization, 

and problem-
solving 
questions 

Overall 0.305 ~ 0.157 

Low 

achieving 
0.266 (ns) 0.285 

Medium 
achieving 

0.268 (ns) 0.285 
Mevarech et 

al., 1991 
RCT 

149 sixth-grade 

students in five 
classrooms in 

one Israeli 
school 

One trimester/ Basic 

operations with 
positive integers and 

fractions 

Pairs w/CAI 

vs. Individual 
w/CAI 

TOAM 

achievement 
(computerized 

diagnostic) 
High 
achieving 

0.120 (ns) 0.289 

Low 
achieving 

-0.028 (ns) 0.479 

Mevarech, 
1993a 

RCT 

110 third-grade 
students in two 

Israeli public 
schools 

One trimester/ 
Traditional 3rd grade 

curriculum in 
arithmetic 

Pairs w/CAI 
vs. Individual 

w/CAI 

Arithmetic 
achievement 

test High 
achieving 

-0.506 (ns) 0.480 

3rd grade 

Low 
Achievers 

0.287 (ns) 0.322 

3rd grade 

High 
Achievers 

0.123 (ns) 0.319 

6th grade 
Low 
Achievers 

0.266 (ns) 0.337 

Mevarech, 

1994a 
RCT 

344 third-grade 

and 279 sixth-
grade students in 

19 classrooms in 
five schools in a 
suburb of Tel 

Aviv, Israel 

Two 20-minute 

sessions per week for 
one academic year/ 

Basic skills with 
mathematics 
operations, 

comprehension of 
numerical systems, 
understanding 

mathematical rules, 
solving word 
problems 

Integrated 

learning 
system 

(ILS) in 
homogenous 
pairs vs. ILS 

individually 

ILS diagnostic 

test 

6th grade 
High 
Achievers 

0.348 (ns) 0.336 

Slavin & 
Karweit, 

1984a 

RCT 

588 ninth-grade 
students in 25 

math classes in 
16 inner city 
Philadelphia 

junior and 
senior high 
schools 

One school year/ 
Unspecified 9th grade 

general math 
curriculum 

STAD vs. 
Focused 

Instruction 
(students 
worked 

individually 
and did not 
receive team 

recognition) 

CTBS, 
Shortened 

version 
(computation, 
concepts and 

applications 
subscales) 

Overall 0.113 (ns) 0.221 

Continued on p. 6-40 
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Table 7, continued 

Study Design Sample Duration/Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard  

Error 

Weiss et al., 

2006 
RCT 

116 students in 

six Kindergarten 
classes of 
medium to high 

SES in Israel 

28 hours over 

5 months/ 
Mathematical skills 
about numbers and 

operations from 1 to 
10  

Multimedia 

environment in 
a cooperative 
learning 

teaching style 
vs. Multimedia 
environment in 

an individual 
learning 
teaching style 

Skills test on 

numbers and 
operations 

Overall -0.862 *** 0.238 

Regular 
education 

0.595 ** 0.210 

Xin, 1999 RCT 

118 3rd-grade 
students in six 

mathematics 
classes in three 
schools 

Daily for one 
semester/ Basic fact 

families including 
addition, subtraction, 
multiplication, and 

division; coin 
recognition, place 
value, concepts, 

number patterns 

TAI w/ CAI 
vs. whole 

class w/ CAI 

Stanford 
Achievement 

Test-Math Learning 
disability 

0.338 (ns) 0.390 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

27.457 14 0.017 49.011 

Pooled ES (8 studies, 15 effect sizes) 

0.157 0.101 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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III. Effective Instruction for Students With Learning Challenges: 

A Meta-Analytic Review 

Between 5% and 10% of students will experience a serious learning disability in 
mathematics before completing high school (Barbaresi, Katusic, Colligan, Weaver, & 
Jacobsen, 2005). Many more will have difficulties in learning mathematics at an acceptable 
level of proficiency. In this section, the Instructional Practices Task Group addresses the 
rigorous research on instructional methods that can help these students. An overview of the 
methodological procedures for the Task Group is provided in Appendix A. Throughout this 
section, the Task Group used these meta-analytic techniques as noted in the methodology 
statement. Because of the wide array of instructional approaches explored in the research for 
this section, multiple meta-analyses were performed to analyze this research.  

 
The Task Group chose to review studies of students with LD separately from studies 

of low-achieving students because the problems experienced by students with LD are 
consistently more severe than those experienced by other low-performing students (Fuchs, 
Fuchs, Mathes, & Lipsey, 2000; Murphy, Mazzocco, Hanich, & Early, 2007). Therefore, 
educators cannot necessarily assume that techniques that are effective for students with 
learning disabilities are the most effective or efficient means for teaching struggling students. 
However, the reader will note that many of the same themes and issues recur across these 
two bodies of research. 

A. Characteristics of Students With  

Learning Disabilities in Mathematics 

Most of the research on the nature of learning disabilities in mathematics has been 
conducted with younger students and typically involves understanding their gaps in whole 
number arithmetic. Certain findings have been consistently replicated. Because students with 
LD display problems in so many areas of mathematics, pinpointing the exact nature of the 
cognitive difficulty has been an intricate process (Geary, 2003).  

 
However, there are several problems that seem particularly chronic. The first is 

efficient retrieval of basic arithmetic combinations (mathematics facts) (Jordan, Hanich & 
Kaplan, 2003). A second is delayed adoption of efficient counting strategies. Students with 
learning disabilities will tend to count on their fingers well after their peers have outgrown 
this approach and when forbidden by their teachers they may count with the help of visual 
placemarkers in the classroom (e.g., stripes on the ceiling or the radiator), or give up in 
frustration. Most typically developing students learn, prior to entering school, what is 
commonly called a “counting-on strategy.” They learn that if they have to add 7 to 2, this 
process is mathematically equivalent to adding 2 to 7, and that is much more efficient to 
make this transformation (i.e., that the most efficient way to find 2 + 7 is to start with the 7 in 
a mental number line and count up 2, rather than start with the 2 and count up 7). In contrast, 
students with LD will tend to start at 2 and count up using 7 figures or objects. Thus, they are 
more likely to make errors by using the tedious procedure. Furthermore, even if their answer 
is accurate, their strategy for reaching this answer is far from efficient.  
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It also appears that students with learning disabilities have a very limited working 
memory (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; McLean & Hitch, 1999; 
Swanson & Sachse-Lee, 2001), which affects their ability to keep abstract information in 
their minds for the purpose of counting and solving specific problems. Finally, students with 
learning disabilities seem to display problems in many aspects of basic number sense such as 
comparing magnitudes of numbers by quickly visualizing a number line or transforming 

simple word problems into simple equations (Jordan, Hanich, & Kaplan, 2003; Fuchs, 
Compton, Fuchs, Paulsen, Bryant, & Hamlett, 2005). In addition, two studies (DiPerna, Lei 
& Reid, 2007; Fuchs, 2005) have both found that teachers’ ratings of a child’s attention span 
and task persistence, both areas that are often difficult for students with LD, are good 
indicators of subsequent problems in learning mathematics.  

B. Students With Low Achievement in Mathematics 

Many more students struggle to learn mathematics than the 5 to 10% who appear to 
possess a learning disability in mathematics (Badian, 1983; Fuchs et al., 2005; Gross-Tsur et 
al., 1996; Lewis et al., 1994). Although there are numerous disputes about how to best define 
and operationalize the general term “learning disabilities,” and the more specific term “math 
disabilities,” there is some emerging consensus (Bradley, Danielson, & Hallahan, 2002).   

 
In contrast, there is no consensus as to how to operationalize the term “low 

achieving,” other than students whose performance in mathematics is below grade level 
expectations. In some cases, e.g., Cardelle-Elawar (1995), all students in a low-income, low-
achieving school are considered low achieving. Other studies (e.g., Moore & Carnine, 1989) 
only select students who perform poorly on a screening test that addresses the topic of the 
intervention research study.   

 
Several dilemmas and constraints presented themselves when considering studies of 

low-achieving students not presented in working with studies of students with LD. First, there is 
no agreed upon operational definition of what is meant by a student struggling to learn 
mathematics or a low-achieving or “at risk” student (Mazzocco, 2007). Indeed, there is no 
measurable boundary or cut-off criterion, based on standardized test performance, for 
considering a student to be math disabled versus experiencing low achievement in mathematics.  
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Meanwhile, the factors that contribute to the low-achieving designation seem to 
include some unknown combination of the following:  

 
• deficiencies with previous mathematics instruction and mathematics teachers with 

limited knowledge of the subject (Sowder, Philipp, Armstrong, & Schappelle, 1998);   

• limited experiences at home that informally teach familiarity with number concepts, 
build and reinforce procedural facility and demonstrate relevance of mathematics to 
everyday problems (e.g., Griffin, Case, & Siegler, 1994);   

• problems with sustaining attention to academic tasks and activities (Fuchs, Compton, 
Fuchs, Paulson, Bryant, & Hamlett, 2005; DiPerna, Lei, & Reid, 2007; Kolligian & 
Sternberg, 1987); and, 

• weak motivation and maladaptive attribution style (Torgesen, 1994).    

 C. A Meta-Analytic Review of Research With Students With  

LD and LA in Mathematics (1976–2007) 

There is a dramatically smaller body of research on mathematics instruction 
compared to reading instruction for students with LD. A recent review of the ERIC literature 
base (Gersten, Clarke, & Mazzocco, 2007) found that the ratio of studies on reading 
disabilities to mathematics disabilities and difficulties was 5:1 for the decade 1996–2005. 
However, this was a dramatic improvement over the ratio of 16:1 in the prior decade.  

 
Despite the limited knowledge of the precise nature of learning disabilities in 

mathematics, especially in areas such as rational numbers, geometry and pre-algebra, 
researchers have attempted to develop interventions that can teach students with LD. In fact, 
in the Panel’s literature search, the number of high-quality studies examining the 
effectiveness of various instructional practices for teaching students with LD far surpasses 
the number of studies conducted with typically developing students.  

 
The Task Group speculates that there are several reasons for this phenomenon. One 

important factor has been the consistent support for research in the field of special education; 
annual research budgets for special education often surpassed budgets for research on the 
education of nondisabled students in academic areas. Even more importantly, the Office of 
Special Education Programs (OSEP) at the U.S. Department of Education has consistently 
supported experimental research since the late 1960s.  

 
In addition to studies of students with LD, the Task Group was also able to locate a 

small number of studies with low-achieving students that met the criteria for rigorous 
experimental or quasi-experimental research. The children in these studies were defined as 
either at-risk or experiencing mathematics difficulties based on performance on a screening 
measure of mathematics skills or teacher ratings or recommendation. None of the participants 
was formally diagnosed as math disabled by the researchers.   
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Thus, a reasonable set of studies exists that investigate the effectiveness of various 
instructional approaches for teaching students with LD using rigorous experimental or quasi-
experimental designs, and a smaller, but still adequate set of studies exists that examine 
various approaches for teaching students who experience difficulties in mathematics, but 
were not classified as possessing a learning disability. To conduct a meta-analysis, the Task 
Group needed to center the analysis around a key research question. The question most 
consistently posed in the research studies reviewed concerned the effectiveness of explicit 
systematic instruction on the mathematics performance of this group of students.  

D. The Nature of This Report 

This document summarizes the meta-analyses conducted for the Panel’s Instructional 
Practices Task Group on the nature of effective mathematics instruction for students with LD 
and for other low-achieving students. To organize these meta-analyses, the Task Group 
clustered studies into four categories: 

 
• Studies of the impact of systematic explicit instruction on the performance of students 

with LD in mathematics 

• Studies of the impact of systematic explicit instruction on the performance of low-
achieving students in mathematics 

• Other approaches for teaching students with LD 
— Selection of examples to foster development of more sophisticated strategies 

for quick retrieval of basic arithmetic facts  
— Use of visual representations as a key component of instruction  
— Instruction that encouraged students to think aloud  

• Other approaches for teaching low-achieving students that are primarily implicit 

 
The following sections provide study characteristics for each of the studies identified 

and effect sizes for the Category 1 (high-quality) studies on posttest measures and transfer 
measures (when available). The effect sizes are pooled for the studies that examined the 
effects of using explicit instruction for students with LD using common meta-analytic 
standards. Effect sizes for studies in the remaining categories were not pooled because the 
interventions varied greatly across studies.  

 
All effect sizes have been adjusted for clustering, when appropriate. The Task Group 

used the U.S. Department of Education’s What Works Clearinghouse default Intra-Class 
Correlation of .20 for the adjustment. For further details on data analysis, see the footnotes 
accompanying the tables and the Methodological Procedures section in Appendix A. 
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E. Explicit Strategies Used for Students With Learning Disabilities 

Explicit instruction involves teacher-demonstrated step-by-step plans for solving a 
problem. The teacher demonstrates a specific plan for a set of problems (as opposed to a 
general problem-solving heuristic strategy) and students are asked to use the same procedures 
or steps demonstrated by the teacher to solve the problem. For example, Xin, Jitendra, and 
Deatline-Buchman (2005) provided explicit instruction for using strategies for identifying 
and solving various word problem types. Students were given prompt sheets for identifying 
salient features of the word problem types. Students then were taught to map these features 
onto a schema diagram that represented the problem structure. Next, students used the 
schema diagram to formulate the appropriate mathematical equation for solving the problem. 
Each of these steps toward problem solution were explicitly taught strategies for problem 
solution.   

 
There were nine studies that looked at the effect of explicit strategies for students 

with LD, met the inclusion criteria, and were methodologically adequate. Results from these 
studies are presented in three tables. Each table includes the findings for a separate 
mathematical outcome: word problem solving, computation, or transfer of learning. Table 8 
below presents the results from the six studies that investigated the effects of using explicit 
strategies on improving word problem-solving outcomes with students with learning 
disabilities. Table 9 presents results of the three high-quality studies that looked at 
computation outcomes. Table 10 presents the results of the four studies that included a 
measure of generalization of training. All tables include the pooled effect size, tests for 
heterogeneity, and tests for statistical significance for the pooled effect size. The pooled 
effects reveal significant effects of explicit instruction on solving word problem solving 
(ES = 1.152), computation (ES = 1.285), and transfer (ES = 0.777).   
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Table 8: Studies That Investigate Explicit Strategies With Students With Learning 

Disabilities: Word Problem Outcomes 

Study Design Sample Duration/Content Contrast Measure Hedge’s g  

Standard 

Error 

Word Problem Outcomes 

Hutchinson, 

1993 
RCT 

20 LD students in 

Grades 8–10 from two 
junior high schools in 
suburban Vancouver, 

Canada 

40-minute sessions on 

alternate days for 4 
months/ Algebraic 
word problem solving 

(relational problems, 
proportion problems, 
& two-variable, two-

equation problems) 

Metacognitive 

and solution 
strategies vs. 
Regular resource 

class instruction 

Pooled B.C. 

Mathematics 
Achievement 
Test (ES = 

0.705), Q2 B.C. 
Achievement 
Test (ES = 

1.724) 

1.215 * 0.484 

Jitendra et 

al., 1998 
RCT 

34 students in Grades 

2–5 from four public-
schools in the U.S. 25 
students were classified 

as having mild 
disabilities (LD, 
educable mentally 

retarded, or seriously 
emotionally disturbed), 
and the remaining nine 

students had difficulty 
in math 

17–20 40–45-minute 

sessions/ Addition and 
subtraction word 
problems (including 

change, group, and 
compare problems) 

Explicit step-by-

step strategy vs. 
Traditional basal 
strategy 

Researcher 

designed word 
problem solving 
criterion test 

0.557 (ns) 0.342 

Milo et al., 
2005a 

Quasi 

36 LD students in three 
special primary schools. 
Average age of students 

was 9.10 years 

Two weekly lessons 
for half the year 
during regular math 

class/ Addition and 
subtraction 

Directing vs. 
Guiding 
instruction 

Addition and 
subtraction word 
problem test 

based on 
problems from 
the databank of 

the National 
Institute for 
Educational 

Measurement 

0.303 (ns) 0.447 

Owen & 

Fuchs, 
2002a 

Quasi 

24 third-grade students 

with IEPs from 14 
classrooms in six 

schools (20 students 
had LD, one had 
MMR, two had speech 
disorders, and one had 

ADHD) 

Six lessons/ Word 

problems that involve 
finding “halves” 

Full-dose 

acquisition and 
transfer vs. 

Traditional  

Researcher 

designed word 
problem solving 

test  

3.385 *** 0.888 

Wilson & 

Sindelar, 
1991b 

RCT 

62 LD students from 

nine elementary 
schools in a medium-

sized school district in 
northern Florida 

Fourteen 30-min 

lessons over 3 weeks/ 
Addition and 

subtraction word 
problems (four types 
of two- to three-

sentence problems) 

Strategy plus 

sequence vs. 
Sequence only 

Researcher 

designed word 
problem test 

0.782 ~ 0.470 

Xin et al., 

2005 
RCT 

22 middle school 

students in one school 
(18 students had LD, 
one had severe 

emotional disorders, 
and three were at-risk 
for math failure) 

12 1-hour sessions/ 

Multiplicative 
compare and 
proportion problems 

and mixed word 
problems 

Schema-based 

instruction (SBI) 
vs. General 
strategy 

instruction (GSI) 

Researcher 

designed word 
problem solving 
criterion test 

1.866 *** 0.497 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

14.754 5 0.011 66.110 

Pooled ES (five studies,  

five effect sizes) 1.152 *** 0.341 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 9: Studies That Investigate Explicit Strategies With Students With Learning 

Disabilities:  Computation Outcomes 

Study Design Sample Duration/Content Contrast Measure Hedge’s g 

Standard  

Error 

Computation Outcomes 

Schopman 

& Van Luit, 
1996 

Quasi 

60 students between 

the ages of 5 and 7 
attending schools 
for special 

education 
(primarily LD) who 
scored less than 

45% correct on a 
test for number 
sense (likely in the 

Netherlands) 

Thirteen lessons in 

3 months/ Preparatory 
arithmetic skills 
(number sense, 

counting skills, and 
Piagetian operations) 

Directing and 

guiding vs. 
Control 

Utrech test of 

number sense 
1.023 *** 0.286 

Tournaki, 

2003 
RCT 

42 LD second-grade 

students attending 
self contained 
special education 

classes in one 
school in New York 

Eight 15-minute 

sessions on consecutive 
school days/ Algebra 
(three problem types:  

relational problems, 
proportion problems, & 
two-variable, two-

equation problems) 

Strategy 

instruction vs. 
Drill and practice 

Researcher 

designed 
computation test 

1.612 *** 0.426 

Van Luit & 

Naglieri, 
1999a 

Quasi 

42 9–11-year-old 

LD students from 
two schools for 
special education in 

the Netherlands 

Three 45-minute 

sessions per week for 
17 weeks/ Multiplication 
and division problems 

MASTER 

program 
(Mathematics 
Strategy Training 

for Educational 
Remediation) vs. 
Standard 

instruction 

Researcher 

designed 
mathematics 
achievement test 

2.174 * 0.991 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.221 2 0.329 9.956 

Pooled ES (four studies,  

four effect sizes) 
1.285 *** 0.256 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
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Table 10: Studies That Investigate Explicit Strategies With Students With Learning 

Disabilities: Transfer Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Transfer Outcomes 

Jitendra et al., 

1998 
RCT 

34 students in Grades 

2–5 from four public-
schools in the U.S. 
25 students were 

classified as having 
mild disabilities (LD, 
educable mentally 

retarded, or seriously 
emotionally 
disturbed), and the 

remaining nine 
students had difficulty 
in math  

17–20 40–45-minute 

sessions/ Addition 
and subtraction word 
problems (including 

change, group, and 
compare problems) 

Explicit step-by-

step strategy vs. 
Traditional basal 
strategy 

Researcher 

designed 
generalization test 

1.010 ** 0.357 

Milo et al., 
2006a 

Quasi 

36 LD students in 
three special primary 

schools. Average age 
of students was 9.10 
years 

Two weekly lessons 
for half the year 

during regular math 
class/ Addition and 
subtraction 

Directing vs. 
Guiding 

instruction 

Researcher 
designed transfer 

test 

-0.073 (ns) 0.445 

Tournaki, 
2003 

RCT 

42 LD 2nd-grade 
students attending 

self contained 
special education 
classes in one school 

in New York 

Eight 15-minute 
sessions on 

consecutive school 
days/ Algebra (3 
problem types: 

relational problems, 
proportion problems, 
& two-variable, two-

equation problems) 

Strategy 
instruction vs. 

Drill and practice 

Researcher 
designed transfer 

test 

0.801 * 0.382 

Xin et al., 

2005 
RCT 

22 middle school 

students in one 
school (18 students 
had LD, one had 

severe emotional 
disorders, and three 
were at-risk for math 

failure) 

3–4 times per week, 

for a total of 12 
1-hour sessions/ 
Multiplicative 

compare and 
proportion problems 
and mixed word 

problems 

Schema-based 

instruction (SBI) 
vs. General 
strategy instruction 

(GSI) 

Researcher 

designed 
generalization test 

1.334 ** 0.467 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

5.496 3 0.139 45.416 

Pooled ES (four studies,  

four effect sizes) 
0.777 ** 0.277 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
From these results, one can infer that explicit instruction is an effective means for 

building performance in problem solving, computational proficiency, and ability to transfer 
from items on which students received training to items on which students had not received 
training, for students with LD.  

 
However, the number of high-quality studies is small, and one would not want to 

overgeneralize from a set of nine studies that, taken together, are limited by a restricted range of 
study characteristics. For example, many of the studies were of short or moderate duration. 
Although the set of studies represents a wide range of age levels (seven of the studies examine 
elementary schools, while two studies examined middle schools) there are a sparse number of 
studies for any given age level or any given mathematical topic. The studies reviewed almost 
exclusively used researcher-developed measures, which tend to yield higher effect sizes than 
norm-referenced measures of generalized mathematics proficiency (Swanson & Hoskyn, 1998).  



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-55 

1. The Evolving Nature of Explicit Systematic Strategy Instruction 

Nonetheless, the positive and significant pooled effect sizes for the studies that 
investigate the effect of explicit systematic instruction study results on word problems, 
computation, and transfer outcomes suggests that explicit systematic instruction is a desirable 
approach for at least some critical aspects of mathematics instruction for students with LD. 
The question becomes, what exactly is explicit systematic instruction? There is no easy 
answer to this question. In fact, like most educational labels, this term means very different 
things to different individuals. In addition, the nature of explicit systematic instruction has 
evolved over time. 

 
Probably the earliest use of this term (at least during the past four decades) was the 

pioneering work of Bereiter and Engelmann (1966) in providing preschoolers from low-income 
families with explicit systematic instruction in number concepts, counting, phonological 
awareness, and the more formal structure of the language used in school. By the 1980s, the 
external evaluation of Project Follow Through documented the success of this approach for 
teaching low-income students in the primary grades, particularly in the area of mathematics 
(Stebbins, St. Pierre, Proper, Anderson, & Cerva, 1977; Gersten & Carnine, 1984). As a result, 
many advocated the use of this approach, called direct instruction, in teaching mathematics to 
students with LD (e.g., Hallahan & Kauffman, 1986). In a 1998 meta-analysis, Swanson and 
Hoskyn (1998) concluded that the combination of direct instruction and strategy instruction 
was an effective approach for teaching students with LD in all academic areas.  

 
In the 1980s, direct instruction approaches began to incorporate principles gained 

from cognitive psychology and were increasingly referred to by the terms explicit instruction 
or explicit strategy instruction. In some cases, strategies were rather broad heuristics meant to 
teach students how to approach any type of mathematical problem (e.g., Montague, 1992). In 
other cases, the approach was heavily scripted and detailed precise steps students should take 
to solve a particular problem type. This latter approach has been criticized for its failure to 
help students understand underlying concepts and build flexible thinking (e.g., flexible use of 
a mental number line for estimation, and fluency with number properties such as the 
commutative and distributive laws; Woodward & Montague, 2002). However, others have 
argued that high degrees of explicitness and highly systematic instruction are critical for 
students with LD (e.g., Owen & Fuchs, 2002; Jitendra et al., 1998).  

 
Although the nature of explicit strategic instruction has evolved over time and can vary 

widely from study to study, there are a number of common features that define this approach. 
Generally, clear consistent modeling of step-by-step strategies through teacher explanation, 
modeling and demonstration; careful control of task difficulty; planful sequencing of teaching 
and practice examples; and specified procedures for providing corrective feedback characterize 
explicit systematic instruction. The studies reviewed here represent a range of approaches to 
providing explicit systematic instruction. However, all of them include most of the 
instructional features described above. In addition, this set of studies also demonstrates how 
explicit instruction has evolved over time to incorporate more innovative instructional features 
that support and encourage student interaction, flexibility, and generalization.  
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In Owen and Fuchs’ (2002) research on teaching problems involving fraction 
concepts, students were shown transfer problems in a careful sequence. Transfer problems 
referred to those with extraneous information, differing terminology from the practice items 
(e.g., the terms “one third” and “divide equally into three pieces”), and multistep problems 
that included one step involving manipulation of fractions. Students received clear feedback 
on their attempts to apply what they had learned in their practice sets onto the broader 
spectrum of problems and when they experienced problems, teachers demonstrated the 
underlying similarities to the previously taught problems.  

 
Van Luit and colleagues (1999) have developed a line of research for teaching 

students with LD that attempts to synthesize principles of explicit strategy instruction with 
advances in the understanding of the underlying nature of LD in mathematics (e.g., Geary, 
2005; Brown & Campione, 1990; Fuchs & Fuchs, 1998). The approach differs from earlier 
versions of direct instruction in several important ways. As in traditional models of direct or 
explicit instruction, students are taught in a quite explicit fashion one problem solving 
strategy at a time. As with Owen and Fuchs (2002) and Jitendra et al. (1998), teachers 
explicitly present a series of problem-solving steps to students and model several problems of 
this type for a small group of students. Students are taught multiple problem solving 
strategies and practice with an array of problems that use different types of syntax and 
different types of situations. Teachers actively encourage students to think aloud, to either 
walk through the steps in their strategy or articulate a reason for their decision to, for 
example, divide rather than multiply. Most of the intensive instruction is conducted in small 
groups. Teachers in Van Luit and Naglieri (1999), Jitendra et al. (1998), and Owen and 
Fuchs (2002) also used visual representations to teach problem solving. 

  
Tournaki (2003) used explicit instruction to help students with LD learn more 

sophisticated counting strategies. She capitalized on the important insight made by Siegler 
(1987) that a key milestone in beginning mathematics proficiency for children is the insight 
that to most effectively solve a simple addition problem, it is invariably easier to start 
counting from the larger number, rather than the first number. For 3 + 8, it is far more 
efficient to count 3 up from 8 than to begin with the 3 and “count up” 8. This insight requires 
students to have some grasp of the commutative law and also a reasonable sense of 
magnitude comparison—two essential components of number sense.   

 
The goal of this study was to examine whether the counting on strategy could be 

successfully taught to elementary students with LD. Instruction was quite clear and explicit. 
An example of the Strategy Instruction condition from Tournaki (2003, p. 458) is as follows: 

 
Q (Teacher): When I get a problem, what do I do? 

A (Desired student response, i.e., repeat of the rule): I read the problem: 

5 plus 3 equals how many. Then I find the smaller number.  

 

Teacher points to the smaller number and says, 3. Now I count the fingers. 

Q (Teacher): So how many fingers am I going to count? 

A (Desired student response): 3.  
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After a few problems, the teacher had students solve problems while thinking aloud, 
i.e., repeating the steps and asking themselves the questions. Teachers always provided clear, 
immediate feedback when students made errors. 

 
Note how closely this approach aligns to the depiction of explicit instruction 

presented earlier. Yet note how the target goal is to intentionally propel students into use of a 
more sophisticated counting strategy than just adding two numbers together, based on the 
finding from cognitive psychology (Siegler & Shrager, 1984; Geary, 1993) that students with 
LD tend to solve a problem such as 3 + 8 by starting at 3 and counting “up” 8 objects, 
whereas nondisabled students quickly learn that since 3 + 8 is the same as 8 + 3, it is much 
more efficient to start with 8 and count up 3 more objects.  

 
An interesting pattern emerges in the research of Tournaki (2003) on explicitly teaching 

students to use the counting on strategy. There is a significant impact on the immediate 
computation posttest (ES = 1.612). In other words, students with LD do better when taught a 
strategy than when they are simply given a set of addition problems and told to do them as fast 
as they can. However, the significant effect measured by the transfer test (ES = 0.801) indicates 
that strategy-based approaches that teach students about number families and number bonds 
pay dividends in terms of other important areas of mathematics such as estimation.  

 

2. Contemporary Adjustments to Explicit Strategy Instruction   

There are several additional important characteristics of most contemporary 
approaches to explicit strategy instruction. Van Luit and Naglieri (1999) provide a concise 
description. In their view, strategy instruction is when “students are taught to flexibly apply a 
small repertoire of strategies that reflect the processes most frequently evidenced by skilled 
students” (p. 99). They also stress the importance of a good deal of small group interaction in 
which students are encouraged and prompted to think aloud as they do mathematics, and 
peers provide feedback on their strategy selection and execution. 

 
Van Luit and Naglieri (1999) began instruction with use of concrete objects but then 

expeditiously moved into mental solutions that entailed a good deal of thinking aloud. The final 
phase of each instructional cycle included a “phase of control, shortening, automization and 
generalization” (p. 101). What is similar between these two methods is that transfer and practice 
for automaticity are not assumed. Nor are students expected to develop these proficiencies by 
doing homework problems or by informal discussions with peers. Significant blocks of 
instructional time are dedicated to these goals, and teachers closely monitor student progress 
toward independent performance. Whereas the goal of automaticity and clear, explicit modeling 
remains central, teaching students how to transfer the knowledge they obtained is a major focus, 
and is characteristic of the more contemporary explicit strategy instruction studies.  

 
Another strand in this research seems particularly relevant for students with LD who 

struggle with story problems. In related streams of research, Hutchinson (1993), Jitendra et 
al. (1998) and Xin et al. (2005) taught students in a systematic fashion a graphic 
representation to help them analyze the contents of a story problem. The three studies have 
addressed a) simple arithmetic word problems involving addition and subtraction (“change, 
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combine, compare” following the Riley, Greeno, and Heller (1983) representational system) 
b) comparative problems involving multiplication (Xin et al., 2005), and c) word problems 
that typically are taught in beginning algebra. 

 
The goal is to help students grasp the nature of word problems that involve an 

operation (either addition or multiplication of whole numbers) and its inverse operation. 
Rather than focusing on tricks such as “key words” students learn to use a visual 
representation to analyze the question and then discern how to handle relevant information. 
Exposure to all aspects of each of the problem types is deliberate and explicit. Practice is 
extensive, including opportunities for students to think aloud as they complete their graphic 
organizers. The instructor carefully highlights the key aspects of each problem type and 
provides a good deal of discrimination practice. Figure 1 below is an example of the graphic 
representation used to teach students a way to analyze multiplication problems involving 
comparisons (Xin, Jitendra, & Deatline-Buchman, 2005, p. 185).  

 
Figure 2: General Problem-Solving Steps Employed in the Schema-Based Instruction 

and General Strategy Instruction Conditions 

 

Source: Xin et al., 2005, p. 185. 

 
Upon examining the full array of studies, one is struck by several features. The first is 

that all these studies address topics that are particularly problematic for students with LD, 

particularly those with difficulties in both mathematics and reading (Jordan, Hanich, & 
Kaplan, 2003). The second is that the pooled effects on word problems, computation, and 
transfer outcomes are all significant. The third is that the instructional strategies in the 
interventions do borrow from both the mathematics education research and the cognitive 
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development research in mathematics. This seems an advance over the very general 
heuristics that comprised much of the mathematics intervention research in the special 
education literature 15 to 20 years ago. Those generic strategies were often borrowed from 
the research on reading comprehension or writing, and failed to capitalize on the advances 
made in research on the teaching and learning of mathematics. In fact, Xin et al. (2005) 
intentionally used the older, generic problem solving approach as the control group condition 
and found large effects favoring the more innovative approach for helping students 
understand the mathematical nature of the story problem. 

 
Because in explicit strategy instruction students are invariably taught how to 

approach the problem type or types and are usually given precise wording to use as they 
think aloud, development of mathematical insight rarely plays a role in the design of the 
interventions (with the possible exception of Van Luit and Naglieri, 1999, in which multiple 
strategies are highlighted, potentially allowing such insights to develop). Therefore, there is 
not much known about the extent to which explicit instruction helps support students in 
developing such insights or understandings since proficiency and conceptual knowledge are 
always related in an integral fashion (Rittle-Johnson, Siegler, & Alibali, 2001).  

 
In summary, this body of research on explicit instruction suggests that the field has 

made reasonable strides in understanding at least one type of intensive mathematics 
instruction that will help students with LD become more proficient in solving relatively basic 
grade level word problems and at least make some gains toward understanding how to 
translate stories or written problems into appropriate symbols, representations, and 
mathematical expressions. 

 
This approach for providing explicit systematic instruction should also help inform the 

development and implementation of the type of preventative small group interventions that are 
increasingly used to help students who are struggling to acquire proficiency in mathematics in 
general classroom instruction. Preventative small group interventions provide students, who are 
identified as struggling in the Tier 1 core curriculum, with specific skill instruction in small 
groups. A major goal of preventative small group interventions is that they will reduce 
inappropriate referrals to special education, because if students benefit from a relatively low 
cost small group mathematics intervention in their general classroom, they are unlikely to 
require the intensive instruction that special education is intended to provide.  
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3. Studies Evaluating the Impact of Explicit Instruction for 

Low-Achieving Students 

As described earlier, explicit instruction requires the teacher to be the provider of 
knowledge and to provide a great deal of structure and control concerning how content is 
learned, including the specific strategies or steps used by the children to solve the problems. 
Table 11 summarizes the results from the studies that investigated the effects of various 
strategies on the math achievement of low-achieving students. The four studies that 
investigated explicit instruction as a means for teaching low-achieving students are: Darch, 
Carnine, and Gersten (1984); Kroesbergen, Van Luit, and Maas (2004); Moore and Carnine 
(1989); and Woodward and Brown (2006). All but one of the effect sizes for the explicit 
instruction studies (i.e., Woodward & Brown, 2006) are significant.2 

 
Table 11: Studies That Investigate the Effects of Various Instructional Strategies on 

Math Achievement for Low-Achieving Students 

Study Design Sample 

Duration/ 

Content Contrast Measure Hedge’s g 

Standard  

Error 

Darch et al., 
1984 

RCT 

73 low-achieving  
fourth-grade 

students in one 
school  

Eleven 30-minute 
lessons/ Math story 

problems 

Explicit Method 
with Fixed Time vs. 

Basal Instruction 
with Fixed Time 

Researcher 
designed 

word 
problem test 

1.914 *** 0.408 

Pooled 

computation 
measures 
(includes two 

tests) 

0.441 ** 0.179 

Pooled fact 

fluency 
measures 
(includes two 

tests) 

0.180 (ns) 0.177 
Fuchs et al., 

2005 
RCT 

139 first-grade 

students at risk for 
the development of 
math difficulty in 41 

classrooms in 10 
schools 

48 sessions, 3 times 

weekly for 16 
weeks/ Identifying 
numbers, more and 

less, addition and 
subtraction 

Tutoring based on 

CRA vs. No 
Tutoring 

Pooled 

conceptual 
and 
application 

measures 
(includes 
three tests) 

0.414 * 0.179 

Kroesbergen et 
al., 2004 

RCT 

265 students aged  
8–11 years old from 

13 general and 11 
special elementary 
schools for students 

with learning and/or 
behavioral disorders 
in the Netherlands 

Thirty 30-minute 
lessons, twice 

weekly, over 4 to 5 
months/ 
Multiplication 

Explicit vs. 
Traditional 

Instruction 

Pooled 
Problem 

Solving 
Measures 

0.569 * 0.262 

Continued on p. 6-61 

                                                             
2 An obvious outlier that was not included in the table was Cardelle-Elawar’s (1995) study.  The effect size was 

equivalent, for example, to the average control classroom being at the 3rd percentile and the average 
experimental classroom being at approximately the 84th percentile. The effect size for that study is 

extraordinarily large. This may, in part be due to the fact that the unit of analysis was the classroom, not the 

individual child. Effect sizes are larger when analysis is based on means of classrooms because individual 

differences among children within classrooms are minimized. However, there are likely to be other factors 

relating to the alignment of test to the intervention that lead to the study’s extraordinary high effect size. 
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Table 11, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Hedge’s g 

Standard  

Error 

Moore & 

Carnine, 1989 
RCT 

29 students in 

Grades 9–11 from 
three math classes 
for low-performing 

students in a high 
school in a medium-
sized city in the 

Northwest 

Twenty 50-minute 

lessons/ Ratio and 
proportion word 
problems 

ATCD (Active 

teaching with 
empirically 
validated curriculum 

design) vs. ATB 
(Active training 
with basals) 

Researcher 

designed 
criterion 
referenced 

test to assess 
student 
mastery of 

specific 
mathematics 
skills 

0.994 ** 0.386 

Pasnak et al., 
1991a 

RCT 

85 low-performing 
students from 17 

Kindergarten classes 
in six neighboring 
Northern Virginia 

schools 

3–4 sessions per 
week over three 

months/ Introductory 
mathematical 
concepts 

Piacceleration vs. 
Control 

SESAT math 
subtest 

0.520 (ns) 0.348 

Thackwray et 

al., 1985 
RCT 

60 third- and fourth-

grade children with 
teacher perceived 
academic problems 

from three urban 
public schools 

Four 45-minute 

sessions/Addition 

Specific self 

instruction vs. 
Didactic 

Pooled math 

quiz (ES = 
0.501) and 
Peabody 

Individual 
Achievement 
Test (ES = 

0.780) 

0.641 * 0.325 

Woodward & 

Baxter, 1997b 
RCT 

38 low-achieving 

third-grade students 
in nine classes in 
three schools located 

in the Pacific 
Northwest 

One school year/ 

Third grade math 

Everyday 

Mathematics vs. 
Heath Mathematics 
Program 

ITBS 

including 
computation 
(ES = -0.176), 

concepts 
(ES =0.199), 
and problem 

solving skills 
(ES = -0.085) 
subtests 

-0.223 (ns) 0.635 

Woodward & 

Brown, 2006b 
Quasi 

53 students in two 

middle schools in 
nearby medium-
sized suburban 
school districts. 

Students had been 
identified as low-
achieving in 

mathematics by 
elementary school 
teachers. No student 

had an IEP for 
mathematics 

One school year/ 

Both curricula 
emphasized core 
NCTM strands: 
numbers, operations, 

measurement, 
geometry, data 
analysis and 

probability 

Transitional Math 

Curriculum vs. 
Connected Math 
Program 

Pooled 

standardized 
(ES = 0.797) 
and 
researcher 

developed 
test (ES = 
1.435) 

1.116 (ns) 0.688 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 

 
Two of the studies (Darch et al., 1984; Moore & Carnine, 1989) used a highly explicit 

approach based on the Direct Instruction model articulated by Silbert, Carnine, and Stein 
(1989) and Engelmann and Carnine (1982). This is a traditional approach to explicit 
instruction, which has been widely used in the field of special education with students with 
LD, especially in the 1980s and early 1990s. With direct instruction, teachers model how to 
solve a specific problem type, and spell out the necessary steps. Students learn the steps and 
through careful sequences of examples, practice solving problems in the precise fashion that 
they were taught. Another one of the studies, Kroesbergen et al. (2004) also employed a 
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highly explicit instructional approach. That is, students (8–11 years old) were instructed via 
directions and modeling by their teacher how and when to apply specific strategies for 
solving multiplication computation problems. Students were directed to only use the strategy 
taught by the teacher. Although highly explicit instruction has been shown to lead to 
enhanced academic outcomes for students with learning disabilities, and other students 
considered at risk for experiencing difficulties in mathematics (e.g., Gersten & Carnine, 
1984; Baker, Gersten, & Lee, 2002) some have questioned the extent to which students 
actually learn the underlying rationale behind the strategies that are explicitly taught (e.g., 
Woodward & Howard, 1994; Woodward & Montague, 2002).   

 
The two studies (Kroesbergen et al., 2004; Woodward & Brown, 2006) could be 

characterized as teaching students a variety of heuristics for problem solving but with 
significant segments of instruction following the highly explicit nature of classic direct 
instruction. In fact, one of the goals in the framing of some of the research studies we discuss 
below is an attempt to ponder and define the nature of explicit instruction for low-achieving 
students. Their thinking is helpful in beginning to unpack this construct. 

 
Woodward and Brown (2006) found that despite statements by the National Council 

of Teachers of Mathematics (NCTM) (2000) indicating that students experiencing difficulties 
in mathematics benefit from a challenging curriculum, they could not locate any research to 
support this claim. They note, “In-depth examinations of this population indicate that without 
substantive modifications, these students do not exhibit high levels of success on either 
academic measures or everyday activities” (e.g., Baxter, Woodward, Wong & Voorhies, 
2002; Woodward & Baxter, 1997, p. 151). Their analysis of the relevant research, with which 
we concur, notes that effective components of instruction for low-achieving students in 
mathematics supports the use of both concrete and visual representations of concepts, 
carefully orchestrated practice activities with feedback on all aspects of mathematics and 
high, but reasonable, expectations.   

 
Woodward and Brown (2006) evaluated an intervention, written by Woodward, 

called Transitional Mathematics, and attempted to put these components into practice in six 
intensive, remedial middle school classrooms. The curriculum included numerous visual 
models for representing mathematical procedures in a meaningful way. They present, for 
example, difficult concepts such as place value in three-digit addition by both using a written 
algorithm and a visual model that depicts the algorithm. Regrouping was taught via 
systematic use of expanded algorithms as well as visual models of the expanded algorithm. 
Practice on relevant mathematics facts, and factoring was part of each daily lesson. The 
teacher explicitly introduced the concepts, and worked problems with the group that 
exemplified the concept before students broke into pairs. Because of the reading difficulties 
of many of the students, the teacher most often read the problem to the students. Guided 
practice consisted of approximately five problems worked on by students and reviewed with 
the teacher. This part of the lesson also included a good deal of checking for understanding 
(Good & Grouws, 1977) and attempts to explore any student misconceptions. Practice was 
typically done in pairs and included opportunities for students to explain their reasoning to 
each other and with the class. Students in the comparison classroom were taught using the 
Connected Mathematics Program, a commonly used middle school curriculum. Woodward 
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and Brown characterize this as follows: The core emphasis of this program is problem 
solving, and students typically read descriptions of problems as part of each lesson. 
Connected Mathematics is much more contextualized in elaborate “real-world” problems, 
and has a more peripheral attention to skill development, in contrast with Transitional 
Mathematics that integrates the latter with distributed practice. This quasi-experimental study 
involved two schools, one the intervention school and one the comparison school—no 
mention was made concerning how schools were designated. 

 
Regarding differences in achievement between groups, the effect size on the Terra 

Nova, a standardized mathematics achievement test was not significant but indicative that the 
Transitional Mathematics treatment is a promising approach (ES = 1.116). Note how this 
study, like the others in the explicit instruction set also includes an array of other practices 
deemed to be beneficial—use of guided practice, intensive use of visual models so that 
students can represent problems in multiple ways (Donovan & Bransford, 2005), clear and 
explicit instruction in use of the concepts and provision of heuristics for problem solving.  

 
Kroesbergen et al. (2004) and Darch, Carnine, and Gersten (1984) used an approach 

that was even more explicit than the Woodward and Brown (2006) model. In these studies, 
teachers modeled an approach for solving problems and students were expected to follow the 
teachers’ model. Teachers did explain when the strategy was appropriate, and provided 
examples of occasions when it was not appropriate. In both cases, the degree of structure was 
higher than in Woodward and Brown (2006) and students were not given a chance to talk 
through their approach for solving the problem with a partner or the teacher. Both studies 
(Kroesbergen et al. and Darch, Carnine, & Gersten) demonstrated significant effects on 
researcher-developed measures that were aligned with curricula taught, favoring the explicit 
instruction groups. In the Kroesbergen et al. (2004) study, the effect size in the area of word 
problems involving multiplication was significant (ES = 0.569) and in Darch, Carnine, and 
Gersten (1984) there was also a significant effect size in the area of word problems (ES = 
1.914) that cut across all four basic arithmetic operations.   

 
Moore and Carnine (1989) explored the degree of explicitness within the context of 

highly interactive, teacher-directed instruction. In this study, high school students were 
taught how to solve ratio and proportion problems. Whereas control group students were 
taught to ask themselves “Is this information important?” students in the experimental 
condition were taught in a much more step-by-step fashion and were taught strategies for 
each of four types of problem sets. For this study, the effect size was significant (ES = 0.994) 
on a test of mastery of specific skills. However, one must take into account that this study 
measured only the topic covered, in contrast to Woodward and Brown (2006), which 
measured all aspects of mathematics covered in a typical school year.  
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F. Other Approaches for Teaching Students With  

Learning Disabilities 

This next section addresses other instructional approaches for teaching mathematics 
to students with LD. The findings are organized by three major themes:  

 
• Selection of examples to foster development of more sophisticated strategies for 

quick retrieval of basic arithmetic facts 
• Emphasis on visual representation 
• Emphasis on encouraging students to think aloud 

 
It is interesting to note that virtually all of the studies in these categories also have at 

least a reasonably strong degree of explicitness in the design of their instruction—a feature 
that is consistent across the body of studies reviewed for this section.  

 

1. Strategies for Quick Retrieval of Basic Arithmetic Facts 

Quick retrieval of basic arithmetic facts or combinations has been assumed by 
virtually the entire mathematics education community as critical for success in more 
advanced mathematics. It is considered a necessary, though not a sufficient requirement for 
emerging mathematical competence. Researchers in the field of LD have found for several 
decades that slow and inaccurate retrieval of basic combinations is a clear, consistent early 
indicator of persistent serious difficulties in mathematics (Gersten, Jordan, & Flojo, 2005; 
Geary, 2005; Jordan, Hanich, & Kaplan, 2003; Goldman & Pellegrino, 1987; Hasselbring, 
Goin, & Bransford, 1988).  

 
Two studies with students with LD were included in this classification, and are 

summarized in Table 12. Beirne-Smith (1991) attempted to examine whether sequencing of 
examples could enhance facility with basic addition combinations for students with LD. She 
used an array of facts developed by Carnine and Stein (1981) that was geared toward helping 
students see that to compute, for example, 8 + 2, all they needed to do was count up by 2. 
Examples of the array are 2 + 4, 2 + 5, and 2 + 6. The impact of the sequence did not lead to 
significant improvement over simple rote practice. 
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Table 12: Studies That Investigate the Use Of Strategies With Students With Learning 

Disabilities to Develop the Ability to Quickly Retrieve Arithmetic Facts 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s 

g 

Standard  

Error 

Beirne-
Smith, 1991 

RCT 

30 students with LD aged 6 to 
10 years old from four schools 

in two adjacent southeastern 

school districts were tutored. 

20 students with no learning 
disabilities in Grades 3–6 

served as tutors 

30-minute tutoring 
sessions for four 

weeks/ Single-digit 

addition facts 

Counting-on 
procedure 

vs. Rote 

memorization 

Oral test on 
addition facts 

0.165 (ns) 0.448 

Woodward, 

2006 
RCT 

15 fourth-grade LD students 

from two “mainstreamed” 
classrooms in a school in a 

suburban school district in 

the Pacific Northwest 

20 25-minute 

sessions daily 
over four 

consecutive weeks/ 

Multiplication facts 

Strategy and 

timed practice 
vs. Time 

practice via 

direct 

instruction 

Pooled 

researcher 
designed 

computation 

measures 

0.377 (ns) 0.509 

~ p < .10, * p < .05, ** p < .01, *** p < .001 

 
Woodward (2006) extended this line of research to much more complex multiplication 

combinations, which require many students to rely on some variant of multiplication tables and 
sheer rote practice. He developed an intervention containing two components. The first 
involved explicit instruction in an array of strategies that can help with quick retrieval of 
multiplication combinations. These included numerous shortcuts based on properties of 
numbers. One is counting backward for combinations of 9, i.e., knowing that 8  9 achieves 
the same answer as 8  10 - 8. Another is use of the distributive law, e.g., 37  5 equates to the 
same product 35  5 plus 2  5 An advantage of this strategy’s approach is that students could 
not only learn more efficient ways to compute these multiplication facts but also develop their 
facility with using properties of numbers to solve problems. 

 
However, Woodward (2006) noted that strategy instruction will not, in and of itself, 

promote quick retrieval of mathematical combinations for all students with LD (see 
Hasselbring, Goin, & Bransford, 1988). He therefore combined the strategy instruction and 
practice with timed practice drills. He compared students taught with a combined strategy 
instruction and timed practice approach to students taught only with timed practice. 

 
Results were positive favoring the strategy group and nonsignificant. However, given 

the small sample size, and inconsistent findings across mathematics domains, one can only 
infer that this approach—or aspects of this approach—might be worth exploring in terms of 
development of more fluent retrieval as well as in helping students understand more about 
number families and increasing their ability to estimate. However, the set of studies on 
building fluency in computing mentally or retrieving arithmetic combinations indicates that 
there is a good deal more to be learned about how to improve students’ proficiency in this 
critical area. 
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2. Use of Visual Representations, Visualization, and the Concrete-

Representation-Abstract Approach  

Adding It Up, the 2001 National Research Council report on the teaching of 
mathematics, eloquently describes the role of representations in the teaching and learning of 
mathematics, a role that has not always been adequately highlighted until recently in the 
instructional research on LD. 

 
Mathematics requires representations. In fact, because of the abstract nature of 
mathematics, people have access to mathematical ideas only through the 
representations of those ideas. … Much of the real intellectual work in 

mathematics concerns the interpretation and use of representations of 

mathematical ideas (pp. 94–95, emphasis added).  
 
The authors explain that mathematical ideas are often metaphorical, and thus, a 

representation or multiple representations are excellent means for conveying mathematical 
ideas. This section summarizes a set of five recent studies on the role of visual representations 
as a key means for teaching mathematical ideas, strategies, and procedures to students with 
LD. Each researcher approaches the use of representations somewhat differently.  

 
Table 13 presents information on each of the studies, as well as the outcomes of the 

studies. Because the instructional approaches are so different, the Task Group did not pool 
effect sizes across the set of studies. However, taken together, these approaches reflect a 
trend toward serious thinking about instructional uses of representations that include physical 
models using manipulatives, pictorial representations, abstract representations using 
geometric shapes, as well as increasingly abstract representations, such as number lines and 
graphs of functions and relationships. It should be noted, however, that the effect sizes across 
studies are quite variable.  
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Table 13: Studies That Investigate the Use of Concrete Instruction and Visual 

Representations Used for Students With Learning Disabilities 

Study Design Sample Duration/Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Butler et al., 
2003a 

RCT 

50 students in Grades 
6–8 with mild–

moderate disabilities 
(42 students with 
specific learning 

disabilities in math 
and eight with other 
disabilities) from a 

public middle school 
located in a large 
urban area of the 

Southwest 

Ten 45-minute 
lessons/ Fraction 

concepts and 
procedures 

Concrete-
representational-

abstract (CRA) vs. 
Representational-
abstract (RA)  

Area Fractions, Quantity 
Fractions, and Improper 

Fractions subtests 
provided measures of 
conceptual understanding 

of fraction equivalency 
and Abstract Fractions 
and Word Problems 

subtest provided a 
measure of application 

-0.095 (ns) 0.526 

Immediate Posttests - 

Addition and subtraction 
computation skills tests 

-0.043 (ns) 0.477 

1 week follow-up tests 0.076 (ns) 0.477 

Manalo et al., 

2000—
Experiment 1 

RCT 

29 From three 

students (equivalent 
to eighth grade) with 
learning disabilities 

from two schools in 
the Palmerston North 
area of New Zealand 

Five 25-minute 

sessions twice per 
week/ Addition and 
subtraction 

Process mnemonics 

vs. Demonstration 
imitation 

6 week follow-up tests 0.956 ~ 0.506 

Immediate Posttests - 
Addition, subtraction, 

multiplication, and 
division computation 
skills tests 

-0.153 (ns) 0.475 

1 week follow-up tests 0.180 (ns) 0.472 

Manalo et al., 
2000—

Experiment 2 

RCT 

28 From three 
students (equivalent 

to eighth grade) with 
learning disabilities 
from two schools in 

Auckland, New 
Zealand  

Ten 25-minute 
sessions twice per 

week/ Addition, 
subtraction, 
multiplication, and 

division 

Process mnemonics 
vs. Demonstration 

imitation 

8 week follow-up tests 1.876 ** 0.579 

Walker & 
Poteet, 1989a 

RCT 

70 sixth- and eighth-
grade LD students 
receiving mathematics 

instruction in resource 
room programs in four 
Indiana school districts 

Seventeen 30-
minute lesson/ 
Problem solving 

strategies for 
simple word 
problems involving 

addition and 
subtraction 

Instruction using 
diagrammatic 
representations vs. 

Traditional 
instruction 

One-step story problem-
solving test 

0.349 (ns) 0.330 

Witzel et al., 
2003a 

RCT 

34 matched pairs of 
sixth- and seventh-
grade students with 

learning disabilities or 
at-risk for difficulties 
in math (41 LD 

students and 27 at-
risk) in 12 inclusive 
classrooms in an 

urban county in the 
Southeast  

Nineteen 50-
minute lessons/ 
Algebraic 

transformation 
equations 

Concrete-
representational-
abstract (CRA) vs. 

Abstract 

Algebra transformation 
equations test  

0.826 * 0.346 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
The intriguing set of two experiments by Manalo and colleagues (2000) examines the 

use of easy-to-imagine visual stories and schema to help students remember rules, principles, 
and procedures. These studies address a potentially important issue in the practice of teaching 
mathematics: how to provide prompts or facilitators to help students create visual 
representations. In this study, explicit teacher-directed instruction (modeling followed by 
guided practice with clear feedback) is a constant. The variable is visualization. 
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Manalo et al. (2000) adapted an approach from a Japanese educator, Nakane. The 
goal of this approach is to “summarize the organization and the process of problem solving 
… using familiar metaphors expressed in familiar ways” (p. 138) and thus to teach 
mathematical operations in a clear, comprehensible fashion. The goal of the researcher was 
to present mathematical problems as interesting, easy to visualize narratives that would 
engage the students, and thus enhance their interest in the process, their memory of the 
procedures taught, and the questions that children must ask themselves before deciding on a 
strategy for solving a problem. 

 
For Study 1, the topic was basic arithmetic computation problems; all participants were 

screened to ensure that they were not proficient in use of standard algorithms for multidigit 
operations involving regrouping, even though they had been taught this material before, often 
many times before. Numbers were presented as characters and operations as stories. For 
example, to teach subtraction, students were asked to visualize warriors with numbers on their 
uniforms, and to visualize that the bigger the number on the uniform, the stronger the warrior. 
The teacher used simple drawings to demonstrate the procedure or story. For subtraction, the 
top number represented the attackers and the bottom numbers the defenders, and students were 
told that the attackers weakened during the battle. The number on the uniform of a defender 
told a student how much strength was sapped from the warrior. In cases involving regrouping 
(e.g., 33-5), students were told that for example, a warrior with strength of 3 would not have 
adequate strength to sustain a battle with a defender with strength of 5. Thus, the army would 
need to regroup and borrow some strength from the warrior with strength of 30. The teacher 
used pictures to demonstrate the process of regrouping. 

 
Similar stories were developed for multiplication and division. The approach used to 

teach students in both the experimental and control conditions was a combination of model-
demonstration with guided practice and feedback. Two experiments were conducted. The first 
entailed the researcher as the teacher; the second used two different teachers. For both studies, 
the pattern of findings was similar. No significant effects were found on the immediate posttest 
or a test administered one week later. Yet, on the six-week and eight-week follow-up tests, the 
effect for Experiment 1 (in which the researcher did all the teaching) was 0.956, which 
bordered on statistical significance, and for Experiment 2, which used teachers other than the 
researcher, the effect was larger and statistically significant (effect size = 1.876). 

  
Given the problems with maintenance of knowledge for many students with LD, 

these results seem worth noting. The use of consistent visual representations and stories to 
help students think through their decisions about appropriate computational processes is an 
important fact to note. One wonders about its impact on helping students with LD translate 
more complex mathematical problems and work with more complex mathematical concepts. 
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3. Visual Representations and Helping Students Understand Visual 

Representations by Use of the Concrete-Representational-Abstract 

(CRA) Method 

Two of the studies in this section (Butler et al., 2003; Witzel et al., 2003) examine the 
use of concrete-representational-abstract (CRA) instruction for students with learning 
disabilities. This sequence of instruction begins at a concrete level, with students 
manipulating objects. Once students understand a topic concretely, they work with the topic 
using visual representations. Once the students are comfortable with how the topic can be 
represented in multiple ways, they work with the concepts at a more abstract level. The 
Walker and Poteet study (1989–1990) are also included in this section because their work can 
be seen as a precursor to the more complex CRA model.  

 
In the earliest study in this subcategory, Walker and Poteet (1989–1990) compared a 

diagramming method of problem solving with a keyword approach. Subjects were middle school 
students with LD. In both conditions in this study, explicit instruction was a constant and not a 
variable. The experimental variable using a visual representation to help students organize 
information from one- and two-step story problems involving basic addition and subtraction, then 
to translating the pictures into numerical expressions, and ultimately to computing the answer. 

 
Although this skill seems exceptionally easy for middle school students, poor 

performance on word problems is prevalent with this group. In fact, on the pretest, the 
average score for students was equivalent to 16.43 correct (out of 32 possible problems, 
51.34% correct). Students in the diagramming group were taught to create diagrams that bear 
similarity to those used by Xin et al. (2005) and Jitendra et al. (1998). Finally, students were 
asked to compute the actual solution. The comparison group was taught to identify keywords 
in the problem that could then be directly translated to specific numerical operations. Despite 
not reaching statistical significance, the effect size (0.349) suggests that, given the difficulty 
that students with LD have in developing proficiency in this area; the approach could well be 
labeled promising.  

 
Butler et al. (2003) used the CRA to teach middle school students with LD basic 

concepts and procedures involving fractions. The topics included concepts and procedures 
related to equivalence of fractions and computations involving fractions. The authors note that 
researchers (e.g., Woodward & Montague, 2002) have suggested that many students with LD 
lack any real understanding of the concepts underlying various procedures that they can 
perform and that these problems truly surface once students begin to work with rational 
number concepts and operations. In this study, as in Walker and Poteet (1989–1990), the 
instructional methodology was similar for experimental and control students in that explicit 
instruction was used in both conditions. The major difference was that CRA students spent 
three days working with concrete objects, three days with visual representations, and only then 
moved on to abstract, symbolic notation. The control condition began with visual 
representations for three days. Major emphasis in both conditions was placed on fractions as 
part of a set, as opposed to fractions as area. As one can see in the first study in Table 13, the 
effect size for this method was nonsignificant. Thus, the CRA intervention implemented in this 
study was not more effective than the control condition in teaching fractions to middle school 
students with LD.  
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The other CRA study, Witzel et al. (2003), also conducted with middle school students, 
differs in several important ways from Butler et al. (2003). The first is that the topic was a more 
difficult one, algebraic transformation equations. The second is that the researchers used CRA 
quite differently. For example, Witzel et al. progressed more fluidly from concrete, to visual, to 
abstract. The third difference is that, in this case, a researcher-developed measure was used 
rather than the standardized measure used by Butler et al. Finally, as can be seen in the last 
study in Table 13, effect size (ES = 0.826) is statistically significant. 

 
The authors note that because of the abstract nature of algebra, building a 

mathematically accurate concrete representation is much more of a struggle. Figure 3 presents 
an example of the instructional materials used and how the researchers grappled with 
representation of a variable (x) with concrete objects when x can represent any real number 
(Witzel et al., 2003, p. 127).   

 
Figure 3: Concrete, Representational, and Abstract Examples of an Inverse Operation 

 

Source: Witzel et al., p. 127. 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-71 

G. Strategies That Encourage Students to Think Aloud 

The Task Group identified two studies that examined strategies that encouraged 
students with LD to think aloud (Ross & Braydon, 1991; Schunk & Cox, 1986). Table 14 
below summarizes characteristics for the two studies, and presents the effect sizes.   

 
Table 14: Studies That Investigate the Impact of Think Aloud Strategies With Students 

with Learning Disabilities 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s 

g 

Standard  

Error 

Ross & 

Braden, 

1991
a
 

RCT 

94 elementary school 

students with LD in nine 

intact special education 

resource rooms 
classified as learning 

disabled in math 

Nineteen 60-minute 

sessions over four 

weeks/ Addition 

and subtraction 

Cognitive 

behavior therapy 

in which students 

are instructed to 
talk aloud vs. 

Direct instruction  

Stanford Diagnostic 

Mathematics Test - 

computations 
0.135 (ns) 0.434 

Schunk 

& Cox, 

1986  
RCT 

90 students classified 

with LD in math from 

six middle schools 

Six 45-minute 

sessions/ 

Subtraction with 

regrouping 

Continuous 

verbalization vs. 

No verbalization  
Subtraction test 1.005 *** 0.271 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a 
Data were adjusted for clustering that occurred within classrooms. 

 
As previously mentioned, asking students to think aloud was a major component in 

many of the explicit instruction studies. What differentiates these two studies from those in 
the explicit instruction set (e.g., Manalo, 2000; Tournaki, 2003) is that in these studies, 
verbalization was the sole independent variable. In contrast, in the other explicit instruction 
studies, students thinking aloud was but one of several instructional components. Thus, these 
two studies suggest that: encouraging students to think aloud as they work on arithmetic 
problems shows promise as one component of a mathematics intervention. 

 
Both of these studies were influenced, to some extent, by the research of Donald 

Meichenbaum (1985), which suggested that students with learning disabilities, behavior 
disorders and, in all likelihood attention deficit disorders, could be helped in many areas of 
both academic and social development by being taught to verbalize. The Meichenbaum 
approach targets one of the key characteristics of students with LD—Geary’s (2005) concept 
of impulsivity and Kolligian and Sternberg’s (1987) concept of lack of task persistence. By 
actively encouraging students to speak to themselves about the strategies they are using to 
solve a problem, the researchers felt that students would be inhibited from quickly, almost 
recklessly proceeding forward without serious thought. In addition, the focus on active 
encouragement of thinking aloud is integrally linked to Vygotsky’s notion that thought is 
inner speech, and that students may well need to go through a period of actually thinking out 
loud, especially those students with learning difficulties.  

 
Schunk and Cox (1986) examined the effectiveness of verbalizing the steps of 

problem solving with middle school students with LD working two- to six-column 
subtraction problems with and without regrouping. As in the Tournaki study, the teacher in 
the treatment group talked through the steps of solving the subtraction problem and then 
students worked several problems while verbalizing the steps.  
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Students in the comparison group learned the same procedures but were in no way 
encouraged to verbalize during problem solving. This study is different from both the 
Friedman (1992) and Lambert (1996) studies in that students were solving computation 
problems not word problems, although some of the computations were rather complex. A 
statistically significant effect size of 1.005 was found on a subtraction computation test that 
was closely aligned to the types of problems used during instruction. Effects were modest 
and not statistically significant for the Ross and Braden (1991) study (ES = 0.135), although 
this could be due to the fact that the measure lacked the tight alignment to the intervention of 
the Schunk and Cox study. In any case, one study (Schunk & Cox, 1986) but not the other 
(Ross & Baden, 1991) suggests that for students with LD, merely encouraging self-
verbalization or thinking aloud can have beneficial effects in terms of learning mathematics. 

H. Other Approaches for Teaching Low-Achieving Students 

Unlike studies of other approaches to teaching students with LD, most of the other 
studies reviewed with low-achieving students can be characterized as providing primarily 
implicit instruction (with the exception of Fuchs et al., 2005). Implicit instruction refers to 
the teaching approaches that provide students with broad guidance in terms of general 
procedures for solving problems, including relatively broad questions to ask themselves. 
However, there is little in the way of specific guidance in how students construct knowledge, 
and these approaches do not necessarily include any mathematics in them. Students are 
provided strategies that are used to solve math problems, such as teaching students to think 
aloud, or use visual representations with strategic use of manipulatives. For example, 
Thackwray, Meyers, Schleser, and Cohen (1985) taught students five specific self-
instructions to say out loud while solving addition word problems. Presumably, these self-
instructions were intended to enhance student’s ability to construct accurate representations 
of the problem features and solution strategies.  

 
The four studies that are included in this category are Fuchs et al. (2005); Pasnak, 

McCutcheon, Holt, and Campbell (1991); Thackwray et al. (1985); and Woodward and Baxter 
(1997). Table 11 summarizes the characteristics of these four studies. It is important to note 
that these studies do provide various degrees of teacher direction, so we prefer the term 
“primarily implicit instruction” rather than implicit instruction because all studies reviewed 
below seem to provide instruction primarily, but not necessarily exclusively, via an implicit 
instructional approach. We treat each study separately as we did for studies considered in this 
section for evaluating the impact of explicit instruction for low-achieving students.  
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One study, Thackwray et al. (1985), examined the effects of encouraging students to 
think aloud as they worked using the cognitive behavioral model developed by Donald 
Meichenbaum (1985), which was a common special education technique in the 1970s and 
1980s. This technique was based on the premise that thinking aloud consistently will increase 
students’ ability to reflect on their actions and help dissipate some of the impulsivity that is 
typical of low-achieving students in mathematics. Students were taught five steps. The first 
step involved orienting students to solve the problem. The next two steps appear below:  

 
Step 2: First, I have to look at the problem very slowly to determine if it is addition, 

subtraction, multiplication or division. 
 
Step 3: This one is addition. I can tell by the sign. (Thackwray et al., 1985, p. 301). 
 
First, the instructor (a graduate student) modeled the steps; gradually, the student 

performed the five steps independently with no prompting. This study exemplifies implicit 
instruction because teachers provided minimal control over how students solved the problems. 
Rather, students were allowed to verbalize as they wished. In the specific self-instruction 
condition, the experimenter modeled the self-instructions (verbalizations) while the teacher 
performed two, three, and four digit addition problems. Using Meichenbaum’s (1975) five-step 
fading procedure, the experimenter gradually required the child to verbalize while performing 
each step toward solution alone while solving the math problem. In the didactic condition, 
children were simply provided instructions concerning what to verbalize during problem 
solving. However, no modeling of the verbalizing process was provided.    

 
Thackwray et al. (1985) investigated the effectiveness of this approach in a study 

involving 60 third- and fourth-graders who were perceived as experiencing difficulties in 
mathematics by their teachers. Although teacher judgment is no substitute for a mathematics 
performance measure, it often is reasonably accurate (Hoge & Coladarci, 1989). The 
intervention was quite short: four 45-minute lessons. The content was problems involving 
whole number addition. The control group received typical lecture-demonstration-practice 
with feedback instruction. The effect size (ES = 0.641) was significant, suggesting evidence 
of efficacy for this approach. The outcome was a composite of a standardized test: the 
Peabody Individual Achievement Test (PIAT) and a 20-item addition test. Based on the one 
study, there appears to be evidence of the effectiveness of promise in this general approach 
for problem solving, though replication of these findings in other studies would seem 
important for further research. 

 

1. Instruction in Piagetian Cognitive Operations (Classification, Seriation, 

and Number Conservation) 

The writings of Jean Piaget have always played a role in instructional research in 
mathematics, most recently in Griffin, Case, and Siegler (1994). Pasnak et al. (1991) 
examined the impact of small group instruction on Piagetian cognitive operations on 
kindergartners’ performance on the Stanford Early School Achievement Test (SESAT)-
Mathematics. The SESAT is essentially a readiness test, as opposed to a mathematics 
achievement test.  
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The sample was also selected by the kindergarten teachers as students who were 
having difficulty learning the basics of mathematics in kindergarten. The researchers used the 
students’ scores on the Otis Lennon School Ability Index to confirm that they were in the at 
risk category. On average, these students were at least .5 standard deviation units below the 
school mean. 

 
Instruction focused on the three Piagetian concrete operations that many students 

acquire informally before kindergarten (classification, seriation, and conservation). Many 
types of manipulatives were used (bolts, cups, lima beans, dominoes etc.). The amount of 
time devoted to this instruction was appreciable, three months of 15–20 minute small group 
lessons, delivered three to four times a week. Control group students received typical 
kindergarten instruction in numbers and number concepts.  

 
The effect size (0.520) was not statistically significant, when corrected for classroom 

level clustering. Nonetheless, the magnitude of the effect size, especially given the fact that a 
standardized achievement test was used which was not closely aligned to the specific content 
taught, suggests there may well be some promise to this approach. 

 

2. Evaluation of the Effects of ‘Reform’ Curricula on Low-

Achieving Students  

Woodward and Baxter (1997) conducted a small, but oft-cited, quasi-experiment that 
examined the impact of Everyday Mathematics, one of the curricula assumed to be consistent 
with the 1989 NCTM Curriculum and Evaluation Standards for School Mathematics. The 
study involved 38 low-achieving third-grade students in nine classes. The researchers 
assessed the impact of the reform curriculum versus a more mainstream commonly used core 
mathematics text. Note that students in neither condition received any additional support in 
mathematics from either special education or Title I. Results were nonsignificant (when 
adjusted for within-school clustering) and favored the control group (ES = -0.223). The 
reform curriculum produced one positive effect on the Concepts section of the Iowa Test of 
Basic Skills (ITBS) and two negligible negative effects: on the ITBS subtests for 
Computation and Problem Solving. None of these effects was significant. One reasonable 
conclusion is that low-achieving students require additional support and intensive work on 
foundational skills and that use of an innovative curriculum will not lead to any serious 
benefit unless such support is provided above and beyond the students’ classroom 
mathematics instruction. One notes that more recent research, including research by 
Woodward, adopts approaches that combine interest in teaching concepts along with 
procedures to build conceptual knowledge with the use of explicit instruction.  
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3. Response to Intervention: Evaluation of a Preventative Small Group 

Intervention for First-Graders at Risk for Experiencing Difficulties 

in Mathematics  

We identified only one study that investigated the effects of tutoring using concrete-
representational-abstract (CRA) instruction with low-achieving students.  

 
Fuchs et al. (2005) screened first-grade students in 41 classrooms in 10 schools using 

a set of screening measures that are known to be valid and reliable (see for example Gersten, 
Jordan, & Flojo, 2005). These students received small group instruction three times per 
week, a typical procedure for preventative small group (Tier 2) interventions. Core 
components of the intervention included strategic use of manipulatives to ensure students 
understood more abstract visual representations and mathematical symbols, heavy emphasis 
on problem solving and discussion of solutions, and use of technology to provide 
individualized practice on basic addition and subtraction combinations to increase quick and 
fluent retrieval.  

 
Fuchs et al. (2005) used a wide array of both researcher-developed and standardized 

measures, of computation and concepts, applications, or word problems, as well as addition 
and subtraction fact fluency. Effect sizes were 0.414 and significant, favoring the tutoring 
group for concepts or problem solving, 0.441 and significant for the combined computation 
measures and 0.180 but not significant for the two fact fluency measures. The effects were 
stronger for the computation and concepts measures than the fact fluency measure, indicating 
that the technology component appeared to be the weakest facet of the intervention. In 
interpreting the effect sizes, the reader should note that the control group students received 
no additional instruction. Thus the independent variable is receiving tutoring using a CRA-
based instructional model versus receiving no additional support whatsoever.  

 
In general, this appears to be an effective preventative small group early intervention 

for students who exhibit problems in mathematics at the beginning of the first grade. It also is 
a solid example of how both concepts, procedures, and problem solving can be taught and 
practiced in an intense, integrated fashion. It should be noted that beyond Bruner’s concrete-
pictorial-symbolic sequence, no information is provided about how the tutors interacted with 
the children about the mathematics. 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-76 

I. Summary and Conclusions 

The Task Group was able to locate a reasonable number of high-quality experimental 
and quasi-experimental studies that investigated the effectiveness of various mathematics 
interventions in teaching mathematics to students with LD and LA. These studies provide a 
great deal of guidance concerning some defining features of effective instructional 
approaches for students with learning disabilities as well as low-achieving students. These 
features, many of which are associated with explicit systematic instruction, can be roughly 
categorized as follows: 

  
1) Concrete and visual representations (mathematical drawings) 
2) Explanations by teachers  
3) Explanations and math talk by students in whole class discussion  
4) Students working together 
5) Carefully orchestrated practice activities with feedback 
6) High but reasonable expectations 

 
Some additional features of this research are noteworthy beyond the generally 

consistent effectiveness of both explicit and primarily implicit instructional approaches 
(interestingly Kroesbergen et al. (2004) actually compared and found no differences in 
multiplication outcomes between these two approaches). The first is that studies varied 
widely in terms of mathematical skills that were targeted. Most included a focus on 
computation skills, while others included specific attention to word problem solving. This 
focus on problem solving in research on students with learning disabilities and low-achieving 
students is a relatively recent trend, and an important one, because students with LD and LA 
struggle, in particular, with word problems. 

 
The second is that a small but important set of studies examined best methods for 

building quick retrieval of arithmetic combinations. Mathematics educators have long been 
aware of the importance of quick retrieval of basic combinations so that students can focus 
on the problem at hand. Retrieval is stressed in the NCTM’s Curriculum Focal Points for 

Prekindergarten through Grade 8 Mathematics: A Quest for Coherence (2007). In addition, 
research on learning disabilities has consistently documented that inefficient and ineffective 
retrieval of combinations is typical of a student with learning disabilities in mathematics. 
Addressing this issue has been more of a struggle. Programs have been developed that 
orchestrate practice sets for each student and try to teach similar combinations together. 
However, Hasselbring et al. (1988) noted that even these programs are not successful with 
many students with LD.  
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The studies by Tournaki (2003) and Woodward (2006) are important because they 
demonstrate that there is wisdom in teaching students strategies about computation as a 
means of increasing speed and accuracy of retrieval. If nothing else, this type of instruction is 
more interesting and potentially engaging for students and more likely to build a deeper 
understanding of the number system than pure rote memorization. Note that Woodward 
intentionally paired strategy instruction with 15 minutes of timed practice. This mixture is 
one that seems to show promise.  

 
Additionally, many studies examined approaches to instruction that, based on the 

description, included coverage of conceptual understanding. In some studies, students were 
provided visual models so that students could use a visual representation to either compute or 
solve a word problem. Others used strategies that encouraged children to analyze word 
problem structure, so that meaningful patterns could emerge such as via explicit instruction 
or verbalizing. Mathematics educators have long been aware of the importance of developing 
an understanding of number operations, and patterns in problem solving, and this emphasis 
on meaningful understanding of operations is stressed in the NCTM Focal Points. In 
addition, research on mathematical learning in general, and mathematical disabilities and 
low-achievement, is associated with the nature of development of areas of number sense, 
including conceptual understanding of mathematical procedures and strategies for obtaining 
solution (Gersten & Chard, 1999; Hecht, Vagi, & Torgesen, 2007). Programs have been 
developed that orchestrate practice sets for each student and try to teach meaningful 
understandings of numbers and number operations. However, Fuchs et al. (2005) remind us 
that future work is needed to increase the power of classroom as well as tutorial treatments in 
low-achieving (at-risk) children.   

 

1. Quality of Mathematics Taught in the Studies 

In order to obtain an independent review of the quality of the actual mathematics 
taught in this set of studies, two research mathematicians involved in mathematics education, 
and one prominent mathematics educator were asked to examine the mathematical content 
and the nature of instruction (as opposed to the research design and technical details) of a 
small subset of studies. They looked at studies that described the mathematics content and 
instructional procedure with some amount of detail because we saw no benefit in, for 
example, asking a mathematician to evaluate a study in which it said, “Students learned the 
material in the third-grade mathematics state standards,” or studies that focused on very 
simple algorithms.  Thus, we tended to choose the studies that bit off the most ambitious 
mathematical material and developed seemingly effective means for teaching the materials to 
students with learning problems and learning disabilities. We selectively summarize some 
results in this section. 

 
The reader will recall that Woodward (2006) employed a combination of individualized 

fact practice with instruction that involved work with number families and applications of the 
distributive law to ease mental computation fluency. (For example, students learned that it is 
usually easier to calculate 8  9 by remembering that since 9 is the same as 10 - 1, this 
problem has the same answer as 8 (10 - 1) or 8  10 minus 8  1. Or that 9  8 is the same as 
8  9, so if you know one, you know the other because they are equivalent.) 
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The attempt to link computation to number properties is admirable, but several 
problems were noted. One mathematician observed that students should not be taught that 
9  3 is the same as 3  9. They are, in fact two different problems with the same answer. 
One refers to 9 sets of 3 units, the other to 3 sets of 9. For students to succeed in algebra, they 
must understand this difference and remember that two things may look very different and 
represent very different type of problem types but still have the same answer. The work on 
multiplication combinations could have resulted in intense work on applications of the 
commutative, associative and distributive properties of numbers, but based on the text of the 
article, it did not appear to do so. The importance of doing so for students with LD and other 
students with learning problems is critical. In contrast, the treatment in Woodward and 
Brown (2006), developed by the same author, appeared to offer a much richer mathematical 
menu to students. 

 
A similar concern was expressed about the pre-algebra material used in Witzel et al. 

(2003). Algebra was taught only on the procedural level. The importance of understanding 
the nature of a defining variable appeared to be underdeveloped, as did the potential richness 
of the concrete and visual representations and their link to sets of story problems. Similar 
concerns were raised about the CRA research of Butler et al. (2003), where numerous 
opportunities to explore rich mathematical ideas were lost. 

 
These are among the more ambitious studies in the set reviewed, and among the few 

that really try to delve into complex mathematical topics and concepts. Each of the studies 
demonstrated some success in reaching the population. However, more intensive collaboration 
with research mathematicians who know the underlying mathematics in the K–8 curriculum 
can result in even richer, more effective intervention research for these students.  

 
The research mathematicians also noted that although the two studies that attempted 

to teach story problems to students (Xin et al., 2005; Fuchs et al., 2005) did not really teach 
problem solving in the sense that NRC (2001) defined it. However, the studies seemed to be 
solid attempts to help students understand how to use the mathematics they already knew in 
an increasing array of applications. 

 

2. Conclusions 

On a positive note, many of the studies seriously address two areas of extreme 
difficulty for students with LD and low-achieving students: application of mathematics to 
word problems and building of quick retrieval of basic arithmetic combinations. These two 
areas are essential components of any serious mathematics intervention for these students and 
we now possess several evidence-based approaches for addressing these areas.  

 
It becomes difficult to conclude easy generalizations about the set of studies. A terse 

summary would be that explicit instruction is effective (often highly effective) in both 
domains. In addition, more implicit instructional approaches such as strategic use of concrete 
objects and visual representations shows some promise, although the number of studies 
supporting this approach is small, and results are not consistent. Finally, approaches that 
encourage students to think aloud as they solve problems seem to produce significant 
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positive effects. The drawback in these generalizations is that these terms mean different 
things to different people. Thus, in translating these findings into practice, effects may be 
highly dependent on how these instructional principles are conceptualized and how carefully 
they are incorporated into instruction.   

 
One process that might ease the transition is that many of the interventions included 

specific scripts for teachers to use for their lessons (although they were usually told to use 
these as a guide rather than an ironclad script). These could serve as templates for lessons as 
districts develop various professional academies and training institutes.  

 
Moreover, some other barriers to translating the research findings into classroom 

practice are as follows including the lack of sufficient specificity concerning the actual content 
of the mathematics instruction that was provided, which makes replication and extension of the 
current studies difficult. From a pragmatic standpoint, this is understandable given the need for 
authors to both describe the instructional sequence and content while leveraging page length. 
Also, the reviewed studies tend to use either a criterion-referenced test with items that are not 
presented or comprehensively defined or a standardized achievement test. A notable problem 
with standardized achievement tests is that they are composed of items from many domains of 
mathematics skill (e.g., basic computation, long division, fractions) and therefore tend to 
provide limited specificity concerning the actual mathematics content that students have 
mastered (Geary, 2005; Hecht, 1998). Finally, criteria for identifying and including low-
achieving students examined in these studies were not consistent, which makes generalization 
of findings uncertain. Most of the studies utilize quite systematic instruction, with high degree 
of structure and a deliberate pace. This degree of explicitness and detail seems critical for this 
group of students. Our hope is that research and development efforts will continue to 
incorporate these elements into instructional materials that can be used with students with 
learning disabilities and low achievement in mathematics.   
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IV. ‘Real-World’ Problem Solving 

A. Introduction and Background 

Discussion and debate about the place of “real-world” problems in mathematics 
instruction—both as a site for learning mathematics, and as an outcome—has been a central 
theme in U.S. mathematics education for more than a century. The earliest goals of 
mathematics instruction in this country related to practical uses of mathematics, in such areas 
as shopkeeping, commerce, surveying, banking, and carpentry (see Michalowicz & Howard, 
2003). Early U.S. mathematics textbooks are filled with practical problems intended to 
prepare students to enter the workplace and to address the particular application needs of the 
growing nation and society. Over the decades this emphasis on practical applications has 
ebbed and flowed. In the “new math” years (1960s and 70s), the predominant curricular 
emphasis was on mathematical precision and the structure of mathematics, but, even then, 
some critics, such as the applied mathematician Morris Kline (1973), continued to call for 
applications in the school curriculum. Indeed, even amidst the abstract and logic-focused new 
mathematics materials developed during the post-Sputnik era, there was at least one 
applications-oriented curriculum, the Unified Science and Mathematics for Elementary 
Schools (USMES) project.3  

 
A resurgence of calls for emphasis on “real-world”4 problems came in the 1989 

Curriculum and Evaluation Standards for School Mathematics, of the National Council of 
Teachers of Mathematics (NCTM), which argued that “instruction should be developed from 
problem situations” (NCTM, 1989, p. 11). The document recommends that in the early 
grades (K–4), most problems used in instruction should arise from “school and other 
everyday experiences” (p. 23). Progressing through the grades, there should be a balance 
between “problems that apply mathematics to the “real-world” and problems that arise from 
the investigation of mathematical ideas” (p. 75), and by high school, even more of the 
problems can arise from mathematics itself. 

 
The Instructional Practices Task Group begins by summarizing the definitions and 

operational meanings that researchers and developers have given to the term “real-world” 
problems. In the next section the Task Group will highlight some of the rationale and 
justifications that researchers and developers have used when arguing for and against 
particular characteristics of “real-world” problems and their uses as a part of the school 
mathematics curriculum. These viewpoints are sometimes based in research, and sometimes 
are more directly tied to experience and expert judgments. They sometimes relate to the 
question of how important it is for students to be able to apply their mathematical knowledge 
to particular types of problems as an outcome of schooling is. Finally, a synthesis of the 

                                                             
3 Launched in 1970 through the Education Development Center, with funding from the National Science 

Foundation; described as a project designed so “students could carry out long-range investigations of real and 

practical problems based in their local environment” (http://www.coe.ufl.edu/esh/Projects/usmes.htm). 
4 We will include “real world” in quotation marks throughout because of the ambiguity of definition of this 

phrase in the current literature. 
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findings from 21 studies examining the impact of “real-world” problem-based instruction on 
mathematics learning outcomes is provided, followed by commentary about issues in this 
body of research, and recommendations. 

B. What Do Researchers and Developers Mean by  

‘Real-World’ Problems? 

Here the Task Group draws on the conceptualizations of “real-world” problems 
assembled from both developers of instructional materials and researchers who study the 
impact of such problems. A serious problem in synthesizing the research in this area is that 
there is no clear, agreed-upon meaning for “real-world” problems. One characteristic 
mentioned frequently is the meaningfulness and relevance of the problem to the student 
audience. The Realistic Mathematics Education (RME) movement, which originated in the 
Netherlands through the work of the mathematician Hans Freudenthal (1973, 1991), has been 
influential in school mathematics in some countries. RME emphasizes relevance and the 
activity of doing mathematics; there are several lines of research that have a basis in the 
RME movement. For instance, researchers De Bock, Verschaffel, Janssens, Van Dooren, and 
Claes (2003) discuss “organizing mathematical activities around rich, attractive, and realistic 
contexts … [not only] aspects of the ‘real’ social or physical world; they can also refer to 
imaginary, fairy-like worlds as long as they are meaningful, familiar, and appealing to the 
students. It is not the amount of realism in the literal sense … but rather the extent to which it 
succeeds in getting students involved in the problem and engage them in situationally 
meaningful thinking and interaction” (p. 445). In the same tradition, van Dijk and others 
(2003) describe problems that “bring pupils into situations that make sense to them and 
provide them with opportunities to experience mathematics as it was developed in cultural 
history” (p. 164). Other scholars feel that “real-world” problems should be similar to 
problems that are encountered in applications beyond school, and that are authentic, for 
instance problems that are “…embedded in a rich narrative structure” and that may require 
students to make both mathematical and nonmathematical (e.g., ethical) decisions.  

 
In contrast, the problems typically found in algebra textbooks that are sometimes 

called “story problems” or “word problems” also are sometimes studied in efforts to look at 
“real-world” problem solving. Jonassen (2003), for example, defines story problems as those 
that “typically present a quantitative solution problem embedded within a shallow story 
context” (p. 267). 

 
A “real-world” oriented curriculum that has been studied by a number of the 

researchers cited in this paper, and whose authors provide detail about their conceptualization 
of “real-world” problems, is the Adventures of Jasper Woodbury video series 
(http://peabody.vanderbilt.edu/projects/funded/jasper/Jasperhome.html). This technology-
based series is designed to motivate students by engaging them in the solution of complex, 
multistep problems. The goals of the materials are to promote problem-finding and to 
develop problem-solving skills. Each 15–20 minute video segment presents an adventure 
story which involves solving a challenge. The Cognition and Technology Group at 
Vanderbilt (CTGV) identifies “real-world” problems as being complex, which means having 
multiple steps, requiring integration of mathematical concepts, involving identification of 
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relevant data, and demanding generation of appropriate questions (see CTGV, 1992; Hickey 
et al., 2001, pp. 613–14). The goal of this type of problem is to allow students to experience 
some of the ambiguity and complexity, as well as the intellectual excitement, that adults 
experience when solving actual problems involving mathematics, be it in engineering, 
business, accounting, architecture, transportation planning, etc. The hope is that, by 
anchoring mathematical procedures and concepts in an array of actual situations, students 
will see the value of knowing the procedures and will more likely be able to transfer what 
they learn in mathematics to actual problems. The terms “anchored instruction,” “situated 
cognition,” and “teaching for transfer” often recur in this literature. 

 
In summary, note how diverse these meanings of “real-world” problem solving are in 

the literature. This creates challenges and opportunities for researchers, who in general could 
make progress on some of the fundamental “real-world” problem solving questions with 
more clarity and focus in the operationalization of the terminology. 

 
What are the purported advantages and disadvantages of using various types of 

“real-world” problems in school mathematics instruction? 

 
There are several related but distinct reasons advanced in both research and other 

educational rhetoric for including “real-world” problems in the school mathematics 
curriculum. Those who believe that students’ ability to solve “real-world” problems should 
be an important outcome of school mathematics argue for the inclusion of such problems in 
the curriculum as preparation. Others contend that “real-world” problems should be in the 
curriculum because of their potential to engage and motivate students by engaging them in 
something they see as meaningful and important (see Bransford, Sherwood, Hasselbring, 
Kinser, & Williams, 1990; Bransford, Vye, Kinser, & Risko, 1990; CTGV, 1991; DeBock et 
al., 2003). Hiebert et al. (1996) comment that the “mathematics acquired in these realistic 
situations, proponents argue, will be perceived by students as being useful” (p. 14). 

 
Another reason sometimes given is that such problems, especially when assigned to 

be done in groups, provide students with opportunities to learn some of the social problem-
solving skills they will need to use later in the workplace (see Resnick, 1987b). The 
Vanderbilt group (CTVG) contends that “‘anchor[ing]’ or ‘situat[ing]’ instruction in the 
context of meaningful problem solving environments … allow[s] teachers to simulate in the 
classroom some of the advantages of ‘in-context’ apprenticeship training” (CTGV, 1992, p. 
294; also citing Brown et al., 1989).  

 
Finally, there is a view that students’ learning and ability to make mathematical 

connections in the process of applying their knowledge to a wider range of “real-world” 
problems might be enhanced (see Hiebert et al., 1996). The notions of both near and far 
transfer in problem solving appear later in the literature synthesis. 

 
Common to these views seems to be the assumption that, by teaching students 

mathematics through “real-world” problems, and by teaching students to solve such problems 
in school, students will become better solvers of the types of problems that they might 
encounter in everyday life or the workplace (see Verschaffel & De Corte, 1997), and that 
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they will develop a genuine disposition to, and interest in, solving such problems. Some 
research has looked specifically at whether it is indeed the case that the use of “real-world” 
problems in instruction promotes such outcomes.  

 
Anderson, Reder, and Simon (1996) have countered some of the claims attributed to the 

proponents of the use of “real-world” problems.5 They claim that research has indicated that 
transfer can happen even if students learn in a situation that is not specific to the site of 
application. They argue further that using such problems can be inefficient: “Often real-world 
problems involve a great deal of busy work and offer little opportunity to learn the target 
competencies” (Anderson et al., 1996, p. 9). They also note that research indicates that workplace 
skills can be learned separately from the social context, and that in some cases they should be.  

 
There is also the question of whether the contexts that developers imagine as being 

motivational and engaging for students actually are. Some researchers (e.g. Geary, 1995) 
have suggested that the contexts in which problems are offered may not be that intrinsically 
motivating to students. Geary emphasizes that making the mathematics interesting and also 
ensuring that adequate mathematics is learned may require “degrading” the mathematical 
content in ways that are not satisfactory. Hiebert et al. (1996) advocate the importance of 
students’ “problematizing” mathematics and suggest that the particular context chosen for a 
problem is not necessarily as important as the way the teacher engages the students: “Given a 
different culture [valuing reflective inquiry and problematizing], even large-scale real-life 
situations can be drained of their problematic possibilities. Outside-of-school problems can 
provide contexts for important mathematical work, but the packaging of the task is not the 
primary determinant of the engagement” (pp. 16–18).  

 
“Real-world” problems are often considered to be “open-ended,” a term that is 

equally ill-specified in its meaning. Pehkonen (1997) provides some history of the idea of 
“openness” in mathematics education, citing work initiated in Japan in the 1970s that helped 
to launch international focus. He defines open problems in contrast to “closed problems” in 
mathematics, in which in “open problems,” the starting situation or the goal is not explained 
exactly. Such problems then encompass problem situations in which the student must “find” 
the problem, “what if” problems, and problems in which multiple solution processes are 
possible. In a 1994 essay, Hung-Hsi Wu uses examples of problems from K–12 mathematics 
curricula to highlight that in the case of some open-ended problems, teachers are unlikely to 
know the required mathematics deeply and at the same time provide a suitably simplified 
explanation to students. Others have raised concerns about the adequacy of teachers’ 
knowledge of the nonmathematical contexts—in which some of these problems are 
embedded—to assess the reasonableness of the problem’s assumptions, and about the 
efficiency of using elaborate “real-world” problems in covering mathematics content.  

 
In summary, even without a consistent definition of the notion of “real-world” 

problems, there are strongly held and argued positions, founded on a variety of bases, in 
support of, and critical of, the use of various types of “real-world” problems in school 
mathematics instruction. 

                                                             
5 For replies and additional commentary concerning the Anderson et al. (1996) paper, see Greeno (1997) and 

Cobb and Bower (1999). 
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C. Research Studies Examining the Impact of ‘Real-World’ 

Problems in Mathematics Instruction 

Despite the variety of reasons that have been advanced supporting the inclusion of 
“real-world” problems in mathematics instruction, the available research on the topic that 
met the Instructional Practices Task Group standards for inclusion addresses only two rather 
focused types of questions: 

 
• Does the use of “real-world” problems in mathematics instruction, in comparison to 

typical instructional practice, lead to improved understanding of mathematical ideas, 
or improved computational performance, or improved mathematics performance? 
(Using “Real-World” Problems to Teach Mathematical Ideas). 

• Does the use of particular instructional strategies to help students learn to solve “real-
world” problems, in comparison to other strategies and to typical instructional 
practice, lead to improved performance on assessments that involve solving “real-
world” problems; i.e., can near and far transfer be achieved? (Using Specific 
Strategies to Improve “Real-World” Problem Solving).6 

Researchers from cognitive science, psychology, and mathematics education have 
undertaken a range of studies that examine phenomena related to “real-world” problems in 
mathematics teaching and learning. Most of this work has been descriptive and is not 
included in the meta-analytic discussion to follow. However, it could serve as an important 
basis for clarifying and disentangling the meanings of “real-world” problems as an 
instructional approach and as an outcome of schooling, and provide insights into the design 
of interventions and assessments that are focused on “real-world” problems. Ethnographic 
studies have looked, for instance, at the problem-solving strategies used in practices such as 
candy-selling, tailoring, carpentry, gardening, etc., and the relationship of such craft 
knowledge to performance on school-based problem tasks (see Presmeg, 2007). International 
studies such as the Programme for International Student Assessment (PISA) study provide a 
snapshot of U.S. students’ performance on problem solving. This Organisation for Economic 
Co-operation and Development (OECD) initiative is a collaborative effort of the OECD 
member countries to “measure how well students at age 15, and therefore approaching the 
end of compulsory schooling, are prepared to meet the challenges of today’s societies… 
moving beyond the school based approach towards the use of knowledge in everyday tasks 
and challenges” (Programme for International Student Assessment, 2003, p. 9). PISA is 
unique as an international assessment in its explicit effort to assess students’ ability to “apply 
their knowledge and experience to real-world issues” (Programme for International Student 
Assessment, 2003, p. 9). The 2003 administration of PISA examined mathematical literacy 
and problem solving, and the performance of U.S. students was lower than the average 
performance for students from OECD countries (see Lemke et al., 2004). Thus for those 

                                                             
6 The initial search for and screening of literature was initially only for the use of “real world” problems in 

instruction (question 1), not as the outcome (question 2). The literature identified for the second question 

resulted from the first, but we did not go back and systematically search for other studies that might fit this 

second question. 
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concerned that ability of U.S. students to solve “real-world” problems is an important 
outcome of schooling, studies such as PISA indicate that U.S. performance has substantial 
room for improvement. 

 
Here the Task Group draws on the 21 studies that qualified as Category 1 or Category 

2 studies and that examined, with random assignment or quasi-experimental methods, the 
impact of some type of “real-world” problem instructional intervention on student 
mathematics learning outcomes. There were 13 studies (five Category 1 and eight Category 
2) that examined the effect of using “real-world” problems as the means of instruction on 
mathematics achievement. An additional eight studies (five Category 1 and three Category 2) 
examined specific strategies to solve “real-world” problems. The second group did not 
examine a “real-world” problem instructional intervention. Although many have argued that 
a major reason for using “real-world” problems in mathematics instruction is to increase 
interest and motivation, the Task Group did not search for studies that looked at motivation 
only as an outcome. For those studies of mathematics achievement that did include a 
motivation outcome, those outcomes are not discussed. The studies are presented according 
to the two categories mentioned earlier. See Tables 15 and 16 for a summary of the Category 
1 studies, including effect size calculations.  

D. Using ‘Real-World’ Problems to Teach Mathematical Ideas 

The Task Group located 13 studies that introduced some version of a “real-world” 
problem instructional treatment, and that compared outcomes on student performance in 
mathematics. Five of these can be considered Category 1 studies for which effect sizes could 
be computed. Four of these studies contrast some type of “real-world” problem-based 
instruction with more typical mathematics instruction (although even this varies to some 
degree). The fifth is concerned with contrasting two different approaches to using “real-world” 
problems as an instructional approach. All employ outcome measures that assess mathematics 
performance on what might be considered “typical” types of school mathematics outcomes. In 
addition, some include outcome measures for transfer, or involving contextualized problems.  

 
Three of the Category 1 studies in this area focus on computations with fractions. 

Anand and Ross (1987) developed three versions of an intervention aimed at teaching fifth-
and sixth-graders how to divide fractions. The operationalization of “real-world” problem 
solving involved two ways of contextualizing problems: by adding such student-specific 
information as name, favorite candy bar, etc. into problems, or by simply providing a 
concrete context for a computational problem. The intervention was a CAI unit that included 
a “review of prerequisite mathematics facts… introduced the rule for dividing fractions and 
demonstrated its application to an example problem by using the following four-step 
solution.… This rule application was repeated for four additional problems” (p. 73). The 
treatments varied by changing the contexts for the learning material; there were abstract 
contexts provided, concrete contexts, and personalized contexts based on a biographical 
questionnaire for the students. The posttest involved context problems similar to those 
presented in the practice examples, transfer problems, and recognition memory of the rule 
definition and steps problems. Ninety-six students were randomly assigned to the four 
treatment conditions (control; concrete; personalized; abstract). 
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Table 15: Studies That Examine Use of “Real-World” Problems in 

Mathematics Instruction 

Study Design Sample Duration/Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Contextualized Mathematics Outcomes 

Anand & 

Ross, 1987 
RCT 

96 students in fifth or 

sixth grade attending a 
university affiliated 

elementary school that 
emphasized individual 
learning and progression 

One lesson/ Division of 

fractions 

Concrete and 

Personalized vs. 
Abstract 

Transfer subtest 0.379 (ns) 0.249 

Bottge & 
Hasselbring, 

1993 

RCT 

36 students in two ninth-
grade remedial 

mathematics classes in 
one Midwest high school 

5 days/ Adding and 
subtracting fractions in 

relation to money and 
linear measurement 

Contextualized 
problems vs. 

Word problems 

Contextualized 
problem test 

1.009 ** 0.385 

Bottge, 
1999a 

RCT 
49 middle school average-
achieving students in two 
intact pre-algebra classes 

10 school days/ Story 
problems and transfer 
problems involving 

fraction computation 

Contextualized 
problems vs. 
Word problems 

Contextualized 
problem test 

1.131 (ns) 0.693 

Brenner et 

al., 1997a 
RCT 

128 seventh- and eighth-

grade students in six 
intact pre-algebra classes 
at three junior high 

schools in a small urban 
area in Southern 
California 

1 month/ Meaningful 

thematic contexts and 
other features 

Anchored 

instruction vs. 
Traditional 
textbook 

Pooled word problem 

representation (ES =  
-0.281), function word 
problem representation 

(ES = 0.877), and 
function word 
problem solution 

(ES = 0.393) tests 

0.631 (ns) 0.402 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.499 3 0.475 0.000 
Pooled ES (4 studies, 4 effect sizes) 

0.616 *** 0.179 

Standard Mathematics Outcomes 

Anand & 
Ross, 1987 

RCT 

96 students in fifth or 
sixth grade attending a 

university affiliated 
elementary school that 
emphasized individual 

learning and progression 

One lesson/ Division of 
fractions 

Concrete and 
Personalized vs. 

Abstract 

Pooled context (ES = 
0.931***) and 

recognition (ES = 
0.727**) subtests 

0.828 ** 0.257 

Bottge & 

Hasselbring, 
1993 

RCT 

36 students in two ninth-

grade remedial 
mathematics classes in 
one Midwest high school 

5 days/ Adding and 

subtracting fractions in 
relation to money and 
linear measurement 

Contextualized 

problems vs. 
Word problems 

Word problem test -0.553 (ns) 0.368 

Bottge, 

1999a 
RCT 

49 middle school average-

achieving students in two 
intact pre-algebra classes 

10 school days/ Story 

problems and transfer 
problems 

Contextualized 

problems vs. 
Word problems 

Pooled computation 

(ES = 0.049) and 
word problem tests 
(ES = -0.198) 

-0.124 (ns) 0.683 

Brenner et 
al., 1997a 

RCT 

128 seventh- and eighth-
grade students in six intact 

pre-algebra classes at three 
junior high schools in a 
small urban area in 

Southern California 

1 month/ Meaningful 
thematic contexts and 

other features 

Anchored 
instruction vs. 

Traditional 
textbook 

Pooled equation 
solving (ES = -0.281) 

and word problem 
solving (ES = 0.110) 
tests 

-0.086 (ns) 0.399 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

10.835 3 0.013 72.312 
Pooled ES (four studies, four effect sizes) 

0.066 (ns) 0.374 

A Study that Examined Two Different Approaches to “Real-world” Problem-based Instruction 

van Dijk et 
al., 2003a  

RCT 
238 fifth-grade students 
in 10 classes in the 

Netherlands 

13 lessons in 3 weeks/ 
“Real-world” problems 

that entail division with 
a remainder 

Student vs. 
Teacher 

constructed 
models 

Curriculum specific 
posttest 

0.402 (ns) 0.307 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
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Several contrasts (comparisons of results for two different treatment conditions) 
resulted in statistically significant and meaningful effect sizes: most striking was the 
significantly better performance of the personalized group than the abstract group7 on the 
context and recognition measures (effect sizes = 1.434 and 1.116, respectively). The concrete 
and personalized treatment group also performed significantly better than the abstract 
treatment group on the context and recognition measures (effect sizes = 0.931 and 0.727, 
respectively). Of the nine effects computed for this study,8 five produced effect sizes 
significant at the .05 level or better. All favored the personalized or personalized and 
concrete treatments over the abstract, with the strongest differences on the context and 
recognition outcome measures. Effect sizes on the transfer measure for the personalized 
group in comparison with the abstract group also was significant, with an effect size of 0.630, 
and combining the concrete and personalized treatments and comparing to the abstract also 
yielded an appreciable though non-significant effect size (0.379) on the transfer measure. For 
all of these measures the combined effect size is 0.679, which is significant. 

 
The Task Group notes that the use of “contextualized” in the Anand and Ross study is 

a narrowly focused operationalization of “real world.” “Contextualization” occurred by 
personalizing the problems through such means as using the students’ names or interests 
within the problems. This would not fit most of the operational meanings for “real-world” 
problems discussed earlier. Nonetheless, the strong effects on context and recognition 
problems is interesting, and suggest that a very specifically focused type of contextualization 
can be more effective on context and recognition outcomes than abstract presentation of 
problems, and can have some effect on transfer. 

 
Bottge and his colleagues have published two studies that met the Category 1 

criteria (Bottge & Hasselbring, 1993; Bottge, 1999). Both studies pursue questions about the 
effect of “contextualized mathematics instruction” on the problem-solving performance of 
middle school and ninth grade students. The instructional interventions are video-based 
problem solving materials based on the principles that guided the Cognition and Technology 
Group at Vanderbilt (CTGV) in the design of the Adventures of Jasper Woodbury series. 
These include commitment to “guidance by an effective teacher; a rich, realistic source of 
information; and a meaningful problem-solving context” (Bottge & Hasselbring, 1993, p. 5).  

 
In the 1993 study, 36 students in two ninth-grade remedial mathematics classes were 

assigned to treatment and control conditions, where the instruction was focused on problem 
solving in the area of fraction addition and subtraction. The students had experienced 
behavioral or academic difficulties. Students were compared on their ability to solve a 
contextualized problem following instruction. All students received review in fraction 
computation skills for five days prior to the intervention. The intervention was then an 
additional five days of problem solving that employed, for the “contextualized problem” (CP) 
group, an 8-minute contextualized problem presented via videodisc called Bart’s Pet Project. 
The “word problems” (WP) condition received a series of standard word problems in 
instruction. In both conditions the students were guided to solve the problems by their teachers. 

                                                             
7 Contrasts not included in table because of the need to use only independent contrasts in pooling effect sizes 

from multiple contrasts. 
8 There were three contrasts, each with three measures. Only one is included in the table. See above footnote. 
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Effect sizes were computed on two outcome measures; a word problem test and a 
contextualized problem-solving test administered via video. The effect of the CP condition in 
contrast with the WP condition on the contextualized problems was significant (ES = 1.009). 
The effect size on the word problem measure, perhaps a more typical school mathematics 
outcome measure, was not significant and favored the control group (ES = -0.553). It is 
possible that the video-based contextual outcome measure was overly aligned with the 
treatment and the word problem measure was overly aligned with the control, which makes the 
results unsurprising. Nonetheless, the study seems to demonstrate that with this particular 
group of at-risk students, the “real-world” treatment can make a difference on the transfer task. 

 
In 1999, Bottge again looked at the effect of contextualized mathematics instruction 

on the problem-solving performance of middle school students. The topic was fraction 
computation, and the interventions involved two video-based contextualized mathematics 
problems, both in the spirit of the CTGV-designed Adventures of Jasper Woodbury. The 
control treatment was a more standard presentation of word problem instruction, using 
problems parallel to those in the video materials. Outcome measures included computation, 
word problems, a contextualized problem, and an applied transfer task. There was a 
noteworthy but nonsignificant effect size (1.131), favoring the treatment groups, on the 
contextualized problem. It is worth noting that on the computational outcome there was a 
slight but not statistically significant advantage for the control group (ES = -0.049) and 
similarly, on the word problem outcome measure, the nonsignificant effect size (-0.198) 
slightly favored the control group. Note also that the mathematical content of this instruction 
is not standard ninth-grade content and that students were provided with review on the 
procedural aspects of fraction computation prior to the intervention. 

 
The fourth study in this group (Brenner et al., 1997), focused on student understanding 

of key pre-algebra ideas such as the functional relationship between two variables, and 
contextual translation and application. A unit emphasizing meaningful thematic contexts and 
other features (thereby possibly confounding the “real-world” emphasis with other 
characteristics) was developed and used in three pre-algebra classes, and the control condition 
was three pre-algebra classes using a traditional algebra textbook. The effect size for the 
anchored instruction treatment in contrast with the traditional condition on solution to the 
function word-problem test was appreciable, though not significant (ES = 0.393). The effects 
on the word problem and equation solving measures were notably nonsignificant and slightly 
favored the control group. So, in this case, the influence of the treatment on the mathematical 
content that was especially aligned with the treatment was the strongest. 

 
The final study in this group is of a different type. A group of researchers in the 

Netherlands (van Dijk, van Oers, Terwel, & van den Eeden, 2003) undertook a study with 
fifth-grade students to compare two different approaches to “real-world” problem-based 
instruction, in the spirit of the Dutch Realistic Mathematics Education (RME) movement of 
teaching through problems. Two different approaches to mathematization, or modeling (a type 
of “real-world” problem instruction) were used. The experimental treatment was called “guided 
co-construction,” where during instruction on the topic of percentages and graphs, students 
were guided by teachers to create their own models of the problems that were serving as the 
foundation of instruction. This was compared to a more traditional (within RME) expository 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-96 

approach, in which teachers provide students with models for the instructional problems. The 
posttest “measured the pupils’ achievement regarding percentages and graphs in a quantitative 
way” (p. 177) which the Task Group takes to be a measure of what are typical school 
mathematics outcomes for the Dutch context, rather than a transfer task. The effect size 
favoring the guided co-construction group was not significant but encouraging (ES = 0.402).  

 
In some of these studies the medium for introducing contextualized problems is 

video-based material, and the outcome measure is also video-based, causing over-alignment 
of the treatment with the outcome measure. Although the novelty of using video is not 
mentioned as a possible confound for studies of this type, it is worth considering how this 
particular instructional approach may affect students’ interest and engagement.  

 
The Task Group also calculated a pooled effect size across the four studies that are 

most similar (Anand & Ross, 1987; Bottge, 1999; Bottge, & Hasselbring, 1993; and Brenner 
et al., 1997) on the contextualized mathematics outcomes; see Table 15. Using the pooled 
measures in each of these studies, the pooled effect size was 0.616 and statistically 
significant. Thus the meta-analysis suggests that the impact of using “real-world” contexts in 
mathematics instruction on mathematics performance on similar “real-world” problems is 
significant. And, the impact on performance on other areas of mathematics, including 
computation, simple word problems, and equation solving, is not, at least when using this 
small set of studies as evidence. There are a number of caveats to be considered here; only 
four studies, all of them somewhat different, were included. And, the outcome measures are a 
mix of what might be thought of as “typical” mathematics measures, as well as more 
specialized transfer measures of contextualized or “real-world” problem solving.  

 
In summary, the findings from these five studies, taken together, indicate that under 

certain conditions, the effect of treatments that employ contextualized problems in instruction 
on performance on contextual problems involving particular areas of mathematics can be 
significant. The results of these studies cannot be considered conclusive in providing 
direction on the general question of the use of “real-world” problem solving as a strategy for 
improving mathematics learning. However, they do suggest that certain well-defined “real-
world” problem solving approaches can lead to improved performance on specific outcome 
measures, both for typical school mathematics performance, and more strongly, for transfer 
to “real-world” problem solving. 

 
There were eight additional studies9 that were classified as Category 2 but which will 

be discussed here because they provide additional insight into what has been learned from the 
Category 1 studies, or because they raise other interesting research issues. There were 
various, distinct flaws in these studies. For instance, in some, the use of “real-world” 
problems in instruction is confounded by concomitant instructional interventions, such as use 
of small groups, or emphasis on exploration in the curriculum, or inclusion of student writing 
as an instructional strategy. Other flaws also occurred, including the use of volunteer teachers 
in the treatment conditions, lack of matched control groups, lack of evidence of testing of 

                                                             
9 Ben-Chaim, Fey, Fitzgerald, Benedetto, & Miller, 1998; Bottge Rueda, Serlin, Hung, & Kwon, 2007; CTGV, 

1992; DeBock, Verschaffel, Janssens, Van Dooren, & Claes, 2003; Hickey et al., 2001; Henderson & 

Landesman, 1995; Irwin, 2001; Klein, Beishuizen, & Treffers, 1998. 
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group equivalence, outcome measures overly aligned with the treatment or control 
conditions, or only one unit assigned to each experimental condition. Thus no conclusions 
about impact of “real-world” problem solving as an instructional approach can be drawn 
from this set of studies.  

 
Seven of the studies (all but Bottge et al., 2007) are designed to compare some type of 

“real-world” problem solving treatment to a control condition of typical mathematics 
instruction. Several use specific curricular interventions as the “real-world” problem 
intervention. In the case of Ben-Chaim et al. (1998) the treatment involved a full curriculum 
at the middle grades, the Connected Mathematics Program. A problem in using such a study 
to examine the specific impact of “real-world” problems is that full curricula such as this 
employ a range of principles and instructional approaches, and so findings cannot be clearly 
attributed to any particular component of the intervention. Henderson and Landesman (1995) 
used a similarly broad intervention (thematically integrated instruction) in their study, 
thereby making it difficult to interpret the impact of “real-world” problems. Given this, 
finding appropriate designs and measures that would allow a more focused look at the place 
of “real-world” problems in curricula that also include other interventions seems a 
worthwhile direction to pursue.  

 
Klein et al. (1998) is another study in the Dutch context, comparing effects of two 

different approaches to teaching with realistic problems, where the introduction of flexible 
solution is handled differently in the treatment and control. This study is noteworthy because 
of the fine-grained detail in explaining the difference in these two approaches to working 
with “real-world” problems. The Task Group mentions the CTGV 1992 study because there 
is a creative outcome measure that has to do with problem solving planning. In the DeBock 
et al. (2003) research study, there is a very strong initial focus on the mathematical topic 
(applying linear models), raising the possibility that “real-world” instructional approaches 
may be better used for the teaching of some specific mathematical ideas rather than others. 
This study is also interesting because the assessments are varied according to the treatments, 
in an attempt to compare the impact of different treatments on assessments. 

 
The Task Group also notes a final study that does raise some ideas that are worthy of 

consideration. In Bottge et al. (2007), the performance of different groups of students who 
were instructed using Enhanced Anchored Instruction (EAI) is compared. EAI is an 
instructional approach based on the concept of anchored instruction as advanced by the 
CTGV, which involves having students solve a problem in a multimedia format and then 
apply what they have learned in hands-on problem settings, such as building skateboard 
ramps (p. 32). The mathematical topics in this case involved rates, construction of graphs, 
lines of best fit, and fraction calculation. In this study, the emphasis is on the possibly 
differential impact of the “real-world” oriented curriculum on different groups of students 
(students with learning disabilities, and high- and average-achieving students). This is 
classified as a Category 2 study because of design issues, but it is an interesting example for 
consideration. The authors report that, following treatment, students in the inclusive classes 
(which include learning disabled students) outscore the students in the typical classes. This, 
together with other studies by Bottge, as well as the study by Henderson and Landesman 
(1995) that is concerned with bilingual instruction as well as thematic integration, suggests 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-98 

that more systematic research on the impact of “real-world” problem based instruction on 
particular subgroups of students who have been traditionally underserved in mathematics, 
may be worthwhile.  

 
Three of the studies examine the impact of video-based instruction that involves the 

presentation of mathematical problems through “real-world,” contextual settings (Cognition 
and Technology Group at Vanderbilt [CTGV], 1992; DeBock et al., 2003; and Hickey, 
Moore, & Pellegrino, 2001). Two (CTGV, 1992; Hickey, Moore, & Pellegrino, 2001) report 
on the impact of the implementation of the Jasper Woodbury series. DeBock et al. (2003) use 
video material based on Gulliver’s Travels. There are other innovations in the use of video-
based instruction, including involvement of students in cooperative groups, for instance, 
which can cause confounding; in addition, the types of outcome measures used in these 
studies vary in terms of their closeness to the focus of the intervention. 

 
Remaining mindful that all of these studies have flaws that prevent their inclusion in 

Category 1, five of them report significantly better performance of treatment groups (some 
kind of “real-world” instruction) than of control groups, on particular measures that tend to 
emphasize “real-world” problems in one way or another (Ben–Chaim et al. 1998; CTGV, 
1992; Hickey et al., 2001; Henderson & Landesman, 1995; and Irwin, 2001). In contrast, 
Klein et al. (1998) report no difference on procedural competence between the control and 
treatment groups, and DeBock et al. (2003) report a negative result, where students using the 
video instructional treatment performed worse than those who solved non-embedded 
problems on the outcome measure.  

 
No conclusions about impact can be drawn from these studies. Instead, they highlight 

the complexities of these research issues, and point toward interesting questions, designs, and 
measures that could help form a foundation for subsequent research. 

E. Using Specific Strategies to Improve  

‘Real-World’ Problem Solving 

The search for studies that examined the use of “real-world” problems as an 
instructional strategy led to a small number of Category 1 studies that concerned the impact 
of different instructional strategies for teaching students to solve “real-world” problems. Note 
that this is not necessarily all of the studies that have examined strategies for improving 
“real-world” problem solving. This work is distinguished from what is included in the prior 
section in part by a particularly strong focus on the primary goals of both near and far 
transfer outcomes. Lynn Fuchs and her research group have undertaken a series of studies in 
this vein, several of which met our criteria. A study by Fuchs, Fuchs, Hamlett, and Appleton 
(2002) was aimed at enhancing mathematical problem-solving performance of fourth-graders 
with mathematical disabilities. All students participated in their regular classroom 
mathematics instruction using a basal text, and a six-lesson base treatment on approaching 
mathematical problem solving. One experimental group received 24 sessions of problem-
solving tutoring; one received 24 sessions of computer-assisted practice; a third received both 
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the tutoring and computer-assisted practice sessions.10 Small group tutoring was provided on 
problem-solving rules and on transfer. The computer-assisted practice emphasized tasks 
intended to lead to far-transfer. There were three types of outcome measures: ability to solve 
story problems, transfer story problems, and “real-world” problems. Significant effects 
favoring the problem-solving tutorial group were found on the story problem and transfer 
story problem measure (effect sizes of 1.340 and 0.982, respectively). The effect size on the 
“real-world” problem solving measure was not significant (-0.041) and slightly favored the 
computer-assisted practice group, indicating no significant differences between treatments on 
the primary outcome measure of far transfer. 

 
Table 16: Studies That Examine Strategies to Improve “Real-World” Problem Solving 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Barron, 
2000 

RCT 

96 sixth-grade 
students in a 
public magnet 

school for 
academically 
talented children 

Four 1-hour sessions/ 
Contextual problem 
solving 

Problem solving 
collaboratively in 
triads vs. Problem 

solving individually 

Pooled transfer 
measures 

0.287 (ns) 0.204 

Fuchs et al., 
2002 

RCT 

40 fourth-grade 
students with 

mathematical 
disabilities in six 
classrooms in 

three schools 

24 sessions/ 
Mathematical 

problem solving 

Problem-solving 
tutoring vs. 

Computer-assisted 
practice  

Pooled story 
problems (ES = 

1.340**), transfer 
story problems 
(ES = 0.982**) 

and “real-world” 
problem-solving 
measures (ES =  

-0.041) 

0.760 ~ 0.454 

SBTI vs. Control 1.123 * 0.513 

Fuchs et al., 

2004a 
RCT 

351 third-grade 

students in 24 
classrooms in 
seven schools in 

an urban district 

34 lessons over 16 

weeks/ Mathematical 
problem solving 

SBTI expanded vs. 

Control 

Transfer-4 

measure (a 
measure of far 
transfer that 

approximated real 
life problem 
solving) 

2.087 *** 0.600 

SBI vs. Control 0.545 (ns) 0.439 

Fuchs et al., 

2006a 
RCT 

445 third-grade 

students in 30 
classrooms in 
seven schools in 
an urban district 

16 weeks/ 

Mathematical 
problem solving 
strategies 

SBI-RL vs. 

Control 

Pooled transfer 

measures 1.077 * 0.464 

Rudnitsky et 

al., 1995 
RCT 

401 third- and 

fourth-grade 
students in 21 
classrooms in 

six schools 

18 days/ Addition 

and subtraction word 
problems 

Writing and 

discussion vs. 
Practice and 
explicit heuristics 

Near transfer 

posttest 
0.190 ~ 0.115 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a These studies use classroom-level analyses. 

                                                             
10 Contrasts with this condition not included in table. 
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A second study (Fuchs, Fuchs, Finelli, Courey, & Hamlett, 2004) built on these 
findings and implemented schema-based transfer instruction (SBTI), which explicitly teaches 
students about transfer features of problems in an effort to improve their near- and far- 
transfer performance. Twenty-four third-grade teacher volunteers in seven urban schools 
were randomly assigned to one of three conditions: control, SBTI, and SBTI expanded (this 
included focus on additional and challenging superficial problem features such as irrelevant 
information, and the concept of “real-life” situations that introduce more information than 
problems typically used in school). The 16-week treatments were compared using four 
outcome measures: Transfer-1 (novel problems structured in the same was as those in the 
instruction); Transfer-2 (novel problems that varied in the three transfer features taught in 
SBTI); Transfer-3 (novel problems that varied in transfer features taught in both SBTI and 
expanded SBTI); and Transfer-4 (measure of far transfer that varied from the problems used 
in instruction in six major ways). Calculation of effect sizes for Transfer-4 (measure of far 
transfer that approximated “real-life” problem solving) yielded significant effects for the 
SBTI expanded vs. the control condition (ES = 2.087), and for the SBTI vs. the control group 
(ES = 1.123). The Task Group can conclude that this particular, highly specific instructional 
approach can result in stronger performance on a “real-world” problem outcome. 

 
This group of studies led to a randomized controlled study published in 2006 (Fuchs, 

Fuchs, Finelli, Courey, Hamlett, Sones et al., 2006). Three treatment conditions were 
implemented: the “teacher-designed” condition, which was the control, with teachers using 
the district curriculum; and two schema-broadening instruction (SBI) conditions. One SBI 
condition was the problem-solving instruction used in earlier studies, emphasizing superficial 
problem features, problem structures, and problem types. The second SBI condition is 
expanded to include “explicit instruction in strategies for tackling the complexities involved 
in real-life problems” (p. 296). The Task Group found a significant effect size (ES = 1.077) 
for the enhanced schema-broadening instruction aimed at preparation for solving real-life 
problems in comparison to the control group members on pooled far transfer measures. In 
addition, the effect of the SBI treatment in comparison to the control on the far transfer 
outcome measures was encouraging, though not significant (ES = 0.545). The results of these 
two studies (Fuchs et al. 2004, Fuchs et al. 2006), in contrast to the Fuchs, Hamlett, & 
Appleton et al. (2002) suggest that the enhanced schema-broadening instruction, which 
explicitly helps students to recognize and attend to irrelevant and extraneous features in real-
life problems, is effective in enabling students to successfully solve real-life transfer 
problems. 

 
Two additional studies met the Category 1 criteria and have been classified as being 

about promoting student performance on “real-world” problems through a particular 
instructional strategy. Barron (2000) used Jasper Woodbury-style video-based microworlds 
as the instructional treatment being tested, in comparison to control conditions, for its effect 
on a student problem solving performance measure. Two different grouping strategies for 
students using the Jasper Woodbury materials were compared. In one condition, the sixth-
grade students worked in triads. In the other, they worked individually. The effect size 
calculation yielded an encouraging though not significant effect of the triad arrangement 
(ES = 0.287). Rudnitsky, Etheridge, Freeman, and Gilbert (1995) focused on helping third- 
and fourth-grade students solve arithmetic word problems through two different treatments: a 
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“writing-to-learn” approach, in which students created their own mathematical stories and 
problems, and a control condition involving practice and explicit heuristics. On a near-
transfer problem-solving posttest, there was no significant effect size (ES = 0.190). 

 
In summary, these five studies examine several very different types of instruction 

intended to improve near or far transfer performance on “real-world” problems. The 
strategies were: student grouping, computer-assisted instruction, problem-solving tutoring, 
schema-based instruction, enhanced schema-based instruction, and problem writing. It is not 
reasonable to calculate pooled effect size for these five studies, given the differences in the 
instructional interventions. It is important to note that, of all of these strategies, the only one 
that shows promise on an empirical basis is the enhanced schema-based instruction in both 
Fuchs et al. (2004) and Fuchs et al. (2006). Note too that the mathematical domain is narrow 
(whole number arithmetic) and this was undertaken only at the third grade. At the same time, 
the heart of the intervention—a focus on extraneous and irrelevant information—is a feature 
that some would surely say is a defining feature of “real-world” problems; these are messy 
problems. Fuchs and her colleagues seem to have demonstrated that, under very specific 
conditions, in a very narrow area of mathematics, it is possible to teach students how to 
address these issues and be effective problem solvers. 

 
There were three studies classified as Category 2 that also examine instructional 

strategies for improving performance on “real-world” problems. All of them have design 
flaws which exclude them as studies from which the Task Group can draw conclusions about 
impact. However, these studies are instructive because they provide ideas about various kinds 
of instructional interventions that have been attempted, and about interesting outcome 
measures. Serafino and Cicchelli (2003) contrast two instructional approaches within the 
anchored instruction model on which the Jasper materials are based. The Structured Problem 
Solving model includes a more teacher-dominated, structured approach, with more focused 
teacher questions and summaries. The Guided Generation model casts the teacher in more of 
a facilitator role. Shyu (1999) investigated the effects of a video-based anchored instruction 
program based on the Jasper Series. There were three instructional treatments—the video-
based instruction, the printed, story-book version, and regular instruction. Both of these 
studies designed alternative instructional approaches for use with problem-based curricula. 

 
Verschaffel and DeCorte (1997) conducted an experiment with 10–12 year olds in 

which the treatment involved a sequenced introduction of “real-world” problems and 
discussion of the information available and the approach to the problem. What is of particular 
interest in this study is the outcome measure, “disposition toward realistic modeling,” which 
is intended to assess students’ tendency to use “real-world” knowledge and realistic 
considerations in their problem solving. The authors report a significant difference favoring 
the treatment group, but these results are not robust given that the treatment condition had 
only one unit. Nonetheless, it is worth noting that the instructional interventions in this study 
seem to share the principles in the Fuchs et al. approaches, in which there is explicit focus on 
features characteristic of “real-world” problems. Further development of such approaches for 
use in wider contexts might be fruitful.  
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Based on an examination of studies primarily concerned with testing different 
approaches to teaching that enable students to solve “real-world” problems, the Task Group 
concludes that some instructional approaches will lead to better student performance on 
“real-world” problems than others. However, these instructional practices are highly 
specified, and the studies only demonstrate their effectiveness for relatively narrow classes of 
problems. For those who view performance on “real-world” problems as an important 
outcome of K–12 mathematics education, there are still far more open questions about what 
will lead to far transfer and which instructional methods are best than there are conclusions. 

F. Conclusion 

It is difficult to draw conclusions from the set of studies that examine the impact of the 
use of “real-world” problems and related instructional strategies in instruction on student 
mathematics performance, including performance on “real-world” problems. The body of 
studies is small; the outcome measures are often designed by the researchers and information is 
not available on psychometric characteristics of these measures; and, confounding variables 
that are difficult to measure reliably, such as fidelity of implementation and other contextual 
features, are not always included in the study reports.  

 
The set of studies also has a certain homogeneity. Of the 21 studies discussed here, 10 

of them are focused on instructional materials that introduce “real-world” problems through 
the Jasper Woodbury series, or similar video materials. Researchers have not undertaken the 
necessary rigorous examination of print instructional materials that have as their primary goal 
the introduction of mathematical ideas through “real-world” problems. Nor has there been 
adequate attention to the possibility that different mathematical ideas, topics, and procedures 
might best be learned through particular instructional approaches; perhaps using “real-world” 
problems is good for some mathematical topics and not for others. The Task Group found 
very few studies that started from any clear hypotheses about why a particular intervention 
would be likely to help with a particular area of mathematics. 

 
Debates about the place of “real-world” problems in the mathematics classroom are 

complicated by a number of issues; the operationalization of the term “real-world” problems 
varies by mathematician, researcher, developer, and teacher; fidelity of the teachers’ 
implementation of the instructional materials or instructional strategy is difficult to assess; 
contextual features, such as SES, or the school’s orientation toward reform matter; and most 
likely, although not addressed in the studies the Task Group examined, teachers’ knowledge 
and capacity to use such problems effectively varies greatly.  

 
A particularly relevant issue to focus on in this domain may be the degree to which 

students’ ability to apply mathematical knowledge to “real-world” or “authentic” problem 
situations is a valued and agreed-upon outcome of school mathematics. If “real-world” 
problem solving is not seen as an essential outcome of K–12 mathematics education, then the 
modest accumulation of research available (meeting our screening criteria) on the topic 
would suggest that there is no great value in using “real-world” problems as a main element 
of mathematics instruction nor is there great value investing significant time to design 
effective instructional strategies that rely on “real world” contexts. However, if ensuring that 
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students know the needed mathematics, and can apply that mathematics to the more complex 
and open kinds of problems that can be encountered in the “real world” is important, then the 
studies reviewed here offer some promise. 

 
The Task Group concludes that, under certain conditions, for specific domains of 

mathematics, instruction that features the use of “real-world” contexts shows potential 
promise for having a positive impact on student achievement. However, these results are not 
yet sufficient as a basis for widespread policy recommendations. 

 
If the goal of application of the mathematical knowledge in contexts is considered 

important, then these studies would suggest that continued investment in research and 
development that is coordinated with state standards may be worthwhile, with several caveats. 
More studies should use standardized outcome measures in place of the researcher or developer-
designed instruments, so that the results can accumulate in a more useful way. If such measures 
are not used, then the design of outcome goals and measures needs more integrated involvement 
of psychometricians and mathematicians, who can watch for the difficulties of overly 
confounding the outcome assessment with the intervention, or of assessing mathematics too 
narrowly. Studies that look beyond special populations of students (e.g., remedial students, 
special education students) are needed. Randomized control experiments are necessary for 
generalization and clarity about the scale-up potential and outcomes of specific interventions. 
And, more attention is needed to the specific kinds of mathematical outcomes that are obtained 
by specific types of “real-world” problem interventions. For instance, “real-world” approaches 
may be especially useful for introducing particular mathematical concepts and processes, and 
less useful or inefficient for the introduction of other topics. Thus far the research has made little 
systematic progress on this matter. 
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V. The Role of Technology in Mathematics Education 

Although young in historic terms, computer technology has a strong presence in our 
lives and in the research literature. This report synthesizes what is known from high-quality 
research about the effectiveness of a variety of approaches to applying computer technology 
to the solution of educational problems in mathematics instruction. The report begins with a 
brief overview of the categories of computer applications that mathematics educators have 
used. Next, using the prior reviews, syntheses, and meta-analyses as context and background, 

the Instructional Practices Task Group’s own original meta-analyses of rigorous studies for 
those categories that included an adequate body of studies that fit the Task Group’s criteria 
are presented. These included drill and practice, tutorials, calculators, and computer 
programming. The Task Group’s basic question is: What is the role of technology including 
computer software, calculators and graphing calculators in mathematics instruction and 
learning? The last section summarizes answers to this question on the basis of the Task 
Group’s review of high-quality research. 

A. Categories of Instructional Software 

As an all-purpose device, a computer can take a variety of forms and play a variety of 
instructional roles. The term computer-based instruction (CBI) will refer to all these 
applications of computer technology to education. As an interactive device, the computer can 
be programmed to provide opportunities for active learning and reflective thinking on the one 
hand, or to provide drills on the other. It might manage and individualize instruction. It can 
perform tedious calculations, potentially having positive effects (if it thus allowed 
engagement in topics otherwise impossible or difficult for students to approach) or 
unintended consequences (students become overly dependent on calculators). This paper uses 
the following categories to classify instructional software (with the caveat that software 
programs can combine pedagogical categories): 

 
• Drill and practice; 
• Tutorials; 
• Tools (including calculators) and problem solving; 
• Computer programming; 
• Simulations; 
• Games; 
• Internet; 
• Tools for teachers. 

 
A brief description of each of these categories is provided below, and Table 17 

provides complementary descriptions. Table 17 lists several features that may distinguish 
more effective from less effective computer-based practice (including unique features—those 
that can not easily be duplicated in noncomputer environments). 

 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-110 

Drill and practice software provides practice on skills and knowledge to help students 
remember and use that which they have been taught. A main goal is to achieve automaticity, or 
fast, accurate, and effortless performance, freeing working memory so that attention can be 
directed to the more complicated aspects of complex tasks. As with most drill in any medium, 
drill and practice computer programs present tasks or exercises and give feedback to students.  

 
Tutorials attempt to introduce and teach new subject-matter content, by presenting 

information and often by attempting to engage students in one-to-one Socratic dialog (e.g., 
tutorials using artificial intelligence to engage in dialogues). These are usually developed in 
situations in which a well-defined set of information must be acquired.   

 
The term computer-assisted instruction (CAI) is commonly used to refer to drill and 

practice programs, tutorials, or their combination. A specific type of CAI is the integrated 
learning system (ILS), a large suite of programs, mainly tutorial, but with drill and practice 
included, that provides sequenced instruction across several grade levels, tracking students’ 
progress and branching as necessary, and maintaining extensive records of student progress 
(using computer-managed instruction, or CMI, which is discussed in a following section). 

 

Simulations are models of some part of the world (such as the noncomputer board 
games “Life” or “Monopoly”), and computer simulations are often more complex 
mathematical models that respond in relatively realistic ways to input based on “real-world” 
data. Most simulations present situations with components and interactions among those 
components and generate data about them in response to student input that mirrors 
relationships in those physical-world or mathematical situations. Thus, students play a role of 
an active member of a system, making decisions and analyzing the results of those decisions. 
Goals often are to motivate engagement, develop intuition about a problematic situation, 
facilitate acquisition of skills and knowledge, and enhance transfer of mathematical skills as 
students perform activities reflecting those in the “real world.”  

 

Games may share characteristics with simulations, as the term “simulation games” 
suggests. This category is broader, encompassing games that are no more than drill and practice 
with game-like elements used as rewards, to those in which mathematics is intrinsic to the goals, 
rules, and tasks of the game. Games of the former type, in which mathematics is extrinsic, often 
have goals similar to those of drill and practice software. The latter are often designed to 
promote acquisition of mathematical knowledge and skill, as well as problem solving. 

 

Tools include a wide variety of software programs that perform specific sets of 
functions, such as calculation, statistics and graphing, computer-based laboratories (CBL, 
e.g., sensors, including statistical analysis and display of the resulting data), or manipulation 
of mathematical expressions in symbolic form. Pedagogical goals may include allowing more 
complex problem solving by transferring routine aspects of tasks to the technological tool 
and encouraging students to solve problems in practical, applied settings. Calculators, 
including graphing calculators, are widely available tools that have generated a large amount 
of interest and research. They have been used for many purposes, from facilitating problem 
solving by allowing students to perform far more, and more complex, arithmetic operations 
than would have been possible without technology, to serving as simple fact checkers.  



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-111 

Problem solving applications may be one or more tools as above, but may also 
include the presentation of problems and feedback (similar to the feedback of CAI). 

 

Computer programming involves the provision of computer languages or environments 
to facilitate students’ creation of procedures that solve mathematical problems. Goals may 
include students’ learning and reflecting on algorithms (arithmetic or algebraic), as expressed 
in the computer language, gaining specific knowledge and skills (e.g., in geometry), and 
learning certain problem-solving strategies, such as problem determination and explication, 
problem decomposition, and construction and evaluation of procedures. Some environments 
are tuned for special purposes, such as the development of mathematical models for 
simulations, or providing a scripting language within a geometric construction program. 

 
The Internet provides general information searching and retrieval functions. Educational 

applications include specifically organized inquiries (e.g., “WebQuests”). The Internet also 
offers myriad applications and features (“blogs,” groups, etc.) that may be harnessed for the 
purposes of mathematics education. The Internet can also be the delivery medium for any of the 
other categories of software; those are considered within their specific category. 

 

Tools for teachers include a variety of software programs designed to aid pedagogical 
tasks. For example, electronic blackboards (“smart boards”) facilitate the display of 
information or demonstration of any type of software, and with “clickers,” can aggregate 
students’ responses; management systems help store, organize and analyze information, such 
as achievement data, and may include item, test, or practice generators; and hand-held 
devices facilitate classroom interaction (e.g., each student has a device, and responses or data 
entry are easily and quickly inputted and evaluated or aggregated). 

 
Computer management systems include computer-managed instruction, or CMI, in 

which the computer analyzes assessments of students, directs their course through a 
curriculum, and provides reports at individual and aggregate levels. These can be stand-alone 
systems or can form the foundation for other categories of CBI, such as CAI.  
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Table 17: Categories of Educational Software 

Category Typical Pedagogy Possible Features 

Drill and 
Practice 

Linear 

Repetitious 

Presentation of task, student response, feedback 

Sequencea 

Managementb 

Feedbackc 

Controlled introduction of items 

Distributed practice 

Reinforcement schedules 

Tutorials Linear progression with various amounts of branching 

Didactic presentation and, sometimes, Socratic 
dialog, presentation of information, questioning, 

and feedback depending on the response; 

branching to explanations or review 

Sequence 

Management 

Feedback 

Instructional eventsd 

Tools and 
Problem 

Solving 

Specific functions (calculator, graphing, computer-
based laboratories, geometric construction, CAS) 

Problem Solving may include presentation of 
problems and feedback 

Integration/data communication 
across tools (or with other 

software categories) 

Specific feature sets 

Computer 
Programming 

Specific language 

Specific educational environment, specific tasks 

Mathematics emphasis 

Integration into curriculum 

Simulations Nonlinear; exploratory/inquiry-oriented 

Provides a model of “real-world” or mathematical 
situation in which students act; then responds to 

students input following that model  

Integrated with tutorials or teaching 
tools 

Appropriate simulatione 

Games Provides a set of tools and/or miniature “world” as 
setting for attempting to achieve a goal within a 

framework of rules 

Provides clear goals, a set of artificial rules, and 
elements of competition 

Mathematics emphasis 

Intrinsic mathematics 

Manipulation of concepts 

Motivational elements 

Internet Type: General information search/retrieval, 
“WebQuest,” other 

 

Tools for 

Teachers 

Type: electronic blackboard, demonstration/display, 

management system (CMI; may include practice 
generator), item/test/practice generator, classroom 

interaction (each student has device) 

Integration/data communication 

across tools (or with other 
software categories) 

 

a Sequence: Consists of building a sequence of mathematical strategies/skills/concepts.  
b Management: Computer management may consist of record keeping only (includes “picks up where left off”), more 
sophisticated formative assessment, or formative-assessment-with-branching [e.g., remediation]. 
c Feedback: Corrective feedback may be knowledge of correctness only, or also provide answer, or also provide remediation 
or explanation. May attend to speed of response. 
d Features most of the events of instruction identified by cognitive psychology to correspond to learning processes (e.g., 
gaining attention, informing learner of objectives, stimulating recall of prior learning, presenting stimuli with distinctive 

features, guiding learning, eliciting performance, providing informative feedback, assign performance, enhancing retention 
and transfer). 
e Appropriate abstraction or simplification of the problem situation vs. oversimplification or misrepresentation of the “real-
world” situation or the mathematics. 
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B. Methods 

1. Syntheses of Existing Reviews 

Prior syntheses and meta-analyses related to the effects of different forms of 
instructional technology on student mathematics achievement were identified through 
keyword searches in PsycInfo and Web of Social Sciences Citation Index. Experts in the 
field of technology instruction and meta-analysis provided additional references. Finally, the 
reference lists from the identified syntheses and related original studies were reviewed to 
identify additional syntheses. 

 
From among the group of reviews that were identified, 26 quantitative syntheses and 

meta-analyses were included in the Task Group’s synthesis of existing reviews.11 These were 
reviewed to ascertain the number of included studies that focused on the primary population 
of interest (elementary and junior high school students taking part in mathematics-related 
technology interventions), the nature of the technology, and the syntheses procedures. 
Results from these quantitative syntheses and meta-analyses that addressed the primary 
population of interest of the Panel and the technologies considered were then summarized. 
The pooled effect sizes from these meta-analyses are presented in Tables C-1 through C-7 of 
Appendix C. 

 

2. The Task Group’s Meta-Analyses 

For the Task Group’s original meta-analyses, studies were located using the 
Group’s search procedures and the keywords listed in Appendix A. Original empirical 
studies on technology were categorized based on the category of software on which the 
intervention focused. Effect sizes were calculated for the Category 1 studies, and effect 
sizes were pooled when appropriate. All effect sizes have been adjusted for clustering, 
when appropriate. Study characteristics are provided for each of the Category 1 studies that 
were included in the meta-analyses.   

 
A number of methodological decisions in preparing the data for analysis and in 

choosing which effect sizes to include in the pooled analyses were made. In particular, four 
key issues were confronted, as follows. 

 
First, a number of studies evaluated the effects of more than one technology intervention 

and/or more than one comparison group. Specifically, three studies (Battista & Clements, 1986; 
Clements, 1986; and Emihovich & Miller, 1988) evaluated the effects of a programming 

                                                             
11 The Task Group examined literature reviews, syntheses, and meta-analyses, and conducted syntheses reported 

here of prior quantitative syntheses and meta-analyses, as follows: Becker (1992); Burns & Bozeman (1981); 
Chambers (2002); Christmann, Badgett, & Lucking (1997); Ellington (2003); Ellington (2006); Fletcher-Flinn 

& Gravatt (1995); Gordon (1992);  Hamilton (1995); Hartley (1978); Hembree (1984); Hembree & Dessart 

(1986); Hembree (1992); Khalili & Shashaani (1994); Khoju, Jaciw, & Miller (2005); Kuchler (1999); Kulik & 

Kulik (1991); Kulik (1994);  Kulik (2003); Lee (1990); Lou, Abrimi, & d’Apollonia (2001); Niemiec & 

Walberg (1984); Ryan (1991); Slavin, Lake, & Groff (2007); Slavin & Lake (2007); Smith (1997). 
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treatment (using Logo) and a tutorial or drill and practice (i.e., CAI) treatment, compared to a 
no-treatment control. In two of these cases (Clements, 1986; and Emihovich & Miller, 1988), 
the CAI group was focused, at least in part, on mathematical content. In these cases, the 
programming versus control group contrast was included in the meta-analysis exploring the 
effects of programming interventions, and the CAI versus control group contrasts were included 
in the meta-analyses exploring the effects of drill and practice programs (Emihovich & Miller, 
1988) or tutorial programs (Clements, 1986). The programming vs. CAI comparisons are noted 
in the programming section and presented in Appendix C. In other studies, two similar 
treatments were compared with a no-treatment comparison group. In these cases (for example, 
in Oprea, 1988), the treatment that was more similar to a typical intervention that schools would 
be likely to implement was included. Still, in other studies, a specific intervention was compared 
to multiple comparison groups. In this situation, the most relevant intervention versus control 
contrasts was chosen on a case-by-case basis.12   

 
Second, studies often explored the effects of interventions on a range of outcomes. 

For the purposes of this meta-analysis, the focus was only on mathematics-related or 
problem-solving outcomes. In cases in which multiple outcomes within these domains were 
available, an average effect size across the multiple outcomes was calculated.   

 
Third, studies often reported effects on a variety of independent samples of students. 

For example, studies sometimes reported results by race, gender, grade level, or disability 
status. In cases in which it is likely that the intervention experience was different for these 
subgroups multiple effect sizes for a study are presented; for example, separate effects by 
grade level and disability status. In addition, multiple effect sizes are reported for studies that 
present results from multiple trials exploring the same intervention and outcome (for 
example, across sites or across samples or cohorts). 

 
Fourth, a number of studies met the criteria for being Category 1 studies but did not 

compare a technology intervention to a no-treatment control group. Instead, these studies 
compared two different versions of technology interventions. Although these studies are not 
appropriate to pool in a meta-analysis, some suggested findings from these comparison 
studies are presented. 

 
Finally, for studies about calculators only, there were three additional methodological 

decisions that were made in preparing the data for analysis and in choosing which effect sizes 
to include in the pooled analyses. First, three studies (Szetela, 1980; Szetela, 1982; and 
Wheatley, 1980) presented outcomes based on assessments where the calculator treatment 
group was allowed to use calculators, while the no-calculator comparison group was not. In 
two of these studies, (Szetela, 1980; Wheatley, 1980) this was the only information available. 
In the one case in which both an assessment allowing calculator use and a standard paper and 

                                                             
12 For example, in Johnson-Gentile et al., 1994, one comparison group received an intervention that used 
manipulatives that was almost identical to the curriculum of the programming intervention. In this case, the 

programming versus the no-treatment comparison group contrast was included.  However, in Ortiz and 

MacGregor (1991), we chose to include the programming intervention versus a textbook-based intervention 

contrast, because the no-treatment comparison group did not receive any instruction on the outcome that was 

being evaluated (“the concept of variable”). 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-115 

pencil assessment that did not allow calculator use were available (Szetela, 1982), the effect 
size for the latter was included Table C-9 in Appendix C summarizes the effects for any 
additional sets of effect sizes in which students were allowed to use calculators. 

 
Second, three studies (Duffy & Thompson, 1980; Standifer & Maples, 1981; and 

Standifer & Maples, 1982) evaluated the effects of two calculator interventions and a no-
calculator control group. For the purposes of the meta-analysis, contrasts that are most 
similar to contrasts in other studies are included, thus attempting to compare the basic 
treatment of using a calculator during instruction versus not using a calculator.13 The two 
Standifer and Maples studies compared the effects of using a standard hand-held calculator 
and a “programmed feedback” calculator. Focus was on the hand-held versus control group 
contrast, with the additional effect sizes presented in Table C-9 in Appendix C. The Duffy 
and Thompson study includes one condition that simply provides students with calculators in 
the classroom and does not provide guidance to teachers, a second condition that provides 
calculators plus instructional packages for teachers, and a no-calculator control condition. 
Again, focus was on the basic calculator versus no calculator contrast, with the effect sizes 
for the more enhanced treatment documented in Table C-9. 

 
Third, there were three studies (the same three as noted in the previous paragraph) 

that also provided effect size information for Total Achievement scores. This information is 
also presented in Table C-9. 

C. Categories of Instructional Software: Findings 

This section summarizes findings from studies that examined specific categories of 
instructional software. For each category, results from prior syntheses and meta-analyses 
provide background information and, for each category for which the Task Group conducted 
its own meta-analyses, those results are presented. 

 

1. Drill and Practice 

a. Prior Syntheses and Meta-Analyses 

Many of the studies in the prior CBI reviews probably included drill and practice 
software, so there is reason to expect similar results for reviews that delineated this category. 
The detailed effect size information from prior quantitative syntheses and meta-analyses are 
presented in Table C-1 in Appendix C. Prior syntheses and meta-analyses (see Table 18) 
suggest that CAI drill and practice generally improves students’ performance compared to 
conventional instruction, with the greatest effects on computation, and less effect on concepts 
and applications (recall the caveats expressed previously, and note the discussion in the 
following section on tutorials). Prior reviews have found that drill and practice positively 
affects attitudes toward mathematics and instruction in mathematics. They suggest that drill 
and practice is equally effective at all grade levels and may be more effective for males. Drill 

                                                             
13 In some studies, however, the only treatment or comparison contrasts were a calculator plus additional 

materials treatment versus a no-calculator control group (for example, Szetela, 1982). In these cases, these 

contrasts were included. 
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and practice is the only category of instructional software that shows stronger effects for 
serving as a substitute for conventional instruction, rather than as a supplement to it. It may 
be that such programs address students’ instructional needs for practice adequately and 
efficiently, making substantial teacher intervention less important. 

 
Variance in the findings of these reviews, and even wider variance in the individual 

studies, suggests that general conclusions should be made cautiously. Probably at work here 
are critical variables, including the quality of the particular software, but also contextual 
variables (e.g., settings, such as urban, suburban, or rural and student or family 
characteristics) and implementation variables (e.g., duration, use of the intervention as a 
supplement or substitution for conventional instruction, and fidelity of implementation; 
support and availability of resources, funds, and time; setting within the school) (Clements, 
2007). One implication is that we should examine the influence of these variables when 
possible. The scarcity of information in this regard suggests a second implication, to which 
we will return: The field needs more comprehensive and nuanced reporting and analysis. 

 

Table 18: What Prior Reviews Say About Drill and Practice  

• General findings  
— Generally improves students’ performance when compared to conventional 

classroom instruction (median ESa = 0 .345)  
— Greatest effects on computation, less on concepts and applications 
— Positive effects on attitudes toward mathematics and instruction in mathematics 

• Contextual variables 
— No consistent differences by grade level 
— No consistent differences by ability level 
— Differences favored males 

• Implementation variables 
— Differences favored programs that substitute for other mathematics instruction 
— Differences favored experimenter or teacher developer-designed (vs. commercially 

designed) software 
— No consistent differences by program duration 

a The median effect size is the median across meta-analyses that reported a pooled effect size.  Pooled effect 

sizes for individual meta-analyses are provided in Appendix C; Drill and Practice is Table C-1. 

b. The Task Group’s Meta-Analysis of Drill and Practice Software 

Table 19 presents the studies in the Task Group’s meta-analysis of high-quality 
experimental and quasi-experimental studies on the effects of drill and practice software on 
achievement. From all the studies reviewed, only 12 met the criteria for inclusion. These 12 
studies yielded a total of 18 effect sizes. Of these, 16 were positive (4 of which were 
statistically significant) and 2 negative (neither statistically significant), with a mean pooled 
effect size of 0.320, which was statistically significant. Although this is conjectural, there 
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seems to be a trend for greater effects of interventions that were shorter and focused on 
developing the automaticity of specific skills. If this is indeed the case, this would be 
consistent with reports from other reviews. 

 

The Task Group extended each meta-analysis to ascertain whether effect sizes were 
mediated by particular contextual and implementation variables. Results are presented in 
Table 20. A between-group p-value was calculated using CMA software to determine if the 
effect of a particular contextual or implementation variable was significant, and results of 
these analyses are shown in the same row as the name of the variable.  
 
Table 19: Studies That Examine Effects of Drill and Practice Technology on 

Mathematics Achievement 

Study Design Sample Duration/Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Drill and Practice 

Ball, 1988a QED 
91 fourth-grade students 
in five classes in two 

schools 

12 computer 
lessons over 6–8 

weeks/ Fractions 

Computer lessons 
on fractions vs. 

traditional 
fraction 
instruction 

Posttest—
Fractions 

0.815 ~ 0.457 

Campbell et al., 
1987 

RCT 

48 third-grade students 
in a middle-class 

suburban school in the 
Southeast 

20 minutes daily  
of D&P for 5 

weeks (+30 min 
instruction for  
both T &C)/ 

Division of whole 
numbers/Milliken 
Mathematics 

Sequences program 

Milliken 
Mathematics 

D&P vs. 
worksheets 

Posttest—
Division 

0.445 (ns) 0.288 

Carrier et al., 1985 RCT 

144 fourth-grade 

students in six 
classrooms in a 

metropolitan school 
district 

10–15 minutes per 

lesson over 14 
weeks/ Multiplica-

tion and division 

Three different 

D&P vs. 
Worksheets 

Post: 

Symbolic 
algorithms, 

mult. & 
division 

0.228 (ns) 0.167 

Emihovich & Miller, 

1988 
RCT 

24 first-grade students in 

five classrooms in an 
elementary school in the 

Southeast 

20, 30-min sessions 

(3 months)/ 
Addition/ 

subtraction, basic 
mathematics skills 

Series of CAI 

software vs. 
regular reading 

and mathematics 
instruction  

CTBS—

Mathematics 
0.407 (ns) 0.399 

41 third-grade students 

in rural Saskatchewan, 
Canada 

Spring semester/ 

3rd-grade 
mathematics 

0.412 (ns) 0.693 

Fletcher et al., 1990a RCT 
38 fifth-grade students in 
rural Saskatchewan, 

Canada 

Spring semester/ 
5th-grade 

mathematics 

Milliken 

Mathematics 
Sequence vs. 

Control 
(traditional 
instruction + 

worksheets) 

Canadian 

Tests of Basic 
Skills (CTBS) 

0.338 (ns) 0.697 

Fuchs et al., 2006 RCT 

33 first-grade learning 

disabled students in nine 
classrooms in three Title 1 
schools in a metropolitan 

school system 

50, ten-minute 

sessions over 18 
weeks/ Addition 
and subtraction 

mathematics 

FLASH vs. 
spelling FLASH 

Post: 

addition, 
subtraction, 
and story 

problems 

0.177 (ns) 0.349 

Kraus, 1981 RCT 
19 second-grade students 

in one school in a 
southwestern Ohio city 

5 sessions over a 

two week period 
(average 64 
minutes)/ Fish 

Chase game: 
addition 

Fish Chase vs. 

Hangman 

Addition 

speed test 
1.454 ** 0.523 

Continued on p. 6-118 
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Table 19, continued 

Study Design Sample Duration/Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Drill and Practice 

15 Kindergarten students 

in achievement level 1 in 
one public school in a 

large Southern city 

-0.548 (ns) 0.529 

13 Kindergarten students 

in achievement level 2 in 
one public school in a 
large Southern city 

0.344 (ns) 0.575 
McCollister et al., 

1986 
RCT 

25 Kindergarten students 
in achievement level 3 in 

one public school in a 
large Southern city 

6 sessions/ 

Numeral 
recognition and 

cardinal counting 

How Many 

Squares computer 
program vs. 

Milton Bradley 
Flannel board 

Pine & Burts 

(1984) 
numeral 

recognition 
and cardinal 
counting 

0.429 (ns) 0.405 

24 second-grade students 
in New York City public 
schools 

0.150 (ns) 0.408 

Podell et al., 1992: 
Study 1 

RCT 28 learning disabled 

students in Grades 2–4 
in New York City public 
schools 

Up to 10 15-minute 
sessions, three 
times per week/ 

Addition 

Mathematics 
Blaster - 
Addition vs. 

Worksheets 

Accuracy 
rate: mean 
trials to 

criterion 0.783 * 0.397 

20 students in New York 
City public schools, 

ages 6–9 

0.627 (ns) 0.478 

Podell et al., 1992: 
Study 2 

RCT 22 learning disabled 

students in New York 
City public schools, 
ages 6–11 

Up to 10 15-minute 
sessions, three 

times per week/ 
Subtraction 

Mathematics 
Blaster - 

Subtraction vs. 
Worksheets 

Accuracy 
rate: mean 

trials to 
criterion 0.568 (ns) 0.435 

Saracho, 1982a QED 

256 Spanish speaking 
migrant children 

attending third through 
sixth grade 

3 hours a week, 
60 hours for the 

academic year/ 
Elementary 
mathematics 

D&P vs. regular 
classroom 

instruction 

CTBS—
Grades 3–6 

-0.118 (ns) 0.304 

Saunders & Bell, 
1980 

RCT 
101 advanced Algebra 
students in four classes 

in one public high school 

<1/2 hr per week 
for the school  

year/ Algebra II 

Algebra problems 
using BASIC vs. 

regular 
Instruction 

Cooperative 
Mathematics 

Test: Algebra 
II 

0.136 (ns) 0.201 

Watkins, 1986 RCT 
82 first-grade students 
from a suburban 
Southwestern school 

3, 15 min sessions 
per week (October 
through June)/ 

Mathematics 
Machine D&P 

Mathematics 
D&P vs. Reading 
D&P 

California 
Achievement 
Test 

0.432 ~ 0.221 

Heterogeneity 

Q-value Df (Q) P-value I-squared Hedge’s g Standard Error 

14.678 17 0.619 0.000 

Pooled ES (12 studies,  

18 effect sizes) 0.320 *** 0.078 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
Contextual variables. The studies in the Task Group’s meta-analysis yielded the 

following results regarding contextual variables: 
 

• Age or grade. The effect of drill and practice software was confirmed as significantly 
effective at the elementary level, but there are not enough studies at the other levels to 
make any comparisons or other conclusions. 

• Ability. There is no evidence that children with and without learning disabilities 
benefit differently from use of drill and practice software.  
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Implementation variables. These studies yielded the following results regarding 
implementation variables: 

 
• Duration. Results of the Task Group meta-analysis indicate that duration of the 

intervention is not a significant moderator. This is consistent with findings from prior 
syntheses and meta-analyses. 

• Substitute versus supplement. Consistent with other review findings, the effect sizes 
calculated in the Task Group meta-analysis were higher for drill and practice 
interventions that substituted for, rather than supplemented, classroom practice. Effect 
sizes were significant only for substitution implementations, but the difference 
between the two did not reach statistical significance.  

• Experimenter or teacher vs. commercial developer. Effects sizes were larger for 
experimenter or teacher-developed, compared to commercial, drill and practice 
software, with no significant difference between them. This is consistent with prior 
review findings, both yielded significant effects. 

In summary, the Task Group’s meta-analysis of rigorous studies about the effects of drill 
and practice software produced a mean pooled effect size of 0.320 that is statistically significant. 
This finding is consistent with the conclusions of prior syntheses and meta-analyses. There is no 
solid evidence that students of different ability levels or disability status benefit differently. 
Results suggest higher effect sizes when drill and practice software is used as a substitute, rather 
than supplement, to instruction (although comparisons were not significant). 
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Table 20: Subgroup Analysis 

  Drill and practice  Tutorials  Programming 

    

N studies/ 

ES 

Hedges 

g   Se   

N studies/ 

ES 

Hedges 

g   se   

N studies/ 

ES 

Hedges 

g   Se 

Contextual variables               

Grade level  ns a
     ns     ***

 a
   

 Elementary 11 / 17 0.352 *** 0.084  2 / 4 0.235  0.214  9 / 22 0.854 *** 0.134 

 Middle School 0 / 0 na  na  3 / 4 0.138  0.088  7 / 8 0.218  0.151 

 High School 1 / 1 0.136  0.201  4 / 5 0.480 ~ 0.246  0 / 0 na  na 

 Mixed 0 / 0 na  na  1 / 1 0.379  0.441  0 / 0 na  na 

Ability  ns     ns     na   

 Learning disabled 3 / 4 0.303  0.258  4 / 5 0.238  0.143  0 / 0 na  na 

 Non-LD 10 / 13 0.356 *** 0.087  6 / 9 0.356 ** 0.136  14 / 30 0.674 *** 0.115 

 

Migrant (span 
speaking) 1 / 1 -0.118  0.698  0 / 0 na  na  0 / 0 na  na 

Implementation variables              

Duration  ns     **
 a
     ns   

 Less than 4 weeks 3 / 8 0.492 ** 0.184  3 / 5 0.642 *** 0.181  3 / 3 0.974 ~ 0.530 

 4 to 8 weeks 2 / 2 0.550 * 0.243  0 / 0 na  na  2 / 2 0.910 * 0.441 

 Greater than 8 weeks 7 / 8 0.223 * 0.095  6 / 9 0.141 ~ 0.075  9 / 25 0.625 *** 0.124 

Supplementation vs. substitutiona
 ns     ns     ns   

 Supplement 4 / 4 0.290  0.250  2 / 3 0.425 * 0.175  7 / 9 0.721 ** 0.208 

 Substitute 8 / 14 0.370 *** 0.092  7 / 11 0.288 * 0.112  7 / 21 0.655 *** 0.141 

Curricular Integrationb
  ns     ***

 a
     ns   

 Low 2 / 2 0.766  0.637  0 / 0 na  na  1 / 1 -0.065  0.444 

 Medium 7 / 11 0.319 ** 0.100  3 / 6 0.037  0.074  9 / 12 0.739 *** 0.159 

 High 3 / 5 0.259 ~ 0.139  6 / 8 0.503 *** 0.108  4 / 17 0.682 *** 0.168 

Commercial vs. researcher ns     **
 a
     na   

 Commercial 7 / 13 0.268 * 0.104  5 / 8 0.092  0.068  14 / 30 0.674 *** 0.115 

 Researcher-designed 5 / 5 0.441 ** 0.172  4 / 6 0.516 ** 0.165  0 / 0 na  na 

Total  12 / 18 0.320 *** 0.078  9 / 14 0.302 ** 0.099  14 / 30 0.674 *** 0.115 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a
 Between group test of significance p-value (ns = not significant; na = not applicable). 

b Supplementation categories are defined as follows: “supplement” = the technology treatment served as an addition to regular class time in 

mathematics; “substitute” = time spent on treatment technology substituted for at least some portion of math instruction/class time. 
c
 Curricular integration characterizes the level of integration with the regular math curriculum.  “Low” is categorized as little to no 

integration with math curricula; “Moderate” is defined as covering topics related to the regular math curricula and possibly coordinating 
instruction with technology; “High” is defined as curricula that was designed around the specific technology intervention. 
 

2. Tutorials 

a. Prior Syntheses and Meta-Analyses 

Prior syntheses and meta-analyses (see summary Table 21) suggest that CAI tutorials 
improve students’ performance compared to conventional instruction, with slightly greater 
effects on concepts and applications than on computation. The detailed effect size 
information from prior quantitative syntheses and meta-analyses are presented in Table C-2 
in Appendix C. These syntheses most frequently identify tutorials as the most effective 
software category, when compared to drill and practice, simulations and games, and tools. 
They suggest that tutorials appear to be effective at all grade levels, particularly the higher 
grades and that tutorials are more effective when they supplement, rather than replace, 
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conventional instruction, when they involve experimenter or teacher-developed, rather than 
commercially-developed, software, and when they are developed for a specific audience 
rather than a general audience. These findings come from syntheses and meta-analyses with 
different inclusion criteria than those used by the Instructional Practices Task Group. 

 

Table 21: What Prior Reviews Say About Tutorials 

• General findings 
— Generally improves students’ performance when compared to conventional 

classroom instruction, with a median pooled effect size of 0.38 (Table C-2) 
— More researchers have claimed that tutorials are more effective than drill and 

practice (Burns & Bozeman, 1981; Khalili & Shashaani, 1994; Lee, 1990) 
— Somewhat higher effect sizes for concepts and applications than computation 
— No effects on attitudes 
— Often low fidelity of program implementation 

• Contextual variables 
— Slight advantage for higher grade levels 
— No consistent differences by ability level 
— No consistent differences by gender 

• Implementation variables 
— Differences favoring programs that supplement instruction versus substitute 
— Differences favoring experimenter or teacher developed programs vs. 

commercially developed software 
— Differences favoring specific vs. a general audience 
— No consistent differences by program duration 

 
b. The Task Group’s Meta-Analysis of Tutorial Software 

Table 22 presents the studies in the Task Group’s meta-analysis of high-quality 
experimental and quasi-experimental studies on the effects of tutorial and mixed tutorial and 
drill and practice software on achievement. From all the studies reviewed, only nine met the 
criteria for inclusion. These studies yielded a total of 14 effect sizes. Of these, 10 were positive 
(two of which were statistically significant), one negative, and three near zero, with a 
significant mean pooled effect size of 0.302. Those studies assessing mathematics achievement 
only had a mean pooled effect size of 0.288, which was statistically significant. Those that 
assessed problem-solving ability had a mean pooled effect size of 0.425, which also was 
statistically significant. Several contextual and implementation variables were examined. 

 

Contextual variables. These studies yielded the following results regarding contexts 
(see Table 20). 

 
• Age or grade. Similar to the results of the prior syntheses and meta-analyses, the IP 

meta-analysis indicates that tutorials have a slight advantage for high school students, 
but there are no significant differences between those effects and effects for other 
grade levels. 
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• Ability. Similar to the results of the prior syntheses and meta-analyses and the results 
for drill and practice, there was no significant difference between effects for students 
with and without learning disabilities, although the tendency for effects to be lower in 
schools with lower achievement needs further study. 

Implementation variables. The Task Group’s meta-analysis indicates the following 
regarding implementation variables. 

 
• Duration. Tutorials were significantly more effective in studies in which interventions 

were less than 4 weeks in duration than those in which interventions were greater than 
8 weeks. This must be interpreted with caution: Some treatments took place over many 
weeks, but the time students used the software remained limited. Thus, this finding may 
have more to do with limiting the confounding effects of other factors. 

• Substitute vs. supplement. Tutorials were more effective when they supplement, 
rather than replace, conventional instruction, but the difference was not significant. 
However, they are significantly more effective when they are highly integrated with 
the regular mathematics curriculum (compared to medium integration, which had 
near-zero effects). 

• Experimenter or teacher vs. commercial developer. Consistent with the prior 
syntheses and meta-analyses, there are stronger effects for experimenter or teacher-
developed, compared to commercial, software. 

The Task Group’s meta-analysis of rigorous studies is consistent with the conclusions 
from the prior syntheses and meta-analyses. The Task Group analysis suggests that there is a 
suggestion that high school students may benefit more from tutorials than students at other 
grade levels (although comparisons were not significant). Tutorials were significantly more 
effective if they were highly integrated with the regular mathematics curriculum than when 
they were less integrated. Tutorials developed by a researcher or teacher had significantly 
greater positive effects than commercial software. 

 
One of the studies in the Task Group set examining tutorials, Dynarski et al. (2007), 

includes two recent large randomized trial evaluations, and warrants particular attention 
because of the scale of these two studies (3,136 students in one study, 1,402 in a second 
study). The results suggest caution. The near-zero effect sizes in Dynarski et al. (0.071, 
-0.064) suggest that results of using tutorials are not guaranteed to be superior to standard 
instruction. Moreover, the results suggest additional questions that must be addressed in 
future research. Scaling up software interventions may be particularly difficult, and the more 
encouraging results from earlier and smaller studies (e.g., Fuchs et al., 2002, nonsignificant 
effect size of 0.586; Henderson et al., 1985, significant ES of 0.976; Thompson & Rickhuss, 
1992, nonsignificant effect size of 0.774; or Wheeler & Regian, 1999, significant effect size 
of 0.517) may reflect efficacy under advantageous (i.e., closer to “ideal”) conditions more 
than effectiveness at scale.  
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The Task Group findings indicate that tutorials are more effective if they are highly 
integrated into the curriculum (see Table 20), which requires that such integration be done 
either by the curriculum or software developers or by teachers. This is an extensive task that 
may demand additional time for both professional development and for work with colleagues 
on curriculum. A final issue is amount of use of tutorial software in classrooms. In the 
Dynarski et al. (2007) study, it considers teacher reports of tutorial software usage in the 
classroom. But when the study considered software recorded usage, usage in the classroom was 
much lower; compare teachers’ report of 51 hours of usage to the products’ reports of 17 hours 
for sixth grade; or teachers’ report of 46 hours of usage to the products’ reports of 15 hours for 
ninth grade. Even the teacher data are substantially lower than publishers’ recommendations. 
This is consistent with the Panel’s National Survey of Algebra Teachers that indicated low 
frequency of the use of technology (averaging “less than once a week;” (Hoffer, 
Venkataraman, Hedberg, & Shagle, 2007).  These are issues in scaling up software use and 
suggest important questions for future research. 

 
The direct implications of the Dynarski study are serious cautions to anyone who 

believes merely introducing technology will raise students’ scores. This was a rigorous 
randomized control trials design conducted in 33 districts and 1,232 schools. The products 
being evaluated had been identified as being effective and widely used. Teachers were 
trained. There were no significant effects. Thus, educators must consider not only empirical 
evidence of effectiveness of a particular software package but also issues of scale-up, 
including integration with the extant curriculum, fidelity of implementation, including 
amount of use, and technological and pedagogical support. 

 
To return to the software per se, studies also show that fine-tuning the mathematics 

and pedagogy in software can make a significant difference in learning. For example, in a 
study of another cognitive tutor (geometry), holding time-of-instruction constant, one group 
discussed why and how they used the strategy they used, and the other practiced more 
problems. The authors report that the former group had significantly greater understanding 
and showed greater transfer (Aleven & Koedinger, 2002). 

 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-124 

Table 22: Studies That Examine Effects of Tutorials or Tutorials Plus Drill and 

Practice on Mathematics Achievement 

Study Design Sample Duration/Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Tutorial + Drill & Practice 

24 first-grade 
students from a 

middle-class 
midwestern school 
system 

0.397 (ns) 0.398 

Clements, 
1986 

RCT 
24 third-grade 

students from a 
middle-class 
midwestern school 

system 

44 sessions (22 
weeks)/ Elementary 

mathematics using 
CAI drill, tutorial, and 
problem-solving 

software (mathematics 
and reading) 

CAI drill, tutorial, and 
problem-solving 

software (mathematics 
and reading) vs. 
traditional instruction 

WRAT 
Mathematics 

score 

0.142 (ns) 0.395 

22 low-achieving 

eighth-grade 
students from five 
sections in same 

school 

-0.001 (ns) 0.426 

Dalton & 

Hannafin, 
1988 

RCT 
25 high-achieving 

eighth-grade 
students from five 
sections in same 

school 

Two lessons/ 

Geometry & area of 
circle 

Computer initial and 

remedial instruction vs. 
traditional initial and 
remedial instruction 

Mastery quiz: 

area of circle 

0.571 (ns) 0.395 

Dynarski et 

al., 2007: 
Study 1a 

RCT 

3,136 sixth-grade 

students in 10 
different districts 
across U.S.,  

focused on lower 
achievement districts 

One academic year, 

wide variation, but 
overall average use of 
the CAI was 17hrs/yr/ 

General mathematics 

CAI vs. Control 

(standard instruction) 

SAT-10 

mathematics 
battery 

0.071 (ns) 0.106 

Dynarski et 
al., 2007: 
Study 2a 

RCT 

1,404 algebra 
students in 10 
different districts 

across U.S.,  
focused on lower 
achievement districts 

One academic year, 
average use of the 
CAI was 15hrs/yr/ 

Algebra 

CAI vs. Control 
(standard instruction) 

ETS End-of-
Course Algebra 
Assessment 

-0.064 (ns) 0.117 

18 fourth-grade 

students with 
mathematics 
disabilities in three 

schools in a 
southeastern city 

24 sessions (twice per 

week for 12 weeks)/ 
Problem-solving 

Computer vs. Control 0.586 (ns) 0.486 

Fuchs et al., 

2002 
RCT 

20 fourth-grade 

students with 
mathematics 

disabilities in three 
schools in a 
southeastern city 

48 sessions (four 

times per week for 
12 weeks)/ Problem-

solving 

Tutor + Computer vs. 

Tutor only 

(ES of Tutor + Computer 

vs. Control was 1.281) 

Pooled problem-

solving score 
(three subtests) 

-0.147 (ns) 0.448 

Henderson et 
al., 1985 

RCT 

81 students 
attending five 

general mathematics 
or intro to algebra 
classes in one high 

school with large 
proportion of Latino 
students 

Three modules 
(Three sessions)/ 

Factors and prime 
numbers 

Computer-Video vs. 
Control 

Combined 
Recognition and 

Constructed 
scores on 
Factors and 

Prime numbers 
test 

0.976 *** 0.234 

Moore, 1988 RCT 

117 seventh- and 
eighth-grade 

students in the 
lowest level of 
remedial 

mathematics in four 
middle schools 

School year (Sept - 
May)/ Middle school 

mathematics 
instruction 

Milliken Mathematics 
Sequences + written 

assignments vs. Direct 
Instruction using 
Mathematics for 

Individual Achievement 

District 
Mathematics 

Placement Test 

0.273 (ns) 0.185 

Continued on p. 6-125 
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Table 22, continued 

Study Design Sample Duration/Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Tutorial + Drill & Practice 

1 week/ Algebra—

solving equations 

CAI MuMath/Solving 

Equations vs. 
noncomputer instruction 

Solving 

equations 
0.364 (ns) 0.465 

Thomas & 

Rickhuss, 1992 
RCT 

17 high school 

students (average 
age 15) in one 
algebra class 1 week/ Algebra—

factorization 

CAI MuMath/ 
Factorization vs. 

noncomputer instruction 

Factorization 0.774 (ns) 0.480 

Triffiletti et al., 
1984 

RCT 

20 learning disabled 
students (ages 9–15) 
in a private school in 

Jacksonville, FL 

school year (Sept - 
May)/ SPARK-80 

Computerized 
Mathematics System 

SPARK-80 vs. Resource 
Room 

Key 
Mathematics 

Diagnostic 
Arithmetic Test 
(grade equiv) 

0.379 (ns) 0.441 

Wheeler & 
Regian, 1999a 

RCT 

493 ninth-grade 
students in 40 
traditional 

mathematics 
instruction classes  
in Texas, New 

Mexico, and Ohio 

one session per week, 
for the school year/ 

Word Problem 
Solving (WPS) Tutor 

WPS vs. Control 

Word Problem 
solving combo 

(concrete & 
abstract) 

0.517 * 0.206 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

24.385 13 0.028 46.688 
Pooled ES (9 studies, 14 effect sizes) 

0.302 ** 0.099 

Mathematics outcomes only  

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

20.519 10 0.025 51.264 
Pooled ES (7 studies, 11 effect sizes) 

0.288 * 0.112 

Problem-solving outcomes only 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.939 2 0.379 0.000 
Pooled ES (two studies, three effect sizes) 

0.425 * 0.175 

Note: The 2 studies with problem-solving outcomes are Fuchs et al. (2002) and Wheeler & Regian (1999), all others have mathematics outcomes. 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 

3. Tools: Calculators and Graphing Calculators 

Among the many categories of technology, calculators, including graphing 
calculators, have probably generated the greatest amount of debate. Some have championed 
their use in developing problem-solving ability by allowing students to perform far more, and 
more complex, arithmetic operations than would have been possible without technology. 
Others have bemoaned their misuse as simple fact checkers. A concern is that calculators 
have an insidious effect on paper-and-pencil arithmetic and algebraic skills. 

 
Calculators have been used in mathematics education for 70 years, since Emmett 

Betts engaged students with calculating machines in 1937. They metamorphosed from the 
original bulky and expensive machines to the electronic calculators of the 1960s, the 
inexpensive handheld, four-function calculators of the 1970s, and the wide variety of basic, 
scientific, and graphing calculators available today.   
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The usefulness of calculators in homes and businesses may seem clear, but their use 
in education, at first blush, seems equally problematic—students should learn to compute 
without calculators. The Panel’s survey of the nation’s algebra teachers indicated that the use 
of calculators in prior grades was one of their concerns (Hoffer et al., 2007). 

 

a. Prior Syntheses and Meta-Analyses 

Previous reviews (see summary in Table 23) have suggested that calculators of all 
types, basic, scientific and graphing, may benefit students’ achievement in and attitudes 
toward mathematics (see the detailed effect size information from prior quantitative 
syntheses and meta-analyses in Tables C-3 and C-4 in Appendix C). Effects are usually more 
positive when students are allowed to use calculators during testing. Effects on concepts, 
contrary to perhaps the most common concern, are near zero but positive, and effects on 
problem solving were positive.  

 
Table 23: What Prior Reviews Say About Calculators 

• General findings 
— Generally improve students achievement and attitudes (median pooled effect 

size on computation, 0.41, Table C-3) 
— Generally improve mathematical problem solving (median pooled effect size, 

0.19) but little or no effect on conceptual development (median pooled effect 
size near zero) 

— Most effective in facilitating learning of operational skills (“operational” 
indicating that the report was unclear as to whether the instrument assessed 
the computational, conceptual, or both domains) 

— Graphing calculators particularly effective for conceptual skills (Table C-4) 
— All the effects mentioned are lower when testing without calculators 

• Contextual variables 
— No consistent differences by grade levels 
— Some differences by ability level 

• Implementation variables 
— Special calculator instruction may have more positive effects (pedagogical 

uses vs. merely providing calculators) on computational, operational, and 
problem solving competencies 

 
b. The Task Group’s Meta-Analysis of Calculators 

Turning to the Task Group’s meta-analysis of rigorous studies, Tables 24, 25, and 26 
provide individual study and pooled effect sizes for each of the three focal outcomes: 
computation (Table 24), problem solving (Table 25), and concepts (Table 26).14 The tables 
disaggregate studies analyzed at the student level from studies analyzed at the classroom level. 

                                                             
14  Many of the studies had a concern that calculators may impede computational achievement, and thus were testing 

to see whether use of calculators had a positive or negative effect on computation.  The studies that assessed the 

effects on problem solving and concepts often hypothesized that calculators would improve these outcomes. 
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Meta-analytic pooled effect sizes and accompanying statistics are based on pooling of similarly 
aggregated effect sizes. In other words, studies that analyzed data at the student-level are 
pooled together, and similarly, studies that analyzed at the classroom level are pooled together. 

 
It was the Task Group’s hope to discern through this meta-analysis any differences 

that might exist between the effects of graphing calculators and non-graphing calculators. 
However, nearly all of the peer-reviewed published studies using graphing calculators 
examine the effects on students in advanced mathematics courses (such as Algebra 2, 
Trigonometry, Precalculus, and Calculus). As a result, only one of the included studies 
(Graham & Thomas, 2000) used a graphing calculator. 

 
Table 24 presents studies that contrast treatment condition using calculators with a 

non-calculator control condition on computational outcomes. Seven of the studies (one with 
effects at four different grade levels) analyzed data at the individual student level, and the 
remaining three (including nine comparisons) used the classroom or teacher as the unit of 
analysis. For the student-level set, then, ten effect sizes were calculated. The pooled effect 
size is 0.319, which borders on statistical significance. In only one of the included studies 
(Wheatley, 1980), students were allowed to use calculators during assessment. Once that 
study is removed from the analysis, the pooled effect size is 0.307, and is not statistically 
significant. For the classroom-level set, nine effect sizes were calculated. The mean effect 
size is -0.085, which is not statistically significant. 

 
Outcomes of studies that examine the effects of calculator use on problem solving are 

presented in Table 25. The seven comparisons in the student-level set (note that four were 
from a single study, Szetela (1982)) yielded a mean pooled effect size of 0.304, which 
borders on statistical significance. The four comparisons from the classroom-level set yielded 
a mean pooled effect size of -0.063, which was not statistically significant.  

 
Regarding outcomes on measures of conceptual development, presented in Table 26, 

the four comparisons in the student-level set yielded a mean pooled effect size of 0.278, 
which is not statistically significant. The three comparisons from the classroom-level set 
yielded a mean pooled effect size of 0.128, which was not statistically significant.  

 
Several contextual and implementation variables were examined. These are 

summarized in Table C-8 in Appendix C. 
 
Contextual variables. These studies yielded the following results regarding contexts. 
 

• Age or grade. There were no statistically significant differences among the effect 
sizes for elementary school-aged students (ES = 0.367, ns, five effect sizes within 
four studies) versus secondary school-aged students (ES = 0.113, ns, four effect sizes 
within three studies) for computation, nor for applications or concepts. However, this 
is based on a small sample of studies and thus there may not be sufficient power to 
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detect differences in effect sizes (e.g., differences in effect sizes for applications, 
which were larger for secondary than for elementary, and statistically significant only 
for secondary, should be evaluated in future research). 
 
Implementation variables. The Task Group’s meta-analysis indicates the following 

regarding implementation variables. 
 

• Duration. Studies that provided interventions for shorter periods (less than 3 months) 
had stronger effects on computation than studies that extended over longer time 
periods (3 months or longer). Specifically, the pooled effect size, under random 
effects assumptions, for interventions taking place for less than three months was a 
statistically significant 0.503 (p < .05, seven effect sizes within five studies); while 
the effect for studies taking place for longer than 3 months was not statistically 
significant (ES = -0.134, three effect sizes within three studies).15 Although this 
would be an interesting finding if valid, it is based on a small sample, and thus it is 
likely that other factors unrelated to program duration may have led to this result. 
There were no such significant differences for applications or concepts. 

• Special calculator instruction. Using alternative interventions or enhancing the 
intervention did not, as a whole, yield significantly higher effect sizes.  

In summary, effect sizes of the Task Group’s meta-analysis to examine the effects of 
calculator use on computation skills are smaller than those reported in prior syntheses and 
meta-analyses.  

 
Concerning the impact of calculator use on problem-solving competencies, the Task 

Group’s meta-analysis at the student level yielded a borderline significant, positive effect, but 
classroom-level analyses were near zero. The results in Table 25 are mainly for the outcomes 
in which students were not allowed to use calculators to solve problems on the assessments, 
Wheatley (1980) is the only study that includes outcomes where calculators were allowed. 
When looking at outcomes in which calculators were permitted on the assessments, effects 
were more positive (e.g., two of the four contrasts examined from Szetela (1982) reached 
statistical significance, see Table C-9 in Appendix C). Assessing proficiency with the same 
tools available as were available during instruction may be viewed as constituting a valid 
comparison, perhaps especially for problem-solving outcomes. Comparing these conclusions 
to those in the syntheses of previous reviews, the pattern is similar to what was found for 
computation: The effect sizes in the present meta-analyses are smaller.  

 
Effect sizes on conceptual development tended to be positive, favoring the calculator 

treatments, but generally small and all nonsignificant (see Table 26). This is consistent with 
the prior syntheses and meta-analyses, which reported near-zero pooled effect sizes. 

 

                                                             
15 The five studies taking place for less than three months include: Schnur & Lang (1976), Standifer & Maples 

(1981), Szetela (1980), the Grade 3, 5, and 7 sample of Szetela (1982), and Wheatley (1980).  The three studies 

taking place for three or more months include: Campbell & Virgin (1976), Standifer & Maples (1982), and the 

Grade 8 sample of Szetela (1982). 
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The two specific alternative interventions or enhancements to calculators (programmed 
feedback calculators and supplementary materials) used in studies identified as high quality by 
the Task Group (Standifer & Maples, 1981, 1982; Duffy & Thompson, 1980) did not yield any 
significant effect sizes. This is in contrast to the findings of the prior syntheses and meta-
analyses (and to the findings for formative assessment discussed in the Task Group report), 
which include a wider range of enhancements, including more recent interventions. More 
research needs to be conducted, for example, on essential distinctions such as between 
functional and pedagogical use. 

 
Finally, there are several important caveats. Effects of calculator use, especially 

appropriate versus inappropriate pedagogical use in the early grades, have not been 
adequately researched. Similarly, long-term effects of inappropriate calculator use may be 
negative (Wilson & Naiman, 2004); there is no reliable evidence. The Task Group’s meta-
analysis could not include adequate research on graphing calculators; high-quality research is 
needed regarding this type of calculator. 

 
Table 24: Studies That Investigate the Effects of Calculators on Computation Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Computation Outcomes 

Student-level analyses 

Campbell 
& Virgin, 
1976b 

Quasi 

252 fifth- and sixth- 
graders in two North 
York elementary 

schools (Canada). 

7 months/ 
Basic 
computation 

Calculators to check 
work vs. No calculators 

Metropolitan 
Achievement Test 
computation score 

Overall 0.022 (ns) 0.642 

Schnur & 

Lang, 
1976a 

RCT 

60 youths ages 9 to 

14 in four summer 
compensatory 

education classes in 
rural Iowa. 

26 weeks/ 

Computation 

Calculators to check 

work and compute 
subset of problems vs. 

Compensatory 
education program 

Computational Skills 

Program 
Computational Test 

Overall 0.855 ~ 0.512 

Standifer 

& Maples, 
1981a 

RCT 

141 students in 6 

third-grade 
classrooms in 

Monroe, Louisiana  

11 weeks/ 

Computation 

Hand-held, four 

function calculator vs. 
No calculator in regular 

mathematics 
curriculum (see Table 
C-9 for effects of 

programmed feedback 
calculator vs. No 
calculator in regular 

mathematics 
curriculum) 

Science Research 

Associates 
Assessment: 

computation score 

Overall 0.635 (ns) 0.398 

Standifer 

& Maples, 
1982a 

RCT 

113 students in 10 

third- and fourth-
grade Title I 

compensatory 
mathematics 
classrooms in 

Monroe, Louisiana 

5 months/ 

Computation 

Hand-held, four 

function calculator vs. 
General remedial 

mathematics 
curriculum (see Table 
C-9 for effects of 

experimental group 
2 using programmed-
feedback calculators + 

regular remedial 
curriculum) 

Science Research 

Associates 
Assessment: 

computation score 

Overall 0.023 (ns) 0.329 

Szetela, 
1980 

RCT 

39 students in two 
seventh-grade classes 
in a middle class 

elementary school 
(likely in Canada) 

3 weeks/ Focus 
on learning the 
concept of 

ratios 

Calculator-based 
instruction with four-
function calculator vs. 

Instruction without 
calculators 

Researcher-designed 
test on ratios 

Overall 0.322 (ns) 0.316 

Continued on p. 6-130 
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Table 24, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

46 third-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

Third grade 1.337 *** 0.323 

33 fourth-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

Fifth grade -0.307 (ns) 0.342 

47 seventh-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

Seventh 

grade 
0.279 (ns) 0.288 

Szetela, 

1982 

RCT 

for 
Grades 
3, 5 

and 7 
and 
Quasi 

for 
Grade 
8 

54 eighth-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

8 weeks/ All 

grades focused 
on problem 
solving. Grade 

specific foci 
included: 
Grade 3: whole 

number 
operations in 
multiplication, 

basic division; 
Grade 5: 
introduction to 

decimals, 
operations with 
decimals; 

Grades 7 and 
8: decimals, 
ratios, and 

percents. 

Regular instruction 

plus calculator-specific 
materials vs. Regular 
instructional activities 

Researcher-designed 

computational skills 
(16 items); tailored 
to grade level  

Eighth grade -0.267 (ns) 0.270 

Wheatley, 

1980c 
Quasi 

44 sixth-grade 

students in two 
classes (same 

teacher) in an 
elementary school in 
a Midwestern 

university town 

6 weeks/ 

Problem 
solving 

Problem solving with 

calculators vs. Problem 
solving intervention 

without calculators 

Measure of 

computational errors 
(reverse coded) on 

five researcher-
designed problems 

Overall 0.573 (ns) 0.691 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g 

Standard 

Error 

20.822 9 .013 56.776 

Pooled ES: student level (7 studies, 10 effect sizes) 

0.319 ~ 0.077 

Classroom-level analyses 

Approx. 135 students 
in 20 fourth-grade 

classrooms in 
Columbus, Ohio 

Fourth grade 0.037 (ns) 0.428 

Approx. 122 students 
in 18 fifth-grade 
classrooms in 

Columbus, Ohio 

Fifth grade 0.325 (ns) 0.452 

Duffy & 
Thompson, 

1980 

RCT 

Approx. 129 students 

in 19 sixth-grade 
classrooms in 
Columbus, Ohio 

26 weeks/ 
Application 

problems, 
decimals, 
rounding, 

estimation 

Calculators only plus 
regular mathematics 

program vs. Regular 
mathematics 
curriculum (see Table 

C-9 for effects of 
calculator plus 
instructional packages 

for teachers, plus 
regular mathematics 
program) 

CTBS computation 
score 

Sixth grade -0.395 (ns) 0.444 

Szetela & 
Super, 

1987 

Quasi 

Approx. 424 students 
in 21 seventh-grade 

classrooms in an 
urban-rural district in 
Canada 

One school 
year/ Problem 

solving  

Problem solving with 
calculators vs. Problem 

solving intervention 
without calculators 

Rational Numbers 
test—40 item test 

used in British 
Columbia  

Overall -0.076 (ns) 0.423 

Continued on p. 6-131 
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Table 24, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Second 

grade 
-0.603 (ns) 0.587 

Third grade 0.352 (ns) 0.577 

Fourth grade -0.460 (ns) 0.580 

Fifth grade -0.434 (ns) 0.579 

Wheatley 

& 
Shumway, 
1979 

RCT 

Students in 50 

classrooms in second 
through sixth grade 
in five Midwestern 

states. Ten 
classrooms in each 
grade level. 

7 months/ 

Basic four-
function 
calculator/ 

computation 

General calculator use 

(teachers trained but 
determine how they will 
implement) vs. No 

calculators/regular 
mathematics program 

Stanford 

Achievement Test - 
Computation score 

Sixth grade 0.315 (ns) 0.576 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g 

Standard 

Error 

4.010 8 0.856 0.000 

Pooled ES: student level (three studies, nine effect sizes) 

-0.085 (ns) 0.167 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The treatment group was allowed to use a calculator during assessment for this outcome. 
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Table 25: Studies That Investigate the Effects of Calculators on Problem Solving Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Problem Solving Outcomes 

Student-level analyses 

Campbell & 
Virgin, 1976b 

Quasi 

150 fifth- and sixth-
graders in two 

North York 
elementary schools 
(Canada) 

7 months/ Basic 
computation 

Calculators to 
check work vs. 

No calculators 

MAT computation 
score 

Overall 0.238 (ns) 0.642 

Szetela, 1980 RCT 

39 students in two 
seventh grade 

classes in a middle 
class elementary 
school (likely in 

Canada) 

3 weeks/ Focus on 
learning the concept 

of ratios 

Calculator-based 
instruction with 

four-function 
calculator vs. 
Instruction without 

calculators 

Researcher-designed 
ratio problems test 

Overall 0.869 ** 0.329 

46 third-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

Third 

grade 
0.522 ~ 0.296 

33 fourth-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

Fifth grade -0.507 (ns) 0.345 

47 seventh-grade 

students in a middle 
income school in 
Richmond, British 

Columbia 

Seventh 

grade 
0.227 (ns) 0.288 

Szetela, 1982 

RCT for 

Grades 
3, 5 and 
7 and 

Quasi 
for 
Grade 8 

54 eighth-grade 

students in a middle 
income school in 

Richmond, British 
Columbia 

8 weeks/ All grades 

focused on problem 
solving.  Grade 
specific foci 

included: Grade 3: 
whole number 
operations in 

multiplication, basic 
division; Grade 5: 
introduction to 

decimals, operations 
with decimals; 
Grades 7 and 8: 

decimals, ratios, and 
percents. 

Regular 

instruction plus 
calculator-specific 
materials vs. 

Regular 
instructional 
activities  

Researcher designed 

problem-solving 
post-test (10 
items)—correct 

answer measure was 
used to calculate 
effect sizes (other 

measure available 
were problems 
attempted and 

correct operation 
used) 

Eighth 

grade 
0.344 (ns) 0.270 

Wheatley, 

1980c 
Quasi 

44 sixth-grade 

students in two 
classes (same 

teacher) in an 
elementary school 
in a Midwestern 

university town 

6 weeks/ Problem 

solving 

Problem-solving 

with calculators 
vs. Problem-

solving 
intervention 
without 

calculators 

Process score 

(processes used to 
solve problems) 

Overall 0.353 (ns) 0.689 

Heterogeneity 

Q-value df (Q) P-value I-squared 

Hedge’s 

g 

Standard 

Error 

9.105 6 0.168 34.101 

Pooled ES: student level (four studies,  

seven effect sizes) 
0.304 ~ 0.167 

Continued on p. 6-133 
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Table 25, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Classroom-level analyses 

Approx. 135 

students in 20 
fourth-grade 

classrooms in 
Columbus, OH 

Fourth 

grade 
-0.413 (ns) 0.433 

Approx. 122 

students in 18 fifth-
grade classrooms in 

Columbus, OH 

Fifth grade -0.161 (ns) 0.440 Duffy & 

Thompson, 

1980 

RCT 

Approx. 129 

students in 19 sixth-
grade classrooms in 
Columbus, OH 

26 weeks/ 

Application 
problems, decimals, 

rounding, estimation 

Calculators only 

plus regular 
mathematics 

program vs. 
Regular 
mathematics 

curriculum (see 
Table C-9 for 
effects of 

calculator plus 
instructional 
packages for 

teachers, plus 
regular 
mathematics 

program) 

CTBS applications 

score 

Sixth grade 0.178 (ns) 0.440 

Szetela & 

Super, 1987 
Quasi 

Approx. 424 

students in 21 
seventh-grade 
classrooms in an 

urban-rural district 
in Canada 

One school year/ 

Problem solving  

Problem solving 

with calculators 
vs. Problem-
solving 

intervention 
without 
calculators (see 

Table C-9 for 
larger positive 
effects where 

calculator group 
was able to use 
calculators) 

Combination of two 

researcher designed 
problem solving 
measures: 

translation problems 
(20 items) and 
process problems 

(20 items) 

Overall 0.140 (ns) 0.424 

Heterogeneity 

Q-value df (Q) P-value I-squared 

Hedge’s 

g 

Standard 

Error 

1.230 3 0.746 0.000 

Pooled ES: student level (two studies,  

four effect sizes) 
-0.063 (ns) 0.217 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The treatment group was allowed to use a calculator during assessment for this outcome. 
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Table 26: Studies That Investigate the Effects of Calculators on Concept Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard  

Error 

Concepts Outcomes 

Student-level analyses 

Campbell & 
Virgin, 

1976b 

Quasi 

252 fifth- and  
sixth-graders in  

two North York 
elementary 
schools (Canada). 

7 months/ Basic 
computation 

Calculators to check 
work vs. No calculators 

MAT 
concepts 

score 

Overall 0.129 (ns) 0.642 

Graham & 
Thomas, 

2000a 

Quasi 

84 students in 
Grades 9 and 10 

in two schools in 
New Zealand  

3 weeks/Algebra 

Graphic calculator used 
to learn algebraic 

variables vs. Standard 
algebra instruction 

Kuchmann 
(1981) 

designed to 
measure 
algebraic 

understanding 

Overall 0.328 (ns) 0.489 

Standifer & 

Maples, 
1981a 

RCT 

141 students in 

six third-grade 
classrooms in 
Monroe, LA  

11 weeks/ 

Computation 

Hand-held, four function 

calculator vs. No 
calculator in regular 
mathematics curriculum 

(see Table C-9 for 
effects of programmed 
feedback calculator vs. 

No calculator in regular 
mathematics curriculum) 

Science 

Research 
Associates 
Assessment: 

computation 
score 

Overall -0.076 (ns) 0.395 

Standifer & 
Maples, 
1982a 

RCT 

113 students in 
10 third- and 
fourth-grade 

classrooms in 
Monroe, LA 

5 months/ 
Computation 

Hand-held, four 
function calculator vs. 
General remedial 

mathematics curriculum 
(see Table C-9 for 
effects of experimental 

group 2 using 
programmed-feedback 
calculators + regular 

remedial curriculum) 

Science 
Research 
Associates 

Assessment: 
computation 
score 

Overall 0.546 (ns) 0.332 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.519 3 0.678 0.000 
Pooled ES: student level (4 studies, 4 effect sizes) 

0.278 (ns) 0.213 

Classroom-level analyses 

Approx. 135 
students in 20 
fourth-grade 

classrooms in 
Columbus, OH 

Fourth 
grade 

0.063 (ns) 0.428 

Approx. 122 
students in 18 
fifth-grade 

classrooms in 
Columbus, OH 

Fifth grade 0.221 (ns) 0.440 

Duffy & 
Thompson, 
1980 

RCT 

Approx. 129 
students in 19 

sixth-grade 
classrooms in 
Columbus, OH 

26 weeks/ 
Application 
problems, decimals, 

rounding, estimation 

Calculators only plus 
regular mathematics 
program vs. Regular 

mathematics curriculum 
(see Table C-9 for 
effects of calculator 

plus instructional 
packages for teachers, 
plus regular 

mathematics program) 

CTBS 
concepts 
score 

Sixth grade 0.103 (ns) 0.439 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

0.071 2 0.965 0.000 

Pooled ES: student level (one study,  

three effect sizes) 
0.128 (ns) 0.252 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The treatment group was allowed to use a calculator during assessment for this outcome. 
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4. Computer Programming 

One of the early uses of educational technology in education was engaging students 
in programming computers as a way to explore, learn, or apply and practice mathematical 
ideas. For example, the original developers of Logo developed this programming language to 
serve as a conceptual framework for learning mathematics (Feurzeig & Lukas, 1971; Papert, 
1980). Classroom observations suggested that children use certain mathematical concepts in 
Logo programming. As an illustration, first-graders use such mathematical notions as 
number, arithmetic, estimation, measure, patterning, proportion, symmetry, inversion, and 
compensation (Kull, 1986). Similar observations of intermediate graders indicated that Logo 
may make it possible to explore certain mathematical concepts, such as angle measure or 
recursion, earlier than is currently believed (Carmichael, Burnett, Higginson, Moore, & 
Pollard, 1985; Papert, Watt, diSessa, & Weir, 1979). Here the Task Group investigates 
whether engaging students in computer programming has significant effects on their 
mathematics achievement and problem-solving ability. 

 
a. Prior Syntheses and Meta-Analyses 

Detailed effect size information from prior quantitative syntheses and meta-analyses 
are presented in Table C-5 in Appendix C. Previous reviews (see summary Table 27) indicate 
that programming improves students’ performance compared to conventional instruction, 
with the greatest effects on concepts and applications, especially geometric concepts, and 
weaker effects on computation. They also have indicated that programming positively affects 
problem solving, as well as attitudes toward mathematics and instruction in mathematics, 
more so than other software categories. On the basis of prior syntheses and meta-analyses, 
computer programming appears to have the same effectiveness at various grade levels. There 
is some evidence it is more effective for students of average, rather than low or high 
socioeconomic status (SES). Earlier syntheses and meta-analyses have argued that 
programming is somewhat more effective when it supplements, rather than replaces, 
conventional instruction, consistent with suggestions for mediated instruction of 
programming. Certain computer languages, especially the Logo computer language, have 
stronger positive effects than other computer languages. Other syntheses have similarly 
concluded that direct teacher involvement and better designed languages result in better 
instruction, and provide more guidance for instruction (Clements & Sarama, 1997). As with 
other types of software, Logo programming can be particularly effective when embedded in a 
curriculum and then in a context that includes professional development for teachers. 
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Table 27: What Prior Reviews Say About Programming Interventions 

• General Findings 
— Logo programming can increase students’ mathematical achievement, 

especially if it is integrated into a coherent curriculum with teacher 
mediation (Clements & Sarama, 1997) 

— The median pooled effect size for mathematics achievement across the meta-
analyses is 0.35; for problem solving, the median is 0.285 (see Table C-5) 

— Impacts more likely on concepts and applications as opposed to 
computation 

— Positive effects on attitudes toward mathematics and instruction 
• Contextual variables 

— Differences favoring elementary school-age (vs. secondary) in achievement 
(similar for problem solving) 

— Differences favoring average SES students vs. either high or low SES 
— No consistent differences in ability level 

• Implementation variables 
— Differences favoring shorter duration programs (up to 18 weeks; based on 

only one meta-analysis) 
— Differences favoring programs that supplement rather than substitute for 

other mathematics instruction for problem solving (substitution is slightly 
higher for achievement). Narrative reviews conclude that better outcomes 
result from curriculum integration and mediated teaching 

— Differences favoring computer programs designed to support learning 
(such as Logo) 

 
b. The Task Group’s Meta-Analysis of Computer Programming Interventions 

Table 28 presents the studies in the Task Group’s meta-analysis of high-quality 
experimental and quasi-experimental studies on the effects of students’ engaging in computer 
programming on their achievement. From all the studies reviewed, only 14 met the criteria 
for inclusion. These 14 studies yielded a total of 30 effect sizes. Of these, 24 were positive, 
1 negative, and 5 near zero, with a mean pooled effect size on combined outcome measures 
of 0.674, which was statistically significant. Those assessing mathematics achievement only 
had a mean pooled effect size of 0.698, which also was statistically significant. (An 
important note is that some of these interventions involved changes in curriculum, using 
technology, but also altering content and teaching.) Those that assessed problem solving 
ability had a mean pooled effect size of 0.518, which was also statistically significant. 

 
Although only two studies (Johnson-Gentile et al., 1994; Ortiz & MacGregor, 1991) 

reported effects on retention, both reported a larger effect size for the delayed, compared to 
the immediate, posttests (1.901 immediate, significant ES; 2.410 delayed for Johnson-Gentile 
et al.; 0.437 immediate, bordering on significant .898 for Ortiz & MacGregor). These 
findings suggest that computer programming, possibly due to the more extensive processing 
(due to the programming activity per se) over multiple modalities (e.g., numeric or symbolic 
and visual or graphic) or the ability to actively submit one’s ideas for evaluation and 
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feedback (e.g., did the program run as expected) facilitates students’ development of higher 
level conceptual structures. That is, computer programming requires a complete, precise, and 
abstract explication, potentially leading to conceptually richer concepts. Students specify 
steps to a noninterpretive agent, with thorough specification and detail, then observe, reflect 
on, and correct. The computer serves as an explicative agent. 

 
Several of these studies also compared computer programming to a CAI-based treatment, 

and so were not included in the basic meta-analysis in Table 28. Showing consistently higher 
scores for the computer programming than the CAI groups (but none reaching levels of statistical 
significance), these contrasts can be found in Appendix C in Table C-10. Several contextual and 
implementation variables may have contributed to the inconsistency. 

  

Contextual variables. These studies about programming yielded the following results 
regarding contexts (Table 20). 

 
• Age or grade. Effects were significantly higher when used with elementary school 

students than with middle school students, consistent with previous reviews. 
 

Implementation variables. These studies yielded the following regarding 
implementation variables. 

 

• Duration. There were no significant differences for interventions of different durations. 

• Substitute versus supplement. Both substitution and supplementation programming 
treatments had statistically significant positive effects (ES 0.721 and ES 0.655), and 
the differences in effects between these two types of treatments were not significant.  

• Level of integration. The differences across subcategories of curricular integration 
also did not reach statistical significance, but there is a clear pattern of effect sizes in 
which stronger effects are related to high (0.682, significant) or medium (0.739, 
significant), compared to low (-0.065, not significant) integration. 

The Task Group’s meta-analysis of rigorous studies on the effects of computer 
programming on mathematics achievement supports the conclusions of the previous 
syntheses, with a significant mean pooled effect size of 0.698 for mathematics achievement 
and 0.518 for problem solving (See Table 28) (compare to the median pooled effect sizes of 
0.35 and 0.258, respectively, for the previous meta-analyses). Effects were higher for 
elementary school students than for older students. There is a suggestion that greater 
curricular integration yields stronger positive effects. Further, this meta-analysis suggested a 
result not previously revealed—that results for delayed posttests might be greater than those 
for immediate posttests. 
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Table 28: Studies That Examine Effects of Computer Programming on 

Mathematics Achievement 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Programming 

12 fourth-grade students in 
a midwestern middle 

school 

0.660  0.609 Battista & 
Clements, 

1986  

RCT 

26 sixth-grade students in a 

midwestern middle school 

42 sessions (two 40-min 
per week)/ LOGO 

Logo vs. C 
(computer literacy) 

Problem-solving 
Tests 1&2, 

Combined 
0.049  0.392 

Blume & 

Schoen, 
1988 

QED 
50 eighth-graders in two 

midwestern junior high 
schools 

A semester-long class/ 

BASIC 
Basic vs. C 

Combined problem 

solving and logic 
-0.065  0.444 

24 first-grade students from 
a middle-class midwestern 

school system 

1.072 * 0.423 

Clements, 
1986 

RCT 
24 third-grade students 

from a middle-class 
midwestern school system 

44 sessions (22 weeks)/ 
LOGO 

Logo vs. C 
WRAT 
Mathematics score 

0.636  0.405 

51 Kindergarten students in 
a school near Kent, OH  

2.842 *** 0.609 

71 Kindergarten students in 

a school near Buffalo, NY  
0.121  0.495 

87 first-grade students in a 

school near Kent, OH  
0.938 ~ 0.495 

92 first-grade students in a 
school near Buffalo, NY  

0.394  0.486 

103 second-grade students 
in a school near Kent, OH  

0.009  0.481 

96 second-grade students in 

a school near Buffalo, NY  
1.457 ** 0.502 

56 third-grade students in a 

school near Kent, OH  
0.571  0.511 

47 third-grade students in a 
school near Buffalo, NY  

0.674  0.524 

158 fourth-grade students 
in a school near Kent, OH  

0.184  0.470 

92 fourth-grade students in 

a school near Buffalo, NY  
0.353  0.486 

103 fifth-grade students in 

a school near Kent, OH  
0.093  0.481 

95 fifth-grade students in 
two schools, one near Kent, 

OH (Site 1) and one in 
Buffalo, NY (Site 2) 

0.982 * 0.492 

141 sixth-grade students in 

a school near Kent, OH  
0.526  0.474 

Clements 
et al., 2001 

QED 

108 sixth-grade students in 

a school near Buffalo, NY  

Incorporated into classes 
over entire academic 
year/ LOGO and 

geometry 

Logo vs. Control Geometry 

0.011  0.479 

Clements 
& Battista, 

1989 

RCT 

48 third-grade students of 

seven teachers from a 
middle class midwestern 
school 

78 sessions, three 45-55 

min per week (26 
weeks)/ LOGO 

Logo vs. C 

(computer 
composition/music 
+ some Logo) 

Combined  

posttest 
1.495 *** 0.328 

Degelman 
et al., 1986 

RCT 
15 Kindergarten students 
attending a private day care 

center 

15 minutes/day for five 
weeks/ LOGO 

Logo vs. C 
Problem solving 
(proportion correct) 

1.284 * 0.576 

Continued on p. 6-139 
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Table 28, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Hedge’s g 

Standard 

Error 

Emihovich 

& Miller,  
1988 

RCT 

24 first-grade students in 

five classrooms in an 
elementary school in the 
southeast 

20, 30-min sessions 

(3 months)/ LOGO 
 Logo vs. C  

CTBS - 

Mathematics 
0.719 ~ 0.408 

Johnson-
Gentile et 

al., 1994 

QED 

150 fifth- and sixth-graders 
in six classrooms in two 

schools, one urban and one 
suburban 

8 class days/ LOGO and 
geometry 

Logo vs. control 
Logo Geometry 
Motions Unit 

Posttest 

1.901 *** 0.420 

Kapa, 1999 

15 fifth-grade students 
from four classes in two 
elementary schools in Tel 

Aviv, Israel, working 
individually 

individual: LOGO-
STAT vs. C (Q-
Text, linguistic 

problem-solving) 

0.520  0.496 

Kapa, 
1999a 

RCT 

30 fifth-grade students from 
four classes in two 

elementary schools in Tel 
Aviv, Israel, working in pairs 

twice per week for 
45 min for semester/ 
LOGO-STAT-

programming and 
graphing 

pairs: LOGO-
STAT vs. C (Q-

Text, linguistic 
problem-solving) 

Problem solving 
(range 1–6) 

0.697 ~ 0.412 

Lehrer & 

Randle, 
1987 

RCT 
24 first-grade students in a 

low SES New York City 
school 

35 sessions, twice per 

week 20–25 min, 5 
months/ LOGO 

Logo vs. C 
TOH (avg of 

TOH 1–3)  
1.254 ** 0.434 

Oprea, 
1988a 

QED 
54 sixth-grade students in 
three schools in a small 

midwestern city 

6 weeks/ BASIC applied 
to mathematics content 

Wholistic BASIC 
vs. C 

Mathematical 
Generalization 

Instrument 

0.391  0.679 

Ortiz & 

MacGregor, 
1991 

RCT 

59 sixth-grade students 

from four classrooms in 
two metropolitan area 
public schools 

5, 50-min sessions/ 

LOGO and the concept 
of a variable 

Logo vs. textbook-

based instruction 
on concept of 
variable 

Concept of 

variable 
instrument 

0.437 ~ 0.260 

Thompson 
& Wang, 

1988a 

QED 

40 sixth-grade students 
from two classrooms 

(taught by the same 
teacher) in one school 

3, 45-min sessions/ 
LOGO and graphing 

skills 

Logo vs. C 
Posttest- 
Cartesian 

coordinates 

0.538  0.696 

Turner & 
Land, 

1988a 

QED 

153 middle school students 
in seven classrooms in four 

inner-city midwestern 
public schools 

1hr/week, 16 weeks/ 
LOGO and angles and 

distance, variables, 
rectangular coordinate 
systems, negative 

numbers, etc. 

Logo vs. C 
Mathematics 
Multiple Choice 

Posttest 

-0.267  0.471 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

53.503 29 0.004 45.797 
Pooled ES (14 studies, 30 effect sizes) 

0.674 *** 0.115 

Mathematics outcomes only 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

45.078 22 0.003 51.196 
Pooled ES (9 studies, 23 effect sizes) 

0.698 *** 0.138 

Problem-solving outcomes only 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

8.512 7 0.290 17.765 

Pooled ES (six studies,  

eight effect sizes) 0.518 ** 0.169 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
 

Note: The studies with mathematics outcomes are Clements (1986), Clements et al. (2001), Clements & Battista 
(1989), Emihovich & Miller (1988), Johnson-Gentile et al. (1994), Oprea (1988), Ortiz & MacGregor (1991), 
Thompson & Wang (1988), and Turner & Land (1988).  

The studies with problem-solving outcomes are Battista & Clements (1986), Blume & Schoen (1988), Clements 
(1990) (not part of main pooled analysis; it was based on the same study or sample as Clements & Battista 
(1989), Degelman et al. (1986), Kapa (1999), and Lehrer & Randle (1987). 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-140 

Based on the small number of studies in the subsequent categories, the Task Group 
did not conduct a meta-analysis of studies in these categories. The findings of prior syntheses 
and reviews are briefly presented to guide future research. 

 

5. Tools: Computer—Existing Reviews 

Studies in a broader and more ill-defined category of technology, software tools and 
exploratory environments (excluding calculators which were discussed above), were found to 
have inconsistent effects on student performance when compared to conventional classroom 
instruction in the synthesis of existing reviews. Detailed effect size information from prior 
quantitative syntheses and meta-analyses are presented in Table C-6 in Appendix C. One 
review reported that problem solving software appeared as effective as other categories of 
software (Edwards et al., 1975). However, pooled effect sizes reported in other meta-analyses 
have tended to be low, including 0.04 for tool and exploratory environments (Lou et al., 
2001, who emphasize that commercial tests may underestimate effects), 0.10 for “computer-
enhanced instruction” (a broad interpretation, Kulik & Kulik, 1991), and 0.24 for secondary 
students’ use of problem-solving software (Kuchler, 1999). 

 
In contrast to these limited effects, a recent randomized trials evaluation of a middle-

school mathematics approach in which software is a key component reported a larger effect 
size (Roschelle et al., 2007). The approach focuses on proportionality, with software that 
connects different representational systems; for example, linking visual forms such as graphs 
and simulated motions to linguistic forms such as algebraic symbols and narrative stories of 
motion in an interactive and expressive context. The approach also embeds the software 
within a curriculum and includes professional development for the teachers, which may 
account for its success. Caveats include the short duration of the study (less than a month) 
and the participation of all volunteer teachers; for these reasons this study did not meet the 
Task Group’s inclusion criteria. 

 
Based on the small number of studies for any particular subcategory of tools and 

exploratory environments, the Task Group did not conduct a meta-analysis of this category 
except for one specific type of tool, the calculator, discussed previously. 

 

6. Simulations and Games—Existing Reviews 

Detailed effect size information from prior meta-analyses on simulation and games 
are presented in Table C-7 in Appendix C. The prior syntheses of the effects of simulation 
and game software revealed inconsistent effects on student performance when compared to 
conventional classroom instruction, with three previous meta-analyses providing a median 
pooled effect size of 0.23. All specific findings come from only one of these meta-analyses; 
thus, all results are tentative. 
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Table 29: What Prior Reviews Say About Simulations and Games 

• General findings 
— Larger effects for computation or a combination of goals than for concepts 

and applications (but based on one meta-analysis, with small numbers of 
effect sizes; see Table C-7) 

— Arithmetic and “general” subjects showed higher effects than geometry and 
algebra 

— Attitudes toward mathematics and instruction positively affected by use of 
simulation software 

• Contextual variables 
— Junior high students benefited more than elementary students 
— Simulations appear more effective for males 

• Implementation variables 
— Effects were greater for studies of 1–18 weeks compared to those of 19–36 

weeks duration  
— Higher effects of supplemental use on achievement than substitution. 
— Substitutions shows a negative effect on problem solving 
— No differences between experimenter or teacher-developed and commercial 

software 
— Higher gains in a context that combines guidance both with the subject 

matter content (e.g., other forms of instruction) and with students’ 
interaction with the simulation 

 

7. Internet 

There is no consistent empirical research base on the many types of learning and 
teaching that can be delivered or supported over the Internet. Two categories of software that 
appear to have tentative support, based on previous syntheses, are online learning and Web-
based inquiry (e.g., Fadel & Lemke, 2006). Possible negative effects of using the Internet for 
mathematics and mathematics instruction also need to be researched. There were an 
insufficient number of original empirical studies to conduct an original meta-analysis on the 
use of the Internet in mathematics instruction. 

 

8. Tools for Teachers 

Such tools as electronic blackboards and quick-response devices have mostly 
descriptive studies to support them (e.g., Fadel & Lemke, 2006). The application of 
computer-managed instruction (CMI) has already been discussed as a component of ILSs. In 
addition, direct studies of CMI show a pooled effect size of 0.14 in a previous meta-analysis 
(Kulik, 1994). There were an insufficient number of original empirical studies to conduct an 
original meta-analysis on this topic. 
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D. Conclusions and Implications 

This review summarized what is known about the role of technology, including 
different categories of computer software and calculators, in mathematics instruction and 
learning. Before reviewing the findings, several general issues are discussed. 

 
Some reviewers have decried that the literature on educational technology is too 

inconsistent and uneven to make “sweeping conclusions about the effectiveness of instructional 
technology” (Kulik, 2003). Both a conceptual analysis and empirical review concur that any 
such sweeping conclusions are not warranted, but also suggest that such conclusions should not 
be sought as guides for educational practice. “Technology” is not a single, monolithic entity 
(Clements & Sarama, 2003). This review has shown different effects for different categories of 
software, has identified contextual and implementation variables, and whenever possible has 
distinguished between different applications of computer technology. However, the present 
research corpus is weak in distinguishing the effects of specific features of software categories 
and specific software applications (such as in Table 17; this major gap in research will be 
discussed in the succeeding section, “Instructional Software: Features and Pedagogical 
Strategies”). There are too few studies on documented implementations of specific strategies 
for educational technology, and even fewer studies on particular educational technology 
programs. Longitudinal studies are also needed. 

 
Although some previous meta-analyses identified their effects (e.g., 0.19 to 0.24) as 

“weak,” any such classification is dubitable, because the importance of any pooled effect 
size depends on a variety of factors (Lipsey & Wilson, 2001). For CBI, one particular issue 
is that students are often maximally engaged with the computer materials for 15–30 
minutes two to three times per week. Pooled effect sizes must be interpreted in that context 
(Slavin & Lake, 2007).  

 
Existing research, and the many available reviews of this body of research, suggests 

that specific categories and uses of educational technology can make a significant, positive 
contribution to students’ learning of mathematics. The Task Group conducted its own meta-
analyses to evaluate those conclusions of previous reviews. 

 

1. Drill and Practice 

Prior syntheses and meta-analyses suggest that CAI drill and practice generally 
improves students’ performance compared to conventional instruction, with the greatest 
effects on computation, and more limited on concepts and applications. It is the only category 
of instructional software that shows, in previous reviews, higher effects for serving as a 
substitute for conventional instruction, rather than as a supplement to it. It may be that such 
programs address students’ instructional needs for practice adequately and efficiently, 
making substantial teacher intervention less important. 

 
The Task Group’s meta-analysis of rigorous studies supports these conclusions. Drill 

and practice software had a significant positive effect on mathematics achievement. When 
analyzed for different ages and grades, positive effects were confirmed for the elementary 
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level, but there were too few studies at other levels to make comparisons or conclusions. 
Effect sizes were higher for interventions that substituted for, rather than supplemented, 
classroom practice. 

 
In summary, drill and practice through high-quality CAI, implemented with fidelity, 

can be considered a useful tool in developing students’ automaticity, or fast, accurate, and 
effortless performance on computation, freeing working memory so that attention can be 
directed to the more complicated aspects of complex tasks. A caveat is that older studies may 
have used software better designed to use research-based strategies (and fewer “bells and 
whistles,” graphics and sound not related to instruction) than many more recently published 
programs. Using such strategies to incorporate features such as those in Table 17 will likely 
maximize positive effects. The following section includes additional caveats relevant to drill 
and practice.  

 

2. Tutorials 

Prior syntheses and meta-analyses suggest that CAI tutorials improve students’ 
performance compared to conventional instruction, with slightly greater effects on 
performance on concepts and applications measures than on computation measures. Based on 
these prior syntheses and meta-analyses, tutorials appear to be effective at all grade levels, 
particularly the higher grades. Reviews indicate that they are more effective when they 
supplement, rather than replace, conventional instruction, when they involve experimenter or 
teacher-developed, rather than commercially developed, software, and when they are 
developed for a specific audience rather than a general audience. 

 
The Task Group’s meta-analysis of rigorous studies similarly indicates that tutorials 

can increase mathematics performance, both overall achievement and, possibly more so, 
mathematical problem-solving ability. It supported the conclusion that tutorials are more 
effective as supplements, rather than replacements, for conventional instruction and when 
they are highly integrated with the regular mathematics curriculum. Finally, tutorial software 
developed by researchers or teachers was more effective than that developed by commercial 
companies. Findings of individual studies provide serious caveats, however, including the 
need to consider empirical evidence of effectiveness of a particular software package, and 
issues of scale-up, including integration with the extant curriculum, and fidelity of 
implementation, including amount of use, and technological and pedagogical support.  

 
In summary, tutorials, as well as software packages that combine tutorials with drill and 

practice, that are well designed (e.g., including features in Table 17; see also Clements, 2007; 
Clements & Battista, 2000) and implemented can be considered as potentially useful tools in 
introducing and teaching specific subject-matter content to specific populations, especially at 
the junior and senior high school levels. Research suggests that tutorials be designed to develop 
specific educational goals for specific populations. Caveats are that results are not guaranteed, 
and care must be taken that there is evidence that the software increases learning and that the 
requisite support conditions to use the software effectively are in place. 
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3. Tools: Calculators and Graphing Calculators 

Prior syntheses and meta-analyses suggest that calculators of all types, basic, 
scientific and graphing, may benefit students’ achievement in (and attitudes toward) 
mathematics, and effects are more positive when calculators are used during testing. Previous 
reviews also indicate that effects of calculator use on calculation, contrary to perhaps the 
most common concern, are near zero but positive (even when calculators are not allowed on 
the assessments), and effects on problem solving were positive. 

 
The Task Group’s meta-analyses of 11 studies that met the Panel’s rigorous criteria 

(only one study less than 20 years old) found limited to no impact of calculators on 
calculation skills, problem-solving, or conceptual development. Effect sizes of these studies 
are lower than those in prior syntheses and meta-analyses. On the basis of the high quality 
studies identified in this category by the Task Group, it is reasonable to conclude that there is 
no significant negative impact of calculators on students’ calculation competence (only one 
of the studies allowed students to use calculators on the assessment). However, there are 
several important caveats. These findings are limited to the effect of calculators as used in the 
11 studies, including studies up to a year in duration. Also, tests of computational skills did 
not measure the more basic processes, such as retrieval or decomposition, that students use to 
solve arithmetic problems, nor did they measure automaticity or procedural execution as 
might be assessed with timed paper-and-pencil tests (see the Learning Processes Task Group 
report). This is especially important when arithmetic skills are being formed, because 
inappropriate calculator use may interfere with the development of these skills. On the other 
hand, it is possible that appropriate calculator use could provide useful feedback and build a 
stronger association between addends and their sum, strengthening these associations. 
Especially given these conflicting possibilities, and the importance of this early development, 
the lack of rigorous studies with students earlier than third grade is especially unfortunate. 
Also, research on calculator use over several years—especially comparing inappropriate and 
appropriate use—is direly needed. 

 
Further, given that the basic computational skills of many Americans are poor, as 

described in the Learning Processes report, a finding of no effect is not a promising one; 
more powerful instructional approaches are needed. The synthesis of previous reviews 
suggests that more recent calculator interventions, especially those putting calculators to 
“pedagogical use” as an essential element in the teaching and learning of mathematics, have 
a greater positive effect (the studies in the Task Group’s meta-analysis did not report such 
comparisons). “Pedagogical use” usually implies extending mathematics learning in certain 
situations (and perhaps using calculators to check the accuracy of mental or other 
calculations), rather than using calculators when other methods would be appropriate. The 
overuse and inappropriate use of calculators, decried by many, may be more harmful than 
these (relatively short-term) studies indicate. On the other hand, an emphasis on mental 
arithmetic may ameliorate such problems. There is much researchers still need to study. 

 
This report has not addressed several important educational issues. There is a dearth of 

research not only on broad categories of calculator use such as “functional vs. pedagogical” 
use, but on specific uses of calculators that may lead to negative effects (e.g., overdependence), 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-145 

null effects, or specific positive effects. Such research should also fill the gap in the literature if 
studies included observation of how, how much, and how well, calculators are used (this 
includes, for planned interventions, “fidelity of implementation” measures). 

 
In a similar vein, the older studies in the Task Group’s meta-analysis, and more recent 

calculator studies, classify measures and findings by broad categories only, such as 
“calculation,” “problem solving,” and “concepts.” Greater specificity in terms of grade level 
and topic, instructional goals, and pedagogical strategy would yield more useful research 
results and implications. Would specifically targeted use, in which the calculator’s unique 
characteristics are used intentionally, result in greater benefits? For example, one might only 
introduce calculators in work with arithmetic with numbers of six or more digits, square 
roots, or scientific notion. Another project might introduce calculators in earlier grades, not 
to replace computational practice (mental and paper-and-pencil arithmetic) but rather to 
extend computational and problem-solving proficiency. 

 
Even more fundamental, although some may argue against calculator use because it 

circumvents the mathematics they wish students to perform, others believe that in an age of 
calculators and computers, it is inappropriate to continue to focus the elementary school 
mathematics curriculum on pencil-and-paper arithmetic (Ralston, 1999). Research cannot 
address such curriculum issues of goals and values, although, it should be explicit about its 
assumptions. Research can clarify the ramifications of various approaches, but the work of 
discussing these approaches, and evaluating them through empirical research, largely remains 
to be done. 

 
In summary, most of the effects in the Task Group’s meta-analysis have a similar 

pattern of results to those in the prior syntheses and meta-analyses, but with smaller, and 
usually near-zero, statistically insignificant effect sizes. Given the design flaws noted in some 
studies included in previous meta-analyses, this may indicate that the smaller effect sizes 
represent more accurate estimates of calculators’ effects. However, there are different, but 
still substantial, limitations to the pool of studies that met the criteria for inclusion in the 
present meta-analyses. First, only 11 studies of the hundreds in the literature are included in 
the Task Group’s meta-analysis. Only one was published after 1987, and that had but one 
comparison, at Grades 9 and 10. This could be important, as a previous meta-analysis 
indicated that effects of calculators may be becoming more positive with time (Ellington, 
2003), which may suggest that technology, and especially support materials and professional 
development related to technology use, are improving since the introduction of calculators. 
Recent calculator interventions that use research-based approaches (e.g., embedding 
technology within a curriculum and targeting calculator use to particular pedagogical ends) to 
incorporate newer technologies provide suggestive results (Stroup, Pham, & Alexander, 
2007). Second, most of the studies included in the Task Group’s meta-analysis measured 
computational skills, but only half assessed the learning of problem solving or concepts. 
Thus, many of the comparisons for a specific effect are from a small number of studies (with 
effects pooled from multiple comparisons frequently originating from a single study). Given 
the different limitations of each report, conclusions that they share appear trustworthy—that 
is, calculators as used in these studies have little or no effect on most measured outcomes in 
calculation or concepts, given the manner in which calculators were used and the duration of 
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the studies—but, especially when outcomes differ, a larger body of more recent, rigorous 
studies that documents how calculators are used, including research that examines multiyear 
use of calculators, is needed before firm conclusions can be reached. 

 

4. Computer Programming 

Computer programming by students can be employed in a wide variety of situations 
using distinct pedagogies. Prior syntheses and meta-analyses indicate that programming 
improves students’ performance compared to conventional instruction, with the greatest effects 
on concepts and applications, especially geometric concepts, and weaker effects on 
computation. Previous reviews also indicate that programming positively affects problem 
solving, as well as attitudes toward mathematics and instruction in mathematics, more so than 
other software categories. Prior reviews also provide some evidence that use of computer 
programming is more effective for students of average, rather than low or high SES. Earlier 
reviews have claimed that programming is somewhat more effective when it supplements, 
rather than replaces, conventional instruction, consistent with suggestions for mediated 
instruction of programming. Certain computer languages, especially the Logo computer 
language, were reported to have stronger positive effects than other computer languages.  

 
The Task Group’s meta-analysis of rigorous studies supports the conclusions of 

previous reviews about the impact of computer programming on mathematics performance. 
Further, the meta-analysis suggested that results for delayed posttests might be greater than 
those for immediate posttests. Additional research is needed to ascertain whether this finding 
is generalizable. 

 
In summary, computer programming can be considered an effective tool, especially 

for elementary school students, for developing specific mathematics concepts and 
applications and mathematical problem-solving abilities. Effects may be larger the more 
computer programming is integrated into the curriculum. Although there was insufficient 
research on such issues, the Task Group notes that instructional use of programming has 
fewer “bells and whistles” than other categories of software and demands thoughtful 
curricula and knowledgeable teachers, all of which may have contributed to the lack of 
frequency in U.S. classrooms (it is more widely used in other countries, Clements & Sarama, 
1997). Dissemination of research, including research-based curricula and professional 
development, could lead to a reversal of this trend. 

 

5. Tools: Computer Tools 

Software tools and exploratory environments (excluding calculators) have inconsistent 
effects on student performance. Prior syntheses and meta-analyses suggest that problem-
solving software may have potential, but effect sizes have been small. Recent rigorous studies 
suggest that new approaches may have promise, but there are an inadequate number of such 
studies for the Task Group to conduct a meta-analysis of this software category. 
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6. Simulations and Games 

Prior syntheses and meta-analyses suggest that simulation and game software 
packages may have positive, but relatively small, effects on student performance when 
compared to conventional classroom instruction. Previous studies also have shown them to 
have a positive effect on attitudes. Junior high, more than elementary, students may benefit 
from working with simulations and games. Supplemental use is indicated, consistent with the 
intrinsically unguided nature of simulations and games. 

 
In summary, there is only slight evidence—based on studies of unknown rigor—

indicating that simulations may be useful, especially at the middle or junior high level, to 
develop skills, concepts, and applications of knowledge in problem-solving settings. More 
needs to be known about developing and using this category of software, but it is likely that 
careful integration into a well-structured curriculum is critical to facilitate learning. 

 

7. Instructional Software: Features and Pedagogical Strategies 

Many questions essential to designing and selecting educational technology 
applications cannot be answered, because studies and reviews do not distinguish such 
applications on their use of specific features. Similar situations exist for practice, the role of 
the teacher (especially specific pedagogical strategies).  

 
a. Software Features 

The Task Group’s reviews found that the previous meta-analyses and rigorous studies 
did not permit generalizations about critical features of software, such as those identified in 
Table 17. That is, prior syntheses and meta-analyses do not sufficiently distinguish such 
applications on their use of specific features that theoretically should contribute to learning. 
Such findings would be invaluable to the field, both because decisions could be guided by 
any software program’s inclusion of critical features and because the development of new 
software programs could be similarly guided. 

 
Only for the sake of illustration, a few studies that did not meet the Task Group’s 

criteria are described here that compare CAI conditions, most of which had varied 
conclusions. One study reported that enhancing drill by placing it within a game context does 
not yield significantly different outcomes overall, but the game may distract students with 
learning disabilities (Christensen & Gerber, 1990). Enhancement with multimedia 
significantly improved learning in one study (Macaulay, 2003) but CAI with animated vs. 
static pictures or with or without the presentation of a cognitive strategy were equally 
effective (Shiah, Mastropieru, Scruggs, & Mushinski Fulk, 1994). Verbal guidance (in 
students’ first language) may support learning from multimedia educational games (Moreno 
& Duran, 2004). These are single studies with little conceptual overlap; the field needs more 
complete and reliable guidance. 

 
Few software programs are designed based on explicit (i.e., published) theoretical and 

empirical research foundations (but see Clements, 2007; Clements & Sarama, 2007a; Ritter, 
Anderson, Koedinger, & Corbett, 2007). More continuous, committed, iterative research and 
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development projects are needed in this area. Research-based iterative cycles of evaluation 
and development, fine tuning software’s mathematics and pedagogy within each cycle, can 
make substantial differences in learning (e.g., see Aleven & Koedinger, 2002; Clements & 
Battista, 2000; Clements et al., 2001; Laurillard & Taylor, 1994; Steffe & Olive, 2002). 

 
Such research could identify how and why software designs could be improved. As 

one example, the pooled effect sizes in the Task Group’s meta-analysis actually might be an 
underestimate of what can be achieved if drill and practice software were more carefully 
designed. Few studies use empirically validated strategies such as adaptive feedback and 
increasing ratio review (Siegel & Misselt, 1984). 

 

8. Final Words 

In most cases, specific uses of technology will not facilitate learning optimally unless 
they are implemented with fidelity. Unfortunately, information is lacking on this critical issue 
because reviewers and researchers generally have not measured fidelity. A similar situation 
exists for many specific pedagogical issues. 

 
In addition, from the subtleties of designing features of software, to the complexities of 

scaling up approaches to work with entire educational systems, substantive challenges face 
researchers and other educators. These challenges must be met, and findings integrated across 
levels, before conclusions about the effectiveness of educational technology can be offered 
with confidence. Many difficulties stand in the way of conducting high-quality work in the 
field of technology in mathematics education. Applications that go beyond using the simplest 
features of technology to deliver a traditional curriculum face both (a) challenges of 
redesigning scope and sequences, pedagogies, software, and assessments (Kulik & Kulik, 
1991), along with financial and logistical hurdles, and (b) barriers of a priori negative 
evaluation of the goals and assessment instruments they may wish to employ. Such barriers 
may have dampened innovative research and development in educational technology. This is 
unacceptable; concerted efforts are needed to meet these challenges and provide educators with 
clear guidelines from research. This is especially important given the poor implementation of 
educational technology in the field (Clements & Sarama, 1997; Cuban, 2001; Hoffer, 
Venkataraman, Hedberg, & Shagle, 2007). 

 
Finally, technological advances continue to challenge practitioners and researchers. 

There is no research on questions that have arisen only recently. What technologies are most 
appropriate for students for whom multiple hand-held devices are a ubiquitous presence? 
How has the presence of Internet sites affected students (e.g., mathematics as presented on 
Wikipedia)? Both new questions and old must be better addressed with high-quality studies 
of high-quality implementations of computer-based tools if educational technology is to 
fulfill its potential. 



  

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-149 

BIBLIOGRAPHY 

Aleven, V.A.W.M.M., & Koedinger, K.R. (2002). An effective metacognitive strategy: 
Learning by doing and explaining with a computer-based cognitive tutor. Cognitive 

Science, 26(2), 147–179. 

Ball, S. (1988). Computers, concrete materials and teaching fractions. School Science and 

Mathematics, 88(6), 470–475 

Battista, M.T., & Clements, D.H. (1986). The effects of Logo and CAI problem-solving 
environments on problem-solving abilities and mathematics achievement. Computers in 

Human Behavior, 2, 183–193. 

Becker, H.J. (1992). Computer-based integrated learning systems in the elementary and 
middle grades: A critical review and synthesis of evaluation reports. Journal of 

Educational Computing Research, 8, 1–41. 

Blume, G.W., & Schoen, H.L. (1988). Mathematical problem-solving performance of eighth-
grade programmers and nonprogrammers. Journal for Research in Mathematics 

Education, 19(2), 142–156. 

Burns, P.K., & Bozeman, W.C. (1981). Computer-assisted instruction and mathematics 
achievement: Is there a relationship? Educational Technology, 21(10), 32–39. 

Campbell, D.L., Peck, D.L., Horn, C.J., & Leigh, R.K. (1987). Comparison of computer-
assisted instruction and print performance: a research note. Educational 

Communication and Technology Journal, 35(2), 95–103. 

Campbell, P., & Virgin, A.E. (1976). An evaluation of elementary school mathematics 

programs utilizing the mini-calculator. Toronto, Canada: Ontario Department of 
Education.   

Carmichael, H.W., Burnett, J.D., Higginson, W.C., Moore, B.G., & Pollard, P.J. (1985). 
Computers, children and classrooms: A multisite evaluation of the creative use of 

microcomputers by elementary school children. Toronto, Ontario, Canada: Ministry of 
Education. 

Carrier, C., Post, T.R., & Heck, W. (1985). Using microcomputers with fourth-grade students to 
reinforce arithmetic skills. Journal for Research in Mathematics Education, 16(1), 45–51. 

Chambers, E.A. (2002). Efficacy of educational technology in elementary and secondary 

classrooms: A meta-analysis of the research literature from 1992–2002. Southern 
Illinois University Carbondale. 

Christensen, C.A., & Gerber, M.M. (1990). Effectiveness of computerized drill and practice 
games in teaching basic mathematics facts. Exceptionality, 1(3), 149–165. 

Christmann, E., Badgett, J., & Lucking, R. (1997). Progressive comparison of the effects of 
computer-assisted instruction on the academic achievement of secondary students. 
Journal of Research on Computing in Education, 29(4), 325–337. 

Clements, D.H. (1986). Effects of Logo and CAI environments on cognition and creativity. 
Journal of Educational Psychology, 78(4), 309–318. 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-150 

Clements, D.H. (1990). Metacomponential development in a Logo programming 
environment. Journal of Educational Psychology, 82(1), 141–149. 

Clements, D.H. (2007). Curriculum research: Toward a framework for ‘research-based 
curricula’. Journal for Research in Mathematics Education, 38(1), 35–70. 

Clements, D.H., & Battista, M.T. (1989). Learning of geometric concepts in a Logo 
environment. Journal for Research in Mathematics Education, 20(5), 450–467. 

Clements, D.H., & Battista, M.T. (2000). Designing effective software. In A.E. Kelly & R.A. 
Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 
761–776). Mahwah, NJ: Lawrence Erlbaum Associates. 

Clements, D.H., Battista, M.T., & Sarama, J. (2001). Logo and geometry. In Journal for 

Research in Mathematics Education Monograph Series, 10. Reston, VA: National 
Council of Teachers of Mathematics. 

Clements, D.H., & Sarama, J. (1997). Research on Logo: A decade of progress. Computers in 

the Schools, 14(1–2), 9–46. 

Clements, D.H., & Sarama, J. (2003). Strip mining for gold: Research and policy in 
educational technology—A response to “Fool’s Gold”. Educational Technology 

Review, 11(1), 7–69. 

Clements, D.H., & Sarama, J. (2007). Effects of a preschool mathematics curriculum: 
Summative research on the Building Blocks project. Journal for Research in 

Mathematics Education, 38(2), 136–163. 

Clements, D.H., & Sarama, J. (2008). Experimental evaluation of the effects of a research-
based preschool mathematics curriculum. American Educational Research Journal 

(forthcoming 2008). 

Cuban, L. (2001). Oversold and underused. Cambridge, MA: Harvard University Press. 

Dalton, D., & Hannafin, M.J. (1988), The effects of computer-assisted and traditional 
mastery methods on computation accuracy and attitudes. Journal of Educational 

Research, 82(1), 27–33. 

Degelman, D., Free, J.U., Scarlato, M., & Blackburn, J.M. (1986). Concept learning in 
preschool children: Effects of short-term logo experience. Journal of Educational 

Computing Research, 2(2), 199–205. 

Duffy, J.A., & Thompson, G.E. (1980). Improving mathematical achievement of elementary 

students through the use of electronic hand calculators. Columbus, OH: Columbus 
Public Schools, Ohio Department of Management, Planning and Information. 

Dynarski, M., Agodini, R., Heaviside, S., Novak, T., Carey, N., Campuzano, L., et al. (2007). 
Effectiveness of reading and mathematics software products: Findings from the first 

student cohort. Washington, DC: U.S. Department of Education, Institute of Education 
Sciences. 

Edwards, J., Norton, S., Taylor, S., Weiss, M., & Dusseldorp, R. (1975). How effective is 
CAI? A review of the research. Educational Leadership, 33(2), 147–153. 

Ellington, A.J. (2003). A meta-analysis of the effects of calculators on students’ achievement 
and attitude levels in precollege mathematics classes. Journal for Research in 

Mathematics Education, 34(5), 433–463. 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-151 

Ellington, A.J. (2006). The effects of non-CAS graphing calculators on student achievement 
and attitude levels in mathematics: A meta-analysis. School Science and Mathematics, 

106(7), 16–26. 

Emihovich, C., & Miller, G.E. (1988). Effects of Logo and CAI on Black first graders’ 
achievement, reflectivity, and self-esteem. The Elementary School Journal, 88(5), 472–
487. 

Fadel, C., & Lemke, C. (2006). Technology in schools: What the research says. San Jose, 
CA: Metiri Group, commissioned by Cisco Systems. 

Fletcher, J.D., Hawley, D.E., & Piele, P.K. (1990). Costs, effects, and utility of 
microcomputer-assisted instruction in the classroom. American Educational Research 

27(4), 783–806. 

Fletcher-Flinn, C.M., & Gravatt, B. (1995). The efficacy of computer-assisted instruction 
(CAI): A meta-analysis. Journal of Educational Computing Research, 12(3), 219–242. 

Fuchs, L.S., Fuchs, D., Hamlett, C.L., & Appleton, A.C. (2002). Explicitly teaching for 
transfer: Effects on the mathematical problem-solving performance of students with 
mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 90–106. 

Fuchs, L.S., Fuchs, D., Hamlet, C.L., Powell, S.R., Capizzi, A.M., & Seethaler, P.M. (2006). 
The effects of computer-assisted instruction on number combination skill in at-risk first 
graders. Journal of Learning Disabilities, 39(5), 467–475. 

Gordon, B.W. (1992). A quantitative analysis of the relationship between computer graphics 

and mathematics achievement and problem solving. Unpublished doctoral dissertation, 
University of Cincinnati, Ohio. 

Graham, A.T., & Thomas, M.O. (2000). Building a versatile understanding of algebraic 
variables with a graphic calculator. Educational Studies in Mathematics, 41(3), 265–
282. 

Hamilton, W.A. (1995). A meta-analysis of the comparative research on computer-assisted 
instruction and its effects on elementary and secondary mathematics achievement. 
Dissertation Abstracts International, 56(05), 1599. 

Hartley, S.S. (1978). Meta-analysis of the effects of individually paced instruction in 
mathematics. Dissertation Abstracts International, 38, 4003A. UMI No. 77-29, 926. 

Hembree, R. (1984). Model for meta-analysis of research in education with a demonstration 

of mathematics on education: Effects of handheld calculators. Unpublished doctoral 
dissertation, University of Tennessee, Knoxville. 

 Hembree, R. (1992). Experiments and relational studies in problem solving: A meta-
analysis. Journal for Research in Mathematics Education, 23(3), 242–273. 

Hembree, R., & Dessart, D.J. (1986). Effects of hand-held calculators in precollege 
mathematics education: A meta-analysis. Journal for Research in Mathematics 

Education, 17(2), 83–99. 

Henderson, R.W., Landesman, E.M., & Kachuck, I. (1985). Computer-video instruction in 
mathematics: Field test of an interactive approach. Journal for Research in 

Mathematics Education, 16(3), 207–224. 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-152 

Hoffer, T.B., Venkataraman, L, Hedberg, E.C., & Shagle, S. (2007). Final report of the 

national survey of algebra teachers for the National Math Panel. Chicago: University 
of Chicago. 

Johnson-Gentile, K., Clements, D.H., & Battista, M.T. (1994). The effects of computer and 
noncomputer environments on students’ conceptualizations of geometric motions. 
Journal of Educational Computing Research, 11(2), 121–140. 

Kapa, E. (1999). Problem solving, planning ability and sharing processes with LOGO. 
Journal of Computer Assisted Learning, 15(1), 73–84. 

Khalili, A., & Shashaani, L. (1994). The effectiveness of computer applications:  A meta-
analysis. Journal of Research on Computing in Education, 27(1), 48–61. 

Khoju, M., Jaciw, A., & Miller, G.I. (2005). Effectiveness of graphing calculators in K–12 

mathematics achievement: A systematic review. Palo Alto, CA: Empirical Education 
Research Report. 

Kraus, W.H. (1981). Using a computer game to reinforce skills in addition basic facts in 
second grade. Journal for Research in Mathematics Education, 12(2), 152–155. 

Kuchler, J.M. (1999). The effectiveness of using computers to teach secondary school 

mathematics. Unpublished doctoral dissertation. University of Massachusetts, Lowell. 

Kulik, C.-L.C., & Kulik, J.A. (1991). Effectiveness of computer-based instruction: An 
updated analysis. Journal of Computer-Based Instruction, 7(1–2), 75–94. 

Kulik, J.A. (1994). Meta-analytic studies of findings on computer-based instruction. In E.L. 
Baker, & H.F. O’Neil, Jr. (Eds.), Technology assessment in education and training (pp. 
9–33). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Kulik, J.A. (2003). Effects of using instructional technology in elementary and secondary 

schools: What controlled evaluation studies say. Arlington, VA: SRI International. 

Laurillard, D., & Taylor, J. (1994). Designing the stepping stones: An evaluation of 
interactive media in the classroom. Journal of Educational Television, 20(3), 169–184. 

Lee, W.C. (1990). The effectiveness of computer-assisted instruction and computer 
programming in elementary and secondary mathematics: A meta-analysis. (Doctoral 
dissertation, University of Amherst, 1990). Dissertation Abstracts International, 

51(03), 775. 

Lehrer, R., & Randle, L. (1987). Problem solving, meta-cognition and composition: The 
effects of interactive software for first-grade children. Journal of Educational 

Computing Research, 3(4), 409–427. 

Lipsey, M.W., & Wilson, D.B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage 
Publications. 

Lou, Y., Abrami, P.C., & d’Apollonia, S. (2001). Small group and individual learning with 
technology: A meta-analysis. Review of Educational Research, 71(3), 449–521. 

Macaulay, M. (2003). The effects of multimedia on learning in third world children. Journal 

of Educational Multimedia and Hypermedia, 12 (2), 185–198. 

McCollister, T.S., Burts, D.C., Wright, V.L., & Hildreth, G.J. (1986). Effects of computer-
assisted instruction and teaching instruction on arithmetic task achievement scores of 
kindergarten children. Journal of Educational Research, 80(2), 121–125. 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-153 

Moore, B.M. (1988). Achievement in basic mathematics skills for low performing students—
A study of teachers’ affect and CAI. Journal of Experimental Education, 57(1), 38–44. 

Moreno, R., & Duran, R. (2004). Do multiple representations need explanations? The role of 
verbal guidance and individual differences in multimedia mathematics learning.  
Journal of Educational Psychology, 96(3), 492–503. 

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation 

standards for school mathematics. Reston, VA: Author. 

Niemiec, R.P., & Walberg, H.J. (1984). Computers and achievement in the elementary 
schools. Journal of Educational Computing Research, 1(4), 435–440. 

Oprea, J.M. (1988). Computer programming and mathematical thinking. Journal of 

Mathematical Behavior, 7(2), 175–190. 

Ortiz, E., & MacGregor, S.K. (1991). Effects of LOGO programming on understanding 
variables. Journal of Educational Computing Research, 7, 37–50. 

Papert, S., Watt, D., di Sessa, A., & Weir, S. (1979). Final report of the Brookline Logo 

Project: Parts 1 and 11 (Logo Memos Nos. 53 and 54). Cambridge, MA: 
Massachusetts Institute of Technology Artificial Intelligence Laboratory. 

Podell, D., Tournakirein, N., & Lin, A. (1992). Automatization of mathematics skills via 
computer-assisted-instruction among students with mild mental-handicaps. Education 

& Training in Mental Retardation & Developmental Disabilities, 27(3), 200–206. 

Ralston, A. (1999). Let’s abolish pencil-and-paper arithmetic. Journal of Computers in 

Mathematics and Science Teaching, 18, 173–194. 

Ritter, S., Anderson, J.R., Koedinger, K.R., & Corbett, A. (2007). Cognitive Tutor: Applied 
research in mathematics education. Psychonomics Bulletin & Review, 14(2), 249–255. 

Roschelle, J.M., Tatar, D., Shechtman, N., Hegedus, S., Hopkins, B., Knudsen, J., et al. 
(2007). Can a technology enhanced curriculum improve student learning of important 

mathematics? (Vol. Technical Report 01). Menlo Park, CA: SRI International. 

Ryan, A.W. (1991). Meta-analysis of achievement effects of microcomputer applications in 
elementary schools. Educational Administration Quarterly, 27(2), 161–184. 

Saracho, O.N. (1982). The effects of a computer-assisted instruction program on basic skills 
achievement and attitudes toward instruction of Spanish-speaking migrant children. 
American Educational Research Journal, 19(2), 201–219. 

Saunders, J., & Bell, F.H. (1980). Computer-enhanced algebra resources: Their effects on 
achievement and attitudes. International Journal of Mathematical Education in Science 

and Technology, 11(4), 465–473. 

Schnur, J.O., & Lang, J.W. (1976). Just pushing buttons or learning?—A case for mini-
calculators. The Arithmetic Teacher, 23(7), 559–562. 

Shiah, R.L., Mastropieri, M.A., Scruggs, T.E., & Mushinski-Fulk, B.J. (1994). The effects of 
computer-assisted instruction on the mathematical problem solving of students with 
learning disabilities. Exceptionality, 5(3), 131–161. 

Siegel, M.A., & Misselt, A.L. (1984). Adaptive feedback and review paradigm for computer-
based drills. Journal of Educational Psychology, 76(2), 310–317. 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-154 

Slavin, R.E., & Lake, C. (2007). Effective programs in elementary mathematics: A best-

evidence synthesis. Baltimore, MD: Johns Hopkins University. 

Smith, B.A. (1997). A meta-analysis of outcomes from the use of calculators in mathematics 

education. Unpublished doctoral dissertation, Texas A&M University. 

Standifer, C.E., & Maples, E.G. (1981). Achievement and attitude of third-grade students 
using two types of calculators. School Science and Mathematics, 81(1), 17–24. 

Standifer, C.E., & Maples, E.G. (1982). Mathematical achievement of third- and fourth-grade 
students in compensatory education when using two types of calculators.  
Psychological Reports, 82(51), 11–18. 

Steffe, L.P., & Olive, J. (2002). Design and use of computer tools for interactive mathematical 
activity (TIMA). Journal of Educational Computing Research, 27(1&2), 55–76. 

Stroup, W., Pham, V., & Alexander, C. (2007). Richardson MathForward Project: Second Year 

Final Report: Mathematics TAKS Results. Austin, TX: University of Texas at Austin. 

Szetela, W. (1980). Calculators and the teaching of ratios in Grade 7. Journal for Research in 

Mathematics Education, 11(1), 67–70. 

Szetela, W. (1982). Story problem solving in elementary school mathematics: What differences 
do calculators make? Journal for Research in Mathematics Education, 13(5), 381–389. 

Szetela, W., & Super, D. (1987). Calculators and instruction in problem solving in Grade 7.  
Journal for Research in Mathematics Education, 18(3), 215–229. 

Thomas, P.G., & Rickhuss, M.G. (1992). An experiment in the use of computer algebra in 
the classroom. Education and Computing, 8(3), 225–263. 

Thompson, A.D., & Chen-Wang, H. (1988). Effects of a Logo microworld on student ability 
to transfer a concept. Journal of Educational Computing Research, 4(3), 335–347. 

Trifiletti, J.J., Frith, G.H., & Armstrong, S.W. (1984). Microcomputers versus resource 
rooms for LD students: A preliminary investigation of the effects on mathematics 
skills. Learning Disability Quarterly, 7(1), 69–76. 

Turner, S.V., & Land, M.L. (1988). Cognitive effects of a Logo-enriched mathematics program 
for middle school students. Journal of Educational Computing Research, 4(4), 443–452. 

Watkins, M.W. (1986). Microcomputer-based mathematics instruction with first-grade 
students. Computers in Human Behavior, 2, 71–75. 

Wheatley, C.L. (1980). Calculator use and problem-solving performance. Journal for 

Research in Mathematics Education, 11(5), 323–334. 

Wheatley, G.H., & Shumway, R.J. (1979). Impact of calculators in elementary school 

mathematics: final report. Washington, DC: National Science Foundation. 

Wheeler, J.L., & Regian, JW (1999). The use of a cognitive tutoring system in the 
improvement of the abstract reasoning component of word problem solving. Computers 

in Human Behavior, 15(2), 243–254. 

Wilson, W.S., & Naiman, D.Q. (2004). K–12 calculator usage and college grades. 
Educational Studies in Mathematics, 56(1), 119–122. 



  

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-155 

VI. Instructional Practices and Mathematics Achievement:  

The Case of the Gifted Student 

Students arrive at school with different skills and knowledge levels as well as 
capacities for benefiting from the opportunities provided by schools; these differences remain 
throughout schooling (Benbow & Stanley, 1996). This conclusion has been documented 
widely in the literature, going back as far as Learned and Wood (1938). Learned and Wood 
were among the first to show the wide range in knowledge among students in the same grade. 
For example, approximately 10% of high school seniors had more scientific knowledge than 
the average college senior. Such individual differences in knowledge and skills are evident 
even before entry into kindergarten, are reflected by the variance of test scores, and persist in 
every grade thereafter (Paterson, 1957; Pressley, 1949; Seashore, 1922; Terman, 1954; Tyler, 
1965; Willerman, 1979; also see Learning Processes Task Group report). Moreover, there are 
differences in rate of learning. Those 13-year-olds who are in the top 1% of ability, for 
example, can assimilate, in three intensive weeks of schooling, a full year of high school 
biology, chemistry, Latin, physics, or mathematics (e.g., Lynch, 1992; Stanley & Stanley, 
1986; VanTassel-Baska, 1983). Those who are in the top 1 in 10,000 in ability can 
accomplish even more in this time frame. Moreover, highly mathematically able students, 
with their exceptionally strong short-term working memory (Dark & Benbow, 1990, 1991, 
1994), enjoy abstract, unstructured problems and thrive with complexity, which is different 
from the learning environment that is typical in the “regular” classroom. At the other end are 
students who need intensive work and much structured support and scaffolding over a long 
period of time to master basic skills in reading and mathematics. A challenge in teaching, 
then, is to be responsive to these individual differences so that all students make progress and 
are allowed to achieve their potential (National Research Council, 2000, 2002; Stanley, 
2000). Particularly challenging for teachers are those students who are advanced or so 
challenged that the typical age-grade curriculum becomes inappropriate. In the case of the 
advanced student, serious adjustment is required if to teach them only what they already do 
not know (Stanley, 2000). In this report, the Task Group begins by briefly describing the 
strategies that are typically used to meet the learning needs of the advanced learner, often 
labeled the gifted student, and then move on to assess their effectiveness. 

 
In American schools there are a plethora of programs that have been developed to 

meet the needs of gifted students. They represent the varied results obtained when the four, 
theoretically derived principles for adjusting the educational experiences or, more precisely, 
differentiating the curriculum are employed. The curriculum can be differentiated by level 
(e.g., grade level), complexity (e.g., abstract, unstructured), breadth or depth, and pacing to 
meet the learning needs of gifted students and ensure developmental appropriateness, 
according to an extensive literature in gifted education (Kaplan, 1986; Renzulli, 1986; 
VanTassel-Baska, 1998; Olszewski-Kubilus, 2007). Depending upon the relative emphasis of 
each one of these principles and the social context, the resulting programs fall into four broad 
categories: enrichment, acceleration, homogeneous grouping, and individualization. 
Enrichment often is seen in the regular classroom or in pullout programs or supplemental 
classes. It represents attempts to make the curriculum more appropriate for gifted students by 
adding to it or providing more depth and complexity while keeping students with their same-
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age peers. Acceleration and homogeneous grouping are attempts at forming groups for 
instruction that are at the same approximate achievement level, either by moving the 
advanced student to a higher grade in a (or many) subject(s) or by forming groups of same-
age students on the basis of their demonstrated achievement. Indirectly, complexity is 
enhanced. Of course, all of these options can be used in some combination and that is what 
textbooks and articles in gifted education suggest (VanTassel-Baska, 1998). As well, the 
amount of adjustment required depends upon the level of giftedness and the difference 
between the individual gifted student and the average of the class. Acceleration that involves 
grade-skipping or putting individual students in a higher grade for a specific subject, for 
example, is typically reserved for the highly gifted (e.g., top 1% or even more extreme ability 
levels) as students much below that level often do not require such extreme adjustments.  

 
A big debate in gifted education has been between the use of enrichment and 

acceleration. Most view this as a false dichotomy. For the highly gifted especially, it is 
recommended that both be utilized (VanTassel-Baska, 1998; Olszewski-Kubilus, 2007). 
There is, however, great resistance in K–12 schools toward using acceleration, even with the 
highly gifted (Benbow, 1991; Colangelo et al., 2004). This is not the case at the collegiate 
level when course placement is dependent upon having met prerequisites or scores on 
placement exams. The resistance by K–12 educators and fears of parents in terms of social 
and emotional development, however, have served to stimulate much research, admittedly of 
varying quality, to assess acceleration’s effectiveness and whether it actually produces harm. 
Thus, there is an imbalance in the existing research literature in gifted education, with most 
of the research focused on accelerative strategies. Moreover, acceleration itself is a profound 
thing to do as it puts usual intellectual and social trajectories out of synchrony and often 
involves just one or possibly just a few students in a given school. This means that special 
considerations and individualization are required to make it possible and ensure its success. 
For example, special efforts are made to place the to-be-accelerated child with a teacher 
supportive of the acceleration if at all possible (VanTassel-Baska, 1998), given the frequent 
hostility toward such students and any interventions provided (Benbow & Stanley, 1996; 
Coleman, 1960; Cramond & Martin, 1987; Hofstadter, 1963; Tannenbaum, 1962). This, 
coupled with other issues (e.g., the child wanting to accelerate—motivation as a criterion)—
makes it challenging to conduct carefully controlled research. 

 
Previous meta-analyses have tried to make sense of this literature with all of its 

limitations and the varying quality of studies. They identified acceleration as the most 
promising strategy, followed by homogeneous grouping involving differentiation of the 
curriculum and adjustment of methods of teaching (Kulik & Kulik, 1982, 1984, 1992; Rogers, 
2007; Olszewski-Kubilus, 2007). This represents what the field of gifted education thought the 
state of knowledge was before the Instructional Practices Task Group began its work. 

 
As discussed in the introduction of this report and in Appendix A, the Instructional 

Practices Task Group developed criteria for which studies it would consult as part of its 
deliberations. The Task Group’s charge was to assess the effects of instructional practices on 
mathematics achievement and establish a warranted claim of causality. It posed the following 
question: Can the Task Group conclude, without much doubt, that an intervention or mode of 
teaching is more effective than conventional practice or another approach? To draw such 
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conclusions requires that studies meet a high standard of methodological rigor. Experimental 
and high-quality quasi-experimental studies would be consulted and confounds had to be 
carefully assessed to determine if valid inferences could be drawn even from this select group 
of studies. The Task Group also decided that non-Category 1 studies could be used only to 
support the conclusions of well-designed experimental or quasi-experimental studies. Groups 
of compromised studies (e.g., analyses, where weaknesses in one, for example, are off-set by 
findings in another) could provide context for the analysis conducted by the Task Group and 
the strength of its recommendation. The Panel also chose to limit itself for the most part to 
published, peer-reviewed journal articles. The approach is perhaps most similar to that used 
by the What Works Clearinghouse. This process eliminated all but a few relevant studies in 
several topical areas. This was true here as well—for the report on strategies used to serve 
gifted students.  

 
Using the criteria established, the Task Group conducted a literature search for 

studies that assessed effectiveness of various options for serving gifted students. Key terms 
used included enrichment, differentiated curriculum, and acceleration. Only studies that 
compared gifted students participating in an intervention with a comparison group composed 
of nonparticipating gifted students were included. Studies that employed other comparison 
groups (e.g., students several grades above the treatment group, norms, or non-gifted) are not 
included. Finally, the Task Group generally used the term gifted to refer to students at the 
90th percentile or above on standardized mathematics achievement tests, although most of 
the studies included here used much more selective criteria. The literature search, operating 
within these constraints, initially produced 11 studies, one of which was immediately 
eliminated due to methodological design weaknesses. The remaining ten were then reviewed 
by an independent methodologist, who also assessed them in relation to the Panel criteria. 
The Task Group followed his guidance, which resulted in two more studies being eliminated. 
Additional suggestions for studies to be consulted that emerged from the review process or in 
discussion were followed up and subjected to the same review criteria.  

 
Of the eight studies that were included in this report on serving the needs of gifted 

children, all were either Category 1 or 2 studies (as described in the Methodology document 
in Appendix A). One was a randomized control trial (RCT) and seven were quasi-
experimental. The methodological limitations of each study are clearly presented below. The 
Task Group organized the studies based on the type of approach toward instruction into two 
main categories: (i) Acceleration practices, including individualized, self-paced learning and 
(ii) Enrichment with or without acceleration. 

 
In the following sections, the Task Group describes the practices used, provides study 

characteristics for each of the studies, and calculates effect sizes for the outcomes when possible.  
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A. The Role of Acceleration in Gifted Students’ Math Achievement 

and Math-Related Outcomes 

Acceleration of the curriculum, as noted above, is one form of adapting the 
instructional experiences received by gifted students. The curriculum is adjusted to meet the 
needs of the individual learner or, rather, the individual is placed in the curriculum at the 
approximate level of his or her functioning. Some call this placement according to 
competence or developmental placement (Benbow & Stanley, 1996). Acceleration may 
include presenting subject matter content earlier (e.g., algebra in 7th grade) or at a faster 
pace, or both, self-paced learning or compacting of the curriculum, participating in Advanced 
Placement programs (i.e., college-level classes in high school), taking college classes while 
in high school, skipping grades, and graduating early from high school and subsequently 
entering college early. It provides a differentiated curriculum for gifted students by using 
curricula designed for older students. The opinion of most educators in the field of gifted 
education, however, is that good acceleration does not stop there (VanTassel-Baska, 1998). It 
also should explore topics more deeply, probe interconnectedness of concepts, and adjust the 
content to make it more complex and abstract. This can occur in special accelerated classes 
for gifted students or in the regular classroom with a truly excellent teacher. 

 
Several points need to be considered when evaluating the value of acceleration for 

gifted students. Acceleration, beyond self-paced learning or offering algebra to eighth-
graders, is reserved for the highly gifted. Second, because of social and academic disruptions 
it causes, acceleration is used only with students who want to accelerate (VanTassel-Baska, 
1998). No matter how positive the effects of acceleration could be, it is a widely held 
professional opinion that it is inadvisable to accelerate a child if there is significant resistance 
(Benbow, 1998). Thus, this educational intervention is different from others (e.g., choosing a 
specific text-book or teaching method) because student choice is a factor in its use. It may be 
that those students who choose to accelerate are more academically motivated or desire 
academic challenges more than those who choose not to. Alternatively, those who choose to 
not accelerate may need more of other, nonacademic, factors in structuring a satisfying life. 
That is, accelerates and non-accelerates may have different priorities and this is confounding 
when the aim is to assess effects of acceleration specifically. Thus, any recommendations 
would pertain only to academically motivated students, the very ones for whom acceleration 
is to be used according to practice guidelines developed on the basis of professional 
judgment. 

   
Third, when gifted students are accelerated by putting them together for special classes, 

this creates a different academic and social environment that appears to be highly valued by 
and motivating for gifted students (Benbow, Lubinski, & Suchy, 1996). In this descriptive 
study, students report feeling affirmed and challenged in ways that the regular classroom does 
not provide. Also, the nature of the discourse changes, becoming much more high-level and 
intellectually challenging (Fuchs, Fuchs, Hamlett, & Karns, 1998). So, accelerated classes are 
more than just content taught at a fast pace. This makes it hard, if not impossible, to separate 
out the effects attributable only to the acceleration in these types of programs. 
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The analyses presented in Table 30 include six quasi-experimental studies that looked 
at acceleration and include both short- and long-term outcomes; that is, students were 
assessed shortly after having been accelerated (e.g., completion of self-paced learning 
program) or several years later. In the latter studies, the short-term impact on learning is not 
assessed (e.g., covering two years of mathematics in one) but rather subsequent participation 
in mathematics in the years following the advancement (e.g., college course-taking four years 
later) is assessed. In the analyses, the Task Group presents individual but not pooled effects 
sizes of the acceleration practices. The “interventions” were seen as sufficiently different to 
preclude pooling. Findings associated with both the short-term and long-term outcomes are 
presented in Table 30.  

 
Table 30: Studies That Examine the Impact of Acceleration on Gifted Students’ Math 

Achievement and Math Related Outcomes 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s 

g 

Standard  

Error 

Short-Term Effects 

Brody & 
Benbow, 
1990: 

Study 1c 

Quasi 

80 seventh-grade participants in 
the Talent Search sponsored by 
the Center for Talented Youth 

(CTY) at Johns Hopkins 
University. All subjects were 
screened with SAT-M to meet 

eligibility requirements for 
participation in gifted educational 
programs 

Three weeks/ 
Algebra 1 or above 

Fast-paced 
accelerated 
summer math 

class vs. No 
summer program 

SAT-Math  0.241 (ns) 0.227 

Ma,  
2005b d e 

Quasi 

276 gifted seventh-grade students 
randomly selected from the 

Longitudinal Study of American 
Youth (LSAY) 

One school year/ 
Algebra 1 

Took Algebra 1 
in grades 7 or 8 

vs. Did not take 
Algebra 1 in 
grades 7 or 8 

LSAY Math 
Achievement 

(combination of sub-
tests: math basic 
skills, algebra, 

geometry)f 

0.167 (ns) 0.166 

Parke, 

1983 
Quasi 

44 gifted students in Grades K–2 

from two elementary schools 

10 weeks/ Addition, 

subtraction, place 
value, sets, and 

measurement 

Used self-

instructional 
math materials 

vs. Control 

Skill Masteryg 
Insufficient data to 

calculate effect sizes 

Ysseldyke 

et al., 
2004a 

Quasi 

100 gifted students in Grades 3–5 

that were part of a larger study in 
which instructional software was 
implemented in 15 different states 

in the U.S. 

Four months/ 

Individually based 
mathematics 
curriculum tailored 

to grade level/skill 
level 

Personalized 

Computer 
Instruction vs. 
Control 

STAR math computer 

adaptive test of 
mathematics skills in 
numeric concepts, 

computation, and 
math applications 

0.449 ~ 0.271 

Continued on p. 6-160 
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Table 30, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s 

g 

Standard  

Error 

Long-Term Effects 

Swiatek 

& 
Benbow, 

1991a  

Quasi 

37 qualifying participants and 58 

nonparticipants of a fast-
paced/self-paced accelerated math 

classes that were followed up 10 
year after participation. The 
subjects were initially identified 

through the Study of 
Mathematically Precocious Youth 
(SMPY) referrals and screened 

through additional testing 

Saturday mornings 

for approximately 
one year/ Algebra 1 

and 2, plane 
geometry, 
trigonometry, and 

analytic geometry 

Participation in 

extracurricular 
fast-paced and 

self-paced 
accelerated math 
classes vs. No 

participation 

Percent taking 

elective 
undergraduate math 

courses (ES = 0.066), 
Percent undergraduate 
majors in math (ES = 

0.271), Percent 
graduate majors in 
applied math (ES = 

0.514~) 

0.284 (ns) 0.317 

Swiatek 
& 

Benbow, 
1991b 

Quasi 
107 pairs of gifted students that 
were followed up 10 years after 

participation in SMPY 

N/A 

Students who 
chose to undergo 

acceleration and 
enter college at 
least one year 

early vs. Students 
who chose 
traditional 

educational route 

Number of non-
required math courses 

(ES = 0.381**), 
Number of 
undergraduate math 

courses (ES = 0.091) 

0.236 ~ 0.137 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The standard deviations used for the calculation of effect size were estimates provided by the author. 
d The number of students used for the gifted analytic sample was adjusted by the 12% attrition that the overall study had in the first two years. 
e The seventh and ninth grade achievement tests were used as pre- and posttests to estimate effect of taking Algebra 1 in seventh or eighth 
grade. 
f The three sub-measures of LSAY Math Achievement Test—math basic skills, algebra, geometry—were combined to create a score 
comparable to the SAT-M. 
g The assessment included 170 items testing mastery of 82 skills in five areas: addition, subtraction, place value, sets, and measurement. 

 
Brody and Benbow (1990; Study 1), in a quasi-experimental study, investigated 

whether short-term, accelerative academic training had an effect on SAT scores of middle 
school students who were in the top 1% in ability. Program participants were enrolled in a fast-
paced, three-week summer academic program that was focused on increasing content 
knowledge in pre-algebra. Their performance on the SAT was compared to a nonrandomized 
control group not participating in any accelerative learning experience during the summer but 
in the top 1% in ability (with lower SAT-M scores initially but not SAT-V) or to students 
enrolled in other, nonmathematics accelerative classes in the academic summer program. The 
results from the ANCOVA, adjusting for relatively large initial differences in ability across 
groups, revealed that in-depth instruction over a short period of time in specific mathematical 
or verbal areas had little or no impact on SAT scores at the conclusion of the program. The data 
reported in Table 30 reflects no significant effect between the participants in the fast-paced 
mathematics class and those not enrolling in any special mathematics class (ES = 0.241). 

 
Ysseldyke et al. (2004), in a quasi-experimental study, compared third through sixth 

grade gifted students whose mathematics curriculum was differentiated and adjusted to the 
needs of the students through a instructionally-based curriculum management system, called 
Accelerated Math (Renaissance Learning, 1998). It was a self-directed, four-month long 
mathematics program with assessment of skill level, tailoring of the instruction to match skill 
level, individual pacing and goal setting, ample practice, and immediate feedback to student and 
teacher on performance. The effect size of 0.449 bordered on statistical significance, and 
favored the personalized instruction group on outcome measures of mathematics skills, numeric 
concepts, computation, and mathematics applications.  
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Parke (1983), in another quasi-experimental study, used a 10-week self-instruction 
program in mathematics with gifted Kindergarten through second-graders to differentiate the 
curriculum and compared their performance to another equally able, high-ability sample and a 
comparison group, both of whom were enrolled in a regular class with no differentiation. In 
terms of design limitations, there was no random assignment; the sample size was small; and 
there were large pretest ability differences among the groups. Data needed to compute an effect 
size also were not reported. The ANCOVA results reported by the author, adjusted for initial 
differences in ability, were statistically significant. The intervention group mastered 
significantly more concepts and skills than the comparison groups. The adjusted means were 52 
learned concepts for the participants, 38 for the high-ability comparison group, and 41 for the 
random comparison groups. This finding lends support to the value of differentiation through 
individualization via self-paced, accelerative learning. 

 
Ma (2005) compared the mathematics achievement at the end of high school for 

students in the top 10% in ability who took formal algebra either in seventh or eighth grade, an 
increasing trend in the U.S. for capable students, and equally able students who took such 
algebra in ninth grade or beyond. Ma used a subsample of the Longitudinal Study of American 
Youth that was divided into gifted, honors, and regular students. For each, differences between 
students who took Algebra I early (accelerated) versus those who did not, mainly reflecting 
practices in different schools, were examined. There were relatively balanced numbers of 
accelerated versus not accelerated for the gifted (49%) and honors (21%) students, but few 
“regular” students were accelerated in this way (4%) as would be expected. The mathematics 
achievement outcome variable, which captured performance on a combination of basic 
mathematical skills, algebra, geometry, and quantitative literacy items, was a growth curve of 
achievement measures from Grade 7 to 12. The effect size for the score differences favoring 
accelerates was 0.167 and not statistically significant. All accelerated students seemed to 
perform well on this test, however, even though reservation has been expressed about learning 
algebra early (e.g., Prevost, 1985). 

 
Swiatek and Benbow (1991a), in a quasi-experimental study, assessed participants 10 

years after the completion of two homogeneously grouped and fast-paced mathematics 
classes. The individuals in these classes had learned algebra and possibly all the content up 
through precalculus at a rapid rate. These classes were the model for the fast-paced programs 
that have sprung up across the country in the past 35 years and now serve over 100,000 gifted 
students annually. The initial class was taught by an experienced math teacher at a rate 
dictated by the capacity for learning of the most able students in the class. Most students in 
the class completed four years of mathematics in 14 months and their standardized 
achievement test scores were well above the 90th percentile on relevant tests of mastery. A 
subgroup completed just two years of math in that time frame. They were less able initially 
and, thus, experienced difficulty in keeping up the pace of the faster moving group. The 
participants in the two fast-paced mathematics classes were compared to students who had 
been matched on ability but did not attend the class and students who dropped out of the 
class. All were at least in the top 1% in ability, but there may have been motivational and 
other differences between participants and nonparticipants. Another limitation was that the 
same teacher taught both classes (reassuringly, similar results in mathematics has been found 
with other teachers, e.g., Lunny, 1983; Mezynski, Stanley, & McCoart, 1983). At the end of 
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high school, the participants scored higher on standardized mathematics achievement tests, 
such as the College Board Math Achievement test, than the nonparticipants or dropouts, 
despite their younger age, and did not regret their acceleration (Benbow, Perkins, & Stanley, 
1983). Ten years after the initiation of the class few statistically significant differences on 
academic achievement variables emerged between the participants and the comparison group 
(Table 30). The one effect that borders on significance (ES = 0.514) favored the participants 
(who also tended to be several years ahead in their educational progress and so were younger 
at time of comparison on specific variables than nonparticipants). This comparison was the 
percent of students at age 23 who were attending graduate school in applied mathematics, 
engineering, and computer science (50% of participants vs. 28% of comparison group). 

 
Swiatek and Benbow (1991b), in a quasi-experimental study, compared, via a 10-year 

follow-up, mathematically talented students (at least top 1% in ability) who had managed to 
accelerate their education so that they entered college at least one year early with equally 
able students who had not entered college early. This was a nonrandomized comparison, but 
the groups had been matched on gender and pretest SAT scores (within 10 points for 
mathematics, 20 for verbal). The mathematics achievement outcomes were indirect—number 
of undergraduate mathematics courses taken, number of non-required mathematics courses 
taken, mathematics major as an undergraduate or graduate student, and interest, confidence, 
and perceived ease of mathematics. Only one statistically significant effect size was found on 
the various outcome variables (see Table 30)—on the number of non-required mathematics 
courses taken (ES = 0.381). The difference favored accelerates who, of course, also had the 
advantage of being advanced in their education. 

 
In a correlational study, Sadler and Tai (2007) have demonstrated that learning 

mathematics at an earlier age than typical or at a faster pace is related to allowing students to 
become more advanced in their mathematics education and to be better prepared for college 
science classes. No long-term negative consequences have been found and the evidence 
suggests that there are possibly some small additional advantages. 

B. The Role of Enrichment on Gifted Students’  

Mathematics Achievement 

The following section presents findings from the remaining two studies that utilized 
primarily enrichment to differentiate the curriculum for gifted students (Robinson et al., 
1990; Robinson, 1997). Because the interventions differed in that one also explicitly adjusted 
the pace of instruction, the effects are presented individually (see Table 31). 

 
.  
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Table 31: Studies That Examine the Role of Computer Instruction, Enrichment, and 

Cooperative Learning on Gifted Students’ Math Achievement 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Robinson et 
al., 1990 

Quasi 

78 elementary age 
students who 
participated in a 

special program for 
mathematically 
talented children and 

185 program 
alternates 

One school year/ 
Variety of math 
content 

Curriculum 
replacement 
program with a 

focus on 
enrichment, self-
paced computer 

instruction, and 
acceleration vs. 
Regular curriculum 

Math Applied to 
Novel Situations 
(MANS)c 

0.648 *** 0.114 

Robinson et 
al., 1997 

RCT 

310 gifted 
Kindergarten and 
1st-grade students in 

158 schools who 
scored at or above 
the 98th percentile 

on a screening test  

14 2 1/2 hour 
sessions per year for 
two years/ 

Kindergarten and 
first-grade curriculum 

Extracurricular 
constructivist 
enrichment 

activities (Saturday 
Club) vs. No 
enrichment 

Pooled measures 
(Stanford-Binet IV 
quantitative subtest, 

Number knowledge 
test; Woodcock-
Johnson calculation 

subtest) 

0.401 ** 0.127 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c Standardized measure MANS measures skills in computation, estimation, mental arithmetic, number representations, relations, number 
patterns, elucidation, word problems. 

 
Robinson et al. (1997), the only experimental study to emerge out of the literature 

search, randomly assigned equally able gifted kindergarten and first-grade students to 
supplemental enrichment mathematics classes conducted on Saturdays over two years or to 
no treatment. The enrichment classes, with 28 sessions in all, were described by the authors 
as constructivist in philosophy, “developmentally appropriate,” and adhering to NCTM 
(1989) guidelines. Teachers created social communities that engaged in open-ended problem-
solving. At the end of two years, the participants significantly outperformed nonparticipants 
on a combined mathematics achievement measure. However, there was differential 
attrition—5% in the control condition, 20% in treatment condition—and it is possible that the 
least able students left the program at higher rates than the most able. A statistically 
significant effect size of 0.401 was found favoring the students who participated in the 
enrichment program. Here, the regular curriculum in the school was not differentiated in any 
way. Rather, gifted children were challenged through the provision of extra activities, a pull-
out model of sorts, and were not explicitly accelerated. 

 
The Robinson et al. (1990) study is similar to the Ysseldyke et al. (2004) study in that 

it utilized CAI to adjust pace and is quasi-experimental. However, this after-school 
mathematics program for gifted elementary students also provided specific enrichment 
activities for the class that allowed students to add breadth and depth to their learning. Hence, 
the curriculum was differentiated even further than what was possible in Ysseldyke et al. and 
Parke (1983). This was, however, one single class and hence involved just one teacher. 
Performance of participants was compared to non-randomized control groups comprised of 
students who were selected but did not attend or were selected as alternates. Although there 
was no reporting on pretest mean differences in ability among the groups, a regression 
discontinuity analysis was used with pretest proxy measures as covariates. With a statistically 
significant effect size of 0.648, the results lend support to the value of differentiating and 
enhancing the pace of the curriculum for gifted students. 
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C. Conclusions 

It is generally agreed that good teaching is responsive to individual differences, 
tailoring instruction to meet the needs of individual learners (Robinson, 1983). In the case of 
gifted students who are advanced in their skill and concept attainment and can learn new 
material at a much more rapid rate than their same-age peers (e.g., Lynch, 1992; Stanley & 
Stanley, 1986; VanTassel-Baska, 1983), it is the professional opinion of those in gifted 
education that these students need a curriculum that is differentiated (by level, complexity, 
breadth and depth), developmentally appropriate, and conducted at a more rapid rate (Van 
Tassel-Baska, 1998). This is typically accomplished to some degree through some 
combination of acceleration, homogeneous grouping, enrichment, or individualization.  

 
As the Instructional Practices Task Group began its work, it was aware that there 

were hundreds of studies over decades evaluating the effectiveness of acceleration, in which 
results have been interpreted as indicating positive academic benefits and no negative effects 
social-emotionally (see Colangelo, Assouline, & Gross, 2004; and Rogers, 2007 for the latest 
syntheses). The Task Group did not know the overall quality of these studies or their 
usefulness for drawing causal attributions. So, it was impossible to decipher the strengths of 
the signal emitted from these studies and into which category the support for this 
instructional practice fell (see the Panel Standards of Evidence Document). From a 
descriptive study, the Task Group learned, however, that gifted students report satisfaction 
with acceleration (even wishing as adults that they had accelerated more) and that they feel 
they would not have achieved as much without it (Benbow et al., 2000; Benbow, Lubinski, & 
Suchy, 1996). But, such data, although valuable, are from the world of perceptions and 
beliefs and cannot speak to effectiveness. 

 
Enrichment, which attempts to add breadth and depth to the regular curriculum, as 

well as complexity, also has been studied and has exhibited some positive effects under the 
same circumstances, limitations, or conditions affecting the interpretability of findings from 
the literature on acceleration. Yet, many seemingly excellent enrichment programs have not 
been rigorously evaluated, perhaps because this option for meeting the needs of gifted 
students has faced less negativity and resistance than is the case for acceleration.  

 
Homogeneous grouping is an educational approach that meets with much controversy 

as well. Enrichment tends to dominate in homogeneously grouped classes, but it often 
includes some increased pace of learning. So, there can be settings wherein both acceleration 
and enrichment is utilized, which most professionals in gifted education would prefer. Before 
the Task Group began our review of this literature, the state of knowledge, as captured by the 
results of meta-analyses, revealed positive effects of homogeneously grouped classes, with 
the value-added gain in one year being about four to five months (Kulik & Kulik, 1982, 
1987, 1992). These meta-analyses, however, lumped together studies of various 
methodological quality, making them less rigorous tests of effectiveness and hence 
compromised generalizability (also see Delcourt, Cornell, & Goldberg, 2007; Robers, 2007). 
In terms of perceptions, nonetheless, gifted students when reflecting back as an adult 20 
years later seem to favor homogeneous grouping (Benbow et al., 2000). Finally, although 
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often utilized to stimulate gifted children, the effects of mathematics contests on the 
mathematics achievement of gifted students have not been well studied. This, then, was the 
state of knowledge before Instructional Practices undertook its analysis.  

 
The Task Group’s review of the literature assessing the effectiveness of the various 

means for tailoring instruction to meet the needs of gifted students yielded surprisingly few 
studies that met the methodologically rigorous criteria for inclusion adopted by the Task 
Group. The Task Group actually had to use somewhat less stringent criteria than in other 
instructional practices reports in order to fulfill the charge of evaluating the “best available 
scientific evidence.” The Task Group could formulate recommendations only on the basis of 
one randomized control trial study and seven quasi-experimental studies that met the 
Category 1 and 2 criteria. This was disappointing, especially because even the few studies 
included in the analyses contained some methodological limitations. For example, almost all 
studies on acceleration, although essentially positive in their reported outcomes (Colangelo, 
Assouline, & Gross, 2004 and Rogers, 2007 provide a comprehensive review), are limited to 
students who are highly gifted and motivated to accelerate. Thus, motivation is a confound 
just as it is a selection criterion for being considered a candidate for acceleration. 

 
Nonetheless, the studies reviewed above that met our criteria provided some support 

for the value of differentiating the mathematics curriculum, especially when acceleration is 
a component (i.e., pace and level of instruction is adjusted). Individualized instruction in 
which pace of learning is increased, often managed via computer instruction, also showed 
positive benefits.  

 
The challenge of implementing random assignment or well-matched comparison 

groups in programs for gifted students is substantial. Parents are unlikely to agree to let their 
child participate in anything but the treatment that is designed for acceleration or enrichment. 
Thus, to gain insights about the impact and nature of different approaches to the 
mathematical education of the gifted, it would be useful to look at some research that does 
not meet the inclusion criteria because it has been designed to be more descriptive or 
correlational. That research when coupled with the analyses reported above suggests several 
positive directions. For instance, there is evidence that gifted students who are accelerated by 
other means gained time and reached educational milestones earlier (e.g., college entrance) 
than their equally able same-age peers. They also demonstrate comparable or stronger 
performance than their same-age peers (although with small effect sizes) on a variety of 
indicators, at younger ages. Together these studies help to illuminate the conclusions drawn 
from the scientific literature as summarized above. The Task Group has no evidence that 
acceleration harms the mathematical achievement of the gifted student.  

 
Gifted students who are accelerated also appear to become more strongly engaged in 

science, technology, engineering, or mathematics areas. This finding fits well with the results 
of a recent correlational study showing that the more mathematics courses taken in high 
school, which is facilitated through acceleration, the more likely students are to perform well 
in science (Sadler & Tai, 2007). Although some have seen acceleration as a cause for 
concern, there is no evidence in the studies that met our criteria that gaps and holes in 
knowledge have occurred as a result of acceleration.  
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Support also was found for supplemental enrichment programs. Of the programs 
analyzed here, one explicitly utilized acceleration as a program component and the other did 
not. Of the two studies that met our criteria for inclusion as Category 1 or 2, both studies had 
significant effect sizes favoring the enrichment treatment. So, although the evidence is 
somewhat mixed, it suggests a positive effect of enrichment approaches. Other research (e.g., 
Benbow, 1998; Delcourt, Cornell, & Goldberg, 2007; Rogers, 2007; VanTassel-Baska, 1998; 
VanTassel-Baska & Brown, 2007) has examined varied enrichment approaches. Clearly 
understanding the nature of the enrichment activity is crucial to efforts to improve 
opportunities for gifted students. Self-paced instruction supplemented with enrichment 
seemed to have a positive impact on student achievement. This supports the widely held view 
in the field of gifted education that acceleration and enrichment combined should be the 
intervention of choice. 

 
Underscored by the analysis undertaken by the Task Group is the need for more high-

quality experimental and quasi-experimental research to study effectiveness of interventions 
designed to meet the learning needs of gifted students. Especially missing are evaluations of 
academically rigorous enrichment programs, the mathematical content explored in such 
programs, and their goals. The Task Group concludes, however, that it is important for 
school policies to support appropriately challenging work in mathematics for gifted and 
talented students. Acceleration, combined with enrichment, is certainly a promising, possibly 
moderately supported (if the entire literature is considered), practice.  
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VII. Teachers’ Use of Formative Assessments to Improve 

Learning of Mathematics: Results from a Meta-Analysis of 

Rigorous Experimental and Quasi-Experimental Research 

Formative assessment—ongoing monitoring of student learning to inform instruction—
is generally considered a hallmark of effective instruction in any discipline. In the past 
20 years, the term has been used in two complementary but distinct traditions of scholarship 
and research. One tradition—which has played an influential role in the field of mathematics 
education—is represented, for example, in two recent publications by the National Research 
Council—one on the teaching and learning of mathematics (National Research Council, 2001) 
and one on human learning and cognition (National Research Council, 2005). Donovan and 
Bransford (National Research Council, 2005) established three goals for formative 
assessments: 1) “to make students’ thinking visible to both teachers and students;” 2) “to 
monitor student progress (in mastering concepts as well as factual information);” and, 3) to 
“design instruction that is responsive to student progress” (p. 16). 

 
The second tradition, developed primarily within the fields of school psychology, 

educational psychology, and special education shares only one of the three aforementioned 
goals. This approach is typified, for example, by the definition provided in the recent 
Encyclopedia of School Psychology (Lee, 2005). In this tradition, formative assessments are 
tools “used to monitor progress and to provide feedback about the progress being made. ... In 
the classroom setting, formative evaluation is used to inform students and teachers about 
progress” (p. 209). The goal of this type of formative assessment is to determine whether 
specific students—or in some cases, an entire class—require additional instruction devoted to 
learning a particular concept or acquiring proficiency in a particular mathematical procedure 
or strategy for problem solving. Typically, measures are administered weekly or biweekly, 
often using computer-assisted assessment. They are brief and efficient, taking approximately 
5 minutes to administer. 

 
Note that both research traditions stress monitoring progress toward an instructional 

goal and adjusting instruction for students based on the formative measures. However, the 
school psychology tradition devotes a good deal of attention to empirical establishment of the 
validity and reliability of the assessment procedures (e.g. Fuchs, 2004; Foegen, Jiban, & 
Deno, 2007).  

 
The system described by Donovan and Bransford (2005) rarely addresses psychometric 

issues. It presents an ambitious agenda that includes not only progress monitoring but also 
interpretation of students’ errors and misconceptions to guide the types of questions teachers 
ask to probe for student understanding. This tradition is embodied for example, in Adding It 
Up (National Research Council, 2001): 

 
Information about students is crucial to a teacher’s ability to calibrate tasks and 
lessons to students’ current understanding.… In addition to tasks that reveal 
what students know and can do, the quality of instruction depends on how 

teachers interpret and use that information. Teachers’ understanding of their 
students’ work and the progress they are making relies on … their ability to use 
that understanding to make sense of what the students are doing. (pp. 349–350). 
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Ruiz-Primo, Shavelson, Hamilton, and Klein (2002) discuss a continuum of 
assessment distance that traverses both traditions. The continuum includes the following 
distance classifications, with the classifications ranging from formative to summative 
assessments, by proximity: 

 
• Immediate—informal observation or artifacts from a lesson. 
• Close—embedded assessments and semi-formal quizzes following several activities. 
• Proximal—formal classroom exams following a particular curriculum. 
• Distal—criterion-referenced achievement tests such as those required by NCLB. 
• Remote—broad outcomes measured over time—norm-referenced tests, such as the 

Scholastic Aptitude Test. 
 
Formative assessment would be identified as immediate, close and perhaps proximal 

in the continuum above and is used to regularly monitor instruction. Freudenthal (1973) 
noted, “It is more informative to observe a student during a mathematical activity than to 
grade his papers” (p. 84). Informal assessments which include observations and informal 
probes of students to assess their level of understanding, according to Freudenthal, need to 
inform day-to-day teaching.  

  
Sueltz, Boynton, and Sauble (1946) noted that observation, discussion, and interviews 

serve better than paper-pencil tests in evaluating a pupil’s ability to understand the principles 
he or she uses. Spitzer (1951) and others have long advocated the interview as a formative 
assessment strategy that is closely associated with the use of observations. Decades later the 
National Council of Teachers of Mathematics noted that information is best collected through 
informal observation as students participate in class discussions, attempt to solve problems, 
and work on various assignments individually or in groups (National Council of Teachers of 
Mathematics, 1989, p. 233). However, Glaser and Silver (1994) note that aside from teacher-
made classroom tests, the integration of assessment and learning as an interacting system has 
been too little explored. The meta-analysis completed by the Instructional Practices Task 
Group revealed no methodologically acceptable studies that examined the impact of using 
this type of assessment on student performance. 

 
The goal of this section is to review the experimental and quasi-experimental research 

on the extent to which teachers’ use of formative assessments in mathematics enhances 
students’ acquisition of mathematics content. Although the Task Group reviewed the 
literature for studies using any type of formative assessment from any tradition, the only 
studies located that met the criteria for adequate experimental design emanated from the 
school psychology or educational psychology traditions.  

 
This report describes studies that indicate the extent to which use of formative 

assessments improves students’ mathematics proficiency. The Task Group also describes the 
impacts of various enhancements, i.e., procedures and strategies for helping teachers use this 
information to provide differentiated instruction, and, thus enhance mathematics achievement. 
The Task Group centered the meta-analysis on two research questions. The first was whether 
teachers’ use of formative assessments enhanced student achievement in mathematics. The 
second question explored the effectiveness of various tools or enhancements that can assist 
teachers in their use of formative assessments. Before discussing the findings of the meta-
analysis, the Task Group begins by providing a brief historical overview.  
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A. Historical Overview 

In the 1970s and 1980s, a good deal of research and effort went into the field of 
formative assessment. Researchers examining high-performing schools invariably found that 
the school used some system to monitor all students’ academic progress on a regular basis. 
Mastery learning (e.g., Bloom, 1980; Guskey, 1984), a form of differentiated instruction was 
widely implemented in large school districts such as Chicago and San Diego. Mastery 
learning calls for frequent assessment of student progress using brief tests at the end of each 
unit, which is typically once a week. Students who did not reach a mastery level (typically 
defined as 80% correct) are retaught the material. Those with scores above the mastery level 
are provided with extension or enrichment activities. During this time in history, publishers 
of the major mathematics curricula began to include unit tests along with their programs. 
This practice continues to this day. 

 

B. Validity and Reliability Concerns for Formative  

Assessments in Mathematics 

In developing formative assessments in mathematics, the goal has invariably been to 
develop measures that are valid and reliable in the psychometric sense (AERA, APA, 
NCME, 1999) and that are relatively easy to administer and score.  

 
Contemporary conceptions of test validity include indices that a measure is correlated 

with other measures of mathematics achievement which can include teacher appraisals (criterion-

related validity), that the mathematical content is valid and important (content validity) and that 
there is evidence concerning the impact of use of the measure, including both intended and 
unintended consequences (consequential validity) (e.g., Messick, 1988). A valid formative 
assessment system should actually help teachers “make specific instructional decisions” 
(National Research Council, 2001, p. 35) and according to Gersten, Keating, and Irvin (1995), it 
should also provide data that indicates that use of the system is beneficial to students. 

 
A group of researchers found the unit mastery tests problematic for several reasons. 

When they examined the psychometric characteristics of these measures (Fuchs, Tindal, & 
Fuchs, 1986; Tindal, Fuchs, Fuchs, Shinn, Deno, & Germann, 1985) they found them to be 
weak. In addition, difficulty levels varied from week to week, and the cut score of 80 or 85% 
seemed increasingly arbitrary. Unit mastery tests, sometimes called criterion-referenced tests 
in this era, did nothing to assess retention of previously taught material. 

 
Almost 25 years ago, two seminal articles called for a radically different, seemingly 

counterintuitive approach to formative assessment (Fuchs, Deno, & Mirkin, 1984; Deno, 
1986). This approach entailed a sampling of items representing major instructional objectives 
for the year and periodic use of assessments with items that randomly sampled across the 
year’s objectives. This approach seems counterintuitive in that, during the early parts of the 
year, students are asked to solve problems involving material not yet covered. Toward the 
end of the year, they are asked about material they may have covered 6 to 8 months ago.  
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Yet, therein lies the power of a formative assessment that contains items from across 
the year’s objectives. It is a far more accurate means to measure progress because the difficulty 
remains more or less the same across the year, and teachers and students can actually see the 
progress they have made toward acquiring the material. In contrast, typical mastery learning 
tests’ difficulty level varied from unit to unit, depending on both the difficulty of the topic and 
the difficulty of the items selected. In addition, with this type of assessment system, students 
could actually see their progress; from say a score of 20% correct to 90% correct, as the year 
progressed. Even in the best of unit mastery tests, students will typically score at about the 
same level from unit to unit. Another advantage of this type of system is that it automatically 
assesses both retention of material taught months ago and, to some extent, a student’s ability to 
generalize what she learned to unfamiliar material. Because each of the brief measures samples 
broadly across the years’ objectives, criterion-related validity is far superior to assessments that 
only cover one week’s unit. For all these reasons, these measures have consistently shown far 
superior reliabilities and criterion-related validity than traditional unit mastery tests (see Fuchs 
(2004) and Foegen et al. (2007) for extensive reviews). They also have consistently 
demonstrated construct validity, in particular, in terms of sensitivity to instruction, i.e. use as a 
means to reliably monitor student progress. 

 
Especially in the field of reading, a second type of formative assessment was used, 

which also possessed strong psychometric qualities in terms of criterion-related validity (i.e., 
correlation with state- or nationally-normed achievement test) and reliability. These measures 
are typically called robust indicators. Foegen et al. (2007) define them as:  

 
Measures that represent broadly defined proficiency in mathematics … 

Effective measures are not necessarily representative of a particular 

curriculum but are instead characterized by the relative strength of their 

correlations to various overall mathematics proficiency criteria (p. 4).  

 
These measures are “not necessarily drawn from the student’s … (actual) ... 

curriculum, yet offer strong correlations to a host of criterion measures of overall subject area 
proficiency” (p. 4). 

 
A potential advantage of robust indicators is that they can “create a seamless and 

flexible system of progress monitoring measures in mathematics … across multiple grade 
levels. The search for robust indicators represents an effort to identify aspects of core 
competence in mathematics … that are predictive of important outcomes in mathematics, 
regardless of the vagaries of specific curriculum programs or high stakes state tests.”  

 
Several robust indicators have been developed in the field of mathematics, especially 

for students in the primary grades. These include measures of number naming (e.g., 
VanDerHeyden, Witt, Naquin, & Noell, 2001; Chard, Clarke, Baker, Otterstedt, Braun, & 
Katz, 2005), magnitude comparison (e.g., Clarke & Shinn, 2004) and counting proficiency. 
Validity coefficients tend to be higher for first grade assessments than kindergarten 
assessments and highest for magnitude comparison measures. A drawback of these measures 
is that they are only useful for one grade level so that they cannot be used to assess progress 
over multiple years. 
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At the middle school level, Foegen (2000) developed two robust indicator measures: 
one of fluency with basic arithmetic combinations (i.e., facts) and the second, an estimation 
task. The estimation task was a timed measure and attempted to measure students’ number 
sense (as opposed to computational skill). 

 
Helwig and Tindal (2002) developed a measure that focused on conceptual 

understanding using an item bank developed for eighth-graders. In general, these measures 
demonstrated adequate criterion related validity, although the Helwig et al. conceptual measure 
demonstrated the strongest correlations with high-stakes assessments.  

 
The authors note that, with one or two exceptions, neither the robust indicators 

approach nor the sampling from annual state curricular objectives approach have generated 
the same high levels of criterion related validity that oral reading fluency has in the field of 
reading. A major benefit of sampling from annual objectives is that teachers can use these 
data to obtain a sense of topics that require additional attention for groups of students. There 
are, however, several drawbacks.  

 
The first is that, in order to be efficient, the sample of items should be limited. 

However, a limited sample of items may cause potential reliability issues. The second is that, 
at the current point in time, state standards in mathematics are quite variable in terms of 
quality, and different states provide differing emphases to topics and sequence topics 
differently (Reys, Dingman, Sutter, & Teuscher, 2005). Current efforts to use a common 
framework such as the NCTM Focal Points (National Council of Teachers of Mathematics, 
2006) may help alleviate this problem in the future. 

 
Both these types of measures were, in our view, unfortunately given the term, 

curriculum based measurement. That term seems to imply that they are valid, for example, 
only for a given curricula. Yet, in reality they are aligned to various district or states’ 
mathematics standards. In 2007, Deno reported that the term used to describe this formative 
assessment approach was an unfortunate choice (Deno, 2007). Unlike unit mastery tests, the 
curriculum objective can basically be used for any curricula in use in a district because they 
gauge progress toward state standards.  

 
Virtually all the applied experimental research on formative assessments has involved the 

use of these types of measures and an understanding of (a) the extent to which providing teachers 
and students with this information enhances mathematics achievement and, increasingly, (b) the 
efficacy of various tools and procedures for helping teachers use this information to provide 
differentiated instruction. This is the focus of the remainder of this section. 

 
Most of the formative assessments used in mathematics demonstrate criterion-related 

validities in the 0.5 to 0.7 range (Foegen et al., 2007). Although these are weaker than those 
found in reading, they appear to be reasonable. It is in the area of consequential validity, that 
formative assessment measures have shown their greatest utility (Gersten et al., 1995). In the 
next section, the Task Group reviews the research on this topic that (a) examines 
impacts/effects of use of formative assessments and (b) addresses the standards for 
experimental and quasi-experimental design utilized by the Task Group.  
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C. Results 

Table 32 presents the contrast between use of formative assessment on a regular 
(typically biweekly) basis versus a control condition. Six of the studies analyzed data at the 
individual student level, and the remaining three used the classroom or teacher as the unit of 
analysis. (One study (Calhoon & Fuchs, 2003) did not compare formative assessment to a 
control condition; it measured the impact of an enhanced version of formative assessment to 
a control condition. This study is thus excluded from this analysis.)  

 
Table 32: Studies that Investigate the Impact of Formative Assessment (FA) Versus a 

Control Condition 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Student-level analyses 

Allinder et 

al., 2000a 
RCT 

38 learning disabled 

elementary students and 
22 teachers in a large 
midwestern school district 

School year/ 

Curriculum based 
measurement in 
math computation 

FA only vs. 

Control 

Math 

Computation 
Test-Revised 

Overall -0.012 (ns) 0.349 

Fuchs et al., 
1990a 

RCT 

56 learning disabled 
students (Grades 3–9) and 

20 elementary special 
education teachers in a 
southeastern metropolitan 

school district 

15 weeks/ 
Individualized math 

programs 

FA with 
performance 

indicator only 
vs. Control 

Math 
Computation 

Test-Revised 
(Combined 
problems and 

digits) 

Overall 0.239 (ns) 0.323 

30 students and teachers in 

Grades 2–5 in a 
southeastern district 

Average 

achieving 
0.310 (ns) 0.379 

30 students and teachers in 
Grades 2–5 in a 

southeastern district 

Low 
achieving 

0.015 (ns) 0.377 
Fuchs et al., 

1994 
RCT 

30 students and teachers in 

Grades 2–5 in a 
southeastern district 

25 weeks/ Classwide 

program - general 
math operations 

FA only vs. 

Control 

Math 

Operations 
Test-Revised 

Learning 

disabilities 
0.189 (ns) 0.378 

22 learning disabled 
students (Grades 3–7) and 
12 special education 

teachers in Tennessee 
metro school district 

FA vs. Control 0.468 (ns) 0.467 

Fuchs et al., 
1996a 

RCT 
25 learning disabled 
students (Grades 3–7) and 
15 special education 

teachers in Tennessee 
metro school district 

School year/ Aim 
was to reintegrate 
students into 

mainstream math 
FA plus  
TP (trans-
environmental 

programming) 
vs. TP only 

Math 
Operations 
Test-Revised 

(Digits) 

Overall 

0.220 (ns) 0.429 

Fuchs et al., 
1999a 

RCT 

272 students (Grades 2–4) 
and 16 teachers in four 
schools in one southeastern 

school district 

23 weeks/ Problem 
solving 

Performance 
Assessments 
(PA) vs. no PA 

Novel problem-
solving (based 
on ITBS 

problem) 

Overall 0.355 (ns) 0.249 

Spicuzza et 

al., 2001a 
Quasi 

495 students in Grades 4 

and 5 in multiple schools 
in a large, midwestern 

school district 

4 months/ 

Accelerated Math - 
individualized 

assignments 

Accelerated 

Math vs. regular 
math program 

NALT 

(Northwest 
Evaluation 

Association) –
annual district 
test 

Overall 0.139 (ns) 0.213 

Heterogeneity 

Q-value Df (Q) P-value I-squared Hedge’s g Standard Error 

1.509 8 0.993 0.000 

Pooled ES: student level  

(six studies, nine effect sizes) 0.206 ~ 0.107 

Continued on p. 6-177 
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Table 32, continued 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s  

g 

Standard  

Error 

Classroom-level analyses 

Allinder, 
1996 

RCT 

58 students (Grades 3–6) 
of 29 special education 

teachers in multiple 
schools in a large midwest 
school district 

16 weeks/ Math 
computation 

FA vs. Control 
Math 
Computation 

Test-Revised 

Overall 0.558 (ns) 0.387 

Fuchs et al., 
1989 

RCT 

40 students (Grades 2–9) 
of 20 special education 

teachers in elementary  
and middle schools  
in a southeastern 

metropolitan area 

15 weeks/ 
Individualized math 

programs 

Dynamic goal 
FA vs. Control 

Math 
Computation 

Test 

Overall 0.600 (ns) 0.439 

Fuchs et al., 

1991 
RCT 

42 learning disabled 

students (Grades 2–8) and 
22 teachers in multiple 

elementary and middle 
schools in a southeastern 
metropolitan area 

20 weeks/ Math 

operations 

FA only vs. 

Control 

Math 

Operations Test 
(combined 

problems and 
digits) 

Overall 0.045 (ns) 0.426 

Heterogeneity 

Q-value Df (Q) P-value I-squared Hedge’s g Standard Error 

1.069 2 0.586 0.000 

Pooled ES: student level  

(three studies, three effect sizes) 0.408 ~ 0.240 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within teachers or classrooms. 

 
Effect sizes were calculated for studies in which analysis was conducted at the 

individual student level (N = 6) and those where analysis was conducted at the classroom 
level (N = 3).  

 
For the student level set, nine effect sizes from the six relevant studies were calculated. 

There are two reasons for this. The first is that Fuchs, Fuchs, et al. (1994) intentionally sampled 
students from three strata: those with learning disabilities, a below-average low-performing 
group, and a group of students performing at or near the class average. For Fuchs, Roberts, 
Fuchs, and Bowers (1996), there were four conditions, including two involving formative 
assessment (FA). Thus, effect sizes for two orthogonal contrasts could be calculated. 

 
For the six studies where analyses were conducted at the student level, the mean 

effect size is 0.206, bordering on significance. For the three studies that use the class as the 
unit of analysis, the effect size is 0.408, also bordering on significance.  

 
A reasonable inference is that merely providing teachers and students with feedback on 

how they are progressing is consistently helpful to students. This is a consistent replicable 
phenomenon across a large number of studies that involve well over a hundred classrooms. The 
reader should keep in mind that two-thirds of the research has been conducted at the elementary 
school level and only two include a middle school sample, and a one high school sample. In 
addition, all have used formative assessment systems that have empirical data to indicate 
validity and reliability. In addition, all but one (Ysseldyke et al., 2003), have used formative 
assessments that are based on sample problems selected to represent a randomly selected set of 
state standards for the year. Thus, there is insufficient evidence to determine whether or not the 
use of formative assessments is effective in the secondary grades. The next set of studies 
investigates what additional information is required to assist teachers in how to use these data.  
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D. Enhancements to Assist Teachers in Use of  

Formative Assessment 

Early on, researchers realized that teachers might not know how to use formative 
assessment to enhance instruction unless some type of additional guidance was provided. 
Thus, a set of enhancements was developed and field-tested in a series of research studies. 
These appear in Tables 33 and 34. Table 33 compares the use of formative assessments with 
enhancement to a control condition (i.e., no formative assessment). Table 34 attempts to 
estimate the value added to formative assessment by each of these enhancements. Thus, the 
contrasts in Table 34 compare use of formative assessment with an enhancement to use of 
formative assessment. 

 
Table 33: Studies That Investigate the Impact of Formative Assessment (FA) Plus 

Enhancements Versus a Control Condition 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard 

Error 

Student-level analyses 

Allinder 
et al., 

2000a 

RCT 
37 learning disabled elementary 
students and 20 teachers in a 

large midwestern school district 

School year/ 
Curriculum based 

measurement in 
math computation 

FA + teacher self-
monitoring of 

instructional changes 
vs. Control 

Math 
Computation 

Test-Revised 

Overall 0.588 (ns) 0.369 

Calhoon 
& Fuchs, 
2003a 

RCT 

92 high school students with 
disabilities (Grades 9–12) and 
three teachers in 10 classrooms 

in three schools in a southeastern 
urban district 

15 weeks/ 
Computation, 
concepts and 

applications 

FA with PALS (Peer-
assisted learning 
strategies) vs. Control 

Math 
Operations 
Test-Revised 

(computation) 

Overall 0.355 (ns) 0.340 

Fuchs et 
al., 1990a 

RCT 

54 learning disabled students 
(Grades 3–9) and 20 elementary 

special education teachers  
in a southeastern metropolitan 
school district 

15 weeks/ 
Individualized 

math programs 

FA with performance 
indicator and skills 

analysis vs. Control 

Math 
Computation 

Test-Revised 
(Combined 
problems and 

digits) 

Overall 0.398 (ns) 0.325 

30 students and teachers in Grades 

2–5 in a southeastern district 

Average 

achieving 
0.292 (ns) 0.379 

30 students and teachers in Grades 

2–5 in a southeastern district 

Low 

achieving 
0.546 (ns) 0.383 

Fuchs et 

al., 1994 
RCT 

30 students and teachers in Grades 

2–5 in a southeastern district 

25 weeks/ 

Classwide  
program - general 
math operations 

FA + instructional 

recommendations vs. 
Control 

Math 

Operations 
Test-Revised 

Learning 

disabilities 
0.172 (ns) 0.377 

Fuchs et 

al., 1996a 
RCT 

24 learning disabled students 

(Grades 3–7) and 13 special 
education teachers in Tennessee 
metro school district 

School year/ Aim 

was to reintegrate 
students into 
mainstream math 

FA + 

transenvironmental 
programming (TP) vs. 
Control 

Math 

Operations 
Test-Revised 
(Digits) 

Overall 0.304 (ns) 0.445 

Heterogeneity 

Q-value df (Q) P-value I-squared 

Hedge’s 

g 

Standard 

Error 

0.901 6 0.989 0.000 

Pooled ES: student level (five studies,  

seven effect sizes) 
0.383 ** 0.140 

Classroom-level analyses 

Fuchs et 

al., 1991 
RCT 

43 learning disabled students 

(Grades 2–8) and 22 teachers in 
multiple elementary and middle 

schools in a southeastern 
metropolitan area 

20 weeks/ Math 

operations 

FA with expert system 

instructional 
consultation vs. 

Control 

Math 

Operations 
Test 

(combined 
problems and 
digits) 

Overall 0.657 (ns) 0.439 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within teachers or classrooms. 
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Table 34: Studies That Investigate the Impact of Formative Assessment (FA) Plus 

Enhancements Versus Formative Assessment Only 

Study Design Sample 

Duration/ 

Content Contrast Measure Subgroup 

Hedge’s 

g 

Standard 

Error 

Student-level analyses 

Allinder et 
al., 2000a 

RCT 

33 learning disabled 
elementary students 

and 18 teachers in a 
large midwestern 
school district 

School year/ 
Curriculum based 

measurement in 
math computation 

FA + teacher self-
monitoring of 

instructional changes vs. 
FA only 

Math 
Computation 

Test-Revised 

Overall 0.603 (ns) 0.386 

Fuchs et 
al., 1990a 

RCT 

72 learning disabled 
students (Grades 3–9) 

and 20 elementary 
special education 
teachers in a 

southeastern 
metropolitan school 
district 

15 weeks/ 
Individualized 

math programs 

FA with performance 
indicator and skills 

analysis vs. FA with 
performance indicator 
only 

Math 
Computation 

Test-Revised 
(Combined 
problems and 

digits) 

Overall 0.234 (ns) 0.291 

20 students and 
teachers in Grades 2–5 

in a southeastern 
district 

Average 
achieving 

-0.021 (ns) 0.428 

20 students and 
teachers in Grades 2–5 
in a southeastern 

district 

Low 
achieving 

0.453 (ns) 0.434 
Fuchs et 
al., 1994 

RCT 

20 students and 

teachers in Grades 2–5 
in a southeastern 

district 

25 weeks/ 
Classwide 

program—general 
math operations 

FA + instructional 
recommendations vs. 

FA only 

Math 
Operations 

Test-Revised 

Learning 

disabilities 
-0.037 (ns) 0.428 

Fuchs et 

al., 1996a 
RCT 

24 learning disabled 

students (Grades 3–7) 
and 13 special 
education teachers in 

Tennessee metro 
school district 

School year/ Aim 

was to reintegrate 
students into 
mainstream math 

FA + transenvironmental 

programming (TP) vs. 
FA only 

Math 

Operations 
Test-Revised 
(Digits) 

Overall -0.229 (ns) 0.444 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.949 5 0.708 0.000 
Pooled ES: student level (4 studies, 6 effect sizes) 

0.194 (ns) 0.159 

Classroom-level analyses 

Fuchs et 

al., 1991 
RCT 

41 learning disabled 

students (Grades 2–8) 
and 22 teachers in 

multiple elementary 
and middle schools in 
a southeastern 

metropolitan area 

20 weeks/ Math 

operations 

FA with expert system 

instructional consultation 
vs. FA without expert 

system 

Math 

Operations 
Test 

(combined 
problems and 
digits) 

Overall 0.750 ~ 0.443 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within teachers or classrooms. 
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Specific enhancements included: 
 
1) Providing teachers with detailed analysis indicating strengths and weaknesses 

based on formative assessment data. The analysis describes student proficiency in 
specific mathematics subskills, and visually presents student proficiency in each 
subskill across the school year. The detailed information provided by the analysis 
allows teachers to evaluate how students maintain skills over time and helps 
teachers decide what to teach. Further, specific areas for instructional change can 
be targeted based on the information provided (Fuchs et al., 1990) (effect size of 
0.398; value-added effect size of 0.234; these effect sizes did not reach statistical 
significance). 

2) Using data from formative assessments and sophisticated software to provide 

specific instructional suggestions to teachers for individual students. Instructional 
consultation on teacher planning and student achievement was provided by a 
computerized expert system. Using the formative assessment data, the expert 
consultation system recommended instructional adjustments and provided 
detailed instructions on how to implement that adjustment. The consultation not 
only helped teachers isolate what material to re-teach but also how to restructure 
their instruction (Fuchs et al., 1991) (ES = 0.657, ns; value added ES = 0.750, 
bordering on significance.). 

3) Using the data from the formative assessments as a basis for the content of peer-

assisted learning sessions. Results of the formative assessments were entered into a 
computer program that produced a graph of students’ progress overtime and a skills 
profile of each “student’s performance on each skill in the annual curriculum” 
(p. 240). Teachers used this report to group students into pairs for Peer-Assisted 
Learning (PALS). The teachers also used the reports to determine the content of the 
PALS lesson (Calhoon & Fuchs, 2003) [ES = 0.355, nonsignificant (ns)]. This is 
the only study that addressed high school mathematics instruction. 

4) Using the data from formative assessments as the basis for consultation between the 

classroom teacher and the special educator to determine what content to emphasize. 
The data from the formative assessments was used by the special education teacher 
to provide classroom teachers with specific information on which curricular areas 
require additional attention. Feedback from the formative assessments was also used 
to provide teachers with data on the effectiveness of various instructional strategies 
used to promote math achievement (Fuchs et al., 1996) (ES = 0.304; value added 
ES = -0.229, neither ES reached statistical significance).  

5) Self monitoring. The self-monitoring process was completed each time the 
formative assessment data suggested the need for an instructional change. Teachers 
answered a set of questions regarding their students’ progress and their future 
instructional plans. Using the information provided by the twice-weekly formative 
assessment, teachers responded to questions such as, “On what skill(s) has the 
student done well in the preceding 2 weeks? On what skill(s) has the student 
improved compared to the previous 2-week period? What skill(s) should be 
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targeted for the coming 2-week period? How will the teacher attempt to improve 
student performance on the targeted skill(s)?” (Allinder et al., 2000, p. 5). (ES = 
0.588, value added ES = 0.603, neither ES reached statistical significance.) 

6) Using formative assessment data as a means for teachers to provide specific 

instructional suggestions for small group instruction and computer-assisted 

instruction. Each teachers’ weekly report, based on the formative assessment data 
included the following: (a) content that needed to be taught or retaught during 
whole class instruction, (b) specific suggestions on how to break the class into 
small groups for small group instruction and which content to cover, (c) 
individualized computer-assisted problems for each student, and (d) suggested 
material to cover during peer tutoring sessions (Fuchs et al., 1994). (Effect sizes 
were 0.546 for low-achieving students, 0.292 for average achieving students and 
0.172 for students with learning disabilities; none of these effect sizes were 
statistically significant.) Note that for value added, effect size was 0.453 for low 
achievers, -0.021 for average achievers, and 0.37 for students with learning 
disabilities. However, effect sizes were negligible as none of them reached 
statistical significance.  

The overall picture provided by the data in Table 33 indicates that the set of 
enhancements are effective in enhancing students’ mathematics achievement. The average 
effect size, in this case, is significant for studies conducted at the student level [average ES = 
0.383, statistically significant, ES = 0.657, (ns) for the class level study]. As was the case for 
the first set of analyses, the same pattern emerges whether or not the full set of studies is 
included, or only those where an effect size could be computed at the student level. 

 
Note that the effect of formative assessment with enhancements increases 

dramatically from formative assessment alone. It appears that the approaches that provided 
specific suggestions directly to the teacher about what to teach during small group instruction 
or partner work, or provided specific instructional suggestions worked better than this more 
indirect method.  

 
Table 34 presents effect sizes for the value added by the enhancement. In other 

words, the comparison condition involves use of formative assessment only. As one would 
expect, with the more stringent criterion, the mean effect size is much lower, 0.194, which is 
not statistically significant. In two cases, the enhancement did not provide any additional 
gain in terms of student achievement to the mere use of formative assessment. On average 
the effect size doubles when an enhancement is added. 

 
It is important to note that the majority of these studies focus on students with 

diagnosed learning disabilities. Only two samples (both from the same study) involve 
students from the general population. It is also important to note that these studies involve 
only one of two dependent measures, the Mathematics Operations Test, or the Mathematics 
Concepts and Applications Tests. These tests were developed by the researchers. However, 
they do possess solid psychometric properties.  
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The final caveat is that many of the studies involve special education teachers. Thus, 
one should be cautious in interpreting implications for classroom teachers because few of the 
enhancements involved only the classroom teacher. 

E. Summary and Conclusions 

The set of ten well-designed and well-executed studies on formative assessment 
demonstrates that regular use of formative assessments in mathematics can enhance students’ 
mathematics achievement in the elementary grades, in both the areas of computation and 
concepts and applications. These studies were conducted with moderately large numbers of 
teachers in “real-world” settings; thus the external validity is high. The average effect size 
boost provided by use of formative assessments for studies conducted at the individual level 
is 0.206 and approaches significance. This corresponds to a boost of 9 percentile points. 

 
In addition, the set of studies describes a set of tools and procedures (what the Task 

Group calls “enhancements”) that can accompany formative assessment. These tools include 
specific activities that are linked to a student’s current needs. Activities range from a list of 
ideas for alternate means of teaching the material, to specific materials for use in peer 
tutoring, to a listing of skills and concepts that require additional explanation and discussion.  

 
Although many of the effect sizes doubled in value with these enhancements, the net 

contribution of 0.194 was not significant. Thus, the Task Group would more cautiously call 
these practices promising as opposed to evidence-based.  

 
Two other issues need to be considered in framing specific recommendations for 

improving practice. The first is that the preponderance of studies were conducted at the 
elementary school. Second, to date, only one type of formative assessment has been studied 
with rigorous experimentation. These are assessments that include random sampling of items 
that address state standards. These assessments tend to take between 2 and 8 minutes to 
administer and thus are feasible for regular use. However, as discussed in the Introduction, 
many other types of formative assessments have been developed. The Task Group simply 
cannot comment on how useful these other types are in terms of enhancing students’ 
performance at this point in time since the Task Group was unable to uncover any rigorous 
experiments involving their use. Hopefully, such research will be conducted in the near future.  
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F. Proposed Recommendations 

Schools should seriously consider regular use of formative assessments in 

mathematics.  

 
This might entail weekly assessments of students experiencing difficulties and less 

frequent (perhaps three times a year) assessments for others.  
 
The Task Group would recommend use of formative assessments with known validity 

and reliability. However, the Task Group is aware that at the current point in time, there is a 
paucity of such measures. The Task Group advocates serious research and development in 
this area. It appears such work has already begun and federal support of this effort seems 
critical. In particular, validity studies of methods other than those that sample from annual 
state or district goals could and should be explored.  

 
Research findings suggest that several enhancements can help teachers use 

formative assessment information more effectively. 

 
Here, the research base is smaller, and less consistent. Several major tools appear to be 

promising. The first is linking formative assessment information (via technology) with specific 
recommendations for a teacher in areas such as a) content and concepts that require additional 
work with the majority of the class and b) specific activities that could and should be used by a 
given student for either tutoring or computer-assisted intervention or intervention work 
provided by an adult (teacher, mathematics specialist, or trained paraprofessional). 

 
Use of formative assessments in mathematics can lead to increased precision in how 

time is used in class and assist teachers in providing appropriate instruction to students who 
need help on topics for which they need help. This should seriously be considered as 
districts consider the development and implementation of response-to-intervention models 
in mathematics. 

G. Suggestions for Future Research 

Several future research areas seem worth pursuing. The first is extending this line of 
research to the middle school and high school area. The second entails the same type of 
rigorous research studies of other, more clinical types of formative assessments such as those 
described in recent publications by NCTM.  

 
The Task Group also needs to know more about how formative assessment measures 

relate to mathematics tests that include items that are more mathematically sophisticated than 
those on current standardized achievement tests. It also is important to update the studies of 
the reliability and validity of publisher-developed tests. That research is now over 20-years-
old and the nature of mathematics instruction has changed dramatically. 
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Conclusion 

Mathematics instruction is a complex professional practice. Researchers in the 
educational research community have made important forays into several of the most 
controversial and pressing questions about the effectiveness and impact of various types of 
instructional practice and, in particular, have conducted some studies that examine the effects 
of various interpretations and implementations of practices that have been advocated in the 
“reform” documents in mathematics education during the past two decades.  

 
The question we asked is: What can be learned from a review of the best available 

evidence in six important aspects of practice? These practices included: the use of 
cooperative groups and peer instruction, the use of direct instruction with learning disabled 
students, the use of “real-world” problems in mathematics teaching, the use of technology, 
the enrichment and acceleration of instruction for mathematically precocious students, and 
the use of formative assessment. 

 
For none of the areas examined did the Task Group find sufficiently strong and 

comprehensive bodies of research to support all-inclusive policy recommendations of 

any of the practices addressed. Nor did the Task Group find sufficient evidence to 

support policy recommendations favoring the status quo in mathematics teaching.  
 
Across all of the areas, the Task Group found that several instructional practices in 

mathematics teaching show some promise, in comparison to typical practice, for 

affecting student learning. In each case the “promising” practice is clearly specified, 
somewhat prescriptive, and involves a mix, or combination, of particular, distinct practices. 
Thus, for example, it cannot be said that cooperative learning is a practice whose 
effectiveness is supported by research—but the Team Assisted Individualization (TAI) 
approach, with particular students in a particular area of mathematics, is effective. Although 
formative assessment to inform instruction is useful, it is enhanced when teachers use 
assessment tools with known validity and reliability. For students performing in the lower 
third of their grade level expectations, explicit instruction involving clear models of 
proficient performance, many opportunities to verbalize their problem solving strategies, and 
adequate practice and review should be a part of the mathematics program. It is not 
surprising that what the Task Group found about effective instructional practice is far more 
subtle and nuanced than direct answers to the starkly stated questions investigated.   

 
The Task Group found some rather robust findings but they must be accompanied by 

a caveat. When a practice is demonstrated by high-quality experimental research to have 
some promise, it is critical to be clear about the promise “for what aspects of mathematics 
proficiency?” Different practices and approaches impact different kinds of outcomes, ranging 
from computational performance, to “real-world” problem solving, to identifying extraneous 
problem information, to long-term participation and interest in studying mathematics.  
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Because researchers and practitioners use different definitions to describe their 
interventions, it is conceptually problematic to place too much stock in either generalizing 
that a broad category of practice (e.g., using technology, or using “real-world” problems) has 
impact because a set of studies working on the same particular component of this category 
have impact, which was the case in some of the Task Group’s reviews.  

 
The Task Group’s process included asking mathematicians and mathematics 

education reviewers to examine the mathematical content of the research studies—to look at 
the assessments and interventions, to the extent possible, based on the published reports. 
They expressed important concerns, including the possibility that an outcome measure item 
purported to measure computation might not do so because it really measured ability to use 
the context, for instance. They expressed concern that some topics were underdeveloped (i.e., 
failed to help students access the underlying mathematics in the topic covered), or that items 
were mislabeled (e.g., as “problem solving”) when a mathematics expert might classify them 
otherwise. However, they also did note that several of the studies we reviewed seemed to 
help students increase their knowledge of mathematics and their ability to apply that 
knowledge to novel situations is a fashion that is valid from a mathematical perspective.  

 
The reader may feel disappointed at this juncture, seeing how few robust findings 

emanated from a review of the rigorous research on the topics addressed. Yet even the 
inconclusive and limited findings can provide a real service to the profession. If an 
administrator, a curriculum developer or a parent comments, “Research says that lessons 
must start with ‘real-world’ problems,” or “Students will really learn mathematics only if 
they are taught using direct instruction,” consumers and professionals now know that 
research is inconclusive on these topics. This is a necessary step in the evolution of 
educational research into a more mature science. The paucity of findings and the paucity of 
high-quality experimental research in the field led the Task Group to realize, early on in the 
process, that few definitive answers to the research questions posed would be found.  

 
However, the Task Group did see this work as the starting point for creating a base of 

knowledge to answer the questions posed at the onset of this work. We also see the 
application of the rigorous standards (developed in large part through earlier work of the 
Institute of Education Sciences of U.S. Department of Education) as serving as guidelines for 
the next generation of researchers. 

 
The questions and topics studied and findings are briefly summarized below. 
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A. How Effective Is Teacher-Directed Instruction in Mathematics  

in Comparison to Student-Centered Approaches, Including 

Cooperative and Collaborative Groups, in Promoting Student 

Learning? Is One Approach Preferable to Another?  

If So, in Which Areas of Mathematics? 

A controversial issue in the field of mathematics teaching and learning is whether 
classroom instruction should be more teacher-directed or student-centered. These terms have 
come to incorporate a wide array of meanings, with teacher-directed ranging from highly 
scripted direct instruction approaches to interactive lecture styles, and with student-centered 
ranging from students having primary responsibility for their own mathematics learning to 
highly structured cooperative groups. Schools and districts must make choices about 
curricular materials or instructional approaches that often seem more aligned with one 
instructional orientation than another. This leaves teachers wondering about when to organize 
their instruction one way or the other, whether certain topics are taught more effectively with 
one approach or another, and whether certain students benefit more from one approach than 
the other.   

 
In the review, the Task Group limited the search to studies that directly compared 

these two extreme positions. Teacher-directed instruction was defined as instruction in which 
it is the teacher who is primarily communicating the mathematics to the students directly, and 
student-centered instruction as instruction in which primarily students are doing the teaching.  

 
Only eight studies were found that met the Task Group’s standards for quality that 

were consistent with this definition. The studies presented a mixed and inconclusive picture 
of the relative impact of these two forms of instruction. High-quality research does not 
support the contention that instruction should be either entirely “child-centered” or “teacher-
directed.” Research indicates that some forms of particular instructional practices can have a 
positive impact under specified conditions. All-encompassing recommendations that 
instruction should be entirely “child-centered” or “teacher-directed” are not supported by 
research. The limited research base of rigorous research does not support the exclusive use of 
either approach.  

 

1. Cooperative and Collaborative Groups 

One of the major shifts in education over the past 25–30 years has been advocacy for 
the increased use of cooperative learning groups and peer-to-peer learning (e.g., structured 
activities for students working in pairs) in the teaching and learning of mathematics.  

 
Research has been conducted on a variety of cooperative learning approaches. One 

such approach, Team Assisted Individualization (TAI) has been shown to significantly 
improve students’ computation skills. This instructional approach involves heterogeneous 
groups of students helping each other, individualized problems based on student performance 
on a diagnostic test, and rewards based on both group and individual performance. Effects on 
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conceptual understanding and problem solving were not significant. There is evidence 
suggesting that working in dyads with a clear structure also improves computation skills in 
the elementary grades. However, additional research is needed. 

B. What Is the Impact of Use of Formative Assessment in 

Mathematics Teaching? 

Formative assessment—the ongoing monitoring of student learning to inform 
instruction—is generally considered a hallmark of effective instruction in any discipline. The 
Task Group’s review of the high-quality studies of this topic produced several conclusions. 

 
Teachers’ regular use of formative assessment is marginally significant in improving 

their students’ learning. This is especially true if teachers have additional guidance on using 
the assessment to design and individualize instruction.  

 
Although the research base is smaller, and less consistent than that on the general 

effectiveness of formative assessment, the research does suggest that several specific tools and 
strategies can help teachers use formative assessment information more effectively. The first 
promising strategy is providing formative assessment information to teachers (via technology) 
on content and concepts that require additional work with the whole class. The second 
promising strategy involves using technology to specify activities needed by individual 
students. Both of these aids can be implemented via tutoring, computer-assisted instruction, or 
help provided by a professional (teacher, mathematics specialist, trained paraprofessional).  

 
We caution that only one type of formative assessment has been studied with rigorous 

experimentation. These are assessments that include random sampling of items that address 
state standards. These assessments tend to take between 2 and 8 minutes to administer and 
thus are feasible for regular use.  

 

The regular use of formative assessment particularly for students in the elementary 
grades is recommended. These assessments need to provide information not only on their 
content validity but also on their reliability and their criterion-related validity (i.e., 
correlation of these measures with other measures of mathematics proficiency). For 
struggling students, frequent (e.g., weekly or biweekly) use of these assessments appears 
optimal, so that instruction can be adapted based on student progress. 

 
Research is needed regarding the content and criterion-related validity and reliability 

of other types of formative assessments (such as unit mastery tests included with many 
published mathematics programs, performance assessments, and dynamic assessments 
involving “think alouds”). This research should include studies of consequential validity (i.e., 
the impact they have on helping teachers improve their effectiveness). 

 
Use of formative assessments in mathematics can lead to increased precision in how 

instructional time is used in class and can assist teachers in identifying specific instructional 
needs. Formative measures provide guidance as to the specific topics needed for assistance. 
Formative assessment should be an integral component of instructional practice in mathematics. 
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C. What Instructional Strategies for Teaching Mathematics to 

Students With Learning Disabilities and to Low-Achieving Students 

Show the Most Promise? 

A review of 26 high-quality studies, mostly using randomized control designs, was 
conducted. These studies provide a great deal of guidance concerning some defining features 
of effective instructional approaches for students with learning disabilities (LD) as well as 
low-achieving (LA) students.  

 
Explicit systematic instruction typically entails teachers explaining and demonstrating 

specific strategies, and allowing students many opportunities to ask and answer questions 
and to think aloud about the decisions they make while solving problems. It also entails 
careful sequencing of problems by the teacher or through instructional materials to 
highlight critical features. More recent forms of explicit systematic instruction have been 
developed with applications for these students. These developments reflect the infusion of 
research findings from cognitive psychology, with particular emphasis on automaticity and 
enhanced problem representation. 

 
Our analysis of the body of research indicated that explicit methods of instruction are  

consistently and significantly effective with students with learning disabilities in computation, 
solving word problems, and solving problems that require the application of mathematics to 
novel situations.  

 
Only a small number of studies were located that investigated the use of visual 

representations or student “think alouds.” Therefore no inferences about their effectiveness 
can be drawn. The research suggests that they are most useful when they are integrated with 
explicit instruction.  

 
Based on this admittedly small body of research, we conclude that students with 

learning disabilities and other students with learning problems should receive some time on a 
regular basis with explicit systematic instruction. There is no reason to believe that this type of 
instruction should comprise all the mathematics instruction these students receive. However, it 
does seem essential for building proficiency in both computation and the translation of word 
problems into appropriate mathematical equations and solutions. Some of this time should be 
dedicated to ensuring that students possess the foundational skills and conceptual knowledge 
necessary for understanding the mathematics they are learning at their grade level. 
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D. Do “Real-World” Problem Approaches to Mathematics  

Teaching and Efforts to Ensure that Students Can Solve  

‘Real-World’ Problems, Lead to Better Mathematics  

Performance Than Other Approaches? 

The meaning of the term “real-world” problem varies by mathematician, researcher, 
developer, and teacher. Conducting research in this area is complex; fidelity of the teachers’ 
implementation of the instructional materials or instructional strategy is difficult to assess. 
Although not addressed in the studies we examined, teachers’ knowledge and capacity to use 
such problems effectively varies greatly. Given these caveats, the Task Group addressed the 
question of whether using “real-world” contexts to introduce and teach mathematical topics 
and procedures is preferable to more typical instructional approaches.  

 
The body of high-quality studies for this topic is small. Five studies addressed the 

question of whether the use of “real-world” problems as the instructional approach led to 
improved performance on outcome measures of ability to solve “real-world” problems, as 
well as on more traditional assessments.  Four of these studies were similar enough to 
combine in a meta-analysis. The meta-analysis revealed that if mathematical ideas are taught 
using “real-world” contexts, then students’ performance on assessments involving similar 
problems is improved. However, performance on assessments of other aspects of 
mathematics learning, such as computation, simple word problems, and equation solving, is 
not improved. 

 
For certain populations (upper elementary and middle grade students and remedial 

ninth-graders) and for specific domains of mathematics (fraction computation, basic equation 
solving, and function representation), instruction that features the use of “real-world” 
contexts can have a positive impact on certain types of problem solving. Additional research 
is needed to explore the use of “real-world” problems in other mathematical domains, at 
other grade levels, and with varied definitions of “real-world” problems.  

E. What Is the Relative Impact on Mathematics Learning  

When Students Use Technology Compared to Instruction  

That Does Not Use Technology? 

1. Calculators 

A review of 11 studies that met the Task Group’s rigorous criteria (only one study 
was less than 20 years old) found limited to no impact of calculators on calculation skills, 
problem-solving, or conceptual development over periods of up to one year. Unfortunately, 
these studies cannot be used to judge the advantages or disadvantages of multiyear calculator 
use beginning in the early years, because such long-term use has not been adequately 
investigated. The Panel cautions that to the degree that calculators impede the development 
of automaticity, fluency in computation will be adversely affected. 
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2. Computer-Assisted Instruction and Computer Programming 

We found that CAI drill and practice, if of high quality, can improve students’ 
performance compared to conventional instruction, with the greatest effect on computation, 
and less effect on concepts and applications. Drill and practice programs can be considered 
as a useful tool in developing students’ automaticity, or fast, accurate, and effortless 
performance on computation, freeing working memory so that attention can be directed to the 
more complicated aspects of complex tasks. 

 
Research has demonstrated that tutorials (CAI programs, often combined with drill 

and practice) that are well designed and implemented can have a positive impact on 
mathematics performance, particularly at the middle and high school levels. CAI tutorials 
have been used effectively to introduce and teach new subject-matter content. However, 
these studies also suggest several important caveats. Care must be taken to ensure that there 
is evidence that the software to be used has been shown to increase learning in the specific 
domain and with students who are similar to those who are under consideration. Educators 
should critically inspect individual software packages and studies that evaluate them 
critically. Furthermore, the requisite support conditions to use the software effectively 
(sufficient hardware and software; technical support; adequate professional development, 
planning, and curriculum integration) should be in place, especially in large-scale 
implementations, to achieve optimal results. 

 

Research indicates that computer programming improves students’ performance 
compared to conventional instruction, with the greatest effects on understanding of concepts 
and applications, especially geometric concepts, and weaker effects on computation. 
However, computer programming by students can be employed in a wide variety of 
situations using distinct pedagogies, not all of which may be effective. Therefore, the 
findings are limited to the careful, targeted application of computer programming for 
learning used in the studies reviewed.  

F. What Instructional Arrangements for  

Engaging with Mathematics Are Most Promising for 

Mathematically Precocious Students? 

The Task Group’s review of the literature about what kind of mathematics instruction 
would be most effective for gifted students focused on the impact of programs involving 
acceleration, enrichment, and the use of homogeneous grouping. The extensive literature 
searches we conducted yielded few studies that met the Task Group’s methodologically 
rigorous criteria for inclusion. Thus for this topic—and this topic only—we relaxed these 
criteria in order to fulfill our charge of evaluating the “best available scientific evidence.” 
One randomized control trial study and seven quasi-experimental studies were located. All 
but one of these studies have limitations. 

 
Despite the flaws in any one study, the set of studies suggests there is value to 

differentiating the mathematics curriculum for students who are gifted in mathematics and 
possess sufficient motivation, especially when acceleration is a component (i.e., pace and 
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level of instruction are adjusted). A small number of studies suggest that individualized 
instruction, in which pace of learning is increased and often managed via computer 
instruction, produces gains in learning. 

 
Gifted students who are accelerated by other means not only gained time and reached 

educational milestones earlier (e.g., college entrance) but appear to achieve at levels at least 
comparable to those of their equally able same-age peers on a variety of indicators even 
though they were younger when demonstrating their performance on the various achievement 
benchmarks. One study suggests that gifted students also appear to become more strongly 
engaged in science, technology, engineering, or mathematical areas of study.  

 
Some support also was found for supplemental enrichment programs. Of the two 

programs analyzed, one explicitly utilized acceleration as a program component and the other 
did not. Self-paced instruction supplemented with enrichment seemed to have a positive 
impact on student achievement. This supports the view in the field of gifted education that 
acceleration and enrichment combined should be the intervention of choice. We believe it is 
important for school policies to support appropriately challenging work in mathematics for 
gifted and talented students.  

G. What Would the Instructional Practices  

Task Group Say to the Practitioner? 

There is no one ideal approach to teaching mathematics; the students, the 
mathematical goals, the teacher’s background and strengths, and the instructional context, all 
matter. The findings here do suggest that it is especially important: 

 
• to monitor what students understand and are able to do mathematically;  
• to design instruction that responds to students’ strengths and weaknesses, based on 

research when it is available; and 
• to employ instructional approaches and tools that are best suited to the mathematical 

goals, recognizing that a deliberate and conscious mix of strategies will be needed. 
 
Also, it is important for teachers, school administrators, and the public to understand 

the importance of helping to formulate research questions and being willing to participate in 
the types of experimental and quasi-experimental studies that are described here.  
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H. What Would the Instructional Practices  

Task Group Say to the Researcher? 

More research that can identify causal claims is needed to guide both policy and practice. 
Building the mathematics education research portfolio to include this work will involve: 

 
• Formulation of research questions that are of interest to practitioners and policymakers; 
• Collaborations among mathematicians, mathematics education researchers, 

methodologists, and psychometricians; and 
• Motivation to design and undertake rigorous studies. 

 
The work of this Task Group has substantiated our understanding of the complexity 

and challenge of effective mathematics instruction. It is now up to practitioners, 
policymakers, mathematicians, and mathematics education researchers to take up the 
challenges of clarifying the definitions of mathematics instructional practices, debunking 
myths about mathematics instruction, and formulating the types of research studies that can 
answer the pressing questions that need to be addressed. 
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APPENDIX A: Methodological Procedures  

Methodology for the Instructional Practices  

Task Group Research Reviews 

From the onset, the Instructional Practices Task Group was committed to assembling 
the most rigorous scientific research addressing questions of effectiveness about the types of 
interactions that occur in mathematics classrooms relative to student performance. The Task 
Group was aware that there might be a paucity of such studies. This issue of understanding 
the quality of evidence and design needed to lead to causal inference is discussed in the 
Standards of Evidence document approved by the National Mathematics Advisory Panel. 
However, it is particularly germane to this topic, in that before requiring widespread 
implementation of a particular instructional practice or intervention, or committing 
significant resources toward such implementation, it seems critical to know that it will in all 
likelihood lead to higher levels of mathematics proficiency than alternatives. Of the six topics 
investigated as part of the Panel report, the topic of instructional practices was the topic for 
which the most experimental research was available. The Task Group thus chose to review 
and synthesize only the highest quality experimental and quasi-experimental research, 
research that can lead to causal inference, as the primary goal. In some cases, the Task Group 
also relied on the best available evidence suitable to a particular issue. 

 
The recent report by the National Research Council (NRC), Scientific Research in 

Education (2002), was influential in the decision. The authors note, “[They] believe that 
attention to the development and systematic testing of theories and conjectures across 
multiple studies and using multiple methods—a key scientific principle … is currently 
undervalued in education relative to other scientific fields” (p. 124). They go on to note, 
“While large-scale education policies and programs are constantly undertaken… they are 
typically launched without an adequate evidentiary base to inform their development, 
implementation or refinement over time…” (p. 124). The report also states: “Randomized 
experiments are not perfect.… For instance, they typically test complex causal hypotheses, 
they may lack generalizability to other studies, and they can be expensive. However, we 

believe that these and other issues do not generate a compelling rationale against their use 

in education research and that issues related to ethical concerns, political obstacles and 

other potential barriers often can be resolved” (p. 125, emphasis added). Whereas the field 
of reading instruction has made great strides through a combination of randomized controlled 
trials (RCTs), longitudinal research, descriptive research and qualitative research, there is 
less of a history in mathematics education research of using RCTs until recently.  
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Selection of Topics 

The original members of the Task Group16 devoted the first two meetings to decisions 
about the array of topics to study. The Task Group followed a process similar to that used by 
the National Reading Panel. After extended brainstorming and discussion, a list of 
approximately 20 topics was developed and then each member selected the top six. 

 
No particular theoretical framework was used to generate this list. Panelists selected 

topics that were perceived as: a) high interest to the teachers and policymakers, b) areas 
requiring additional attention in terms of implementation of recent federal policies such as 
No Child Left Behind (NCLB) and Individuals with Disabilities Act (IDEA) of 2004, or c) 
topics deemed critical by organizations such as National Council of Teachers of Mathematics 
(NCTM). 

 
In addition, based on cumulative knowledge of the research literature, the Task Group 

wanted to include at least one or two topics for which adequate research was available to 
provide empirically based recommendations. This seemed particularly important because 
three recent reports by the National Research Council (2001, 2002, 2004)17 noted an 
extremely limited amount of rigorous research in this field; too few studies were available to 
draw causal inferences. 

 
This resulted in a list of 12 topics. Due to time constraints, the Task Group was 

unable to address all of the 12 topics. The following eight received the most support:  
 

1) “Real-world” problem solving 
2) Relative effectiveness of explicit or teacher-centered instruction vs. child-centered or 

inquiry based instruction 
3) Formative assessment 
4) Cooperative, collaborative learning and peer-assisted instruction 
5) Instructional strategies for students with learning disabilities 
6) Instructional strategies for low-performing students 
7) Instructional strategies for mathematically precocious students 
8) Technology with a particular focus on use of graphing calculators and single function 

calculators 
 
Among the topics that generated a good deal of interest, but were excluded due to 

time constraints, were: a) importance of time spent engaged in mathematics, b) guidelines for 
developing homework assignments, c) best practices in terms of review of previously taught 
material, and d) types of practice problems and the sequencing of practices. 

 

                                                             
16 One of the original members of the Task Group (Diane Jones) left when she was assigned to another position 

in the federal government; she was replaced by Irma Arispe in June, 2007. In April, 2007, Bert Fristedt and 

Douglas Clements joined the group and Joan Ferrini-Mundy replaced Kathie Olsen in January 2007. By that 

point, most of the topics had been finalized, although three topics were subsequently eliminated.  
17 Adding It Up (2001), Scientific Research in Education (2002), On Evaluating Curricular Effectiveness (2004). 
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The topic of curriculum and instructional materials was assigned to a small task force 
to preclude even the appearance of conflict of interest, upon advice from the ethics attorney 
of the U.S. Department of Education.  

Instructional Practices Task Group Methodology Statement 

The Instructional Practices Task Group organized the available scientific evidence 
into several categories of evidence for consideration as they reviewed studies related to each 
topic of mathematics instruction investigated. A discussion of the categories for studies with 
quantitative designs that were considered for inclusion as rigorous evidence is provided 
below followed by a discussion of the procedures for identifying relevant research and 
synthesizing the research. Any deviations from the general practices outlined below are 
specified in the individual sections of the report.  

 

Category 1: Experimental and Quasi-Experimental Studies that Meet or 

Meet with Reservations What Works Clearinghouse (WWC) Standards  

Studies in this category provide evidence of causal claims and include randomized 
control trials (RCT; use random assignment to create experimental groups) and strong quasi-
experimental studies (QED; experimental groups created by a method other than random 
assignment) that meet WWC Criteria. These criteria can be found at http://ies.ed.gov/ncee/ 
wwc/overview/review.asp?ag=pi and http://ies.ed.gov/ncee/wwc/twp.asp. 

 
The only cases where exceptions to WWC criteria were allowed are: 
 

• Differential attrition rates of up to 30% are permitted for RCTs and for QEDs if there 
is evidence that attrition does not affect the nature of the sample on a salient pretest 
variable. 

• Studies that assign only one school per condition are acceptable provided that there 
are several teachers per condition. 
 
In all other areas, the Task Group followed the WWC policies expressed on 

www.whatworks.org. QEDs were excluded if they fail to either provide evidence of pretest 
comparability or control for pretest differences. Thus, the Task Group downgraded RCTs and 
exclude QEDs if a) there is evidence of contamination; b) there is only one teacher per 
experimental condition. However, if both the treatment and control conditions were taught by 
the same teacher, these were reviewed on a case-by-case basis, and the study may have been 
included is there was reason to believe that there was no bias in delivery.    

 
Category 1 studies are the core of the results section for the Instructional Practices 

Task Group as they represent clear evidence to support causal claims. Category 1 studies 
correspond to high and moderate quality studies, as defined by the National Mathematics 
Advisory Panel Guidelines for Standards of Evidence. 

 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-202 

Category 2: Weak Group Comparison Studies and Other Quantitative 

Designs that Attempt to Infer Causality   

Category 2 consisted of weak group comparison studies (failed RCTs and weak 
nonequivalent comparison designs). Category 2 studies are always open to multiple 
interpretations with regard to causal inferences, however, they are not necessarily weak 
studies for other purposes (e.g., descriptive). Category 2 studies correspond to moderate and 
low-quality studies, as defined by the National Mathematics Advisory Panel Guidelines for 
Standards of Evidence. 

 
Category 2: Weak Group Comparison Studies. These are attempts at experiments or 

quasi-experiments that are seriously flawed (e.g., one teacher per condition, widely 
differential attrition across the experimental groups, quasi-experiments with no evidence of 
pretest equivalence). This category would also include studies in which all the dependent 
measures are closely aligned to the instructional content of the intervention and not at all 
covered in the control condition. These studies are considered biased. Studies in which the 
experimental sample consists only of volunteers and the control group only of those who 
declined to participate would also be considered a weak comparison study. Because of the 
serious nature of the flaws, the Task Group would not consider these as providing valid 
causal evidence.  

 
Category 2 studies are used only when there is an insufficient body of information 

from the evidence provided by Category 1-level studies. Flawed studies can never 
compensate for high-quality experimental or quasi-experimental studies. However, if there 
are no acceptable experimental studies, the report may include brief discussion of Category 2 
studies. If there is a pattern of findings across the studies—and if the design flaws that 
compromise the studies are dissimilar (e.g., one study has differential attrition, another 
compares volunteers to non-volunteers)—the report may indicate that a pattern emerges that 
might be considered worthy of mentioning. Studies in this category, however, are highly 
variable in the nature of their flaws and will be assessed case by case by two Panelists and a 
researcher at Abt Associates before being used for this purpose. 

 
These two categories are studies that attempt to determine causal inference. However, 

panelists were free to use any type of research (descriptive, correlational, qualitative) to set 
the context for their meta-analysis. The reader will note that all of these types of research 
have been used to help explain the concepts examined in the chapter, and to help interpret 
findings from the experiments. However, these studies were not used to make claims of 
causality or effectiveness.   
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Procedures 

Literature search and study inclusion 

Literature searches were conducted to locate studies on evidence-based practices and 
learning in mathematics. Electronic searches were made in PsycInfo and the Social Sciences 
Citation Index (SSCI) using search terms identified by the Instructional Practices Task 
Group. A full list of the search terms used follows on page 206. A total of 1,733 studies18 
were identified based on these search terms. The identification of studies using formative 
assessments was based on work conducted by the Urban Institute and is described in 
Appendix B. Any other deviations from this general literature search procedure are specified 
in the report for each topic. Additional studies were identified through manual searches of 
relevant journals, reference lists, and recommendations from experts. Abstracts from these 
searches were screened for relevance to research questions and appropriate study design. For 
each of the 381 studies that met the screening criteria, the full study report was examined to 
determine whether it met the inclusion criteria specified below. Additionally, citations from 
relevant articles and research syntheses in each of the areas were reviewed to identify 
additional candidate studies.  

 
Criteria for Inclusion: 

 

• Study was published between 1976 and 2007. 
• Study involved K–12 students studying mathematics through algebra. 
• Study was available in English.  
• Study was published in peer-reviewed journal or government report.  
• Study design was (a) a randomized experiment or (b) a quasi-experiment with 

techniques to control for bias (matching, statistical control) or demonstration of initial 
equivalence on a salient pretest variable.  

• The study included at least two classrooms per condition if the intervention was 
performed at the classroom level. In cases where a single teacher or investigator 
administered both the treatment and control, one classroom may have been sufficient 
if there was evidence that no bias existed. 

• The intervention was not confounded with teacher, instructional time, or any other 
variable.  Studies with potential confounds were reviewed on a case-by-case basis. 

• There was no evidence of contamination (i.e., that control group teachers were using 
experimental curriculum or ideas from the experimental curriculum). 

• Attrition was less than 30% or evidence showed that the remaining sample was 
equivalent to the original sample on a salient variable. 

Effect size calculations 

For all studies that met the criteria for inclusion, the Panel applied the WWC 
guidelines to calculate standardized mean differences in mathematics achievement 
(see http://www.whatworks.ed.gov/reviewprocess/conducted_computations.pdf). Using 
Comprehensive Meta-Analysis, Version 2, software, Hedges g standardized mean 

                                                             
18 This number does not include studies that were identified from searches using combinations of terms that led 

to hundreds of largely irrelevant citations, studies that were identified from manual reviews, or studies that were 

recommended from experts. 
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differences were calculated for each of the studies. The standardized mean difference is 
defined as the difference between the mean score for the treatment group minus the mean 
score for the comparison group, divided by the pooled standard deviation of that outcome 
for both the treatment and comparison groups. 

 
For all quasi-experiments and for randomized controlled trials that showed 

differences in pretest scores at baseline, the effect size measure was calculated as an adjusted 
mean difference as per WWC guidelines. Specifically, whenever possible, the numerator in 
the effect size was calculated as the difference between the posttest means of the treatment 
and control groups minus the difference in the pretest means for those groups, divided by the 
pooled unadjusted between-student standard deviation on the posttest. 

 
In cases in which schools, teachers, or classrooms were assigned (either randomly or 

nonrandomly) into intervention and comparison groups and the unit of assignment was not 
the same as the unit of analysis, the effect size and accompanying standard error were 
adjusted for clustering within schools, teachers, or classrooms. This analysis used WWC 
guidelines to adjust for clustering,19 applying an intraclass correlation (ICC) adjustment of 
0.20 when actual ICC values were unavailable, which is the default ICC for achievement 
outcomes recommended by the WWC. 

Pooling effect sizes across study samples 

When judged appropriate, the Task Group pooled effect sizes across studies meta-
analytically using random effects models. Specifically, weighted mean effect sizes were 
computed using inverse variance weights to reflect the statistical precision of the respective 
studies stemming from both the subject-level and study-level sampling error. 

 
Multiple contrasts: For each study that included at least three conditions, effect sizes 

were calculated for all relevant contrasts, provided that they were orthogonal. When pooling 
the effects using meta-analytic techniques, only independent effect sizes per study were 
included, i.e., those not based on the same participant samples.  

 
Multiple outcomes: For studies that reported effects on more than one mathematics 

achievement outcome, Panel reviewers decided either to choose one outcome or to average 
the results from multiple outcomes on a case-by-case basis. Assessments that were overly 
aligned with an intervention were either not used or noted when used. 

 

Multiple independent samples within a study: In cases where impacts on independent 
samples within a study were reported, all independent effect sizes were included separately in 
the pooled analysis.   

 

                                                             
19 See http://ies.ed.gov/ncee/wwc/pdf/rating-scheme.pdf for more information on this issue. 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-205 

Study Identification Procedure for Formative Assessment 

Studies that were included in the formative assessment analysis were based primarily 
on the literature search conducted by the Urban Institute as part of the U.S. Department of 
Education’s Promising Practices Initiative (Olsen, 2006). The Urban Institute study inclusion 
criteria focused on issues of relevance, appropriate research methods, and adequate reporting 
of program effects (See Olsen, 2006, for further detail). The Urban Institute research staff 
identified relevant studies by gathering studies recommended by content experts at the U.S. 
Department of Education’s Center on Instruction, examining reference lists, conducting 
database searches in Google Scholar, and searching through a dissertation database. Their 
efforts yielded 92 potentially relevant studies for consideration. Of these, nine studies met the 
criteria for inclusion in the Urban Institute’s meta-analysis. Reasons for exclusion were: 
qualitative studies, quantitative studies with no measure of program impacts, no relevance to 
formative assessment, formative assessment unrelated to mathematics. In addition, studies 
were excluded if they provided insufficient data to calculate effect sizes. The criteria for the 
search were virtually identical to WWC except that standards for differential attrition, and 
confounding of intervention with school were not as rigorous (See Methodology report for 
further discussion). In the search, the keyword string included was (“mathematics” OR 
“math”) (“formative assessment” OR “curriculum-based measurement”) (“estimate” OR 
“coefficient” OR “correlation”) (“student achievement” OR “teacher use”) (“random” OR 
“random assignment” OR “randomly assigned” OR “matched”). In order to identify 
dissertations in the area of formative assessment in mathematics using Proquest’s Digital 
Dissertation database, the keyword string included  (“formative assessment” OR “curriculum 
based measurement” OR “ongoing assessment”).  

 
The Urban Institute put “on hold” studies that measured the effect of various 

enhancements to the formative assessments. The Task Group viewed the “enhancements” as 
important for understanding best ways for teachers and school districts to use formative 
assessments. 

 
The National Mathematics Panel retrieved and reviewed all studies that had been 

excluded by the Urban Institute but were coded as quantitative with a comparison group. As 
a result, two additional studies were added to the Panel review: one that studied the effect of 
an enhanced formative assessment program against a control group (Calhoon & Fuchs, 
2003), and another where it was possible to estimate a student-level sample size and thus 
calculate effect sizes and standard errors (Allinder, Bolling, Oats, & Gagnon, 2000).  

 
In addition, after reviewing the nine original studies included by the Urban Institute, 

the Task Group determined that two of the papers (Spicuzza, Ysseldyke, Lemkuil, Kosciolek, 
Boys, & Telluchsingh, 2001; Ysseldyke, Spicuzza, Kosciolek, Teelucksingh, Boys, & 
Lemkuil, 2003) reported usable data based on the same study and sample. As a result, the 
Panel analysis includes a total of ten studies. 
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Search Terms Used for Instructional Practices Task Group 

By Research Question 

All of the terms in the lists below were searched with the term math* 
 

Teacher-Directed and Student-Centered Instruction 

active instruction  
active teaching  
CGI 
cognitively guided 
instruction 
constructivist  
cumulative review  
direct instruction 
discovery learning  

drill 
explicit instruction  
guided inquiry  
guided learning  
learner centered 
student directed strategies  
student explanations 
student feedback  
student reasoning  

teacher centered instruction  
teacher demonstration  
teacher-directed instruction  
teacher-directed strategies 
teacher explanations  
teacher feedback 
teacher led instruction 
teacher modeling 

 

Additional Searches Specifically for Cooperative Learning 

classwide peer tutoring 
collaboration 

cooperative learning 
cooperative mastery learning 

peer assisted learning 
peer tutoring 

 

Real World 

aligning everyday and mathematical 
reasoning 
anchored instruction 
applications project 
applied curricul* 
applied problems 
Arise 
authentic 
case-based 
complex mathematical tasks 
Connected Math 
contextual curricul* 
contextual problems 
Core Plus 
effectiveness of real world problem solving 
engagement potential 
everyday reasoning 
Freudenthal Institute 
integrated mathematics curricul* 
interactive mathematics program 
interactive mathematics project 
Jasper 

math in context 
mathematical complexity 
mathematical modeling 
mathematical reasoning 
mathematical word problems 
mathematization 
Middle School Math* 
modeling curricul* 
modeling our world 
multiple solution paths 
PISA 
problem-based curricul* 
problem-based learning 
realistic math* 
real-life mathematical problem solving 
real world problems 
SimCalc 
simulations 
situated cognition 
solution paths 
solving word problems  
video 
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Students With Learning Disabilities, Low-Achieving Students, and English 

Language Learners 

academically disadvantaged 
anchored instruction 
at-risk 
classroom practices 
cognitive strategy instruction 
cooperative learning 
curricula adaptation 
differentiated instruction 
direct instruction 
dyscalculia 
elementary education 
English as a second language 
English language learners 
heterogeneous group 
instructional design 

instructional practice 
intervention 
learning disabil* 
limited English proficient  
low achiev* 
math disability 
math dyslexia 
peer assisted learning 
problem solving strategy 
reform curricula 
school-based intervention 
secondary education 
slow learners 
teaching methods 

 

Gifted Students 

acceleration 
developmental placement 
differentiated curriculum 
differentiated instruction 
differentiation 
enrichment 

exceptional 
gifted 
grouping 
high achiev* 
talent* 

 

Technology 

artificial intelligence 
CAI 
calculator* 
calculator-based ranger 
CampOS 
CBL 
cellular 
computer manipulatives 
computer* 
computer-assisted instruction 
development  
education  
electronic blackboard 
enhanced anchored instruction 

graphing calculator 
handheld 
hypermedia 
instruction  
instructional tools 
interactive whiteboard 
interactive* 
internet 
learning  
Logo  
PDA 
pedagogy  
portable 
programming 

screen projection 
screen-based technology 
smart board 
software 
spreadsheet 
teaching  
technology 
turtle graphics  
tutor* 
virtual manipulatives  
visual representation 
web-based 
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APPENDIX B:  Research Questions 

This appendix lists only topics that fall within the areas that we addressed in our literature 
review. We recognize that there is much needed research on other topics about instructional 
practice, such as the teaching of specific mathematical topics and content (e.g., fractions). 

 
For future studies on teacher-directed versus student-centered instruction, our major 

suggestions include: 
 

• Studies that further unpack the underlying variables behind terms such as student-
centered, guided inquiry, teacher-centered, direct instruction, and explicit instruction. 
These studies should entail a strong classroom observational component.  

• Studies that describe and evaluate the impact of: 1) various models of teaching, 2) 
explicit instruction for specific topics, and, 3) the use of visual representations with 
manipulatives to link abstract concepts (i.e. equations, algorithms).  

• Studies that use curricula that are deemed to be mathematically accurate and rigorous 
and detail teaching practices that enhance understanding. 

• Both qualitative and correlational studies of classes with exceptionally high student 
growth in mathematics to provide deeper insights into the nature of effective practice. 

For future studies on the role of technology, our major suggestions include: 
 

• Improved measures and analyses of fidelity of Computer Based Instruction (CBI) to 
best ascertain the effectiveness of interventions and to reveal “true” effect sizes that 
are the result of high-quality interventions. Research must also reveal what actions 
support high-quality large-scale implementation of these interventions. 

• Studies that illuminate the particular cognitive and learning processes that different 
categories of software do or do not support.  

• The linking of CBI features to student outcomes so that software engineers and 
curriculum designers can improve the use of technology in the school setting.  

• The role of additional contextual variables (e.g., settings, such as urban, suburban, or 
rural and student or family characteristics), and implementation variables (e.g., 
duration, support and availability of resources, funds, and time) should be 
conscientiously addressed in future research. 

• The initiation of longitudinal studies that will assess whether the consistent use of 
computer-based tools, including computer programming, can benefit learning and 
improve student skills.  

• The implications of technology for the content of mathematics education must be 
adequately addressed philosophically, theoretically, and empirically. 
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For future studies on the role of calculators, our major suggestions include: 
 

• The contextualization of advances in technology, curricula, and pedagogical 
strategies within research that examines the benefits of using calculators. This 
research should standardize the use of graphing calculators to address education 
research questions.  

• An examination of whether appropriate pedagogical uses reinforce, or at least 
maintain, students’ learning of basic arithmetical facts and properties while 

simultaneously garnering educational advantages. The fidelity of these approaches 
should be evaluated alongside student outcomes. 

• An exploration of the cognitive processes that students use (e.g., in assessment 
situations) when calculators are available and the ramifications that these findings 
have for instruction and assessment with calculators. 

• An investigation as to why about two-thirds of algebra teachers use graphing 
calculators infrequently. Are there practical barriers to their use, does curriculum and 
professional development discourage their use, and do student experiences convince 
teachers they are not useful? Would the provision of resources and professional 
development change this situation? 

For future studies about instructional practices with low-achieving students and 
students with learning disabilities:  

 
• Studies of the issues discussed above that focus particularly on impact with students 

who experience difficulty in mathematics.  

• Studies to determine the amount of additional practice with feedback that these 
students require, the amount of highly systematic instruction needed, and the areas in 
which this instruction is required needs to be determined.  

• Studies that examine how various approaches that are linked to specific mathematical 
topics are needed. 

For future studies about instructional practices with gifted and mathematically 
precocious students: 

 
• Evaluations of academically rigorous enrichment programs.  

• Explorations of the extent to which effective enrichment programs are, in fact, 
acceleration programs. As students explore the mathematics that underlie their current 
work, the enrichment activities can develop skills in more advanced areas of mathematics, 
areas that the student may not cover in a formal sense for several more years. 

• Longitudinal studies examining career choices and persistence in mathematics for 
mathematically gifted students who have participated in various intervention programs. 
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For future studies about the use of “real-world” problems in mathematics instruction: 
 

• Studies to examine, describe, and clarify the multiple definitions of “real-world” 
problems and “real-world” problem-based instruction, and to relate those definitions 
to the interventions and to student learning. 

• Development of valid and reliable outcome measures that clearly distinguish what is 
being assessed (mathematical concepts, mathematical procedures, problem solving, etc.). 

• Studies that explore the possibly differential impact of “real-world” approaches to 
instruction for specific mathematical topics and concepts. 

• Studies to examine the nature of the impact of “real-world” problem instructional 
approaches on student motivation and interest in mathematics, for different student 
groups. 
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APPENDIX C: Additional Technology Tables  

 
Table C-1: Results from Prior Meta-Analyses on Drill and Practice 

Study Pooled effect size   

 Achievement Attitudes Study information 

Hamilton, 1995 .19    

Burns & Bozeman, 1981 .34    

Hartley, 1978 .34    

Lee, 1990 .35 .23   

Slavin et al., 2007 (one ES only, 

not “pooled”) 

.36    

Kuchler, 1999 .51  Junior/Senior students 

     

Specific education goals Computation Concept 

development 

Applications Combination of 

goals 

Burns, 1981, cited in Kuchler, 

1999 

.38 .18 .14  

Lee, 1990 .45 .19 (concepts & applications) .28 

     

Contextual variables     

Age/grade level Preschool Elementary Middle/Junior Junior/Senior 

Burns & Bozeman, 1981  .35  .24 

Lee, 1990  .34 .41  

Hamilton, 1995  .17 (Grades 0–6)  .25 (Grades 9–12) 

     

Ability level Low Average Average High 

Burns & Bozeman, 1981 .31 .14 .47 (high/avg) .32 

Lee, 1990 .36 .16  .16 

Hamilton, 1995 .12 (very low) .57 (low/avg) -.04 (average) .27 

     

Gender Males Females   

Burns & Bozeman, 1981 .42 .17   

Lee, 1990 .31 -.06   

Hamilton, 1995 .26 .14   

     

Implementation variables     

Duration 1–18 weeks 19–36 weeks 37+ weeks  

Lee, 1990 .44 .25 .46  

     

Substitute vs. supplement Substitute Supplement   

Lee, 1990 .57 .33   

     

     

Developer Experimenter /teacher Commercial  

Lee, 1990 .42  .34  
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Table C-2: Results from Prior Meta-Analyses on Tutorials 

Study  Pooled effect size  

Overall Achievement Attitudes Study information 

Hamilton, 1995 .20    

Lou et al., 2001 .20    

Kuchler, 1999 .25  Secondary school 

Hartley, 1978 .34    

Kulik, 1994 .38    

Kulik, 2003 .38b  Study focused on ILS 

Becker, 1992 .40  Study focused on ILS 

Burns & Bozeman, 1981 .45    

Lee, 1990 .55 .02a   

     
Specific education goals Computation Concept & Applications Combination 

Lee, 1990 .42 .63  .62 

     
Topic Arithmetic Geometry Algebra General 

Lee, 1990 .47 .47 1.19 .41 

     
Contextual variables     

Age/grade level Preschool Elementary Middle/Junior Secondary 

Hartley, 1978  .66 (Grades K–8)  .58 (Grades 9–12) 

Lee, 1990  .49 .85  

Hamilton, 1995  .14 (Grades 0–6)  .29 (Grades 9–12) 

Burns & Bozeman, 1981  .43  .52 

     
Ability level Low Average Average High 

Burns & Bozeman, 1981 .57 .58  .28 

Lee, 1990 .62 .20  .18 

Hamilton, 1995 .12 .08 (low/avg) .02 .57 

     
Gender Males Females   

Lee, 1990 .82 a 1.58 a   

Hamilton, 1995 .58 c .14 c   

     
Implementation variables     

Duration     

 1–18 weeks 19–36 weeks 37+ weeks  

Lee, 1990 .55 .53 .57  

     
Substitute vs. supplement Substitute Supplement   

Lee, 1990 (achievement) .30 .58   

Lee, 1990 (problem solving) .09 .25   

     
Developer Experimenter / 

teacher 

Commercial Both  

Lee, 1990 .62 .39 .58  

     
Audience Specific General   

Lee, 1990 .58 .29   

a
 Only two effect sizes were included. 

b
 Pooled effect size was .40 when the ILS instruction was in mathematics only, and .17 when it was in both 

mathematics and reading. 
c
 Only three effect sizes were included. 
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Table C-3: Results from Prior Meta-Analyses on Calculators 

Study Pooled effect size  

 Achievement Attitudes Study information 

Ellington, 2003aa  0.20b    

Hembree, 1984; Hembree  & Dessart, 

1986 

 0.190   

Hembree, 1992 0.29     

Smith, 1997  0.3655   

     

 Calculator type  

 Basic/scientific Graphing All  

Ellington, 2003a (operational skills, 

testing with calculators) 

0.55 0.40 0.25  

Ellington, 2003a (conceptual skills, 

testing with calculators) 

0.13 0.69   

Ellington, 2003a (problem solving 

skills, testing with calculators) 

0.23 0.61 3  

     

 Specific education goals  

 

Operational Computational Conceptual 

Problem 

solving 

Ellington, 2003aa (testing without 

calculators) 

0.14b -0.02b -0.05b 0.16 

Ellington, 2003a, a (testing with 

calculators) 

0.32b 0.41b 0.44b 0.22b 

Hembree, 1984; Hembree & Dessart 

(1986) (testing with calculators) 

 0.636   

Hembree, 1984; Hembree & Dessart, 

1986 (testing without calculators) 

  0.018  

Hembree, 1984 (special calculator 

instruction, testing without 

calculators) 

0.798 0.564 -0.268 0.534 

Smith, 1997  0.2054 0.1972  0.1468 

Smith, 1997  (Graphing calculators, 

graphing skills) 

-0.523   (concept 

development) 

 

     

Contextual variables     

Age/grade level Preschool Elementary Middle/Junior Secondary 

Ellington, 2003)a (conceptual skills, 

testing without calculators) 

 -0.06 0.522 -0.152 

Ellington, 2003aa (operational skills, 

testing with calculators) 

 0.481 0.57 0.32 

Ellington, 2003aa (conceptual skills, 

testing with calculators) 

 -0.142 0.70 0.43 

Continued on p. 6-218 
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Table C-3, continued 

Study Pooled effect size  

Ability level Low Average High Mixed 

Ellington, 2003aa (operational skills, 

testing with calculators) 

  0.69e  0.35 

Ellington, 2003aa (conceptual skills, 

testing with calculators) 

  0.84 0.29 

Ellington, 2003aa (problem solving skills, 

testing with calculators) 

-0.18c  0.15c 0.43 

Hembree, 1984; Hembree & Dessart, 

1986 (operational skills, testing without 

calculators)  

-0.107  -0.031  

Hembree, 1984  [Hembree & Dessart, 

1986 (operational skills, testing with 

calculators)] 

0.325 0.737   

Hembree, 1984; Hembree & Dessart, 

1986 (computation skills, testing 

without calculators)  

-0.009  -0.024  

Hembree, 1984; Hembree & Dessart, 

1986 (problem solving composite skills, 

testing without calculators)  

0.005  -0.118  

Hembree, 1984; Hembree & Dessart, 

1986 (problem solving composite skills, 

testing with calculators)  

0.436 0.271 0.458  

     

Implementation variables     

Duration 0–3 weeks 4–8 weeks 9+ weeks  

Ellington, 2003aa (operational skills, 

testing without calculators) 

0.31 -0.17e 0.24  

Ellington, 2003aa (computational skills, 

testing without calculators) 

0.14e -0.25e 0.06  

Ellington, 2003a a (conceptual skills, 

testing without calculators) 

0.26d -0.29d 0.08e  

Ellington, 2003aa (operational skills, 

testing with calculators) 

0.47 0.34 0.49  

 .285 -.21 .16  

a Included both graphing and scientific calculators.  
b Outliers removed. 
c Only one study. 
d One two studies. 
e Only three studies. 
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Table C-4: Results from Prior Meta-Analyses on Graphing Calculators Only 

Study Pooled effect size   

 Achievement Attitudes Study information 

Khoju, Jaciw, & Miller, 2005 .85  One study was of college students 

Ellington, 2006 0.19 0.21a Calculators not allowed in testing 

 0.29a  Calculators allowed in testing 

     

 Specific education goals  

 Procedural Conceptual Combined skills  

Ellington, 2006 (testing without 

calculators) 

–0.21 0.29a 0.19  

Ellington, 2006 (testing with 

calculators) 

0.32a 0.42a 0.29a  

a Outliers removed. 
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Table C-5: Results from Prior Meta-Analyses on Programming 

Study  Pooled effect size  

Overall Achievement Problem solving Attitudes Study information 

Kulik, 1994 .09   All but Logo 

Lou et al., 2001 .22    

Gordon, 1992 .26 .34   

Kuchler, 1999 .35   Secondary 

Lee, 1990 .36 .23 .29  

Khalili, 1994 .45   Logo 

Kulik, 1994 .58   Logo 

     
Specific education goals Computation Concept & Applications Combination of goals 

Lee, 1990 -.04a .56  .15 

     
Topic Arithmetic Geometry Algebra General 

 .40b .68 -.02 .29 

     
Contextual variables     

Age/grade level Pre-school Elementary Middle/Junior  

Lee, 1990 (achievement)  .76 .09  

Lee, 1990 (problem solving)  .29 .27  

     
Ability level Low Middle   High  

Lee, 1990 (achievement) .22 .11 .37  

Lee, 1990 (problem solving) .20 -.02   -0.4  

     

SES Low Average   High  

Lee, 1990 .10 .33 .19  

     
Implementation variables     

Duration 1–18 weeks 19–36 weeks 37+ weeks  

Lee, 1990 .45 .30 .03  

     
Substitute vs. supplement Substitute Supplement   

Lee, 1990 (achievement) .40 .34   

Lee, 1990 (problem solving) .08 .43   

     
Specific languages Logo BASIC Scientific languages Other 

Kuchler, 1999c .78 .34 .42 .47 

Khalili, 1994 .45   .33 

Lee, 1990 .41 .48  -.15 

Kulik, 1994 .58   .09 

a Only three effect sizes. 
b Only two effect sizes. 
c Secondary students. 
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Table C-6: Results from Prior Meta-Analyses on Tools and Problem Solving 

Environments 

Study  Pooled effect size  

Overall Achievement Attitudes Study information 

Lou et al., 2001 .04  Tool and exploratory environments 

Kulik & Kulik, 1991 .10  Computer-enhanced instruction 

Kuchler, 1999 .24  Problem solving software 

 
Table C-7: Results from Prior Meta-Analyses on Simulation and Games 

Study  Pooled effect size  

Overall Achievement Attitudes Study information 

Kulik, 1994 .10    

Kuchler, 1999 .23  Secondary school 

Lee, 1990 .28 .24a   

     

Specific education goals Computation Concept & Applications 

Combination of 

goals 

Lee, 1990 .61b .24  .63b 

     
Topic Arithmetic Geometry Algebra General 

Lee, 1990 .61b .24 .15a 1.12a 

     
Contextual variables     

Age/grade level Elementary Junior   

Lee, 1990 .24 .45   

     
Gender Males Females   

Lee, 1990 .31 .12   

     
Implementation variables     

Duration 1–18 weeks 19–36 weeks   

Lee, 1990 .33 .14   

     
Substitute vs. supplement Substitute Supplement   

Lee, 1990 (achievement) .18 .39   

    Lee, 1990 (problem solving) -.83    

     

Developer 

Experimenter / 

teacher Commercial 

  

Lee, 1990 .26 .29   

a Only one effect size included. 
b Only two effect sizes included. 
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Table C-8: Subgroup Analysis for Calculator Studies 

  Computation  Applications  Concepts 

    

N 

studies/

ES 

Hedges 

g   se   

N 

studies/

ES 

Hedges 

g   se   

N 

studies/

ES 

Hedges 

g   se 

Contextual variables              

Grade level               

 Elementary 4 / 5 0.367  0.330  2 / 3 0.074  0.371  3 / 3 0.267  0.236 

 Secondary 3 / 4 0.113  0.169  3 / 4 0.437 ** 0.164  1 / 1 0.328  0.489 

 Mixed 1 / 1 0.855 ~ 0.512  0 / 0 na  na  0 / 0 na  na 

Implementation variables             

Duration  *             

 

Less than 
3 months 5 / 7 0.503 * 0.218  3 / 5 0.295  0.239  2 / 2 0.084  0.307 

 

3 months or 
greater 3 / 3 -0.134  0.198  2 / 2 0.328  0.249  2 / 2 0.458  0.295 

~ p < .10, * p < .05, ** p < .01, *** p < .001 

Table C-9: Calculator Effect Sizes not Included in Meta-Analytic Tables 

Study 

Grade  

Level Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Assessments in which calculator group was able to use calculator 

Szetela, 1982 Grade 3 
Regular instruction plus 
calculator-specific materials vs. 

Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items 

0.568 ~ 0.297 

Szetela, 1982 Grade 5 
Regular instruction plus 
calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items 

-0.29  0.342 

Szetela, 1982 Grade 7 
Regular instruction plus 
calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items 

0.633 * 0.294 

Szetela, 1982 Grade 8 
Regular instruction plus 

calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 

20 researcher-designed items 
0.589 * 0.274 

Alternate interventions/enhancements 

Standifer & 
Maples, 1981 

Grade 3 
Programmed feedback 
calculator vs. No calculator in 
regular math curriculum 

Computation: Science 
Research Associates 

0.296  0.395 

Standifer & 
Maples, 1981 

Grade 3 
Programmed feedback 
calculator vs. No calculator in 
regular math curriculum 

Concepts: Science Research 
Associates 

-0.28  0.395 

Standifer & 

Maples, 1982 
Grades 3&4 

Programmed feedback 

calculator vs. General remedial 
math curriculum 

Computation: Science 

Research Associates 
0.363  0.326 

Standifer & 
Maples, 1982 

Grades 3&4 
Programmed feedback 
calculator vs. General remedial 

math curriculum 

Concepts: Science Research 
Associates 

0.064  0.325 

Duffy & 
Thompson, 
1980 

Grade 4 
Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Computation: CTBS -0.01  0.428 

Duffy & 
Thompson, 
1980 

Grade 4 
Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Problem-solving:  CTBS 
Applications 

-0.15  0.429 

Continued on p. 6-223 
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Table C-9, continued 

Study 

Grade  

Level Contrast Measure 

Hedge’s  

g 

Standard  

Error 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Concepts: CTBS -0.27  0.430 

Duffy & 

Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 

calculator  (classroom-level 
effect size) 

Computation: CTBS 0.222  0.450 

Duffy & 
Thompson, 

1980 Grade 5 

Calculator plus materials vs. No 
calculator  (classroom-level 

effect size) 

Problem-solving: CTBS 
Applications 

-0.090  0.449 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Concepts: CTBS -0.09  0.449 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Computation: CTBS -0.22  0.440 

Duffy & 

Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 

calculator  (classroom-level 
effect size) 

Problem-solving: CTBS 

Applications 
0.191  0.440 

Duffy & 

Thompson 
1980 

Grade 6 
Calculator plus materials vs. No 

calculator  (classroom-level 
effect size) 

Concepts: CTBS -0.21  0.440 

Total math achievement (calculator vs. control) 

Standifer & 
Maples, 1981 Grade 3 

Hand-held, four function 
calculator vs. No calculator in 
regular math curriculum 

Total achievement: Science 
Research Associates 

0.309  0.396 

Standifer & 

Maples, 1982 Grades 3&4 

Hand-held, four function 

calculator vs. General remedial 
math curriculum 

Total achievement: Science 

Research Associates 
0.341  0.330 

Duffy & 
Thompson, 

1980 Grade 4 

Calculator only group vs. No 
calculator (classroom-level 

effect size) 

Total achievement: CTBS 
0.062  0.428 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator only group vs. No 
calculator (classroom-level 
effect size) 

Total achievement: CTBS 
0.008  0.449 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator only group vs. No 
calculator (classroom-level 
effect size) 

Total achievement: CTBS 
-0.113  0.439 

Total math achievement (calculator + enhancement vs. control) 

Standifer & 
Maples, 1981 Grade 3 

Programmed feedback 
calculator vs. No calculator in 
regular math curriculum 

Total achievement: Science 
Research Associates 

-0.047  0.394 

Standifer & 
Maples, 1982 Grades 3&4 

Programmed feedback 
calculator vs. General remedial 
math curriculum 

Total achievement: Science 
Research Associates 

0.194  0.325 

Duffy & 
Thompson, 
1980 Grade 4 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Total achievement: CTBS 
-0.089  0.429 

Duffy & 

Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 

calculator  (classroom-level 
effect size) 

Total achievement: CTBS 
0.207  0.450 

Duffy & 
Thompson, 

1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 

effect size) 

Total achievement: CTBS 
0.021  0.428 
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Table C-10: Computer Programming Effect Sizes (Comparing Programming to CAI) 

not Included in Meta-Analytic Tables 

Study Design Sample 

Duration/ 

Content Contrast Measure 

Hedge’s 

g 

Standard 

Error 

Programming 

11 fourth-
graders in two 
midwestern 
middle schools 

Gr 4: 
Logo vs. 
CAI 

0.409 0.611 

Battista & 
Clements, 1986 

RCT 
26 sixth-graders 

in two 
midwestern 
middle schools 

42 sessions 
(2 40-min per 
week)/LOGO Gr 6: 

Logo vs. 
CAI 

Problem-
solving 
Combine 
Test 

1&2, 
Total 

0.326 0.395 

24 first-grade 
students from a 

middle-class 
midwestern 
school system 

Gr 1: 

Logo vs. 
CAI 

0.486 0.415 

Clements, 1986 RCT 
24 third-grade 
students from a 
middle-class 

midwestern 
school system 

44 sessions 

(22 weeks)/ 
LOGO 

Gr 3: 
Logo vs. 
CAI 

WRAT 

Math 
score 

0.473 0.414 

Clements, 1987 

RCT 

16 third-grade 
students who 
had received 
Logo or CAI 

experience in 
first-grade 

3 months/ 
LOGO 

Gr 3: 
Logo vs. 
CAI 

CAT - 
Total 

0.452 0.511 

Emihovich & 
Miller, 1988 

RCT 

36 first-grade 
students in five 
classrooms in an 
elementary 
school in the 
southeast 

20, 30-min 
sessions (3 
months)/ 
LOGO 

Gr 1: 
Logo vs. 
CAI 

CTBS - 
Math 

0.214 0.410 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
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