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INTRODUCTION 
 
Recent applications’ needs/desires have motivated 

efforts to develop approaches for optimizing Monte Carlo 
calculations for global distributions, such as flux or dose 
rate distributions (e.g., mesh tallies), as well as response 
at multiple localized detectors and spectra. Recent efforts 
at Oak Ridge National Laboratory (ORNL) have led to 
the development of a variation on the Consistent Adjoint 
Driven Importance Sampling (CADIS) method for 
effective global variance reduction. This method, referred 
to as Forward-Weighted CADIS (FW-CADIS), and an 
example of its application are presented in this paper.  To 
the authors’ knowledge, this is a new method and novel 
use of the adjoint methodology for biasing Monte Carlo 
simulations. 

It has long been recognized that the adjoint function 
(i.e., the solution to the adjoint form of the Boltzmann 
transport equation) has physical significance [1] as a 
measure of the importance of a particle to some objective 
function (e.g., the response of a detector) and that this 
physical interpretation makes the adjoint function well 
suited for biasing Monte Carlo simulations. Accordingly, 
recent trends in Monte Carlo code development have 
reflected a recognition of the benefits of using 
deterministic adjoint (importance) functions for Monte 
Carlo variance reduction.[2] The CADIS methodology 
[2,3], which has been incorporated into codes such as      
ADVANTG [4] (based on MCNP) and the MAVRIC [5] 
sequence of SCALE, is being routinely used at ORNL for 
three-dimensional (3-D) Monte Carlo simulations of real 
applications. 

Although the CADIS methodology has proven to be 
very effective for automated optimization of localized 
quantities, until very recently, efforts to optimize global 
distributions have not been nearly as successful. A 
number of heuristic approaches, such as specification of 
the adjoint source (response function) throughout the 
problem phase space, have been tested and found to be 
ineffective. Specification of the adjoint source at the outer 
boundaries of a problem in an attempt to encourage 
particles to move outward through the entire system was 
found to be reasonably effective. Previous work by 
Cooper and Larsen, which used the inverted forward flux 
as the importance function (no adjoint calculation) in an 
attempt to distribute particles uniformly throughout the 
system has demonstrated some benefit [6]. While this 
approach does encourage particles toward regions of 

lower flux and discourage particles from moving toward 
regions of higher flux, the forward flux does not represent 
the expected contribution to the desired response, which 
is uniform particle density (or response) throughout the 
system. When applied to a large realistic application, this 
method was not found to be effective. Hence, a need has 
remained for an effective method for global variance 
reduction of Monte Carlo simulations.  

 
THEORY 

 
The goal of many “traditional” Monte Carlo 

simulations is to calculate the response (i.e., flux, dose, 
reaction rate, etc.) at some location(s), which can be 
expressed as: 

dP)P()P(R dP
σψ∫=  , (1) 

where ψ  is the particle flux, dσ  is some objective 
function (e.g., dose response function), and P refers to the 
independent variables Ω̂,E,r . 

From the forward and adjoint forms of the transport 
equation [1], 
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and the following adjoint identity 

+++ = ψψψψ H,H,  , (4) 

one can show that  

q,q, ++ = ψψ  , (5) 

+H and where H  are the forward and adjoint transport 
operators,  is the adjoint function, q  and are the 
forward and adjoint sources,  and  signify integration 

over all the independent variables.  If one lets = , 
the left-hand side of Eq. (5) is the detector response [i.e., 
Eq. (1)], and the right-hand side is an alternative 
formulation for the response in terms of the adjoint 
function:   
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From Eq. (6), the adjoint function, , has physical 
meaning as the expected contribution to the response 

+ψ
R  

from a particle in phase-space , or, in other words, the 
importance of a particle in that phase space to the 
response. It is this physical interpretation that has been 
used in the application of the CADIS methodology to 
optimize local quantities. Specifically, the user defines a 
response (at some location) for optimization, which is 
used as the source in the deterministic adjoint calculation.  

P

For global variance reduction, one is interested in 
determining a space- and energy-dependent flux or 
response (e.g., dose rates) with uniformly low statistical 
uncertainty. To achieve this objective in a Monte Carlo 
simulation, it has been proposed [6] that the distribution 
of Monte Carlo particles should be uniform throughout 
the system.  Although this is not a “physical” response, it 
does intuitively represent a desirable objective for 
obtaining uniform uncertainty. Hence, employing the 
adjoint transport theory, it is possible to define the adjoint 
source, , such that the corresponding adjoint function 
represents the importance of particles to the desired 
(uniform) objective.  For example, if dose rate throughout 
a model is the desired objective of the Monte Carlo 
calculation and  represents the dose response function, 
the adjoint source can be defined as 
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and the individual spatial contributions to the total 
response are uniform, as desired for variance reduction of 
the spatial dose distribution.  

The adjoint source can be defined for whatever 
objective is desired.  If space- and energy-dependent flux 
is desired,  is unity and the adjoint source is 
the inverse of the space- and energy-dependent forward 
flux, integrated over angle.  Subsequently, the individual 
space and energy contributions to the total response are 
uniform (unity), as desired. 

)ˆ,,( ΩErdσ

From the adjoint transport theory, if we consider a 
point source of the form 

)ˆˆ()EE()rr()ˆ,E,r(q 000 ΩΩδδδΩ −−−= ,  (9) 

in Eq. (6), we obtain 

. (10) 

Therefore, the adjoint function is the contribution from 
particles produced at  to the detector response, 
which, from Eq. (8), is uniform throughout the system. It 
is this physical interpretation that makes this “non-
traditional” adjoint function well suited to global 
optimization of Monte Carlo simulations. The use of this 
“nontraditional” adjoint function with the CADIS 
methodology is referred to as the FW-CADIS method. 

In the FW-CADIS method, forward information (e.g., 
flux, dose, etc.) is used to define an appropriate response 
(adjoint source) to be used in a deterministic adjoint 
calculation to generate the adjoint importance function for 
achieving uniform particle density (or response) 
throughout the system. From Eq. (8), it is possible to 
optimize for global quantities, such as flux or dose rate 
distributions throughout a problem, as well as semi-global 
responses, such as response at multiple localized detectors 
or spectra, simply depending on how the adjoint source is 
defined.  

 
IMPLEMENTATION 

 
The FW-CADIS method requires two (one forward 

and one adjoint) deterministic calculations, prior to the 
Monte Carlo simulation. Once the adjoint (importance) 
function is determined, the CADIS methodology is used 
to calculate consistent source and transport (weight 
windows) space- and energy-dependent biasing 
parameters, as has been described elsewhere [2,3]. This 
capability is implemented and automated in the SCALE 
MAVRIC sequence (uses TORT for 3-D deterministic 
calculations and the SCALE Monaco code for 3-D 
multigroup Monte Carlo calculations), which will be 
available in the next public release of SCALE. With the 
exception of the forward deterministic step, which 
currently requires some user intervention, the capability is 
also implemented/ automated in the ADVANTG code 
(uses TORT for 3-D deterministic calculations and the 
MCNP code for 3-D continuous energy Monte Carlo 
calculations). Note that although the CADIS methodology 
is general, the implementation is currently limited to 
space and energy. 

 
EXAMPLE PROBLEM 
 

The FW-CADIS method was developed to address 
the computational challenge associated with calculating 
the dose rates throughout an entire pressurized-water 
reactor (PWR) facility, resulting from the core or spent 
fuel neutron and photon sources. An actual “as-built” 
PWR facility, including containment, auxiliary and 
turbine buildings, was modeled with the MCNP code (see 
Fig. 1). The model size is approximately 85×125×70 m. 



As expected, it is not possible to achieve statistically 
meaningful results in locations other than those very near 
the source regions without variance reduction. Hence, the 
ADVANTG code (using the CADIS methodology) was 
applied with the adjoint source specified at the outer 
boundaries of the problem in an attempt to encourage 
particles to move outward through the entire system. This 
approach did yield meaningful, good results but required 
manual iteration/intervention to adjust the adjoint source 
magnitude at the boundaries (e.g., increase adjoint source 
on the boundary furthest from the source regions) and 
raised concerns about the dose being underestimated in 
regions between the source and boundary as a result of the 
extensive biasing. Also, note that this approach would not 
be well suited for achieving global convergence of 
energy-dependent quantities. 

For these reasons, the FW-CADIS method was 
developed and applied. The objective of this application is 
uniform statistical convergence of dose (integrated over 
energy) throughout the facility calculated via the mesh 
tally feature. With this objective, the energy dependence 
of the adjoint source is the energy-dependent dose 
response function, and the spatial dependence is the 
inverted total dose response for each cell (from a forward 
deterministic calculation), as shown in Eq. 7. With this 
approach, the ADVANTG code was used with MCNP5 to 
calculate the dose map throughout the entire PWR 
facility. 

Figure 2 shows the dose results based on the standard 
CADIS approach, with the adjoint source specified on the 
exterior boundaries of the problem, and the FW-CADIS 
method for the same amount of computational time. 
Meaningful results are not achieved in large portions of 
the problem without the FW-CADIS method. Figure 3 
shows the relative uncertainties from both methods. A 
comparison of relative uncertainty histograms, which 
illustrates the fraction of mesh cells below a certain 
relative uncertainty, is provided in Fig. 4. This figure 
clearly illustrates that analog Monte Carlo is not viable 
for this problem and that the FW-CADIS method provides 
superior convergence. This outcome is expected because 
the importance function used in the FW-CADIS methods 
corresponds to the actual desired objective. Although 
regions of large statistical uncertainty still remain with the 
FW-CADIS method, note that this is an incredibly large 
problem with dose rates varying by more than 20 orders 
of magnitude and that the results are based on only 
20 CPU days. With the use of the FW-CADIS method 
and multiple processors, this problem becomes quite 
manageable.  Nevertheless, future work is planned to 
thoroughly investigate the performance and convergence 
behavior of the FW-CADIS method. 
 

 
Fig. 1. Plan X-Y view of PWR facility. The containment, 
auxiliary, and turbine buildings and major components are 
shown. 
 

 
Fig. 2. Dose rates (mrem/h) computed using CADIS with 
the adjoint source on the outer boundaries of the model 
(left) and using FW-CADIS (right). 
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