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INTRODUCTION

In the criticality code validation of common systems,
many paths to a correct bias, bias uncertainty, and upper
subcritical limit may exist. The challenge for the
criticality analyst is to select an efficient, defensible, and
safe methodology to consistently obtain the correct
values.

One method of testing criticality code validation
techniques is to use a sample system with a known bias as
a test application and determine if the methods employed
can reproduce the known bias. In this summary, a low-
enriched uranium (LEU) lattice critical experiment with a
known bias is used as the test application, and numerous
other LEU experiments are used as the benchmarks for
the criticality code validation exercises using traditional
and advanced parametric techniques. The parameters
explored are enrichment, energy of average lethargy
causing fission (EALF), and the TSUNAMI integral index
ck with experiments with varying degrees of similarity.

TEST APPLICATION SYSTEM

For this exercise, the critical experiment identified in
the International Handbook of Evaluated Criticality
Safety Benchmark Experiments[1] (IHECSBE) as LEU-
COMP-THERM-017 Case 22 was selected as the test
application system. This system consists of square-
pitched clusters of water-moderated U(2.35)O2 rods with
steel reflecting walls. This system has an EALF value of
0.194. With ENDF/B-V cross sections, SCALE/KENO
V.a[2] computes a keff of 0.9901 ± 0.0002. The
experimentally measured keff is 1.0 with a stated
uncertainty of 0.28%. The negative code bias of ~1% lies
outside three standard deviations of the experimental
uncertainty. The exercises reported in this summary are
used to account for this bias in an effort to determine of
an appropriate upper subcritical limit for safe operation
had this been a system with an unknown bias.

BENCHMARK EXPERIMENTS

A key element in a criticality code validation is the
selection of appropriate benchmark experiments. For this
exercise, 214 thermal LEU benchmark experiments from
the IHECSBE were selected for initial evaluation. The
benchmarks include fuel-rod lattices as well as solution
systems. The solution systems were included because

they have similar enrichments to that of the test
application, but should be rejected by the parametric
techniques for obvious other dissimilarities. Benchmarks
are included from evaluations LEU-COMP-THERM-009,
-010, -017, -018, -019, -020, -021, -022, -023, -024, -026,
-032, -040, and -042, as well as LEU-SOL-THERM-001,
-003, -004, -005, -006, -007, -008, -009, -010, -016, -017,
-018, -019, 020, and -021. These experiments have 235U
enrichments ranging from 2.35 to 10.08 wt % and EALF
values ranging from 0.035 to 1.95 eV.

For this exercise, benchmarks are available that
contain all of the nuclides present in the test application.
For systems where all nuclides are not present in a single
benchmark, alternative techniques, beyond the scope of
this summary, should be explored.

TRADITIONAL TRENDING ANALYSIS

The first technique employed in this validation
exercise is that documented in NUREG/CR-6361[3],
which uses a trending analysis of keff relative to some
average system parameter(s). The techniques described in
Ref. 3 are well known, and hence not repeated here. Two
trending parameters, enrichment and EALF, were selected
for this exercise, and ULSTATS[3] was used to compute
the bias, bias uncertainty, and USL-1 value. An arbitrary
administrative margin of 5% was used for this exercise.

Using all 214 benchmarks, USLSTATS predicts a keff

of 0.9947 with a confidence width of 0.008744 and a
USL-1 value of 0.9359 for systems with an enrichment of
2.35 wt % and a keff of 0.9982 with a confidence width of
0.01049 and a USL-1 value of 0.9377 for systems with an
EALF of 0.194 eV. Trend plots for this analysis are
shown in Figs. 1 and 2 for enrichment and EALF,
respectively. The error bars on the keff values in the
figures represent the quadratically combined experimental
and Monte Carlo uncertainties.



Fig. 1. Trend plot of keff vs. enrichment for 214
benchmarks.

Fig. 2. Trend plot of keff vs. EALF for 214 benchmarks.

In Fig. 1, the benchmark keff values at the target
enrichment of 2.35 wt % range from ~0.99 to ~1.00, and
in Fig. 2, a greater spread of data, ~0.99 to ~1.01, is
observed near the target EALF of 0.194 eV. Given the
large number of selected benchmarks with parameter
values near the target values, a non-parametric analysis
could be used to assess a negative 1% bias, consistent
with that observed for the test application system.
However, it is possible that if some benchmarks were
excluded from the analysis, a non-conservative estimate
of the true bias could result.

Even when the benchmarks are parsed in parametric
space such that only lattice benchmarks with the target
enrichment of 2.35% are examined, a 0.5% spread in keff

values near the target EALF value of 0.194 remains, as
shown in Fig. 3.

Fig. 3. Plot of keff vs. EALF for lattice benchmarks with
235U enrichments of 2.35 wt %.

TSUNAMI METHODS

The Tools for Sensitivity and UNcertainty Analysis
Methodology Implementation (TSUNAMI) [4,5]
computational sequences within the SCALE code system
use first-order eigenvalue perturbation theory to predict
the response of a system keff value to changes in each
constituent group-wise cross-section-data value. These
sensitivity data can be coupled with energy-dependent
cross-section-covariance data to give an uncertainty in the
computed keff value due to uncertainties in the cross-
section data. The TSUNAMI-IP[6] code utilizes the
sensitivity and uncertainty data from an application and a
benchmark to quantify system similarity with numerical
indices, including the integral index ck. The ck index is a
correlation coefficient that quantifies the amount of
shared uncertainty in the keff values of an application and
a benchmark due to cross-section uncertainties. A ck

value of 1.0 means that the uncertainties for the
application and the benchmark are all generated from the
same nuclides and reactions at the same energies, whereas
a ck value of 0.0 means that uncertainties of the two
systems are completely unrelated.

A premise of the TSUNAMI validation concept is
that computational biases originate with the cross-section
data. If the cross-section uncertainties are correctly
tabulated, then computational biases should be bounded
by the uncertainties. For the current application system,
TSUNAMI gives the uncertainty in keff due to
uncertainties in the cross section data of 0.85%. When
combined quadratically with the experimental (0.28%)
and statistical (0.02%) uncertainties for this system, a
total uncertainty of 0.90% results. Recall that the
computed keff of this system is 0.9901 ± 0.0002. Thus,
this computed keff lies just outside one standard deviation
of the measured value of 1.0.

Test Application
2.35 wt-%

Test Application
0.194 eV

Benchmarks with EALF
Values Near that of Test
Application - 0.194 eV



USE OF TSUNAMI FOR SIMILARITY
ASSESSMENT

The sensitivity data for the test application and the
benchmarks were drawn from an existing database of
TSUNAMI sensitivities computed with the KENO V.a-
based TSUNAMI-3D sequence using the SCALE 238-
group ENDF/B-V cross-section data library. These
sensitivity data were processed through the TSUNAMI-IP
code to produce the ck of each benchmark relative to the
test application.

A scatter plot of keff vs. ck for all 214 benchmarks is
shown in Fig. 4. All experiments have ck values above
0.8, with some as high as 0.999. This indicates that the
minimum correlation of the uncertainties for the selected
benchmarks is 80% and the maximum correlation is
99.9%. As ck approaches 1.0, the keff values of the most
similar benchmarks converge towards the keff of the test
application. The TSUNAMI methods provide a
convenient means of automatically selecting experiments
that are most similar to the test application. The ck values
for 2.35 wt % benchmarks are shown in Fig. 5 as a
function of EALF. The benchmarks with EALF values
closest to that of the test application, 0.194 eV, have ck

values near 1.0. The ck value decreases for benchmarks
with increasing or decreasing EALF values relative to the
test application. Thus, the TSUNAMI methods have
automatically selected the benchmarks that are most
similar to the test applications in terms of multiple
traditional trending parameters.

Examining the keff values of only the 2.35 wt %
benchmarks with ck values ≥ 0.98 shown in Fig. 6, the
trend of the benchmarks towards a keff of 0.99 where ck =
1.0 is further emphasized.

Fig. 4. Scatter plot of keff vs. ck for 214 benchmarks.

Fig. 5. Plot of ck vs. EALF for benchmarks with 235U
enrichments of 2.35 wt %.

Fig. 6. Plot of keff vs. ck for benchmarks with 235U
enrichments of 2.35 wt %.

USE OF TSUNAMI FOR BIAS DETERMINATION

TSUNAMI was used to predict the bias, bias
uncertainty, and USL-1 for the test application. If keff is
trended from low to high values of ck, then extrapolating
to the keff value where ck is 1.0 gives the predicted bias of
the application system. With extrapolations, the
confidence band is non-linear, and an enhanced version of
USLSTATS was developed to output a quadratic
confidence band.

When ck trending is applied to the test application
with all 214 benchmarks, and with the extrapolation to ck

= 1.0, USLSTATS predicts a keff of 0.9953 with a
confidence width of 0.009205 and a USL-1 value of
0.9361. The trend plot of this analysis is shown in Fig. 7.

Test Application
ck = 1.0

Test Application
ck = 1.0

Test Application
0.194 eV



Fig. 7. Trend plot of keff vs. ck for 214 benchmarks.

HOW TO DETERMINE IF YOU HAVE
SUFFICIENT BENCHMARKS

For this test application, the availability of several
benchmarks with ck values above 0.99 allows for an
accurate determination of the code bias. In fact, the use
of only a few systems with ck values above 0.99 should
lead to an accurate assessment of the computational bias.
However, in general, such highly correlated benchmarks
are not always available. To determine how similar the
benchmarks must be to the test application to obtain the
correct bias, several other bias determinations were
conducted with various subsets of benchmarks, each with
varying degrees of correlation. Initially, three subsets of
benchmarks were included:

 only those with ck ≥ 0.95,
 those ck ≥ 0.90,
 and those with 0.80 ≥ ck ≥ 0.90.
Trend plots with ck ≥ 0.95, ck ≥ 0.90 and 0.80 ≥ ck ≥

0.90 are shown in Figs. 8, 9, and 10, respectively. The
results of each of the trending analyses are summarized in
TABLE I, along with the results of the traditional trending
analysis. The resulting bias, confidence width, and USL-
1 values with all benchmarks and those with ck ≥ 0.95 and
ck ≥ 0.90 are quite similar. However, when the
benchmarks with the highest ck values are omitted in the
0.80 ≥ ck ≥ 0.90 case, the bias increases non-
conservatively by 1.5%. However, the USL-1 value only
increases by ~0.5% due to the positive-bias adjustment of
USLSTATS.

Fig. 8. Trend plot of keff vs. ck for benchmarks with ck ≥
0.95.

Fig. 9. Trend plot of keff vs. ck for benchmarks with ck ≥
0.90.

Fig. 10. Trend plot of keff vs. ck for benchmarks with 0.80
≥ ck ≥ 0.90.
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Test Application
ck = 1.0

Test Application
ck = 1.0
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ck = 1.0



TABLE I. Results of trending analyses with benchmarks
set with differing ranges of ck

Trending
Parameter

Benchmarks
Included

Predicted
keff

Confidence
Width

USL-1

Enrichment All 0.9947 0.0087 0.9359

EALF All 0.9982 0.0105 0.9377

All 0.9953 0.0092 0.9361

ck ≥ 0.95 0.9935 0.0077 0.9358

ck ≥ 0.90 0.9934 0.0092 0.9342
ck

0.80 ≥ ck≥ 0.90 1.0084 0.0104 0.9396

Lowest Correlated Benchmarks

To further explore the variation of the bias and the
resulting USL-1 values, a series of USLTATS
calculations was conducted. First, a USLSTATS analysis
was conducted using only benchmarks with the lowest ck

values. Then benchmarks with increasing ck values were
incrementally added to form a cumulative benchmark set
including all benchmarks with a certain ck and below, and
the USLSTATS analysis was repeated. The results of this
series of USLSTATS calculations are shown in Fig. 11.
For example, the k(1.0) curve at the “Maximum ck” value
0.90 is the predicted keff for the test application using a
cumulative set of all benchmarks with ck values of 0.90
and lower. This particular 0.90 data point corresponds to
the trending analysis shown in Fig. 10. Thus, Fig. 11
represents the data from 214 trend plots like Fig. 10 but
with increasing numbers of benchmarks moving from low
to high ck values. The k(1.0) line represents the
extrapolation of each trend line to ck = 1.0.

Fig. 11. Results of USLSTATS analyses for cumulative
benchmarks sets with increasing ck values.

The wide variation of the predicted values for
benchmark sets including only low ck values, as shown in
Fig. 11, is due to a lack of information included in the
initial steps of this analysis. Once sufficient benchmarks
are included, the solution begins to converge. In Fig. 11
the predicted keff value does not drop below 1.0 until the
benchmark set includes experiments with ck ≥ 0.95.
However, the predicted keff less the confidence width,
shown as the k(1.0) – w(1.0) curve, does drop below 1.0
when ck values ≥ 0.90 are included in the benchmark set.
Because of the positive bias adjustment, the USL-1 value
for all sets never exceeds 0.94.

Highest Correlated Benchmarks

An alternative approach is to repeat this procedure
starting with only the benchmarks with the highest ck

values and incrementally adding benchmarks with
decreasing ck values. The results of this series of analyses
are shown in Fig. 12. Here, the predicted keff value
remains below 1.0 for all benchmark sets, and the
trending procedure converges with only a few
benchmarks included. Also, the USL-1 values remain
below 0.94.

Fig. 12. Results of USLSTATS analyses for cumulative
benchmarks with decreasing ck values.

From Figs. 11 and 12, it is clear that the inclusion of
higher quality benchmarks, those with higher ck values,
lead to an improved estimate of the actual bias. In
Fig. 11, the predicted keff less the confidence band bounds
the computed keff of the test application when benchmarks
with ck values ≥ 0.95 are included in the analysis.
However, this value should not be treated as a general
cutoff criterion, as it may not be generally applicable for
all systems. Note that for this test application, there is a
scarcity of data between ck of 0.90 and 0.95. Only 19
experiments have ck values in this range, and the
computed keff values for these benchmarks range from
0.99 to 1.01. The use of 19 experiments with the wide



variation of keff values is not sufficient for a reliable
prediction using the parametric methods of USLSTATS.

Sufficient Number of Benchmarks

Another process for determining sufficient
benchmarks is to examine the number of benchmarks with
ck ≥ 0.90 required to obtain a correctly predicted keff

value. The convergence of the USLSTATS calculation as
a function of incrementally adding benchmarks with
increasing ck values of 0.90 and above is shown in
Fig. 13. Here, the USLSTATS results are shown as a
function of the number of experiments included, not the
maximum ck of the experiments. For this case, when 25
experiments are included in the analysis, the predicted keff
less the confidence band bounds the actual keff of the test
application. Thus, the inclusion of more benchmarks with
ck values between 0.90 and 0.95 could lead to the correct
prediction of keff without including experiments with ck

values exceeding 0.95. Also note that for this series of
USLSTATS calculations, the USL-1 value remains below
0.935 for the entire series of calculations.

Fig. 13. Results of USLSTATS analyses for cumulative
benchmarks with increasing ck values from 0.90.

CONCLUSIONS

This code validation exercise has demonstrated that
the known bias of an actual system can be accurately
bounded through the use of parametric analysis and
applicable critical experiments. The TSUNAMI integral
index ck was shown to identify benchmarks that are most
similar to the test application, consistent with those
identified through the use of multiple traditional
parameters, enrichment, and EALF. As the ck value of the
most similar benchmarks increases, the keff values trend
towards that of the test application. For each trending
analysis, the USL-1 value remains below 0.94. It was
demonstrated that, for this test application with
benchmarks that contain all of its nuclides, trending based

on benchmarks with ck values ≥ 0.95 bounds the true
computational bias with only a few benchmarks. It was
also demonstrated that trending with 25 or more
benchmarks with ck ≥ 0.90 bounds the true computation
bias.
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