
Cross-Protection Efficacy GARDASIL®

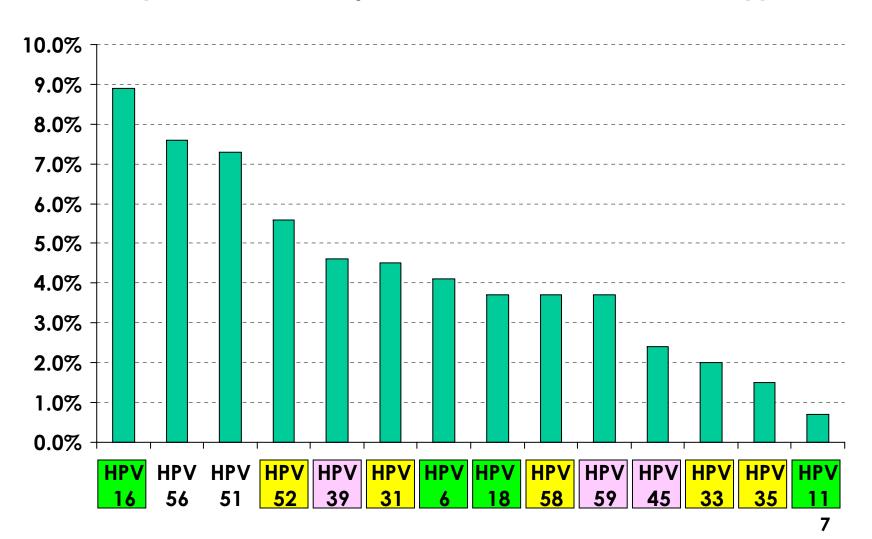
Richard M. Haupt, MD, MPH
Vaccines & Infectious Disease
Merck & Co., Inc.

- Contribution of HPV Types to Cervical Disease
- Approach to Cross-Protection Evaluation
- Results
- Clinical Benefit of Cross-Protection

- Contribution of HPV Types to Cervical Disease
- Approach to Cross-Protection Evaluation
- Results
- Clinical Benefit of Cross-Protection

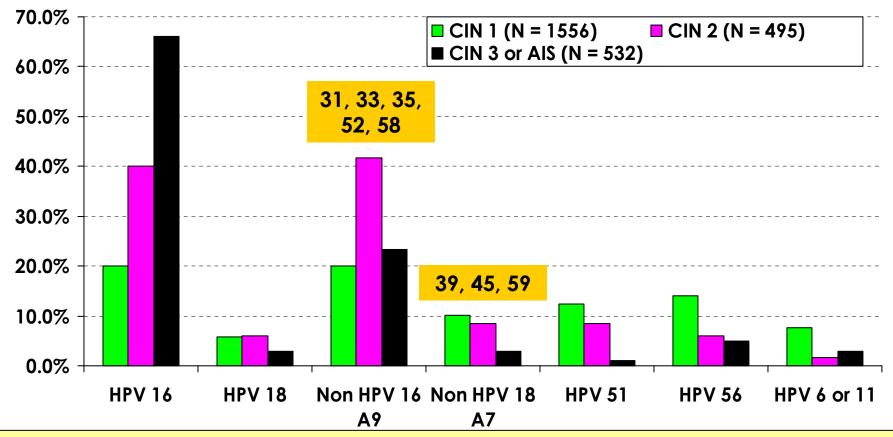
Contribution of HPV Types to Cervical Cancer

Species/HPV Type	Contribution
Species A9	70.6%
HPV 16	58.7%
HPV 31	3.8%
HPV 33	2.3%
HPV 35	1.4%
HPV 52	2.2%
HPV 58	2.2%
Species A7	18.7%
HPV 18	12.2%
HPV 39	0.5%
HPV 45	4.7%
HPV 59	1.2%
HPV 68	0.1%
Species A5/A6/A11	2.5%
Type X (unidentified) or Infection with >3 Types	8.2%


To calculate HPV type contribution in cases of infection with ≥ 2 HPV types, a hierarchy based on the pathogenicity of types was used (HPV 16>18>31/45>33/52/58>all others).

Natural History Findings from FUTURE I/FUTURE II

Phase III Studies of GARDASIL™ in 16- to 26-Year-Old Women


FUTURE I/II: HPV PCR Status at Day 1

At Day 1, 32.8% of Subjects Were Positive to ≥1 HPV Type

Species A9 (HPV 16-Related): Common in CIN 2/3

Contribution of HPV Species to Incident Cases in CIN
16-26 Year-Old Placebo Subjects in the Generally HPV-Naïve Population† of
FUTURE I/II

For non-vaccine types, only cases in which vaccine types were NOT detected are included

Conclusion: Natural History Studies

- Contribution of HPV types varies with lesion type
- Cervical cancer
 - Co-infection is uncommon
 - HPV 16/18 responsible for 70 to 75%
 - HPV 31, 33, 45, 52, 58 responsible for an additional ~15%
- High grade lesions
 - Co-infection is common
 - HPV 16 and HPV 16-related types predominate
 - HPV 18 also important
 - HPV 18-related types less important
- Low grade lesions
 - Co-infection is common
 - HPV 16 most common, but many others contribute

- Contribution of HPV Types to Cervical Disease
- Approach to Cross-Protection Evaluation
- Results
- Clinical Benefit of Cross-Protection

Cross-Protection Evaluation of GARDASIL™ Choice of HPV Types

HPV Type	Proportion in Cervical Cancer	Species	Coat Protein Homology
HPV 16	58.7%	Α9	Prototype
HPV 18	12.2%	A7	Prototype
HPV 45	4.7%	A7	88%
HPV 31	3.8%	Α9	83%
HPV 33	2.3%	Α9	81%
HPV 52	2.2%	Α9	80%
HPV 58	2.2%	Α9	80%
HPV 35	1.4%	A9	81%
HPV 59	1.2%	A7	78%
HPV 51	0.7%	A5	
HPV 56	0.6%	A6	
HPV 39	0.5%	A7	77%
HPV 26, 53, 66, 68, 82	0.9%	Various	

To calculate HPV type contribution in the setting of infection with ≥ 2 HPV types, a hierarchy based on the pathogenicity of HPV types was used (HPV 16>18>31/45>33/52/58>all others).

WHO Opinion Regarding Cross-Protective Efficacy Standards

Expert Committee on Biologic Standardization

- Cross-neutralization studies cannot be used to predict efficacy against non-vaccine types
- Efficacy data are needed to demonstrate crossprotection
 - Incidences of lesions (such as CIN of any grade, CIN2/3 or AIS) due to the types in question; and/or
 - Viral persistence (Persistent Infection ≥12 months)

Cross-Protection Evaluation: GARDASIL™

- Infection Cross-Protection (Substudy of FUTURE I, N= 3571)
 - Persistent HPV 31/33/45/52/58 infection or related disease
 - Testing for 16, 18, 35, 59 also conducted
- Disease Cross-Protection (FUTURE I/II, N= 17,599)
 - HPV 31/45-related CIN (any grade) or AIS
 - HPV 31/33/45/52/58-related CIN (any grade) or AIS
 - Testing for HPV 6, 11, 16, 18, 35, 51, 56, 59 also conducted
- Up to 4 years of follow-up

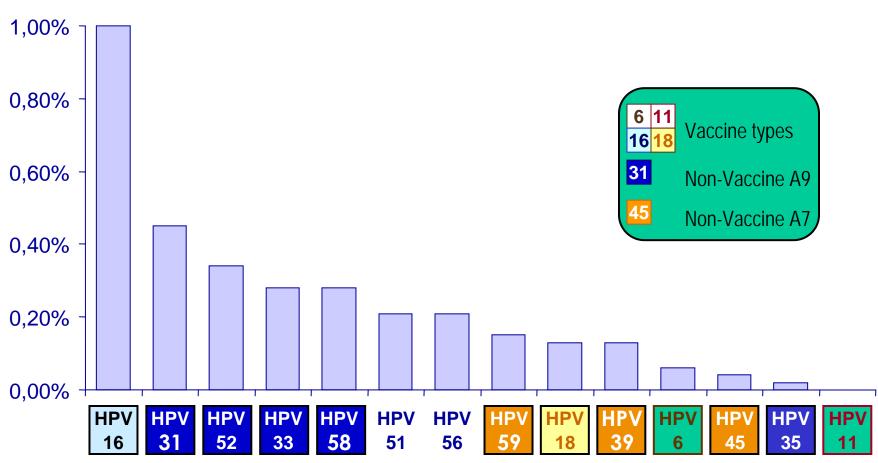
Relevant Population for Evaluation

Generally HPV-Naïve – At Day 1:

- Negative Pap
- Negative to 14 HPV types

Methodological advantage:

- Each women starts at the same status (no mixed prevalent/incident infections)
- All lesions after Day 1


Clinical relevance:

Approximates primary cohorts for vaccination

- Contribution of HPV Types to Cervical Disease
- Approach to Cross-Protection Evaluation
- Results
- Clinical Benefit of Cross-Protection

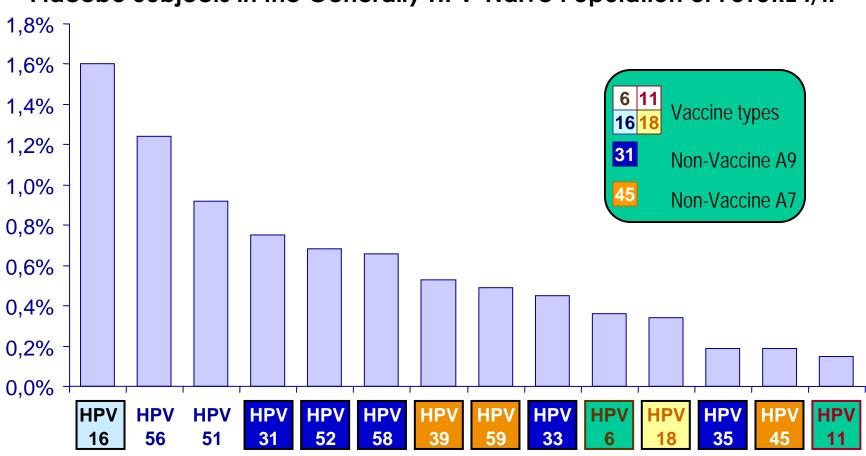
In FUTURE I/II, Most New CIN 2/3 or AIS Cases Were Caused by Species A9

Cumulative Incidence of CIN 2/3 or AIS Among Placebo Subjects in the Generally HPV-Naïve Population of FUTURE I/II

GARDASIL™: Cross-Protection Against CIN 2/3 + AIS

Primary Type Clusters in the Generally HPV-naïve Population

Causal HPV Type	GARDASIL™	Placebo	Efficacy	95% CI
HPV 31/45	8	21	62%	10,85
HPV 31/33/45/52/58	27	48	43%	7,66


GARDASIL™: Cross-Protection Against CIN 2/3 + AIS

By Species and Overall in the Generally HPV-naïve Population

Causal HPV Type	GARDASIL™	Placebo	Efficacy	95% CI
10 Non-vaccine Oncogenic Types	38	62	38%	6, 60
HPV 31, 33, 35, 39, 45, 51, 52, 56, 58, 59				
A9 Species	26	48	45%	10, 68
HPV 31, 33, 35, 52, 58				
A7 Species	8	15	46%	-35, 80
HPV 39, 45, 59				

In FUTURE I/II, New CIN Lesions Were Caused by Many HPV Types

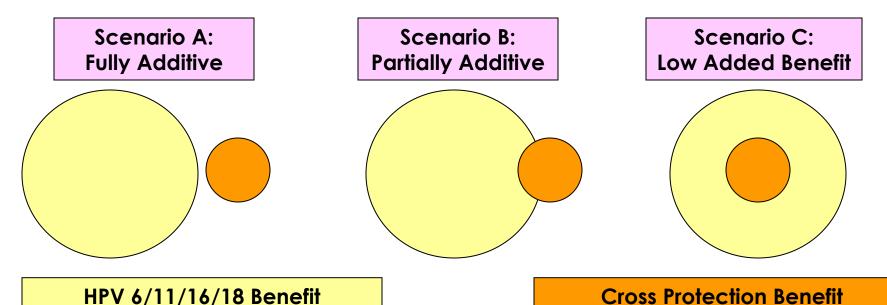
Cumulative Incidence of CIN (Any Grade) or AIS Among Placebo Subjects in the Generally HPV-Naïve Population of FUTURE I/II

GARDASIL™: Cross-Protection Against CIN (Any Grade) + AIS

Primary Type Clusters in the Generally HPV-naïve Population

Causal HPV Type	GARDASIL™	Placebo	Efficacy	95% CI
HPV 31/45	23	42	45%	6, 68
HPV 31/33/45/52/58	66	99	33%	8, 52

GARDASIL(TM): Cross-Protection Against CIN (Any Grade) + AIS


By Species and Overall in the Generally HPV-naïve Population

Causal HPV Type	GARDASIL™	Placebo	Efficacy	95% CI
10 Non-vaccine Oncogenic Types	135	185	27%	8, 42
HPV 31, 33, 35, 39, 45, 51, 52, 56, 58, 59				
A9 Species	64	97	34%	8, 52
HPV 31, 33, 35, 52, 58				
A7 Species	36	54	33%	-4, 57
HPV 39, 45, 59				

- Contribution of HPV Types to Cervical Disease
- Approach to Cross-Protection Evaluation
- Results
- Clinical Benefit of Cross-Protection

Additional Public Health Impact of Cross-Protection is Complex

- In setting of infection with >1 type, added benefit may differ from value in isolation
 - Coinfection is common
 - Risk for HPV infection is dependent on sexual behavior
- Theoretical cross-protection benefit fewer women with events and/or fewer events in individual women

Analysis of Benefit: Generally HPV-Naïve Population

Placebo Group

Vaccine Group

Cases Prevented

Counting does not consider if there is also HPV 31/33/45/52/58 in the lesion

51 CIN2/3 cases

Minus

0 CIN2/3 cases

Equals

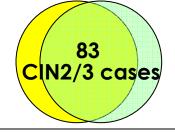
51 CIN2/3 cases

Efficacy against 31/33/45/52/58 only:

Counting does not consider if there is also HPV 16/18 in the lesion

48 CIN2/3 cases

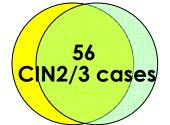
Minus



Equals

21 CIN2/3 cases

Efficacy against 16/18/31/33/45/52/58:


In placebo group, 16 cases included ≥2 types: HPV 16 or 18 + HPV 31, 33, 45, 52, or 58 None of the cases in the vaccine group has such overlap (zero cases of HPV 16/18)

Minus

Equals

Net
Benefit = 5
Add'l
Cases
Prevented

24

Efficacy of GARDASIL™

Clinical Benefit of GARDASIL™ has 3 components

- Major component HPV 16/18 prevention : ~100% efficacy
 - Cervical, vulvar, vaginal cancer (via precursors)
 - CIN 1/2/3 + AIS; VIN; VaIN
- Major component HPV 6/11 prevention: ~100% efficacy
 - Genital Warts
 - CIN
- Important added benefit Cross-Protection: ~38% efficacy
 - Against 10 additional oncogenic strains that account for ~20% of worldwide cervical cancers
 - CIN 2/3, CIN reduction observed in HPV-naïve girls/women