HPV Vaccines Overview of Data from Clinical Trials

Advisory Committee on Immunization Practices October 25, 2007

Lauri Markowitz, MD NCHHSTP Centers for Disease Control and Prevention

DEPARTMENT OF HEALTH AND HUMAN SERVICES CENTERS FOR DISEASE CONTROL AND PREVENTION

Overview

- Background
- Efficacy
- Immunogenicity
- Ongoing and planned studies

Background: HPV

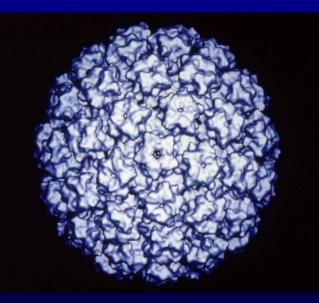
- More than 100 different types
 - >40 types are mucosal
 - "High risk", oncogenic types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58....)

~ 70% of cervical cancers due to types 16 or 18

- "Low risk", nononcogenic types (6, 11, 42, 43, 44...)

>90% of genital warts, recurrent respiratory papillomatosis caused by types 6 or 11

HPV-Related Cancers United States, 2003


Anatomic site	Total Cancers	% due to HPV
Cervix	11,820	100
Anus	4,187	85
Vaginal/vulvar	4,577	40
Penis	1,059	40
Oral/Pharyngeal	29,627	15

HPV L1 VLP Vaccines

- HPV L1 major capsid protein of the virus is antigen used for immunization
- Expression of L1 protein using recombinant technology
- L1 proteins self-assemble into virus-like particles (VLP)

HPV VLP

Prophylactic HPV L1 VLP Vaccines

	Quadrivalent (Merck)	Bivalent (GSK)
Vaccine Type	HPV 6/11/16/18	HPV 16/18
Manufacturing	Yeast - S. cerevisiae	Baculovirus
Composition	20 μg HPV 6 40 μg HPV 11 40 μg HPV 16 20 μg HPV 18	20 μg HPV 16 20 μg HPV 18
Schedule	0,2,6 months	0,1,6 months
Adjuvant	Alum: 225 µg Aluminum Hydroxyphosphate Sulfate	AS04: 500 μg Aluminum Hydroxide 50 μg 3-deacylated Monophosphoryl Lipid A
Availability in US	Licensed in June 2006	Application submitted to FDA in March 2007

HPV Vaccines: Selected Aspects of Clinical Development Programs

Vaccine/ <u>Manufacturer</u>	Phase II Efficacy <u>Trials*</u>	Phase III Efficacy <u>Trials+</u>	Adolescent Immunogenicity <u>Safety Trials</u>	
Quadrivalent <i>Merck</i>	females 16-23 yrs	females 16-26 yrs	9-15 yrs	
Bivalent GSK	females 15-25 yrs	females 15-25 yrs	10-14 yrs	

*powered to detected incident and persistent infection endpoints *powered to detect CIN 2/3 or AIS endpoints

HPV Vaccines: Selected Aspects of Clinical Development Programs

Vaccine/ <u>Manufacturer</u>	Phase II Efficacy <u>Trials*</u>	Phase III Efficacy <u>Trials+</u>	Adolescent Immunogenicity <u>Safety Trials</u>	Immunogenicity and Efficacy in females <u>> 25 years</u>
Quadrivalent <i>Merck</i>	females 16-23 yrs	females 16-26 yrs	9-15 yrs	24-45 yrs
Bivalent GSK	females 15-25 yrs	females 15-25 yrs	10-14 yrs	26-55 yrs

*powered to detected incident and persistent infection endpoints *powered to detect CIN 2/3 or AIS endpoints

Quadrivalent HPV Vaccine Efficacy Trials by Protocol and Region

	Phase II		Phase III		
Region	Protocol 005	Protocol 007	Protocol 013 Future I	Protocol 015 Future II	Total Subjects
North America	X	X	X	X	5475
Latin America		X	X	X	5780
Europe		X	X	X	9232
Asia-Pacific			X	X	702
Total Subjects	2409	1158	5455	12,167	21,189

Protocol 005 studied monovalent HPV 16 vaccine Protocols 007, 013, and 015 studied quadrivalent HPV vaccine

Bivalent HPV Vaccine Efficacy Trials by Protocol and Region

	Phase II		Phase III	
Region	Protocol 001	Protocol 007	Protocol 008 PATRICIA	Total subjects
North America	X	X *	X	3679
Latin America	X	X *	X	3280
Europe			X	6445
Asia-Pacific			X	6353
Total Subjects	1113	776*	18,644	19,757

Efficacy

- Bivalent and quadrivalent HPV vaccine trials
 - similar endpoints such as persistent infection or CIN2/3
 - slightly different protocols for detecting HPV, screening and management of abnormal cytology results

Efficacy Analysis Populations

In phase III trials, most females were sexually active and were enrolled without regard to PCR or antibody status

Per Protocol Population for Efficacy Naïve to relevant vaccine HPV type through month 7 Received all 3 vaccinations No Protocol deviation Cases counted after dose 3

Unrestricted susceptible populations (or total vaccinated) Naïve to relevant vaccine HPV type Received at least 1 vaccination Cases counted day one after dose 1

Intent-to-Treat Population All subjects regardless of baseline status Received at least 1 vaccination Cases counted day one after dose 1

HPV Vaccine Efficacy

Prevention of HPV 16/18-related CIN 2/3 or AIS

Vaccine/Analysis	Vaccine N cases	Control N cases	Efficacy (CI)
Quadrivalent Per protocol	5305 1	5260 42	<mark>98</mark> (86-100)
Unrestricted	5865 3	5863 62	<mark>95</mark> (85-99)
Bivalent Unrestricted	7788 2	7838 21	<mark>90</mark> (53-99)

CIN – cervical intraepithelial neoplasia; AIS – adenocarcinoma in situ

The Future II Study Group. NEJM 2007;356. 16-26 year old females; mean follow-up 3 years Paavonen, et al. Lancet 2007;369 15-25 year old females; mean follow-up 15 months

HPV Vaccine Efficacy

Prevention of HPV 16/18-related CIN 2/3 or AIS

Vaccine/Analysis	Vaccine N cases	Control N cases	Efficacy	(CI)
Quadrivalent Per protocol	5305 1	5260 42	98	(86-100)
Bivalent Unrestricted	7788 2	7838 21	90	(53-99)

- For both quadrivalent and bivalent vaccines, cases in vaccine group had a non vaccine oncogenic type detected in preceding specimen (s) and also in the CIN2/3 lesion
- Analyses using lesions believed causally associated with vaccine types showed even higher (100%) efficacy (Paavonen, et al. Lancet 2007;369)

HPV Vaccine Efficacy Prevention of HPV 16/18-related CIN 2/3 or AIS

<u>Vaccine/HPV type</u>	<u>Vaccine</u> <u>N</u> <u>Cases</u>	<u>Control</u> <u>N</u> <u>Cases</u>	<u>Efficacy (CI)</u>
Quadrivalent			
HPV 16	5054 3	5043 51	<mark>94</mark> (82-99)
HPV 18	5602 0	5602 16	100 (74-100)
Bivalent			
HPV 16	6701 1	6717 15	<mark>93</mark> (47-100)
HPV 18	7221 1	7258 6	<mark>83</mark> (-78-100)

Unrestricted susceptible or total vaccinated populations

The Future II Study Group. NEJM 2007;356. 16-26 year old females; mean follow-up 3 years Paavonen, et al. Lancet 2007;369 15-25 year old females; mean follow-up 15 months

Quadrivalent Vaccine Efficacy Prevention of HPV 6,11,16,18 related External Anogenital & Vaginal Disease

Endpoint	Vaccine N cases	Placebo N cases	Efficacy	(95% CI)
Condyloma	2261 0	2279 48	100	(92, 100)
VIN or VaIN 2/3	7811 0	7785 15	100	(72-100)

Per Protocol Population

VIN – vulvar intraepithelial neoplasia; VaIN – vaginal intraepithelial neoplasia

Efficacy for Prevention of HPV Disease, by Baseline Status Quadrivalent HPV Vaccine Trials

	Seronegative	Seropositive
PCR (-)	Prophylactic efficacy	Few cases 100% efficacy
PCR (+)	No evidence of efficacy against respective type	No evidence of efficacy against respective type

Quadrivalent Vaccine Prevention of HPV 16/18 Related CIN 2/3 or AIS by Baseline HPV Status

Baseline Status	Vaccine N cases	Placebo N cases	Efficacy (9	95% CI)
PCR + Sero -	423 33	402 35	10.0% (<	<0-46)
PCR + Sero +	298 47	332 52	1.2% (<	<0-100)
PCR - Sero +	498 0	524 4	100% (<0-35)

At baseline, 16% sero or PCR positive to HPV 16; 7% sero or PCR positive to HPV 18

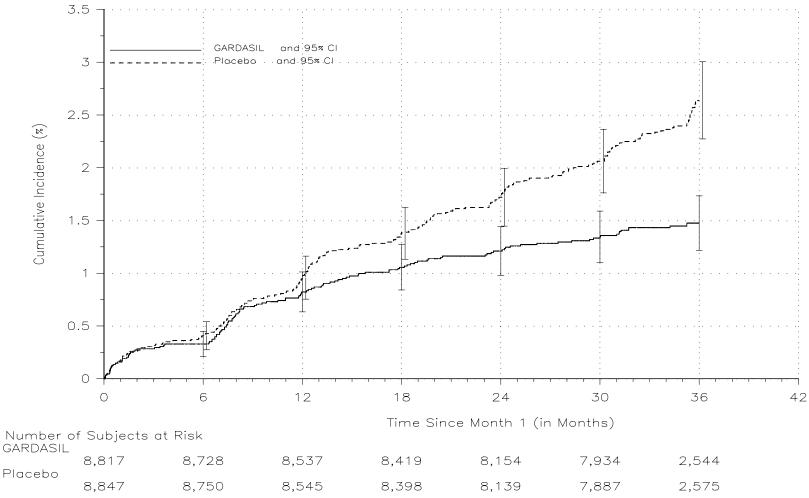
The Future II Study Group. NEJM 2007;356 – supplementary appendix

Bivalent Vaccine Viral Clearance for HPV 16/18

Endpoint	Vaccine N cleared	Control N cleared	Efficacy	(95% CI)
6 months	241 81	288 93	2.6%	(-10.1 to 13.8)
12 months	149 98	196 98	-7%	(−31.7 to 13.0)

Quadrivalent Vaccine Intent-to-Treat Analysis

Vaccine Type-Related Outcomes


Protocols 007, 013, 015

Endpoint	Vaccine cases	Placebo cases	Efficacy	(95% CI)
CIN2/3 or AIS	137	232	41	(27, 53)
VIN or VaIN 2/3	9	31	71	(37, 88)
Vulvar and vaginal lesions (including genital warts)	72	319	78	(71, 83)

Barr, Presented at ACIP – February 2007; mean follow up 2.8 years

Quadrivalent HPV Vaccine Time to HPV 16/18-Related CIN 2/3 or AIS

Intent to treat populations – protocols 07, 013, 015

Duration of Protection

Mean Follow-up Time in Clinical Trials

<u>Trial</u>	<u>Quadrivalent</u>	<u>Bivalent</u>
Phase III	3 years	15 months
Phase II	5 years	5.5 years

Quadrivalent Vaccine – Phase II Study HPV 6,11,16,18 related endpoints Efficacy through 5 years

Endpoint	Vaccine N cases	Placebo N cases	Efficacy	(95% CI)
Persistent infection	235 2	233 45	95.6	(83.3-99.5)
CIN 1-3	235 0	233 3	100	(<0-100)
Condyloma	235 0	233 3	100	(<0-100)

Per protocol analysis

Persistent infection - HPV detected at two visits 4 months apart

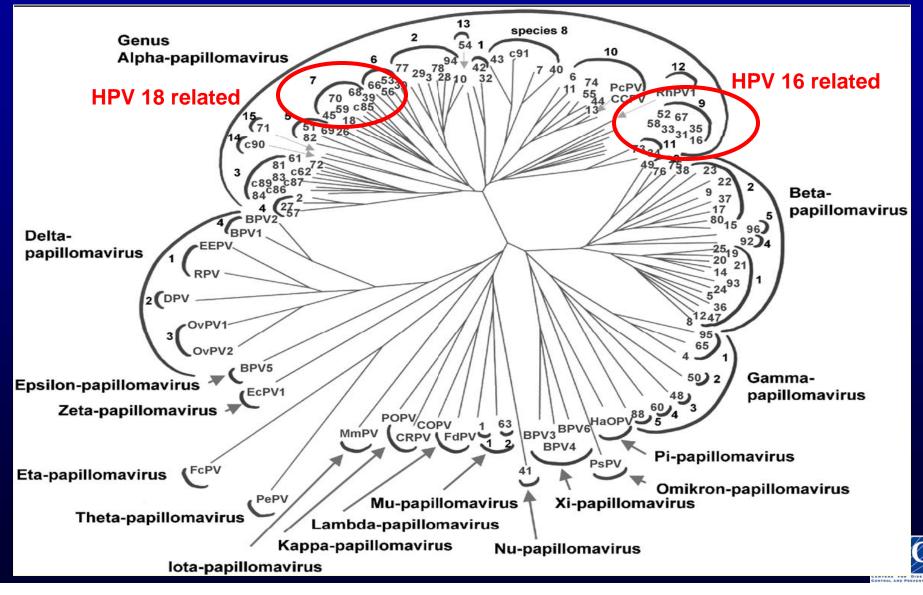
Bivalent Vaccine - Phase II Study HPV-001/007: HPV-16/18 endpoints

Efficacy through 5.5 yrs

Endpoints	Vaccine (Cases)	Control (Cases)	Efficacy	(95% CI)
Incident Infection	3	66	96	(88,99)
12 Month Persistence	0	14	100	(72,100)
CIN lesions	0	11	100	(33, 100)

Per protocol analysis for virologic endpoints ITT analysis for cytologic and CIN endpoints

Gall, et al. Presented AACR 2007. Abstract 4900



Cross Protection

Do the HPV vaccines provide protection against related HPV types?

Phylogenetic Characterization of Oncogenic HPV Types

Cross-protection: Bivalent Vaccine 6 month Persistent Infection

	Vaccine	Placebo		
Causal HPV Type	N cases	N cases	Efficacy	(97.9% CI)
Type 45*	6734 10	6747 25	59.9	(2.6 - 85.2)
Type 31 ⁺	6615 47	6667 74	36.1	(.5 - 59.5)
Type 33+	6702 31	6736 49	36.5	(-9.9 - 64.0)
Type 52 ⁺	6532 79	6573 116	31.6	(3.5 - 51.9)
Type 58⁺	6688 43	6734 33	-31.4	(-132 – 24.7)

* HPV 18 related; *HPV 16 related

 Significant protection against combination of (12) non-vaccine oncogenic types using 12 mos persistent infection: VE = 27%; CI: 0.5-47%

CIN 2/3 and AIS

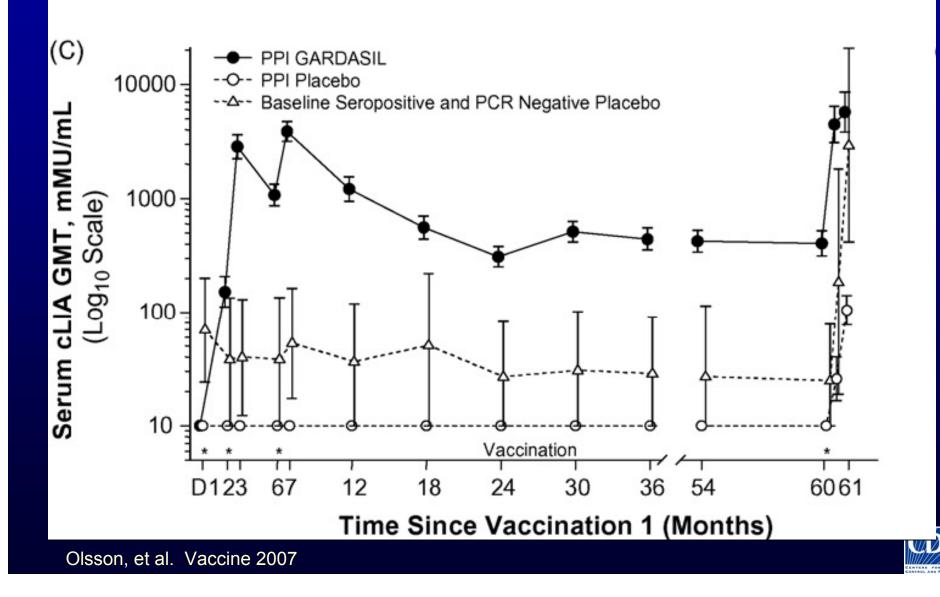
Causal HPV Types	Vaccine N=4616	Placebo N=4675	Efficacy	(95% CI)
A9 Species (16 related) HPV 31, 33, 35, 52, 58	26	48	45%	(10, 68)
A7 Species (18 related) HPV 39, 45, 59	8	15	46%	(-35, 80)

Among generally HPV-naïve Population

Villa, et al. Presented at Eurogin 2007

Immunogenicity

- Main basis of protection is neutralizing antibody
- Minimum protective antibody threshold is not known
- Serologic tests for HPV antibody not standardized Merck - competitive Luminex immunoassay (cLIA) GSK - type specific ELISA
- Differences in methods of antibody detection preclude direct comparison of type specific antibody within studies and between two vaccines


Seropositivity at Months 7 and 36 **Post Vaccination**

Vaccine/ HPV type	<u>Month 7</u>	<u>Month 36</u>
Quadrivalent*		
Anti-HPV 6	100%	96%
Anti-HPV 11	100%	98%
Anti-HPV 16	100%	99%
Anti-HPV 18	100%	74%
Bivalent ⁺		
Anti-HPV 16	100%	99%
Anti-HPV 18	100%	99%

* Villa, et al. Vaccine 2006 - competitive Luminex immunoassay (cLIA)

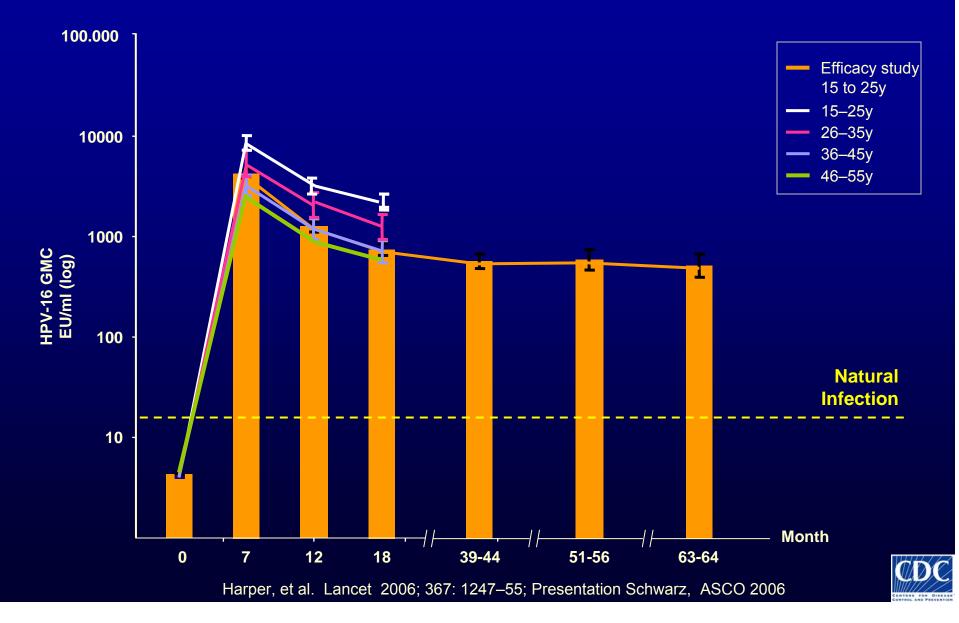
+ Harper, et al. Lancet 2006 - type specific ELISA

Quadrivalent Vaccine HPV 16 GMTs and Response to Dose 4

Adolescent Bridging Immunogenicity Data

Immunogenicity non-inferior to older females in phase III efficacy trials for both vaccines

- Seropositivity similar (>99%)
- GMTs 2- fold higher



Immunogenicity Data in Women >25 Years

- Bivalent HPV vaccine: 26-55 year-old women
 - 100% seropositivity after 3 doses
 - Age-related differences in peak GMTs
- Quadrivalent HPV vaccine
 Available in near future

Bivalent HPV Vaccine HPV 16 Antibody in Women >25 Years

Safety

- Multiple safety outcomes evaluated in clinical trials including:
 - Injection site reactions
 - Serious adverse events
 - New onset chronic diseases including new onset of autoimmune diseases
 - Pregnancy and pregnancy related outcomes

Safety

- Injection site events occur more often in vaccine than control recipients
- No significant increase in serious adverse events or new onset chronic diseases
- No difference in overall pregnancy outcomes in vaccine or control groups

Summary: Efficacy

- High efficacy against vaccine HPV type related virologic and CIN endpoints among females naïve to the relevant vaccine type for both vaccines
- High efficacy against vaccine HPV type related genital warts, VIN and VaIN (Quadrivalent)
- Efficacy data available from Phase II trials through ~60 months show sustained high efficacy
- Some cross protection against non vaccine types (virologic endpoints for Bivalent; histologic for Quadrivalent)
- No evidence of therapeutic efficacy

Summary: Immune Response

- Serum antibodies induced in all vaccinees
- Vaccine induced antibody levels are higher than those seen after natural infection
- Duration of antibody through ~5 years. Loss of detectable antibody to HPV 18 not associated with loss of protection (Quadrivalent)
- Challenge produces anamnestic response (Quadrivalent)
- Antibody titers are non inferior in young adolescents (9 or 10-15 years) compared with women in efficacy trials
- Age related decreases in GMTs in women >25 yrs, but GMTs substantially higher than after natural infection (Bivalent)

Ongoing or Planned Studies

	<u>Quadrivalent</u>	<u>Bivalent</u>
Follow-up phase II and III trials	X	X
Immuno/efficacy in females >25 yrs	X	X
Efficacy trials in men 16-26 yrs	X	
Simultaneous administration	X	X
Comparative immunogenicity		X
Safety & immunogenicity in HIV+ women (and men - Quadrivalent)	X	X
Phase 4: long term follow-up	X	X

Acknowledgments

Eliav Barr Gary Dubin Elizabeth Unger Eileen Dunne

