Cost-effectiveness of Influenza Vaccination: Updated Estimates for Children Aged 2-4 Years

Lisa Prosser, Virginia Hinrichsen, Tracy Lieu, Harvard Medical School/Harvard Pilgrim Health Care

Martin Meltzer, DEISS/NCPDCID/CCID/CDC

Anthony Fiore, Scott Epperson, Carolyn Bridges, ID/NCIRD/CDC

Conflict of Interest Statement:

All authors declare no known conflict of interest.

Acknowledgment:

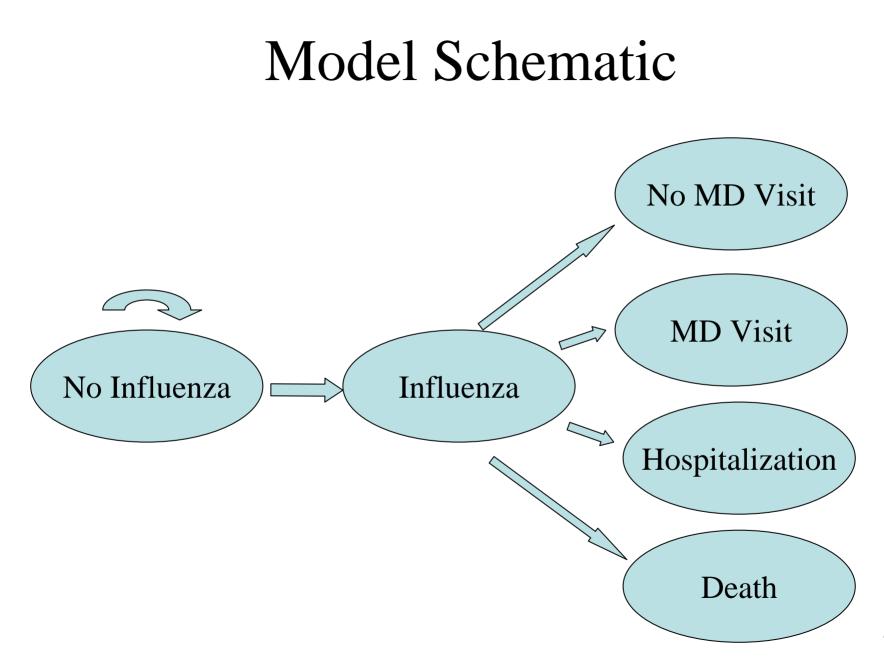
Funding for this study was provided by the Centers for Disease Control and Prevention through the Harvard/CDC Joint Initiative in Vaccine Economics.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Introduction

- New data comparing live attenuated and inactivated influenza vaccines
 - Comparative effectiveness
 - Possible increased incidence of adverse events for live attenuated vaccine
 - Fever
 - Wheezing
 - Hospitalization

Objectives


- Evaluate the cost-effectiveness of influenza vaccination for children aged 2-4 years in the United States
 - Update previously published cost-effectiveness model with current cost data
 - Incorporate possible increased incidence of adverse events for live attenuated vaccine

Alternatives

- Strategies evaluated:
 - Inactivated influenza vaccine (IIV)
 - Live attenuated influenza vaccine (LAIV) for eligible age/risk groups
 - No vaccination

Methods: Target population

- Computer simulation to estimate costs and effects for influenza-related illness for:
 - children aged 2 to 4 years
 - 2 years
 - 3-4 years
 - stratified by risk status: high risk/ non-high risk
 - cohorts of 1,000 children for each age/risk group

Economic Model: Analysis Plan

- Incremental cost-effectiveness analysis:
 - \$ / influenza episode avoided
 - \$ / hospitalization averted
 - \$ / death averted
 - \$ / QALY gained

$$C/E \text{ Ratio} = \frac{Costs_{Vaccination} - Costs_{No Vaccination}}{Events_{Vaccination} - Events_{No Vaccination}}$$

• Sensitivity Analyses

Model Inputs

- Inputs from primary and secondary data sources
 - Natural history of influenza in children
 - Effects (reduced incidence rates, adverse events)
 - Costs (direct medical costs, opportunity costs)
 - Adjustment for quality-of-life
- Societal perspective
- Timeframe: One year (except death, long-term sequelae)
- Discount rate: 3%

Model Inputs: Influenza-related probabilities 2 yrs, Non-high-risk

Variable	Base Case	Range
	Value	(95% CI)
Prob. of influenza illness	0.155	0.02 - 0.35
Hospitalizations, per 10,000	17.1	0.5-56.8
Deaths from influenza, per million	1.5	0-11.4

Model Inputs: Influenza-related costs (2006\$) 2 yrs, Non-high-risk

Event	Base Case Value	Range
Non-medically- attended influenza	\$3	_
Influenza-related MD visit	\$38	\$12 - 98
Influenza-related hospitalization	\$5,100	\$2,500 - 12,200

Model Inputs: Preferences for influenza-related events

Event	Time Trade-off Amount		Quality-adjusted life years lost (95% CI)
	Median	Mean	
Influenza	0 days	68 days	0.005
			(0.002, 0.009)
Otitis media	7 days	265 days	0.042
			(0.023, 0.065)
Pneumonia	1 year	2.7 years	0.076
hospitalization			(0.054, 0.100)

Model Inputs:

Vaccination-related probabilities, IIV, 2 yrs

	Probability	Range
Vaccine effectiveness	0.69	0.40-0.90
Injection site reaction	0.003	0.0008-0.006
Systemic reaction	0.011	0.002-0.014
Anaphylaxis	1 in 4 million	0-0.000001
GBS	1 in 1 million	0-0.00001

Model Inputs: Vaccination-related probabilities, LAIV, 2 yrs

	Probability	Range
Vaccine effectiveness	0.84	0.60-0.96
Systemic reaction	0.03	0.005-0.04
Anaphylaxis	1 in 4 million	0-0.000001
GBS	1 in 1 million	0-0.00001
Wheezing Episode	0.0037	0.0016-0.01
Hospitalization following vaccination	0.000157	0-0.2

Model Inputs: Vaccination-related costs, IIV, 2 years

	Direct Medical Costs	Range
Vaccine dose costs	\$13.52 (under 3) \$14.32(3 and older)	Varied as part of total vaccination costs
Injection site reaction	\$69	\$34-773
Systemic reaction	\$38	\$12-98
Anaphylaxis	\$3,000	\$60-15,500
GBS	\$26,400	\$7,500-89,300

Model Inputs: Vaccination-related costs, LAIV, 2 yrs

	Direct	Range
	Medical Costs	
Vaccine dose costs	\$17.90	Varied as part of total vaccination costs
Systemic reaction	\$38	\$12-98
Anaphylaxis	\$3,000	\$60-15,500
GBS	\$26,400	\$7,500-89,300
Wheezing Episode	\$186	\$118-220
Hospitalization following vaccination	\$5100	\$2,500-12,200

Sources: 19, 27-29

Model Inputs: Vaccination-related costs, IIV, 2 yrs

(Range) Sources: 27, 30-31	(\$30-\$110)
Total Vaccination Costs	\$88 *
Adverse event costs	\$4
0-2 visits	\$33
Parent time costs	
0-2 visits	\$29
Administration costs	
1-2 doses	\$21
Vaccine dose costs	

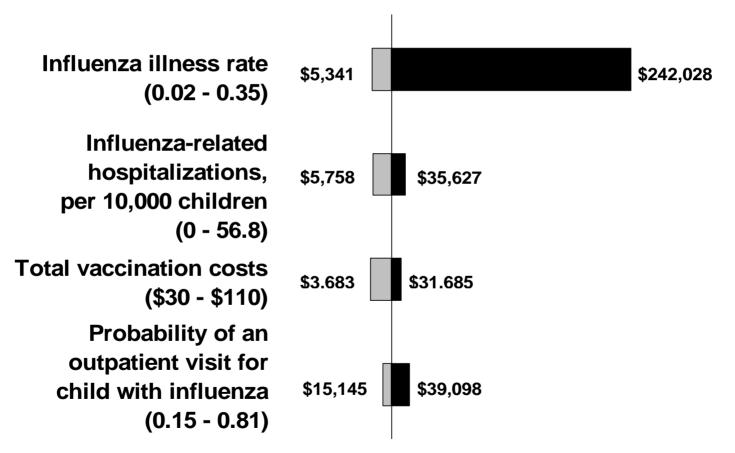
Model Inputs: Preferences for vaccinationrelated events (QALYs lost)

	QALYs lost	Range
Injection site reaction	None	-
Systemic reaction	None	-
Anaphylaxis	0.02	0.006-0.041
GBS	0.141	0.092-0.199
Wheezing Episode	0.0018	0.0003-0.005
Hospitalization following vaccination	0.076	0.054-0.100

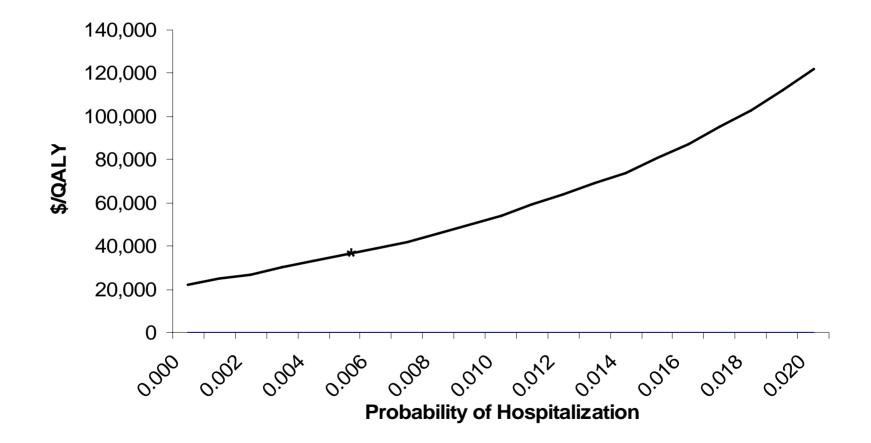
Sources: 20-21, 32

Results: Mean outcomes per 1,000 (95% CI) 2 yrs, Non-high-risk

	Inactivated vaccine	Live attenuated vaccine
Net costs	59K (7K, 97K)	64K (5K, 105K)
Episodes averted	107 (15, 276)	130 (20, 322)
Hosps averted	1.2 (0.1, 4.2)	1.4 (0.1, 4.9)
Deaths averted	0.001 (0, 0.005)	0.001 (0, 0.005)
QALYs saved	2.4 (0.3, 7.3)	2.9 (0.3, 8.2)


Results: Mean \$/Event Avoided (95% CI) 2 yrs, Non-high-risk

	IIV	LAIV
\$/influenza	\$600	\$500
event	(\$35-5,000)	(\$20-4,300)
\$/hospital-	\$50,000	\$45,000
ization	(\$2,000-723,000)	(\$1,000-644,000)
\$/death	\$58m	\$52m
	(\$2.4m-2b)	(\$1.3m-1.9b)
\$/QALY	\$25,000	\$23,000
	(\$1,000 - 271,000)	(\$1,000 - 236,000)


Results: Mean C/E Ratios, \$/QALY (95% CI)			
	IIV,	IIV,	LAIV,
	High risk	Non-high risk	Non-high risk
2 yrs	CS	\$25,000	\$23,000
	(CS; 122,000)	(1,000; 271,000)	(1,000; 236,000)
3-4 yrs	\$2,000	\$37,000	\$33,000
	(CS; 171,000)	(6,000; 290,000)	(5,000; 306,000)

CS = Cost savings

Sensitivity Analysis: 2 yrs, LAIV, Non-high-risk

Sensitivity analysis: Probability of hospitalization following LAIV

*Dominated by inactivated vaccine (LAIV is more costly yet saves QALYs).

Results

- For children 2-4 years, updated cost-effectiveness results remained similar to previous results
 - LAIV has similar or better cost-effectiveness than IIV for this age group (IIV currently recommended)
- Inclusion of possible new adverse events for LAIV had varying effects on cost-effectiveness
 - Not sensitive to inclusion of wheezing
 - Very sensitive to possible increased probability of hospitalization
- Results sensitive to probabilities of key outcomes and vaccination costs

Limitations

- Herd immunity effects not considered
- Limited data regarding some key assumptions
- Quality adjustments for adverse events may not reflect increased value associated with causing harm

Reviewer Comments

- Comment: Additional description of methods for determining parent time costs requested
 - Response: Text and references added.
- Comment: Add discount rate to slide
 - Response: Added as requested
- Comment: Revise model schematic
 - Response: Unable to include full model schematic on slide but included in technical report
- Comment: \$/hosp and \$/death not included in technical report
 - Response: Not considered primary endpoints for the analysis, but can be calculated directly from data in Table 3.

Mean C/E Ratios, \$/QALY

	IIV,	IIV,	LAIV,
	High Risk	Non-high risk	Non-high risk
2 years	CS	\$25,000	\$23,000
3-4 years	\$2,000	\$37,000	\$33,000
5-11 years	\$18,000	\$104,000	\$90,000
12-17 years	\$25,000	\$157,000	\$136,000

New Recommendations, 2004-2006 Advisory Committee on Immunization Practices

Program	Age Group	\$/QALY*
Rotavirus	Infants	Cost saving
Pertussis	Adolescents	21,000
HPV	Adol girls	25,000
Influenza (LAIV)	2-4 yrs, non-high-risk	26,000
Hepatitis A	2 yrs	28,000
Varicella 2 nd dose	5 yrs	109,000
Meningococcal	Adolescents	131,000

Summary

- Inclusion of higher rates of adverse events had little impact on cost-effectiveness results with the exception of a possible increase in all-cause hospitalization
- LAIV was more costly but more effective than IIV unless risk of hospitalization is considerable

References

- 1) Fox JP, Hall CE, Cooney MK, Foy HM. Influenza virus infections in Seattle families, 1975-1979: II. Pattern of infection in invaded households and relation of age and prior antibody to occurrence of infection and related illness. Am J Epidemiol. 1982;116:228-242.
- 2) Foy HM, Hall CE, Cooney MK, Allan ID, Fox JP. Influenza surveillance in the Pacific Northwest 1976-1980. Intl J Epidemiol. 1983;12(3):353-356.
- 3) Glezen WP, Taber LH, Frank AL, Gruber WC, Piedra PA. Influenza virus infections in infants. Pediatr Infect Dis J. 1997;16(11):1065-1068.
- 4) Hall CE, Cooney MK, Fox JP. The Seattle virus watch: IV. Comparative epidemiologic observations of infections with influenza A and B viruses, 1965-1969, in families with young children. Am J Epidemiol. 1973;98(5):365-380.
- 5) Monto AS, Sullivan KM. Acute respiratory illness in the community: frequency of illness and the agents involved. Epidemiology and Infection. 1993;110:145-160.
- 6) Monto AS, Koolman JS, Longini JrIJ. Tecumseh study of illness: XIII. Influenza infection and disease, 1976-1981. Am J Epidemiol. 1985;121(6):811-822.

References (2)

- 7) Neuzil KM, Zhu Y, Griffin MR, et al. Burden of interpandemic influenza in children younger than 5 years: a 25-year prospective study. J Infect Dis. 2002;185(147):152.
- 8) Neuzil KM, Dupont WD, Wright PF, Edwards KM. Efficacy of inactivated and cold-adapted vaccines against influenza A infection, 1985 to 1990: the pediatric experience. Pediatr Infect Dis J. 2001;20(8):733-740.
- 9) Sullivan KM, Monto AS, Longini JrIJ. Estimates of the US health impact of influenza. Am J Pub Health. 1993;83(12):1712-1716.
- 10) Taber LH, Paredes A, Glezen WP, Couch RB. Infection with influenza A/Victoria virus in Houston families, 1976. J Hyg. 1981;86:303-313.
- 11) Belshe RB, Mendelman PM, Treanor J, et al. The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N Engl J Med. 1998;338(20):1405-1412.
- 12) Heikkinen T, Ruuskanen O, Waris M, et al. Influenza vaccination in the prevention of acute otitis media in children. AJDC. 1991;145:445-448.
- 13) Heikkinen T, Thint M, Chonmaitree T. Prevalence of various respiratory viruses in the middle ear during acute otitis media. N Engl J Med. 1999;340:260-264.

References (3)

- 14) Teele DW, Klein JO, Rosner B, Greater Boston Otitis Media Study Group. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis. 1989;160(1):83-94.
- 15) Thompson WW, Shay D, Weintraub E, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA. 2003;289(2):179-186.
- 16) PDR Physicians Desk Reference. 2000 Redbook: Pharmacy's Fundamental Reference (Red Book Drug Topics). 2000 ed. Montvale, N.J.: Thomson PDR; 2000.
- 17) Personal communication from Finkelstein JA. March 10, 2004.
- 18) Finkelstein JA, Stille CS, Nordin J, et al. Reduction in antibiotic use among US children, 1996-2000. Pediatrics. 2003;112(3):620-627.
- 19) The Medstat Group. 2001-2003 Marketscan database. Ann Arbor, MI.
- 20) Prosser LA, Bridges CB, Uyeki TM, et al. Values for preventing influenzarelated morbidity and vaccine adverse events in children. Health Qual Life Outcomes. 2005;3(18):1-16.

References (4)

- 21) Prosser LA, Ray GT, O'Brien M, et al. Preferences and willingness to pay for health states prevented by pneumococcal conjugate vaccine. Pediatrics. 2004;113(2):283-290.
- 22) Nichol KL. The efficacy, effectiveness and cost-effectiveness of inactivated influenza virus vaccines. Vaccine. 2003;21:1769-1775.
- 23) Belshe RB, Gruber WC, Mendelman PM, et al. Efficacy of vaccination with live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine against a variant (A/Sydney) not contained in the vaccine. J Pediatr. 2000;136(2):168-175.
- 24) Belshe RB, Edwards KM, Vesikari T, et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med. 2007;356(7):685-696.
- 25) Belshe RB, Edwards KM, Vesikari T, et al. Live attenuated versus inactivated influenza vaccine in infants and young children Supplementary Appendix. N Engl J Med. 2007.
- 26) Cvetkovich T, Baylor M. FDA Briefing Document for the Vaccines and Related Biological Products Advisory Committee (VRBPAC). 2007. Available at: http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4292B1-00index.htm. 1-27. Accessed August 20, 2007.

References (5)

- 27) Centers for Disease Control and Prevention. CDC Vaccine Price List. 2007. Available at: http://www.cdc.gov/vaccines/programs/vfc/cdc-vac-pricelist.htm. Accessed June 15, 2007.
- 28) PDR Physicians Desk Reference. 2006 Redbook: Pharmacy's Fundamental Reference (Red Book Drug Topics). 110 ed. Montvale, NJ: Thomson PDR; 2006.
- 29) Center for Medicare and Medicaid Services. July Update to 2006 Medicare Physician Fee Schedule Files. 2006. Available at: <u>http://www.cms.hhs.gov/PhysicianFeeSched/PFSNPAF/itemdetail.asp?filterTy</u> <u>pe=none&filterByDID=-</u> <u>99&sortByDID=2&sortOrder=ascending&itemID=CMS064293&intNumPerP</u> age=10
- 30) American Academy of Pediatrics. Pediatric service utilization, fees and managed care arrangements: 2001 report based on 1999 data.; 2001: 1-11.
- 31) US Department of Labor Bureau of Labor Statistics. Consumer price index. 2004. Available at: http://www.bls.gov. Accessed August 16, 2004.
- 32) Moy ML, Fuhlbrigge AL, Blumenschein K, et al. Association between preference-based health-related quality of life and asthma severity. Ann Allergy Asthma Immunol. 2004;92(3):329-334.