Buffer Layer Strategic Research and Development

OAK RIDGE NATIONAL LABORATORY

Chemical Sciences Division

T. Aytug(1/2), D. B. Beach, M. Paranthaman, S. Sathyamurthy, and C.E. Vallet

Metals and Ceramics Division

A. Goyal, L. Heatherly, D. F. Lee, D. M. Kroeger, S. Kang

F. A. List, P. M. Martin, and E. D. Specht

Solid State Division

T. Aytug(1/2), D. K. Christen, H. M. Christen, C. Cantoni,

R. Feenstra, A. A. Gapud, J. R. Thompson, and H. Y. Zhai

FY 2002 EE/RE Funding: \$750 k: 2.5 FTE Staff, 2 FTE Post-Doctoral Fellows

Partnerships:

University Collaborators

- University of Florida: D. P. Norton
- University of Wisconsin: D. C. Larbalestier, M. Feldman
- University of Kansas: J. Z. Wu

National Laboratory Collaborators

- Argonne National Laboratory: Balu Balachandran, D. Miller, B. Ma
- National Institute of Standards & Technology:

J. Ekin, N. Cheggour (Boulder); W. Wong-Ng (Gaithersburg)

- Sandia National Laboratory: M. Siegal, P. Clem
- Los Alamos National Laboratory: P. Arendt, S. Foltyn, T. Holesinger

Industrial Licensees/Partners

• American Superconductor, 3M, Microcoating Technologies, Neocera, Oxford Superconducting Technology

PURPOSE: To develop a basic understanding of and practical synthesis paths for epitaxial buffer layers on textured metal tapes for coated conductors.

FY2002 OBJECTIVES:

- Optimize sulfur treatment to demonstrate consistent epitaxial seed layer deposition
- Optimize buffer layers on metal alloy substrates
- Investigate single buffer-layers for YBCO/RABiTS
 Develop cap-buffer layers for MgO-buffered tapes (collaborative with LANL and ANL)

Explore feasibility of buffers on copper substrates for YBCO coatings

OUTLINE

• FY 2002 Results:

- Studies of sulfur superstructure and influence on epitaxial growth of oxide buffer layers of different structural classes
- Buffer layers on emerging metal tapes

Non-magnetic copper and NiCr alloys

- Single buffer layers for YBCO/RABiTS
- Cap-buffer-layer development for MgO-based tapes (LANL IBAD MgO and ANL ISD MgO)

• FY 2002 Performance and Plans for FY 2003

Research Integration

Characteristics of the c(2×2) Superstructure on Ni

• Stable at high temperature

 c(2×2) does not transform to other structures

• Forms by segregation and/or adsorption with identical results on seed layer growth

<mark>S/Ni</mark> = 0.5

Ni

c(2 × 2)-5

The c(2×2)-S Superstructure Promotes Epitaxy

H₂S Treatment Controls the c(2×2)-S **Needed for Buffer Layer Epitaxy**

Exposure times of few s are sufficient to produce a complete $c(2\times 2)$ layer

U. S. DEPARTMENT OF ENERGY

S Treatment Transferred to AMSC Yields Consistent Epitaxial Seed Layer Deposition

Reel-to-reel X-ray on 3-meter long Y₂O₃ seed on sulfurized Ni-W tape

Seed Layers that Require c (2×2)-S

fluorite	Seed Layer	H ₂ O pressure	O ₂ pressure
		(Torr)	(Torr)
	CeO ₂	1×10 ⁻⁵	~ 7×10 ⁻⁸
	YSZ	1×10 ⁻⁸	≤ 1×10-9
	Y ₂ O ₃	1×10 ⁻⁵	~ 7×10 ⁻⁸
	Gd ₂ O ₃	1×10 ⁻⁵	~ 7×10 ⁻⁸
	SrTiO ₃	6×10 ⁻⁸	≥ 1×10 ⁻⁹
	LaMnO ₃	6×10 ⁻³	≥ 10-6

perovskite

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

 \mathbf{r}

Epitaxial Growth of CeO₂ and STO on Pd Requires c (2×2)-S

Seed Layers That do not Want the S Superstructure: MgO

- MgO grows cube on cube on clean Pd
- Initial growth is layer-by-layer
- $c(2\times 2)$ -S disturbs MgO growth

After 250 s

Why does MgO behave differently?

Structural differences

- No (001) oxygen planes, strong Mg - O bond, no structural vacancies
- Reported epitaxy on clean Ag (S. Schintke et al. Phys. Rev. Lett. 87 (2001) 276801)
- Interesting properties of MgO
 - Good oxygen diffusion barrier $D_{MgO}(800^{\circ}C) \cong 10^{-28} \text{ cm}^2/\text{s}$ $D_{STO}(800^{\circ}C) = 2 \times 10^{-12} \text{ cm}^2/\text{s}$
 - Low temperature deposition

The Effect of S on Solution Buffer Layer Growth

- On Ni and Ni-3%W substrates with optimum S (~100 %), buffers with perfect cube texture were reproducibly produced
- On substrates with less S, irreproducible results were obtained

-BA

U. S. DEPARTMENT OF ENERGY

Summary

- Control of the S superstructure by on-line H₂S exposure has produced consistent epitaxial seed layer deposition at ORNL and AMSC
- The study of the influence of S on seed layer epitaxy was extended to a wide range of oxides showing a behavior common to several classes of materials
- Not all oxide seed layers want the S template: MgO behaves differently than oxides with fluorite or perovskite structure
- Evidence was provided for the importance of S in growth of solution seed layers

OUTLINE

• FY 2002 Results:

- Studies of sulfur superstructure and influence on epitaxial growth of oxide buffer layers of different structural classes
- Buffer layers on emerging metal tapes

Non-magnetic copper and NiCr alloys

- Single buffer layers for YBCO/RABiTS
- Cap-buffer-layer development for MgO-based tapes (LANL IBAD MgO and ANL ISD MgO)
- FY 2002 Performance and Plans for FY 2003
 Research Integration

Issues Involved in Buffer Layer Deposition on Ni-13%Cr

- c(2×2)-S superstructure has the same role as in pure Ni
- Cr-O-free surface only stable below P(O₂)=1.0×10⁻⁸ Torr
 - YSZ is a viable seed layer but needs UHV
 - $J_c = 0.4 \text{ MA/cm}^2$ demonstrated on YBCO/CeO₂(80 *nm*)/YSZ(170 *nm*)/Ni-13%Cr
- Need for a low-deposition-temperature seed layer
 - MgO + Pd overlayer: only if Pd can be thin and no Pd/Ni interdiffusion

Pd/Ni Interdiffusion Studies

- Interdiffusion occurs at 500 ℃ and is dramatic at 600 ℃
- At T = 400 $^{\circ}$ C there is no interdiffusion \Rightarrow Pd film can be thin

Alternative Architecture for Ni-alloy-Based Conductors

Thin metal layer; no need for sulfurization; low-temperature seed layer deposition

Buffer Layers on Cu

• Why is Cu interesting?

- Inexpensive
- Low resistivity, no need of stabilizing cap \Rightarrow higher J_E (for totally conducting architectures)
- Can be strengthened without increasing resistivity

Important Issues

- Higher thermal expansion than Ni
- Surface interaction with S different than in Ni
- Cu-O less self-limiting than Ni-O at high temperatures

S Superstructures on (001) Cu

- S forms only a $p(2\times 2)$ superstructure on Cu
- Epitaxy of STO and CeO₂ requires S superstructure

Cu is a Challenging Substrate

- The standard architecture is not suitable for YBCO deposition
 - disruptive oxidation/delamination
 - not a sufficient O/Cu diffusion barrier
- Pd, Ag, Ni, Au metal overlayers are not compatible with Cu surface
 - surface alloying, orientation other than (001)
- Would MgO be a suitable passivating buffer layer?

Control Study of Buffer Layers Performance on Cu Epitaxial Films on STO and MgO Substrates

U. S. DEPARTMENT OF ENERGY

TiN Provides the Cu Diffusion Barrier Needed for YBCO Deposition

J_c = 3.5 MA/cm² YBCO on Buffered Cu Films

• clean interfaces after YBCO deposition, non detectable Cu-O/Ti-O

High J_c YBCO on Buffered Single Crystal Cu

• Dense, crack-free microstructure

T-BATTEL

Summary

- A RABiTS architecture that uses MgO and LaMnO₃ with no need for sulfurization gives $J_c = 3 \text{ MA/cm}^2 \text{ Ni-13\%Cr}$ substrates
- Study of Cu surface has highlighted differences in S adsorption/segregation and seed layer nucleation as compared to other fcc metal surfaces
- High J_c was demonstrated for the first time on Cu using TiN as Cu diffusion barrier

OUTLINE

• FY 2002 Results:

- Studies of sulfur superstructure and influence on epitaxial growth of oxide buffer layers of different structural classes
- Buffer layers on emerging metal tapes
 Non-magnetic copper and NiCr alloys
- Single buffer layers for YBCO/RABiTS
- Cap-buffer-layer development for MgO-based tapes (LANL IBAD MgO and ANL ISD MgO)

FY 2002 Performance and Plans for FY 2003 Research Integration

RABiTS process with a standard architecture

YBCO by ex-situ BaF₂/TFA process or PLD (0.2 μm)

Best J_c 2.0 x 10⁶ A/cm² at 77 K

- Barrier and cap layers by rf sputtering
- Seed layers by e-beam or dipcoating

Objective: To develop a simple alternative buffer architecture Candidates: LaMnO₃ (LMO); La₂Zr₂O₇ (LZO) Techniques: rf sputtering and solution process

Developed a Conductive YBCO/ La_{0.7}Sr_{0.3}MnO₃ /Ni **Multilayer Architecture**

- YBCO (PLD); $T_c = 88 \text{ K}$ Good electrical coupling with Ni.
- $J_c = 0.5 \times 10^6 \text{ A/cm}^2$ (a) 77 K Overall low net resistivity ($\approx 7 \mu\Omega$ -cm), but

four-terminal res. indicates some contact barrier

Ref.: T. Aytug et al., Appl. Phys. Lett. 79, 2205 (October 2001)

SIMS depth profile analyses indicated a low level Sr contamination of YBCO, from the LSMO layer on Ni

SIMS depth profile analyses indicated a low level Sr contamination of YBCO, from the LSMO layer on STO

Textured LMO layers were deposited on both Ni and Ni-W substrates using rf sputtering

SIMS depth profile analyses indicated no contamination of both YBCO (from LMO) and LMO (from Ni) layers

Smooth microstructure of *LaMnO*₃ **Buffers**

1 μm

10 µm

Cross-section images of YBCO/LaMnO₃ on Ni-W

- NiO is formed at the LMO/Ni interface during the YBCO growth
- Ni diffusion is contained at the LMO layer
- LMO/YBCO interface is clean

PLD was used to grow YBCO films (0.2 μ m) with a J_c of over 1 MA/cm² on LMO buffered Ni and Ni-W substrates

Highly textured YBCO and LaMnO₃ buffers were grown on strong, non-magnetic Ni-Cr 13% substrates

YBCO films with a J_c of 1.2 MA/cm² on LMO buffered non-magnetic Ni-Cr 13% substrates using PLD

LaMnO₃ Buffers for non-RABiTS based YBCO Coated Conductors

Demonstrated the compatibility of LMO buffers on MgO single crystal substrates by growing YBCO films with a J_c of over 4 MA/cm² using both PLD (0.2 μ m) and Ex-situ BaF₂ (0.3 μ m) processes

An Oak Ridge – Los Alamos collaboration produced excellent results on IBAD MgO

- * Los Alamos sent high-quality IBAD MgO samples to Oak Ridge
- Oak Ridge sputtered a LaMnO₃ buffer layer on the MgO
- The samples were returned to Los Alamos for PLD YBCO

Result:

- YBCO texture 5.2° FWHM (in-plane); 1.8° FWHM (out-of-plane)
- YBCO thickness 1.65 μm
- ➢ J_c (75 K, self-field, two bridges) − 1.3 and 1.5 MA/cm²
- ➢ Equivalent I_c − 230 A/cm-width

This performance is comparable to the best single-layer results achieved by Los Alamos on IBAD MgO, and at several institutions on IBAD YSZ

Demonstrated the growth of YBCO films (0.2 μ m) with a J_c of 1.8 MA/cm² on *ORNL*-LaMnO₃ buffered *LANL*-IBAD MgO Buffers at ORNL

An Oak Ridge – Argonne collaboration resulted in demonstration of the "cube-on-cube" growth of YBCO (ORNL)/LMO (ORNL)/MgO-ISD (Argonne)

In-plane <110> $_{MgO}$ // <110> $_{LMO}$ // <110> $_{YBCO}$; (001) $_{MgO}$ // (001) $_{LMO}$ // (001) $_{YBCO}$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY 250 nm Dean Miller, ANL

YBCO *c*-axis inclined ~36° from substrate normal But, current conduction in basal planes

U. S. DEPARTMENT OF ENERGY

Dean Miller, ANL

Summary

- LaMnO₃ layer has been identified as an excellent seed layer, Ni diffusion barrier layer, and a cap layer (PLD YBCO)
- YBCO films with a J_c of 1.2 MA/cm² were obtained on LMO buffered non-magnetic Ni-Cr 13% substrates
- High J_c YBCO films were produced on LMO buffered- MgO IBAD or ISD substrates

LZO seeds on Ni-3%W substrates yielded high current density YBCO films grown by PLD (FY 2001)

X-ray and microstructure of all solution LZO layers

U. S. DEPARTMENT OF ENERGY

T_c and J_c data on PLD grown YBCO films (0.2 μm) on all solution LZO buffered Ni substrates

YBCO films (0.2 μ m) with a J_c of over 1 MA/cm² have been grown on all solution 60 nm thick LZO buffered Ni substrates using PLD

The performance of single solution buffer layers approach that of our standard three-layer architectures

Highly aligned YBCO films (0.2 μ m) have been grown on all solution 60 nm thick LZO buffered Ni-W substrates using PLD

All Solution-grown Single Buffer Layer Yielded 2 MA/cm² YBCO Conductor on Ni-W substrates

Thick PLD YBCO films on all solution LZO (60 nm) buffered Ni-W substrates

Summary

- LZO has been identified as an excellent Ni diffusion barrier layer
- YBCO films with a J_c of 2 MA/cm² were produced on all solution LZO buffered Ni-W substrates
- Efforts are being made to make long lengths of LZO layers

FY2002 Performance and FY2003 PlansFY2002 PlansFY2002 Performance

 Optimize sulfur treatment to demonstrate consistent epitaxial seed layer deposition

- Optimize buffer layers on metal alloy substrates
- Investigate single buffer-layers for YBCO/RABiTS

- Process conditions for superstructure formation identified
- Effects on epitaxial growth of vapor deposited and solution-grown oxides determined
- Growth models proposed for epitaxy of different structural classes
 - Significant tech transfer to industry
- Buffer architectures found for growth of YBCO on Ni-13%Cr and Ni-3%W
- \checkmark
- Solution-based La₂Zr₂O₇ single buffers developed on Ni-W and Ni tapes
- Sputtered LaMnO₃ single buffers developed on Ni, Ni-W, and Ni-Cr tapes

New Task(s) Added in FY 2002

FY2002 Plans (cont'd)

 Initiate development of buffer layers for YBCO coatings on copper alloys

FY2002 Performance

High-J_c films have been deposited by PLD on buffered copper films and single crystals

- Develop cap-buffer layers for MgObased tapes, in collaboration with LANL (IBAD MgO) and ANL (ISD MgO)
- ✓ High-J_c YBCO have been deposited by PLD on buffers of ORNL LaMnO₃ on LANL and ANL MgO-buffered alloy tapes

FY2003 Plans

- Research and develop faster, potentially lower cost, and simpler RABiTS buffer-layer architectures that are compatible with exsitu BaF₂ or MOD YBCO processes (collaboration with SNL and AMSC)
- Continue fundamental studies of epitaxial growth on textured non-magnetic substrates, including copper and copper alloys (collaboration with U. Florida, AMSC, SUNY Buffalo and North Carolina State)
- Develop suitable buffer architectures on IBAD-MgO and ISD-MgO substrates for compatibility with ex-situ YBCO (collaboration with LANL and ANL)
- Develop viable high-rate processes to fabricate high-quality thick buffer layers by solution deposition

Research Integration

- Five CRADA teams working with ORNL staff to develop science base for buffer layers for coated conductors *3M Company; American Superconductor Corp.; MicroCoating Technologies; Neocera, Inc., Oxford Superconducting Technology*
- Collaborations with universities and other labs
 U. Wisconsin; U. Kansas; U. Florida; ANL; LANL; SNL
- Information/expertise transfer:
 - >30 publications and presentations, >20 issued patents related to RABiTS technology
 - WEB posting of Annual Report and presentations from this meeting

