
Davis-Besse Nuclear Power Station

IMC 0350 Meeting

Meeting Agenda

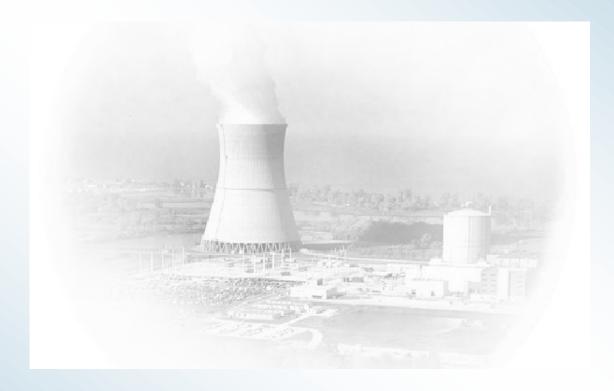
Operations Restart Readiness Assessments	
 Operations Mode 4 Preparation, Actions for Restart 	Randy Fast
- Operations Leadership, Operability Evaluation	2
Design Issue Resolution	Bob Schrauder
Containment Health	Randy Fast
Integrated Leak Rate Test,	
Resolution of Significant Plant Issues	Jim Powers
Safety Culture/Safety Conscious Work Environment	
 Mode 5 Safety Culture Assessment 	Lew Myers
 Safety Conscious Work Environment Employee Survey 	
Major Milestones/Bulk Work	
– Milestone Progress, Modifications, Work, Resources	Mike Stevens
Restart Action Performance.	Clark Price

Randy Fast Plant Manager

Actions and Preparation

- Appropriately staffed
- Completed annual requalification later 2002
- "Just in time" license requalification training
- Reactor Operator/Senior Reactor Operator pipeline
- Procedures ready for test plan
- INPO/industry evaluations ongoing
- Completed Safety Conscious Work Environment training for all Operations staff
- Implemented Operations Leadership Plan
- Key staff retrained on operability determination
- Implemented Standards and Expectations

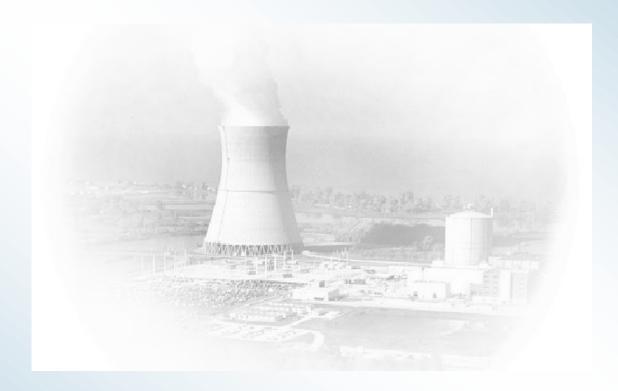
Mode 4 and Mode 3 Tests


- Reactor Coolant System (RCS) pressure walkdown at 50 psig
- Augmented leakage test for RCS components
 - Performed at 250 psig
 - Normal Operating Pressure

• Restraint Data; 4-15-03

- 429 Condition Reports Restraints
 - 395 awaiting mode hold resolution approval
 - 34 require resolution
- 355 "Additional Testing" work orders to complete (post-maintenance testing)
- 304 restraints awaiting Restart Station Review Board disposition
- 50 other (surveillance's, etc.)
- Oversight of Control Room

Operations Leadership and Operability Evaluation


Bill Pearce Vice President - FENOC Oversight

Operations Leadership and Operability Evaluation

Operations Overview

- Operational activities
- Shift turnovers
- Clearance activities
- Standards and expectations
- Conservative decision on Decay Heat Pumps
- Procedure adherence
- Operability Determinations

Design Issue Resolution

Bob Schrauder Director - Support Services

Design Issue Resolution High Pressure Injection Pumps

Issue

 Fine debris in sump could result in damage to pumps during recirculation mode

Resolution Options

- Additional filtration
- Modify existing pumps
- Test existing pumps
- Replace pumps

Current Status

- New pumps and motors have been purchased
- License amendment being prepared to support system pressure test using existing pumps
- Developing potential testing to confirm adequacy of existing pumps

Design Issue Resolution Electrical Distribution System

Issue

 A number of condition reports which challenge assumptions and completeness of analysis for electrical distribution system

Resolution

- Revise analysis using updated computer software
- Evaluate results to ensure electrical distribution system has sufficient capacity and capability to accomplish plant safety functions

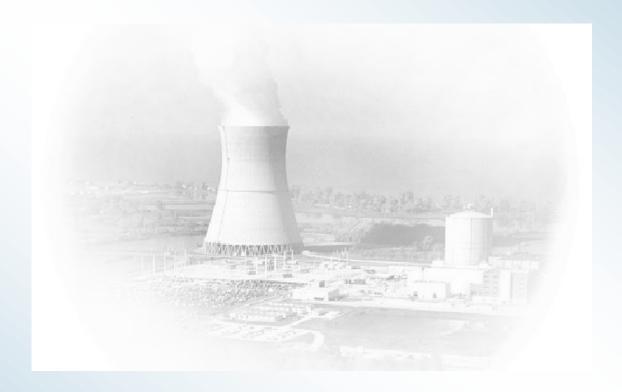
Design Issue Resolution Air Operated Valves

Issue

Several Air Operated Valves (AOVs) have design basis issues

Resolution

- 53 demonstrate sufficient margin
- 6 to be adjusted prior to restart
- 12 to be modified prior to restart
- 12 to have margin increased post restart


Design Issue Resolution **Emergency Diesel Generator (EDG) Loading**

Issue

- EDG load table not current
- EDG starting voltage and frequency response

Resolution

- Revise EDG load calculation
- Prepare transient analysis for EDG voltage and frequency response
- Evaluate impact of EDG voltage and frequency response on plant safety functions
- Evaluate results to ensure EDG has sufficient capacity and capability to start and carry design basis loads

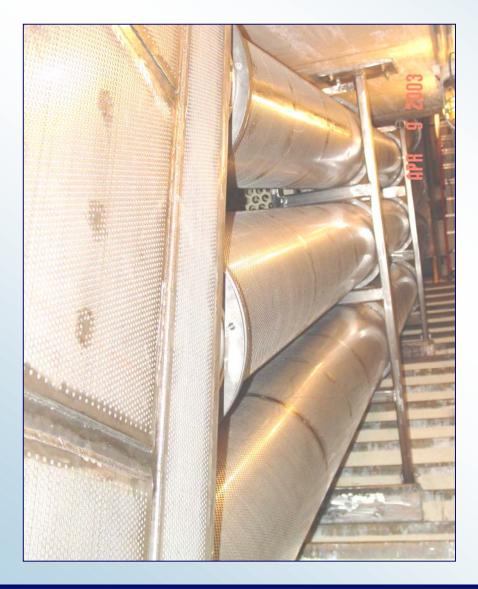
Randy Fast Plant Manager

Project Scope:

- Emergency Sump
- Containment Coatings
- Decay Heat Valve Tank
- Containment Air Coolers
- Fuel Integrity
- Environmentally Qualified Equipment
- Refueling Transfer Canal
- Containment Vessel
- Boric Acid Extent of Condition Inspections, Evaluations, and Corrective Actions

Emergency Sump

• Purpose:


 Ensure adequate long-term core cooling by significantly modifying the Emergency Sump and Strainers

Status:

- Engineering Design work completed
- Increased strainer surface area from 50 ft² to approximately 1200 ft²
- Field Installation complete
- NRC inspection of the modification performed

Access Hatch and Upper Strainer

Lower Emergency Sump Strainer

Debris Screen Gate

Containment Coatings

• Purpose:

 Ensure adequate long-term core cooling by removing degraded and/or unqualified coatings on components in Containment

• Status:

- All targeted coatings have been removed
- Repainting with qualified coating material is near completion
- Two weeks of work remain to complete painting the dome

Core Flood Tank

Service Water Piping and New Tags

Containment Dome

Decay Heat Valve Tank

Purpose:

 Ensure the integrity of the compartment without reliance on sealing compounds

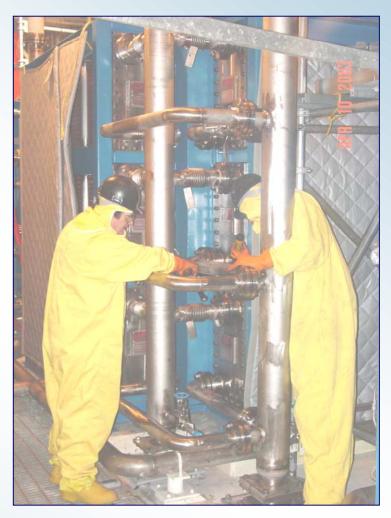
• Status:

- Engineering Design work complete
- Installation nearly complete
- Electrical conduit seal welding and LOCA Seal installation is being completed

Containment Air Coolers

• Purpose:

- Replace components damaged by exposure to boric acid
- Replace two fan motors due to a Part 21 issue


• Status:

- Fan motors have been replaced
- Fans, dampers, ductwork, and instrumentation have been cleaned, refurbished, and/or replaced, as appropriate
- Fan inlet plenum has been completely rebuilt
- Service water piping to cooling coils has been redesigned and replaced

Containment Air Coolers

- Status (Continued)
 - Physical work nearly complete
 - Piping to Containment Air Cooler # 1 is being reworked
 - Air and Service Water testing to be performed

Containment Air Cooler #3

Fuel Integrity

Purpose:

- Ensure fuel integrity during the next fuel cycle

• Status:

- Defective fuel rods from last cycle removed from service
- Fuel handling equipment and operating procedures enhanced
- Detailed visual checks during fuel movement and core load
- Two instances of spacer grid damage found and corrected
- Core reload successfully completed

Environmentally Qualified Equipment

• Purpose:

To ensure that environmentally qualified (EQ)
 equipment was not damaged by exposure to boric acid

• Status:

- EQ equipment was inspected for signs of boric acid intrusion
- Boric acid did not affect EQ equipment

Refuel Canal Leakage

• Purpose:

- Evaluate the effect of past leakage on structures
- Identify possible leakage sources

• Status:

- Concrete samples and non-destructive testing show concrete strength is good
- Rebar samples show only minor corrosion, not affecting structural integrity
- Visual, Acoustic, and Vacuum Box testing of canal liner have revealed three potential leak flowpaths
- Corrective action post restart

Concrete Core Bore

FENOC

Containment Vessel

Purpose:

To evaluate the integrity of the Containment liner

• Status:

- All examinations completed
- Containment is operable
- Integrated Containment Leak Test completed
- Install grout seal to close a gap between the carbon steel liner and the concrete curb

Containment Inspections

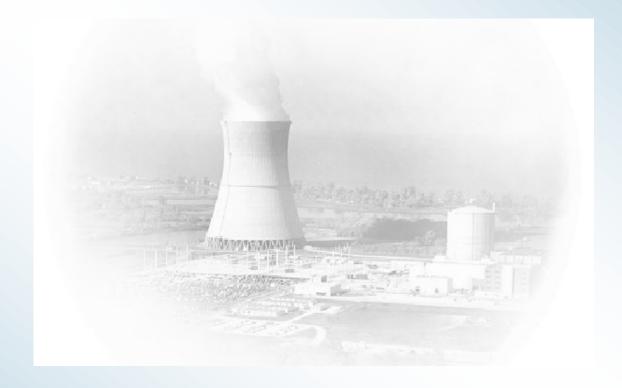
- Purpose:
 - Identify all components affected by boric acid
 - Evaluate these conditions
 - Ensure appropriate corrective actions are completed
 - Document as-left condition as a base line for future inspections

Containment Inspections (Continued)

• Status:

- Discovery inspections completed
- All evaluations have been prepared
- Over 6,500 corrective actions have been identified.
 Not all of these are restart issues.
- Of 2,219 Restart CAs assigned to Containment Health,
 1,426 are completed
- Remaining restart work is primarily cleaning boric acid residue and reinspecting to verify cleanliness and document as-left conditions
- Steam cleaning of "D-Ring" areas inside Containment is in progress

Other Site Activities


- Reactor Pressure Vessel Head:
 - Reactor reassembled
 - Missile shields installed
 - Plant is in final configuration for power operations
 - Control Rod testing will be conducted during the full pressure test

•FLUS Containment Leakage Detection System:

- Installation is complete
- Will connect to plant computer for remote monitoring
- Sensitivitytesting duringthe fullpressure test

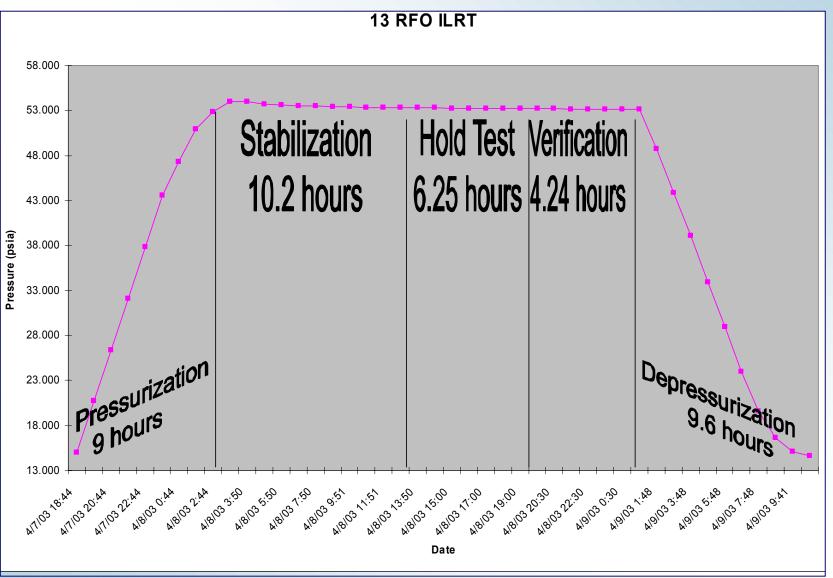
Integrated Leak Rate Test and Resolution of Significant Plant Issues

Jim Powers
Director - Nuclear Engineering

Purpose of Test

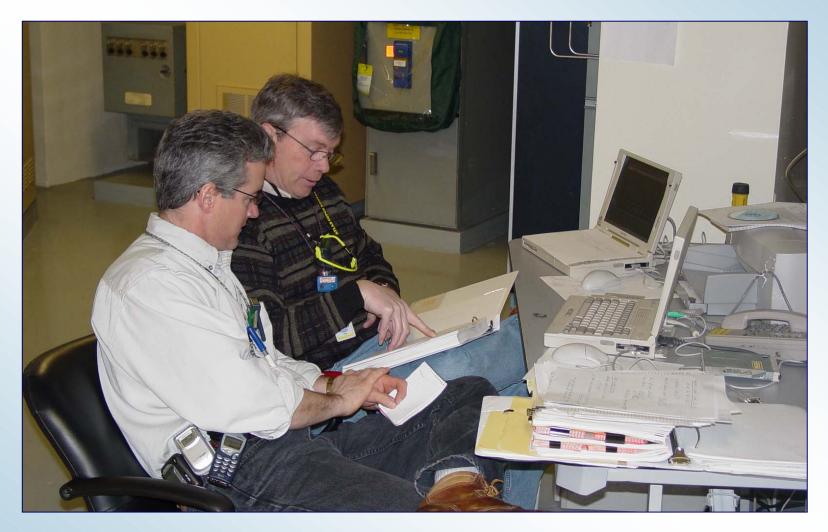
 Demonstrate leak-tight integrity of Containment at a pressure greater than could occur during an accident

Approach


- Pressurize Containment to ~40 psig with compressors
- Hold for stabilization of conditions
- Perform leakage test measurements
- Validate test instrumentation with a known leak
- Depressurize and analyze test data

Integrated Leak Rate Test Compressors

Integrated Leak Rate Test Manifold



Safety Culture and ILRT Activities

Demonstrated positive Safety Culture

Attributes

- Preplanning
- Cross functional teamwork
- Contingency planning
- Previous lessons learned from D-B and industry
- Industry peer reviewer
- Resource allocation
- Solid project management

Results: Containment Continues to be Leak Tight

Resolution of Significant Plant Issues

Significant Plant Issues Being Resolved

- Containment Emergency Sump
- Decay Heat Valve Tank
- Containment Coatings
- Valve Team Progress; 1,500 work items
 - 594 valves completed
 - 72 remain
- Permanent Reactor Cavity Seal
- Refueling Canal Repair
- Containment Air Cooler Rebuilds
- Containment Air Cooler Plenum Replacement
- FLUS Leakage Monitoring System

Resolution of Significant Plant Issues

Significant Plant Issues Being Resolved (Continued)

- Reactor Vessel Internal Cleaning
- Nuclear Fuel Inspections
- Reactor Coolant System Resistance Temperature Detection Repairs
- Reactor Coolant Pump 1-1 and 1-2 Refurbishment
- Electrical System Design Basis Restoration
- Emergency Diesel Generator Material Condition Improvements
- Service Water System Cleaning
- Feedwater Heater 1-6 Retubing
- Polar Crane and Fuel Handling Crane Control Upgrades
- Thorough Containment Cleaning