- 1 understanding of the motor's characteristics have
- 2 been factored into the analysis using the latest
- 3 industry software, which is validating the results
- 4 to ensure electrical distribution meets its safety
- 5 function.
- 6 And that is ongoing with a plan to
- 7 support initially our mode change for the pressure
- 8 testing. We talked about a mid June time frame
- 9 for having that available, hoping maybe earlier
- 10 because we have applied a number of electrical
- 11 engineers to the project.
- We have changed the project
- 13 structure somewhat at the site from what you may
- 14 have -- those of you who have been there may have
- 15 seen. We brought our electrical superintendent
- 16 from the Menkins organization, Dave Hemmling, and
- 17 assigned him to head up this project, manage this
- 18 project. He was a previous RSO SRO at the site and is
- 19 very well acquainted with the operation.
- 20 Training, for example, has been one
- 21 of his jobs in the past, so there is good
- 22 leadership. We have also bolstered the team

- 1 composition of electrical engineering supervision
- 2 from Stone & Wester as well as several electrical
- 3 engineers to help with the data input process.
- 4 We are hoping all the changes are
- 5 accelerating and, again, we should start to see
- 6 preliminary results this week. One of the pieces
- 7 of the electrical distribution system we didn't
- 8 touch on is the DC systems, 225 125 and 250 DC. There
- 9 are calculations being prepared there as well to
- 10 upgrade the design basis in that system, and that
- 11 is battery loading calculations and capacity fuse
- 12 coordination calculations are going well. They
- 13 are characterized as no problems with the system
- 14 being found through that process, but the
- 15 calculations are being prepared, for the record,
- 16 so that the design basis is upgraded.
- 17 MR. PASSEHL: Just a question on that. Do
- 18 you anticipate any modifications you are going to
- 19 have to make to the plans a result of this
- 20 electrical distribution problem?
- 21 MR. POWERS: There is none currently
- 22 identified that we know of resulting from this

- 1 analysis. We are making some changes in the
- 2 electrical distribution system. One of the issues
- 3 that we had that we were actually doing
- 4 modifications on this week is under voltage relay
- 5 setpoints and setpoint tolerances associated with
- 6 that.
- 7 We found that the installed relays
- 8 did not have a setpoint tolerance capability that
- 9 would match the need in the plant, and I think we
- 10 need the tech spec requirement for that,
- 11 particularly the nine we are checking the relays
- 12 out to a different type, and that was really
- 13 separate from this issue of low voltage, so the
- 14 answer is no, we don't see any modifications yet.
- 15 I would hope I would be able to
- 16 report in the next weekly status update to you
- 17 what our status is on those preliminary results.
- 18 MR. GROBE: My flight was canceled Monday
- 19 morning and I missed the ROP meeting, but I was
- 20 reviewing the notes from that meeting on the plane
- 21 coming back this morning, and it seemed to
- 22 indicate in the discussion on this issue that

- 1 there may be some operability determinations that
- 2 are made for Mode 4 different than the other
- 3 modes?
- 4 MR. POWERS: Right.
- 5 MR. GROBE: Could you explain that a little
- 6 bit?
- 7 MR. POWERS: The plan that we have to
- 8 approach this problem is several stages, actually
- 9 three stages, the first of which is to provide an
- 10 operability determination basis to allow the mode
- 11 change to Mode 4. And the reason for that is so
- 12 we want to proceed to Mode 3 and do the pressure
- 13 test of the plant that we have described. And
- 14 that operability determination is based on the 70
- 15 largest, most significant loads in the system
- 16 being factored into the model and looking at the
- 17 results of the models, providing engineering
- 18 technical basis on that analysis to support the
- 19 Mode 4 change.
- 20 Subsequent to that, the team is
- 21 going to be continuing to factor and validate all
- 22 loads on the system, as you get down into very

- 1 small loads, small motors and such, and all that
- 2 is going to be factored in for the next
- 3 operability determination, which would be to
- 4 support the Mode 2 change.
- 5 So at that point we will have to
- 6 look at the calculations completed with the loads
- 7 validated, and subsequent to that, the third stage
- 8 is the documentation of the total analysis, all
- 9 calculations laid out, what we call all the road
- 10 maps associated with it, and laid out for the
- 11 engineers to encapture and record all the details
- 12 provided in that. So it's three different levels
- 13 that we've got laid out, Jack.
- 14 MR. GROBE: I will have to say, I don't
- 15 understand what you just said, but I'm not sure I
- 16 can understand it in this context, it's going to
- 17 take some discussion. But even though you have --
- 18 might have a small load on the system, when it
- 19 comes to breaking breaker fuse coordination, it's really
- 20 irrelevant if whatever isolates that small load is
- 21 not properly coordinated, how can you conclude
- 22 that 4160/480 volt systems are operable since if

- 1 you are not coordinated, you might have a higher
- 2 level breaker open and take away a number of
- 3 those?
- 4 MR. POWERS: Well, we think from the work we
- 5 have done today, that the 70 loads that are being
- 6 factored in are going to give us a good picture on
- 7 the capability of the system, and, you know, we
- 8 will get into details with the coordination.
- 9 You're right, I'm going to have to get my
- 10 electrical team to give a brief --
- 11 MR. GROBE: And they probably shouldn't talk
- 12 to me, they should probably talk to Rob.
- 13 MR. POWERS: That's fine. We've got that
- 14 laid out with logic and rationale, how we are
- 15 going do this.
- 16 MR. GROBE: Again, I appreciate your logic
- 17 for terminal voltage issues, but I don't
- 18 understand breaker fuse coordinations, don't
- 19 understand your logic, and Ron I'm sure can get
- 20 into a lot more detail with you folks.
- 21 MR. LEIDICK: The impression is if we have a
- 22 weak link in the system and understand where those

- 1 are and how those go down through, to approach it
- 2 that way, and then if you identify where the weak
- 3 links are, then you can press on with the rest of
- 4 it. That's my understanding of the issues, but
- 5 let us follow-up and get the right people together
- 6 in conversation.
- 7 MR. GARDNER: Sure.
- 8 MR. POWERS: And some of the discussion we
- 9 have had is with these initial runs, and not only
- 10 give us the voltage distribution, but we will find
- 11 a load flow, and that will factor into a sense of
- 12 the breaker isolation qualifications coordination,
- 13 so I believe that the engineers think that we will
- 14 have a first cut at that from these initial
- 15 70-load runs, Jack.
- 16 We will provide you with details on
- 17 that and have a dialogue.
- 18 MR. GARDNER: Yeah, I'd like to have that.
- 19 Usually you define your fault currents and plot
- 20 your fault currents and breaker currents
- 21 characteristics which are fixed based on the
- 22 breaker type and fuse type and cable type, and you

- 1 take a look at what you've got, so it would be
- 2 interesting to have a dialogue.
- 3 MR. POWERS: Okay.
- 4 MS. LIPA: At what point -- I have a
- 5 question about process, and I want to make sure
- 6 I'm clear. It sounds like what you're talking
- 7 about is an operability evaluation for Modes 3 and
- 8 4.
- 9 MR. POWERS: Uh-huh.
- 10 MS. LIPA: So you have learned that you
- 11 would need a tech spec change that would be
- 12 allowed in the process.
- 13 MR. POWERS: We don't believe it would be a
- 14 tech spec change. At this time the plan was for
- 15 an operability determination.
- 16 MS. LIPA: For that 70 loads, that's all you
- 17 need to consider?
- 18 MR. POWERS: For the system, that would give
- 19 us an adequate sense of the system's performance
- 20 capability. We'd be able to determine what would
- 21 be operable.
- 22 MS. LIPA: That's all the equipment that's

- 1 required to be operable for Modes 3 and 4?
- 2 MR. POWERS: That's right, that's right.
- 3 Although I believe that analysis would be heading
- 4 towards all modes, it's not necessarily restricted
- 5 to those modes, so in that I will need to get more
- 6 detail to you on the structure of that operability
- 7 determination.
- 8 MR. GROBE: Now I'm confused. That was a
- 9 little different than what I thought I heard. The
- 10 smaller loads are loads that you don't need for
- 11 Modes 3 and 4, are those going to be isolated
- 12 then?
- 13 MR. POWERS: Not necessarily, Jack. The
- 14 loads that -- the 70 major loads are the biggest
- 15 loads that would affect the voltage of the system.
- 16 The smaller loads can -- perhaps would be needed
- 17 during Modes 3 and 4, but we are judging the
- 18 performance of the system based on the 70 biggest
- 19 loads which would affect the voltage the most.
- 20 MR. GROBE: That's what I understood you to
- 21 say earlier.
- 22 MR. POWERS: That's what I meant.

1	Any other questions with the
2	electrical distribution system?

- 3 (No response.)
- 4 MR. POWERS: The next topic to discuss is
- 5 air-operated valves. This was a program that was
- 6 initiated during the course of the past year
- 7 similar to the industry at many sites.
- 8 As an industry, we went through
- 9 motor-operated valve programs where the design
- 10 basis for the valve the in areas such as the
- 11 pressure differential that they needed to function
- 12 with as well as the electrical supply and voltage
- 13 to the valves was detailed out in the design
- 14 basis.
- We are doing a similar program for
- 16 our air-operated valves, determining the pressures
- 17 they need to work against, as well as the
- 18 pneumatic air supply conditions that they have and
- 19 their actuator capabilities.
- 20 And there is a number of factors
- 21 that go into this, not only air pressure that is
- 22 available, but other things can become an issue,

- 1 and the overall functionality is assessed in great
- 2 detail in design calculations, and 83 valves at
- 3 the site were analyzed. These are our active,
- 4 safety significant valves that were put in our
- 5 program, similar to the issue initiatives
- 6 consistent with those initiatives.
- 7 And as a result of the analysis
- 8 that we went through, we found that there were 19
- 9 valves that had negative margin, meaning the
- 10 actuator -- based on the conditions that were
- 11 defined in our analyses, the actuator would not
- 12 have enough capability to stoke stroke the value fully,
- 13 at least with the margins that we feel are
- 14 necessary to be satisfactory. And so as a
- 15 consequence, during the current outage, there was
- 16 seven valves that we are adjusting prior to
- 17 restart, and there is 12 valves that are going to
- 18 be modified.
- 19 And modifications consist of things
- 20 like stronger springs within the valve, multi-port
- 21 solenoid valves that pour the air more effectively
- 22 to and from the actuator. And probably there is

- 1 one valve that -- which I would describe is the
- 2 most significant valve, which is the makeup 3
- 3 valve, which is part of the makeup let down line.
- 4 it's a containment isolation valve. On that one
- 5 we are upgrading both the actuator and the valve
- 6 body itself. And that modification is ongoing
- 7 now. The actuator is being manufactured, we have
- 8 a valve body at the site. We expect all that work
- 9 to come to fruition on the 24th of this month. So
- 10 it's very active, and we are in the process now of
- 11 issuing design packages to the maintenance staff
- 12 at the site to make these valve modifications.
- 13 There are ten valves in the
- 14 population that we feel we want to increase margin
- 15 to. We had our program criteria, and this is
- 16 margin above the -- with a minimum required to do
- 17 the safety function, and that currently the plan
- 18 is restart activity, and then 54 of the valves
- 19 demonstrated sufficient margin.
- 20 MR. GARDNER: When we are talking about
- 21 margin increase, are we talking about that there
- 22 is uncertainty that the air-operated valve would

- 1 function, or that there is a feeling that its
- 2 timing would he be affected, and the timing of the
- 3 function may be delayed, is it not working at all,
- 4 or is it just that it will function, but it may
- 5 not function at the time that was estimated?
- 6 MR. POWERS: It would be the latter. It
- 7 would function, but there were concerns about the
- 8 timing as well as I think in the industry in these
- 9 programs there is margin that accounts for changes
- 10 in friction and to provide further margin above
- 11 the minimum to ensure it would work. So the
- 12 timing of the function, how quickly it would
- 13 function would be the way I'd characterize it.
- 14 MR. GARDNER: These affect numerous systems,
- 15 right, important systems I assume also are part of
- 16 numerous systems, including important systems?
- 17 MR. POWERS: Right. They are, as Bob
- 18 described this, there is several of them that are
- 19 involved in the component cooling water system,
- 20 and those can connect component cooling water, but
- 21 also air flow to the heat exchangers so the heat
- 22 system is involved. These are the ones where we

- 1 have calculations that have been prepared, and we
- 2 believe that they will demonstrate adequate
- 3 margin.
- 4 MR. GARDNER: Okay.
- 5 MR. POWERS: Several hours are in different
- 6 systems containment isolation valve, for example,
- 7 that need to be have their actuators upgraded.
- 8 MR. GARDNER: I guess my point is that in
- 9 the -- previously I think you mentioned that in
- 10 other areas margin has been reduced, that's been
- 11 something that you have noticed throughout the
- 12 plant, that margin has been reduced, but typically
- 13 things tend to function okay, even with the
- 14 reduced margin. That is something we are looking
- 15 at on a system basis as the cumulative affect on
- 16 reduced margins, to see it as an AOV margin which
- 17 is minor, but it's less than desired, but
- 18 acceptable, it doesn't interact or contribute
- 19 synergistically to other margins that have been
- 20 affected, such that the system overall is being
- 21 negatively affected?
- 22 MR. POWERS: I would say in each case the

- 1 margins that are built into the programs, the
- 2 codes that are used to design the systems
- 3 encompass, you know, the synergistic or collective
- 4 affect that you have by changing -- if you need
- 5 the code allowance for the system, the margin is
- 6 already built into that, such that even meeting
- 7 the code allowable without excess margin, you have
- 8 already inherently built in capability.
- 9 The same thing would be the case
- 10 with these AOVs. When you meet program margins,
- 11 we have inherently built in additional margins, so
- 12 I think on -- in the sum total we have got margin
- 13 in the plant for that type of consideration.
- 14 MR. HILLS: The margin you are talking about
- 15 as far as the ten valves you are going to increase
- 16 the margin to meet the program requirement, does
- 17 that mean the valves then as they exist today have
- 18 enough margin to meet all licensing basis of
- 19 N.R.C. commitments?
- 20 MR. POWERS: Yes.
- 21 MS. PEDERSON: On the 19 valves that had
- 22 negative margin, have we covered each of those in

- 1 the previous discussions as far as impacts, or are
- 2 there some others that we haven't talked impacts
- 3 yet?
- 4 MR. POWERS: There is others that we haven't
- 5 talked impacts. Several of them are isolated --
- 6 containment isolation valve locations. For
- 7 example, there is containment isolation valves,
- 8 those actuators needed to be upgraded. There is a
- 9 valve that is a reactor cooling on the pump seal
- 10 return containment isolation valve, there are 12
- 11 valves that are isolation valves, steam generator
- 12 system, and there is also temperature control
- 13 valves for return piping which will perform
- 14 isolation valve function. And each of these, as
- 15 we have determined, there is an operability issue
- 16 with them. We have been issuing LERs. There is
- 17 several of the valves that have been documented.
- 18 In fact, one of the commitments that we had early
- 19 on last year, based on several AOVs that we found
- 20 fell short of the requirements. We have committed
- 21 to complete this program prior to restart.
- 22 MS. PEDERSON: Have you finished your

- 1 reviews such that we have all the LERs we had
- 2 expected to see from AOV reviews, or are there
- 3 still some ongoing?
- 4 MR. POWERS: I believe we have documented
- 5 them all in LERs, but I'd have to ask engineering
- 6 one more time to be sure. The list that I have
- 7 described here is, as we know the scope we have
- 8 done the calculations, but I want to make sure
- 9 we've got it thoroughly documented with LERs where
- 10 necessary.
- 11 MS. LIPA: On the AOVs, have you shared what
- 12 you learned here with your other FENOC sites and
- 13 have confidence that there is also not problems at
- 14 other FENOC sites?
- 15 MR. POWERS: I believe we have shared it
- 16 with the other FENOC sites. I know our AOV -- in
- 17 fact, Kenny came from our Gary Perry site to work at
- 18 Davis-Besse several years ago, so there is a
- 19 pretty strong link with the engineering system
- 20 between the two sites, and also sharing of
- 21 information similar to the AOV areas,
- 22 motor-operated valves area, but I will go and

- 1 check on that one too to make sure we have got a
- 2 dialogue going. I'll make sure it's strong.
- 3 MS. LIPA: Okay. Thank you.
- 4 MR. PASSEHL: I had a question on the
- 5 adjustment to the seven valves you mentioned. I
- 6 guess, are you waiting on plant condition to do
- 7 that work, or I assume that is one of the
- 8 significant work compared to modifying valves?
- 9 MR. POWERS: That's right. Given the
- 10 priorities at this point are to ensure that valves
- 11 can work once adjusted with its increasing to the
- 12 program, the program standard, you know,
- 13 expectations for margin, and the engineers right
- 14 now are focused on modifications that are required
- 15 and adjustments that are required to perform
- 16 safety function. And following that they will go
- 17 through the next set of increasing margin on those
- 18 that need the full program to perform so the
- 19 system conditions will dictate much of that.
- 20 MR. PASSEHL: Thank you.
- 21 MR. FARBER: Thank you, Jim. Most of what
- 22 I'm hearing right now seems to focus on whether or

- 1 not the valve will perform a function under a
- 2 given condition, whether it's got enough thrust to
- 3 close against a flow or a DM DP. My question is, is
- 4 there anything in this program that's going to
- 5 address the other functionality requirements, for
- 6 example, of the back-up accumulators that provide
- 7 air for -- in this case nitrogen for the valves?
- 8 MR. POWERS: There is several valves that we
- 9 are increasing or augmenting the accumulator sizes
- 10 on, Marty, the service water 1356, 7 and 8 series
- 11 valves are -- there is a set of those. And there
- 12 is also the component cooling water valve we have
- 13 talked about, which will provide additional
- 14 accumulators there so the pneumatic supply is part
- 15 of the assessment.
- 16 MR. FARBER: Thank you.
- 17 MR. POWERS: We can move on to the next
- 18 topic. This topic we touched on earlier, the load
- 19 analysis for the engine was not updated, and when
- 20 we did our SFAS testing we recognized that we have
- 21 not met our license in particular for voltage
- 22 depth and time frame of the voltage dip as well as

- 1 frequency specifications that are included in the
- 2 design standards that we adhere to.
- 3 And as I described earlier we have
- 4 prepared a detailed model of the diesel
- 5 generators. We benchmarked that actual field test
- 6 performance of the diesel generator voltage and
- 7 frequency, and then we have used that model to
- 8 predict overall engine response that would be
- 9 given in the full accident loading and have taken
- 10 the results and looked at all the supply loads to
- 11 assure that they will perform their safety
- 12 functions, and we found satisfactory results
- 13 there, so there were no modifications required in
- 14 the plant to address this issue.
- 15 Although, we talked earlier there
- 16 are some improvements that we are looking to make
- 17 in the future with the governor system and
- 18 potentially the diesel generator output breaker
- 19 from an extent of condition standpoint.
- 20 Maintaining our analysis up-to-date was one of the
- 21 lessons learned, significant lessons learned that
- 22 we have taken from the past years activities at

121

- 1 the site. Our latent issues reviews and system
- 2 health reviews pointed out similar to what was
- 3 done.
- 4 And I will talk on the following
- 5 topic, design base validation program that had
- 6 been done and calculations maintenance are
- 7 important. There had been a practice of many
- 8 disciplines in the past at the plant, when small
- 9 changes were made, do that assessment against an
- 10 existing calculation for that change, document the
- 11 assessment and move on.
- 12 The problem becomes, as time passes
- 13 and several assessments are done, the cumulative
- 14 affect needs to be assessed and incorporated into
- 15 the calculations, so the engineering has a full
- 16 picture on what the cumulative effects of changes
- 17 have been, and in many areas that needed to be
- 18 done. The diesel generator loading is an example.
- 19 The electrical distribution system is an example.
- 20 Ken Byrd's area with the -- what we
- 21 would call the safety and accident analysis for
- 22 the plant, we have done substantial work and we

- 1 have talked about with you in the past for things
- 2 leading from our ultimate load sink temperature,
- 3 the plant's cooling system, all the way to
- 4 containment performance, and many of our more
- 5 safety significant calculations have been upgraded
- 6 through this process to latest industry standards
- 7 and latest design status of the plants.
- 8 And in Ken's area, he's has managed
- 9 well to get -- the vast majority of his
- 10 calculations have been completed in his area. The
- 11 electrical area we are still working to complete
- 12 those calcs, but from an extent of condition, the
- 13 calculations and upgrade process has been very
- 14 active at the site, and are progressing through
- 15 the significant calcs.
- 16 MR. PASSEHL: I just want to be clear on one
- 17 thing. Your diesel generator ventilation is not
- 18 significantly undersized, although you are going
- 19 to add margin, two additional fans; is that
- 20 correct?
- 21 MR. POWERS: Well, not exactly. I wouldn't
- 22 characterize it as not being undersized, it is

123

- 1 undersized and has been from the day that we
- 2 evaluated. During the tornado of 1998 that struck
- 3 the site and took the off-site power out of the
- 4 system, the site operated on the diesel
- 5 generators. The room temperature was high, and
- 6 subsequent assessment of that led to concerns for
- 7 the lifetime of some of the electrical components,
- 8 particularly realized the cabinets in the rooms
- 9 and temperature in the cabinets where the engines
- 10 are running in the long-term, we do need to
- 11 increase the ventilation to the room, we want to
- 12 do it for the sake of the margin.
- 13 At the time this '98 assessment was
- 14 done, that proceduralized a tracking of the amount
- 15 of time that the room temperature was elevated and
- 16 that factored toward a change out, so it was more
- 17 of a lifetime -- qualified life issue than a
- 18 operability issue as we are finalizing our
- 19 assessment of that, that continues to today, that
- 20 that is the technical characterization of that
- 21 issue.
- 22 Nevertheless, there is three

- 1 modifications that we are currently pursuing for
- 2 those rooms to increase margin. The first is
- 3 insulating the exhaust manifolds on the engine,
- 4 and that design package is nearing completion,
- 5 should be issued this week. Insulation is on
- 6 order for that that is going to cut the
- 7 temperature in that room by a number of degrees.
- 8 The second one is providing
- 9 ventilation ductwork to the control panels that
- 10 house the electrical equipment to make sure the
- 11 temperatures are minimized in those panels. That
- 12 is important because in the testing of the site we
- 13 identified 40 degree temperature rises in the
- 14 outside panel to the inside of the panel. So it
- 15 gets hot inside the panel, and simple, small
- 16 ductwork changes can help alleviate that.
- 17 And then the third modification we
- 18 are pursuing is installing additional large fans
- 19 that we have secured from our Perry facility.
- 20 These were nuclear safety grade fans that had been
- 21 procured and installed for Unit 2 at that site,
- 22 and are no longer necessary as Unit 2 has been

- 1 subsequently abandoned, so we have brought those
- 2 to the vendor for refurbishment. That's where I'm
- 3 going now for modification, to install those in
- 4 the room, and the plan is to have those operate
- 5 based on temperature thermostat, and as room
- 6 temperature rises, the fans would kick on and
- 7 provide additional air coming to the room. Once
- 8 we have reached that stage, we think we will have
- 9 good deal of margin in the capabilities, but as it
- 10 is now the HVAC system does not have the margin it
- 11 needs.
- 12 MR. GARDNER: Also, it sounds like the HVAC
- 13 system would limit your options as far as going to
- 14 a new, more sophisticated governor that might have
- 15 solid state components.
- 16 MR. POWERS: Right.
- 17 MR. GARDNER: With the relay, the old
- 18 analogue type has lots of forgiveness there on
- 19 temperature, and with your weak link analysis I
- 20 would say, you know, the relays might be the
- 21 culprit or the most susceptible component. If you
- 22 change to a new system, that could change

- 1 dramatically.
- 2 MR. POWERS: That's a good point, and
- 3 another good reason why it's better to build
- 4 margin into the plant, allows us more flexibility
- 5 for the future and resolves the problem
- 6 effectively rather than simply analyzing them. So
- 7 that's where we are on this particular one.
- 8 So we have a lot of work we want to
- 9 do in the emergency diesel generator rooms, and
- 10 that is going to occur after the pressure test we
- 11 currently have planned, and we refer to this as
- 12 divisional outages. The diesel generator trainees
- 13 go into the room and do maintenance on it, we are
- 14 looking for everything down to the oil leaks to
- 15 make sure that those have been resolved, the
- 16 ventilation system is upgraded.
- 17 In the past weeks, we have also
- 18 been moving towards doing a coding coating project, went
- 19 in the room to upgrade the coding coating on the wall and
- 20 floor to bring it up to high standards for the
- 21 future, so there is quite a bit of work we want to
- 22 do in the area to upgrade.

- 1 MR. PASSEHL: So the diesel generator, then,
- 2 is -- as far as outside air temperature, you are
- 3 operable up to 85 degrees from Motor 5 and 6?
- 4 MR. POWERS: That's right, currently
- 5 operable to 85 degrees. Then we are pursuing new
- 6 modifications that will allow that temperature to
- 7 rise ultimately back up and actually beyond the
- 8 license basis for the plant, which I think is 86
- 9 degrees outside temperature.
- 10 So each one of the modifications
- 11 have progressively more -- cover more margin up to
- 12 full capability.
- 13 MR. PASSEHL: Thank you.
- 14 MR. POWERS: So in conclusion, on the
- 15 remaining design issues, as we have discussed,
- 16 they are -- given the amount of work we have done
- 17 for review, these are four of the more significant
- 18 issues that we are dealing with on the site, and
- 19 resolving. Each one of them has a resolution path
- 20 that's been defined and is doable, and so none of
- 21 them are showstoppers, and we are working through
- 22 them and the schedule supports our current restart

- 1 schedule that we have communicated.
- 2 MS. LIPA: I want to be sure -- I was
- 3 expecting something on the SFAS relays that you --
- 4 I don't know if that is a design issue, so -- but
- 5 if you can give us an update.
- 6 MR. POWERS: That is one we didn't have on
- 7 our list, however, because that issue is -- did
- 8 not originate from the design analytical reviews
- 9 that we have largely been discussing here. The
- 10 issue that Christine has raised is with a relay
- 11 population that drives our safety features
- 12 actuation system. There is a population of
- 13 approximately 250 relays that were changed out at
- 14 the site at the beginning of the refueling outage
- 15 in February of last year.
- 16 Subsequent to that, with the
- 17 testing program that's been done at the site that
- 18 identified failures of several of the relays on
- 19 our root cause analysis and systemic condition
- 20 corrective action program indicated that there was
- 21 a manufacturing issue with some of the relays, and
- 22 also the application of the relay for the voltage

- 1 and current that they were applied to was a
- 2 problem. And subsequent to that, the original
- 3 relays that we had removed from the system and we
- 4 removed the relays because of their age, and we
- 5 have seen several age-related failures.
- 6 We removed them, and they were --
- 7 they have been held and are available and they are
- 8 currently going through a testing program to
- 9 determine their suitability to be reinstalled in
- 10 the plant while we resolve and get another
- 11 replacement relay manufactured for us.
- 12 Out of the population of 250
- 13 relays, 150 of the ones that we removed passed the
- 14 screening process testing program that we have
- 15 got. 83 of them did not pass that initial
- 16 screening and we are currently evaluating those
- 17 now. We are also in contact with several other of
- 18 our industry peer plants that have spare relays
- 19 that they can give to us. And the bottom line is
- 20 at this point we believe we have enough relays to
- 21 reconstitute the system. And then parallel with
- 22 that effort, we are talking with a manufacturer

- 1 about doing another production run of the relays
- 2 for our site and several other sites that use
- 3 them.
- 4 The issue was -- the reason the
- 5 relay was changed out to a different type is the
- 6 model number had been discontinued, and so a
- 7 different type was developed to be manufactured
- 8 and tested and dedicated for installation in the
- 9 plants. We want the manufacturer to do another
- 10 production run of the original relay that was
- 11 intended for the plant. They are indicating their
- 12 willingness to do that, and several other plants
- 13 that use that type of relay would like to have
- 14 additional spares manufactured as well.
- So that is a program that we are
- 16 looking at now and having dialogue with the
- 17 manufacturer to have that in place. So technical
- 18 basis for the reinstallation of the relays is also
- 19 in preparation for the testing program criteria
- 20 that's been applied it. And the reason I know
- 21 it's the appropriate thing to do at this time is
- 22 being prepared and documented, so that will be

- 1 available for review.
- 2 MR. RULAND: Jim, this is Bill Ruland at
- 3 headquarters. I have a question about, I guess,
- 4 the programmatic issues associated with some of
- 5 these design issues you examined. For instance,
- 6 the emergency diesel generator loading issue,
- 7 there is a question about the program going
- 8 forward, how you intend to monitor and update
- 9 loading going into the future? And if you examine
- 10 these issues on that level, a number of them have
- 11 programmatic implications, and I didn't see that
- 12 come out very strongly in your slides, and I
- 13 suspect you are addressing those, those
- 14 programmatic long-term issues, could you talk
- 15 about that a little bit, how that is being
- 16 covered?
- 17 MR. POWERS: Sure. We have done some
- 18 significant upgrades to the calculation control
- 19 program, for example, in the program how we
- 20 maintain calculations and how we revise them, what
- 21 the criteria is for revision, and much tighter
- 22 controls applied to changes within the plant and

- 1 how calculations are updated. One of the things
- 2 that we found when we came on-site last year is
- 3 the calculations at the site were essentially
- 4 under the control of the disciplines in their
- 5 areas, on the floor, available file cabinets, but
- 6 we hadn't gone the extra step at our Davis-Besse
- 7 site of coming up with an electronic calculation
- 8 index, for example, and centralized control for
- 9 document control function of the calculations, and
- 10 so we are moving towards that now. So overall the
- 11 program for control of calculations both
- 12 procedurally, and just the physical control and
- 13 accessibility is being upgraded at the site, and
- 14 so there is a number of program improvements that
- 15 are being made in this area.
- 16 MR. LEIDICK: I might add that at the other
- 17 two stations it's being done as well. We are
- 18 looking at that across the organization, the NOPs,
- 19 operating procedures for the design area are
- 20 really a top priority of ours, so we are getting
- 21 those in good shape at all three plants.
- 22 MR. RULAND: Thank you.

- 1 MR. FARBER: Jim, you have spent a lot of
- 2 time discussing the foremost significant issues
- 3 that face you prior to restart, but do you have
- 4 some sense that you could give us of the
- 5 population of lesser tier significance issues that
- 6 need to be resolved before start-up?
- 7 MR. POWERS: Well, there is a number of
- 8 smaller tier issues that we are working through.
- 9 As Bob described, it would be -- a number of
- 10 condition reports have been issued over the past
- 11 year. Each of those is being resolved and
- 12 corrective actions being prepared. I would say
- 13 out of the range of the 1,200 condition reports
- 14 that have been issued, there may remain less than
- 15 50 overall between various engineering and
- 16 technical organizations that remain to be done,
- 17 and we are working off corrective actions, and
- 18 when we talk about our performance indicators, we
- 19 work off of what we refer to as bulk work.
- 20 But there are selected technical
- 21 issues that we are working through that are below
- 22 the level of these four that we feel are bounded

- 1 by the schedule for these four, and those are
- 2 tracked both on a top priority list, engineer top
- 3 20 list, for example, at the site has just come
- 4 up, are evaluated and then subsequently
- 5 resolutions are identified. They drop down the
- 6 list, and we have made a significant change to the
- 7 site probably since the last time you were there,
- 8 Marty, in terms of how we are controlling the
- 9 work. We have been working from a corrective
- 10 action program, essentially working through the
- 11 lists of issues, working with a schedule.
- 12 Corrective action program applies
- 13 to get issues done as we worked off the bulk
- 14 original number, first identification of issues in
- 15 discovery and investigation and working off
- 16 resolutions to the issues. At this stage we are
- 17 coming out of the forest and being able to see
- 18 individual trees. And so the engineering top 20
- 19 list, the modification lists are now prepared, and
- 20 we have assigned Mike Foss at the site, who is one
- 21 of our directors at the site. He has been
- 22 assigned as restart director, and one of his

- 1 primary functions is to help in the driving of
- 2 these issues. And if you were to visit now, the
- 3 conference room 209-210 out in the front building,
- 4 which we refer to now as the plant support center,
- 5 that room has been converted into a command center
- 6 where all the various engineering issues that were
- 7 reviewed everyday, we have review meetings about
- 8 the issue with owners, they are required to have
- 9 fragments, lay out the resolution. The issue
- 10 management team provides some questioning on
- 11 considerations that they have got, they are there
- 12 prepared to answer the questions about the issues,
- 13 that the issue is going to be successfully
- 14 resolved on a timely basis.
- So at this stage of the recovery,
- 16 the change in our management to being much more
- 17 focused on individual issues. While there were
- 18 many of them, each one now is being brought in and
- 19 focused on by the management team to assure that
- 20 we are driving to completion, so that is helping
- 21 us through that process.
- 22 MR. FARBER: Thank you.

- 1 MR. POWERS: The conclusions on the
- 2 remaining design issues, as I just discussed, the
- 3 resolution is being addressed by the corrective
- 4 action program to ensure safe, reliable operation.
- 5 And we are moving through that process now. Our
- 6 work-off curves and progression at the plant
- 7 continues to move us towards the upcoming mode
- 8 changes.
- 9 The next topic I'd like to move
- 10 into, and if I move through this quickly, is
- 11 questions that you had on our 50.54(f) letter
- 12 response. And this was in 1997 that the request
- 13 was issued by the commission to describe the
- 14 health essentially of the design basis at the
- 15 plant, and each plant -- Davis-Besse was one that
- 16 was required to respond on how that design basis
- 17 was promulgated into the procedures that operate,
- 18 surveil and maintain the plant.
- 19 And so at the time that that
- 20 response was made, the assessments were done that
- 21 -- on the status of calculations, and that
- 22 response credited calculation improvements program

- 1 and system description development projects that
- 2 were done in the mid-80s, during the mid-1980 term
- 3 out at the site, and there was a lot of
- 4 engineering activities at that time, and a lot of
- 5 that was captured in system design descriptions
- 6 and in calculations that were prepared.
- 7 And so we knew that work had been
- 8 done. The results, though, in the assessment
- 9 specifically excluded several topical areas due to
- 10 previous assessments and inspections that had been
- 11 performed. And these were areas that -- some of
- 12 the areas that we have talked about, environmental
- 13 qualification, high energy line breaks, seismic
- 14 analysis and flooding. And the reason that those
- 15 weren't looked into in great detail is because
- 16 work had been done, inspection work or internal
- 17 oversight self-assessments, a lot of it was
- 18 believed that those areas had been surveilled in
- 19 detail.
- 20 And we also committed as part of
- 21 this 50.54(f) to initiate a design basis
- 22 validation program because we knew were weaknesses

- 1 in calculations of assessments that had been done
- 2 by your organization and ours. And that program
- 3 was initiated.
- 4 So the program was worked through,
- 5 the calculation basis for the maintenance rule
- 6 risk significance systems was evaluated. I think
- 7 we were in the range of issues that were -- with
- 8 questions that were raised and documented on that,
- 9 and that was -- open items were captured for
- 10 disposition in various programs, corrective action
- 11 program, corrective action tracking system and the
- 12 Davis-Besse validation program tracking database,
- 13 which was referred to in our request for
- 14 assistance.
- 15 So based on the level of the
- 16 issues, significance of the issues, it may have
- 17 initiated a condition report or just a tracking
- 18 item within the corrective action catch system.
- 19 That is something that ought to be done,
- 20 calculation needed to be clarified or updated, but
- 21 there was not a high level of significance, safety
- 22 significance to that action. So that was the

- 1 approach to this.
- Now, as we went back and evaluated
- 3 over the past year where we stood with the
- 4 responses, we found out we did not follow through
- 5 on a timely basis for completion of those open
- 6 items for calculation update through to priority,
- 7 and, in fact, that is something we had
- 8 communicated in one of our follow-up letters to
- 9 the staff.
- 10 But in the beginning of this year,
- 11 we found that there was still open items that had
- 12 not been done, so that they were languishing in
- 13 terms of priority.
- 14 Subsequently we got into the latent
- 15 issues reviews, our system health reviews, safety
- 16 function validation project reviews, all of those
- 17 projects would be as described, found similar
- 18 weaknesses in design basis calculations, and we
- 19 have upgraded a number of those calculations, and
- 20 in particular, you know, I described earlier Ken
- 21 Byrd's accident analysis area, we have done a lot
- 22 of global calculations for the various systems and

- 1 heat load calculations and performance
- 2 calculations, and we found that, yes, all this
- 3 work is kind of revalidated, that there were
- 4 weaknesses in calculations. Largely the systems
- 5 have been demonstrated to be nonoperable through
- 6 our assessments of all the additional issues that
- 7 have been raised and were adequate to support
- 8 operability.
- 9 We did find a couple of areas, as
- 10 Bob described, where there were detailed issues of
- 11 operability, but given the devisiveness decisiveness of what we
- 12 have done over the past year, we have dedicated
- 13 teams of individuals, well-experienced individuals
- 14 going through the systems. We feel that on total,
- 15 what we have done essentially validated the
- 16 statements we made in terms of the adequacy of the
- 17 design basis to support operability of the
- 18 50.54(f) letter.
- 19 Notwithstanding that, we also feel
- 20 that we need to do a supplemental response to the
- 21 letter to describe what we have done over the past
- 22 year, document what was found and how it relates

- 1 to the original findings and the design area plan.
- 2 So that is one of the plans that we have had in
- 3 our regulatory affairs section, to go through the
- 4 process of rolling up and reporting what we found
- 5 in the past year relating to our 50.54(f) letter
- 6 response in the mid-90s. And we feel that all the
- 7 work that we are doing in the design area to
- 8 upgrade and -- surveil and upgrade our design
- 9 basis to the plant is going to move us forward
- 10 quite a bit in the quality of the adequacy of our
- 11 design basis for information.
- 12 Are there any questions on that
- 13 50.54(f) letter?
- 14 MR. RULAND: This is Bill Ruland at
- 15 headquarters. I guess I didn't hear how the open
- 16 items system remain, that you actually didn't
- 17 complete all of the items that were opened?
- 18 MR. BYRD: All of the open items were put
- 19 into the corrective action program as -conditional condition
- 20 reports, and so all of those condition reports
- 21 have been categorized and -- with any other
- 22 condition report, so every open item that is

- 1 categorized as required for restart will be
- 2 complete by the appropriate mode for restart.
- 3 So at this point I don't have any
- 4 exact number, but obviously the majority of the
- 5 things that would be required for Mode 4 have been
- 6 completed. Some things were categorized as
- 7 enhancement and others were not. Other items were
- 8 identified during all of those reviews, those
- 9 particular items may have been identified as
- 10 post-restart actions.
- 11 MR. GROBE: I'm not sure I understand your
- 12 question, Bill. Was that a priority to March of
- 13 2002 when the plant was shut down or was it as of
- 14 today?
- 15 MR. RULAND: Both.
- 16 MR. GROBE: I think, Ken, you answered the
- 17 question at the time the plant went down for it's
- 18 refueling outage in February of 2002.
- 19 MR. BYRD: What percentage had been
- 20 completed then?
- 21 MR. GROBE: How many items were there?
- 22 MR. BYRD: Essentially all of them. We had

- 1 responded to things that had been -- we had as
- 2 condition reports but had not been -- or request
- 3 for assistance had not been dealt with except for
- 4 a very few, but a vast majority of them were still
- 5 there.
- 6 MR. GROBE: So let me make sure I understand
- 7 if we could, Bill.
- 8 MR. RULAND: Let me ask this question. So
- 9 if I understand what you're telling us, you had
- 10 identified a thousand -- about a thousand open
- 11 items as part of your design basis validation
- 12 program, and essentially all of them are still
- 13 open; is that what I heard?
- 14 MR. BYRD: The majority of them are still
- 15 open, essentially all of them, correct.
- 16 MR. RULAND: Essentially all of them?
- 17 MR. BYRD: But --
- 18 MR. RULAND: That's all I needed. Thank
- 19 you.
- 20 MR. GROBE: Can I ask a follow-up question?
- 21 If I understand correctly, I think I heard what
- 22 you said, that is that a specific issue clearly

- 1 resulted in an operability concern, then it was
- 2 put into the corrective action system? If it
- 3 simply asks an engineering question, complicated
- 4 engineering question that required analysis and
- 5 further follow-up, but it wasn't obvious that was
- 6 an operability then if it was not put in the
- 7 correct place under one of these two things,
- 8 corrective action tracking system or a DVB
- 9 tracking program database.
- 10 MR. BYRD: That is correct, the ones that
- 11 had been identified as requiring needed to be
- 12 addressed had been put in the corrective action
- 13 program at the time. And then some of them were
- 14 also put into the corrective action program, which
- 15 would be the second bullet you see that, and that
- 16 actually had been addressed prior to the -- a year
- 17 ago those issues by and large have all been
- 18 identified, so the first -- what I call the first
- 19 two types of issues as proportioned had been
- 20 resolved.
- 21 Then there was the third group of
- 22 issues which had been reviewed and determined that

- 1 they didn't warrant a condition report at the
- 2 time, that was a determination, had been put into
- 3 a request for assistance. Those issues by and
- 4 large had not been resolved, and those were the
- 5 issues which subsequently were put back through
- 6 the condition report process. Every one of them
- 7 went back in a condition report, and so those
- 8 would have been addressed as per the condition
- 9 report process.
- 10 MR. GROBE: Okay. And that comprised most
- 11 of the questions that came out of the design --
- 12 MR. BYRD That comprised most of the
- 13 questions, and many of them were, in fact, just
- 14 essentially questions not involving operability
- 15 issues or things of that nature.
- 16 MR. GROBE: I mean, that's what these kinds
- 17 of reviews do, they generate questions, okay.
- 18 Now, that was on -- I think on Slide 32, that's
- 19 where you described those, just so that everybody
- 20 was following where I was at. Could you, on Slide
- 21 33 it said completion of open items had less than
- 22 adequate priority. Could you talk about that

- 1 again, make sure I understand what you're saying.
- 2 MR. POWERS: On the priority on that, in
- 3 fact, we communicated in a letter, in a follow-up
- 4 letter to our 50.54(f) response in terms of
- 5 priority of calculations and skill to get them
- 6 done, these were the finding calculation updates
- 7 that we have been projected they would be done by
- 8 the end of 2000. In fact, not all of them had
- 9 gotten done by the beginning of 2002, there was
- 10 still remaining stuff to get done and we talk
- 11 about priority, we talk about the -- what we mean
- 12 is the number of activities the site and relative
- 13 priority for the engineers updating a calculation
- 14 for clarity purposes. For example, is it
- 15 something that is scheduled to do and there is
- 16 other issues such as modifications that is
- 17 required or system operability assessment required
- 18 for a piece of equipment, those have higher
- 19 priority -- can take higher priority.
- Now, we don't think that the
- 21 appropriate priority was placed on finishing up
- 22 this effort. It was a major commitment that we

- 1 should have followed through on. In fact, last
- 2 year we found the condition that we were in, we
- 3 reactivated the project, applied a lot more
- 4 resources to get assistance to get these done, and
- 5 finished up many of the calculations in the course
- 6 of last year. So there was -- we didn't have
- 7 adequate priority review to get the projects done.
- 8 MR. GROBE: And I don't mean to split hairs,
- 9 but I'd say it had no priority if it was scheduled
- 10 to be done in the year 2000, and at the time this
- 11 outage started, the vast majority of the work
- 12 hadn't been even resourced. Were there resources
- 13 in the budget to accomplish this work?
- 14 MR. POWERS: I don't know the answer to
- 15 that, Jack
- 16 MR. GROBE: I was just puzzled by that
- 17 question, had less than adequate priority. You
- 18 know, I consider priority, I have gotten things to
- 19 do and these things will be done on Monday and
- 20 these things will be done on Tuesday and these
- 21 things will be done by Friday, that's
- 22 prioritizing. But these things weren't done for

- 1 years, so I'm trying to understand whether or not
- 2 the resources were scheduled and applied or
- 3 whether, in fact, there was no priority because
- 4 they weren't put in your corrective action system,
- 5 they weren't tracked in any active work management
- 6 data base that I'm aware of, I don't believe. Was
- 7 this DVB an active work management data base, or
- 8 was it just a tracking system.
- 9 MR. POWERS: I believe it was a list of
- 10 things that needed to be done, the priority of it
- 11 was not -- in that case was not appropriate. We
- 12 believe it should have been in the corrective
- 13 action program, so one of the things we have
- 14 looked to is one of the specifics of the design
- 15 base validation program, that was the plan that --
- 16 because it was expected to be a large volume of
- 17 issues that would need to be dealt with, and if
- 18 they were lower level ones that have a stand-alone
- 19 database for tracking that through. And in
- 20 hindsight as we looked at that, we don't think
- 21 that that was an appropriate database controlled
- 22 network. However, it was a workload that was for

- 1 the internal engineers to get done, you know, it
- 2 wasn't a priority. We don't --
- 3 MR. LEIDICK: We understand your point,
- 4 Jack, the work wasn't done, should have been done.
- 5 We are cleaning up all the issues at this point.
- 6 MR. GROBE: And that gets back to, everybody
- 7 defines safety in our culture differently, but I
- 8 think included in Dr. Haber's definition is the
- 9 right resources with the right capability to focus
- 10 on the right safety issues, and maybe this is a
- 11 cultural issue that is already addressed.
- 12 MR. SCHRAUDER: You know, one of the things
- 13 we did do is eliminate all of those what -- Jim
- 14 referred to as rogue databases, all of those are
- 15 now captured in the corrective action program, so
- 16 they are elevated into the appropriate level. I
- 17 can't imagine them not being done by their due
- 18 dates.
- 19 MR. GROBE: One of the issues that is on the
- 20 restart checklist is the completeness and accuracy
- 21 of the information, not only internal records but
- 22 information that you have submitted to us, and I

- 1 understand that under Pat McCluskey's group they
- 2 are going through a sampling evaluation of past
- 3 significant documents that have been submitted to
- 4 the agency on the dockets. This is one that I
- 5 would have expected to be part of that sampling
- 6 population. But the first bullet on Page 34 says
- 7 design base validation program was completed to
- 8 the extent defined in the responses.
- 9 And so does that mean that you have
- 10 completed the review of that and you have
- 11 concluded that was complete and accurate in all
- 12 material respects?
- 13 MR. POWERS: No, it does not. This is just
- 14 a characterization of looking at the 54 letter,
- 15 what it said would be done relative to what was
- 16 done, each of the design basis validation programs
- 17 would be done and issues would be put into
- 18 tracking systems based on their priority and a
- 19 follow-up letter gave us a status of that in terms
- 20 of 50 significant issues, 12 of which went into
- 21 CRs and the balance of which went into the
- 22 corrective action tracking system, and the

- 1 remainder were in a third level of the system, and
- 2 with a projected date to complete those actions at
- 3 the end of 2000. So when we make this statement
- 4 on here, that is all it's intended to imply, Jack.
- 5 It does not in my view constitute any sort of
- 6 statement on acceptability.
- 7 MR. GROBE: Okay. So that the work that is
- 8 being done under Pat's direction is still looking
- 9 at this?
- 10 MR. LEIDICK: Yes, it is, and it does
- 11 include this one.
- 12 So let's wrap this up, we
- 13 appreciate your time today. We have certainly --
- 14 I think we have spent a lot of time talking about
- 15 what isn't done yet. Suffice it to say that six
- 16 months ago we were here, I believe we presented
- 17 our grand plan, if you will, for attacking all of
- 18 the open questions from a design perspective, and
- 19 there's been a tremendous amount of work that has
- 20 been done. There have been a lot of issues that
- 21 have been satisfactorily resolved, the bulk of
- 22 them have been satisfactorily resolved, whether

- 1 it's through the safety function validation
- 2 program or self-assessment process, the topical
- 3 area reviews, latent issue reviews and various
- 4 programs that we have had out there.
- 5 So as Jim said earlier, I think we
- 6 were looking at a rather substantial forest, if
- 7 you will, at the end of last year in terms of open
- 8 questions and open issues, and now we are able to
- 9 see what's left. And we have tried to present
- 10 today what's left. There is a fair amount of work
- 11 to go yet between now and the NOP test and the
- 12 restart, we have got it reasonably well bounded,
- 13 except the electrical system, I think I'd
- 14 recommend that we have perhaps a conference call
- 15 next week between the specialists to get a better
- 16 dialogue going on what's involved there, what our
- 17 approach is there to make sure you and us are on
- 18 the same page in terms of the approach to restart
- 19 the electrical system.
- 20 That is the -- I think the most
- 21 significant loose end that we have out there. But
- 22 we have really changed the design documentation

- 1 and design of this plant, and it's been a very
- 2 robust challenge, if you will, and I think when
- 3 the dust settles again, the completion of the
- 4 remaining actions that we have talked about here
- 5 today that we will be able to establish that there
- 6 is reasonable assurance that the plant systems
- 7 have been able to perform their intended safety
- 8 functions.
- 9 So, again, we focused on the
- 10 half-empty version if you will here today, and
- 11 tried to tell you what's left to do, and we spent
- 12 our time identifying that, and I hope we have got
- 13 good feedback on that, and I appreciate your time
- 14 today.
- 15 I would ask Bob Coward, who's been
- 16 through some of the reviews today at other
- 17 stations to give his perspective of what he's seen
- 18 here at Davis-Besse relative to others in the
- 19 industry.
- 20 MR. COWARD: I guess we were talking coming
- 21 out on the plane, and I had, I'm not sure I'd use
- 22 the word pleasure, but the opportunity to

- 1 participate in the number of the plants that have
- 2 been through this process going back to probably
- 3 the beginning of the late '80s at Nine Mile Point
- 4 was the first one I was involved in and if you go
- 5 also to Salem, Crystal River, Cooper, most of the
- 6 ones I have been involved with, if you go look at
- 7 those, I told Gary what's interesting about
- 8 Davis-Besse is there is certainly a lot of dust
- 9 and dirt that's been kicked up in the last 12
- 10 months, been tremendous amounts of activity, lots
- 11 of people have looked at lots of paper, lots of
- 12 people have generated lots of paper.
- When you get all the way down to
- 14 the end, and we are going to leave electrical
- 15 systems aside for now because no one knows, we
- 16 think we -- only we know what's going to happen,
- 17 but no one knows for sure what's going to come out
- 18 of this, but that aside, because that was more of
- 19 a management issue, if you look from a design
- 20 perspective, did we have to redo the sump? Yeah.
- 21 Do we have issues of AOC involvement? Yeah.
- 22 Unfortunately the timing of that got rolled into

- 1 this outage. Now, that is something everybody
- 2 else is also doing, and the experience here at
- 3 Davis-Besse is not really tremendously different
- 4 than what our plants are seeing with regard to
- 5 their amount of AOCs.
- 6 When you look at the big picture,
- 7 like when we were talking this morning was not do
- 8 you want to compare grades of bad, but Davis-Besse
- 9 ain't that bad. When we're all done with design
- 10 issues, design problems with this plant, it had to
- 11 be fixed, you know, are we redoing all the health
- 12 stuff like we did at Cook? No. Are we going to
- 13 be sitting here fighting over EQ the way the
- 14 N.R.C. is still doing on Cooper with EQ? No.
- 15 Are we having to build all new
- 16 safety-related enclosures and put in new
- 17 safety-related equipment like they did at Crystal
- 18 River? I see Tom Payne who went through the whole
- 19 Salem experience with me, all kinds of
- 20 modifications to the plant, you know what, I think
- 21 when we talked here back in December, that what we
- 22 had was we had a bunch of calculations that

- 1 probably could have been better, I don't think
- 2 anybody disputes that. Were there some
- 3 unsubstantiated assumptions? Yes. Were there
- 4 some -- did they look at perhaps all of the
- 5 bounding conditions directly in the calc? No.
- 6 But in general the plant is safe and the design is
- 7 sound.
- 8 We have got like the HPI problem,
- 9 that one fell through the cracks, it fell down the
- 10 cracks during design, it fell through the cracks
- 11 in the '80's and in the assessments in the '90s.
- 12 Deisel, is this diesel challenged during it's
- 13 starting sequence on an SFAS? Yes. But we had
- 14 the analysis and we have good test data to show
- 15 that this still works fine.
- 16 So the big picture, you know, I
- 17 think that, you know, having been involved in some
- 18 of these restarts, and I know Marty saw us going
- 19 through the stuff in January, we dug into this
- 20 real hard, and you look at like the -- some of the
- 21 decay heat removal/LP stuff, what is the biggest
- 22 issue is that, you know, there is a potential

157

- 1 concern with boron precipitation control back-up
- 2 method, all right, we are not talking about, you
- 3 know, primary safety mitigating functions.
- 4 In most cases here, most of the
- 5 concerns that everyone has, and we have had some,
- 6 we identified some ourselves working with the
- 7 people at Davis-Besse, you know, just like I said,
- 8 it was just Gary and I were talking about it, and
- 9 I told him that I felt good seeing where we are
- 10 compared to nine months ago, just from the
- 11 standpoint that whether everything is settled,
- 12 you're know not to say there is nothing, but in
- 13 the big picture the situation I think is not what
- 14 people thought it was going to be last September
- 15 and October. That is just -- I'm not sure if that
- 16 helps, but that is just a perspective.
- 17 MR. LEIDICK: We do have work to do, we are
- 18 about doing that and we thank you for your time.
- 19 MR. GROBE: Thanks. Any other questions?
- 20 (No response.)
- 21 MR. GROBE: Okay. No others.
- 22 MR. RULAND: No questions from headquarters.

- 1 MR. GROBE: I have a couple of observations.
- 2 This is sort of a milestone that First Energy has
- 3 been working on for quite a while, a number of
- 4 months, a frequent amount of effort has gone into
- 5 it. You have gotten to the point where you were
- 6 able to conclude that you think that programs and
- 7 processes that you have accomplished are getting
- 8 you to the end of the tunnel. You're not there
- 9 yet, there is still a lot of work to do. I think
- 10 that is a milestone.
- 11 When you completed the system
- 12 health reviews and the five latent issues reviews,
- 13 you weren't there, you decided you had to do more,
- 14 and then you decided you had to do some topical
- 15 reviews, and then it was a learning process, and I
- 16 think it's important that you have gotten to this
- 17 point.
- 18 Marty Farber has been leading an
- 19 effort that has been paralleling your activities
- 20 for quite a few months now, and he's been working
- 21 very hard at that with a lot of support from other
- 22 folks. We still have a lot of inspections to do.

- 1 We looked at your system health review, we looked
- 2 at your latent issue reviews and found that the
- 3 engineering assessment board was adding
- 4 significant value, that the reviews were being
- 5 done and the appropriate depth, and then when you
- 6 went to the safety function validation project, we
- 7 looked at that and a number of inspectors out
- 8 there and found that that was going into the
- 9 appropriate depth.
- 10 We are now looking at the topical
- 11 area reviews, and we are going for -- continuing
- 12 to inspect, and as you finish work, we will be in
- 13 there to inspect. An additional part, it's not --
- 14 what we call it is the corrective action team
- 15 inspection. It's intended to look in large part
- 16 at the effectiveness of the corrective action
- 17 program, but the scope of effort that we have
- 18 chosen is largely dominated by correcting
- 19 engineering issues, so Marty's work in combination
- 20 with Zelig's work will leave us the information
- 21 that we need to decide whether or not we can agree
- 22 with you, and that likely is going to take

- 1 multiple additional weeks of effort over the next
- 2 period of time.
- 3 So I think this has been very
- 4 informative, I have learned some things here today
- 5 that I didn't know, and I have got about 30
- 6 questions on the front page of your book here,
- 7 it's covered with handwriting, so we have got a
- 8 lot of information we need here and it's been
- 9 helpful for me, and I'm sure the others sitting
- 10 here at the table, to put in focus where we are
- 11 at, and where we need to go. I encourage you to
- 12 figure that even has the potential to be a
- 13 licensing activity that is going to require us to
- 14 find resources at headquarters to address, for
- 15 example, the -- you called me last Thursday
- 16 morning when it looked like there was a potential
- 17 for modifying the HPI pump, might be on a
- 18 competing level with replacement of the pump, and
- 19 I initiated activities in headquarters to see
- 20 where we would find the resources to provide an
- 21 adequate review of that type of a design if you
- 22 decide to go forward with that so that Pat has

- 1 weekly calls with Tony Mendiola and his staff, and
- 2 I would encourage you to make sure that everything
- 3 that could potentially be a licensing issue is
- 4 being discussed, not that we will start any
- 5 activities, but at least we will --
- 6 MR. LEIDICK: I had a letter, a list that
- 7 has more on it than less.
- 8 MR. GROBE: We also. So I really appreciate
- 9 the amount of effort that went into preparing this
- 10 presentation, it was very comprehensive and very
- 11 useful.
- MR. LEIDICK: We have reached a point where,
- 13 you know, six months ago we didn't know where to
- 14 start, and we're getting there. Thanks.
- 15 MR. GROBE: Christine?
- 16 MS. LIPA: We are going to take a ten-minute
- 17 break and then we will open it up for comments and
- 18 questions from members of the public, and we will
- 19 be starting in here, going to headquarters, and
- 20 then we will go to people on the bridge line, so
- 21 be back here at 4:20.
- 22 (Whereupon, a recess was

2 hearing was resumed as		
3 follows:)		
4 MS. LIPA: We are just about ready to		
5 continue here. What we'd like to do at this point		
6 is open it up for questions or comments from		
7 members of the public that they have for the		
8 N.R.C. folks that are here at headquarters, and so		
9 let's begin with that. If there is anybody in the		
10 room here that has a comment or question, if they		
11 could come up. We have a microphone over on the		
12 podium over there across the room.		
13 Is there anybody that has any		
14 questions?		
15 (No response.)		
16 MS. LIPA: Is there anybody at headquarters?		
17 Is your room open to the public?		
18 MR. MENDIOLA: This is Tony, and yeah, we		
19 have somebody with a question.		
20 MR. HORNER: Dan Horner from McGraw-Hill. I		
21 guess I want to I didn't catch one piece at the		
22 end of Mr. Coward's statement. He was talking		

had, after which the meeting

1

- 1 about a time frame of something happening in the
- 2 September-October time frame, and I didn't quite
- 3 catch what that was. Could you repeat that,
- 4 please?
- 5 MR. COWARD: What I meant was the
- 6 September-October time frame after the LAR reviews
- 7 had been completed, but before the topical reviews
- 8 had been complete, the safety function reviews had
- 9 been completed, most importantly before the
- 10 questions that were placed in the LARs were
- 11 answered, there were a number of outstanding
- 12 design questions and there were some people who
- 13 thought there were design issues with Davis-Besse.
- 14 And what's happened since that time
- 15 frame is these other additional reviews have been
- 16 performed, and most of the programs and systems
- 17 are satisfactory, and many if not all of the
- 18 questions that were identified during the LARs
- 19 have been answered. And when the questions were
- 20 answered all of the, quote, issues went away.
- 21 That's what I meant.
- 22 MS. LIPA: If you could spell your name,

- 1 sir.
- 2 MR. HORNER: I'm sorry, Daniel H-o-r-n-e-r,
- 3 Daniel Horner.
- 4 MS. LIPA: Thank you. Any other questions
- 5 from headquarters?
- 6 MR. MENDIOLA: No other questions from
- 7 headquarters.
- 8 MS. LIPA: Now would be time for anybody on
- 9 the phone lines who has a question to work through
- 10 the instructions that the operator will give you.
- 11 THE OPERATOR: If you would like to ask a
- 12 question, please press Star 1 on your touch-tone
- 13 phone.
- 14 (No response.)
- 15 THE OPERATOR: Currently there are no
- 16 questions.
- 17 MS. LIPA: Okay, thank you. Well, if there
- 18 are no further questions, that concludes our
- 19 meeting. And, everybody, thank you for coming.
- 20 MR. LEIDICK: Thank you, Christine, I
- 21 appreciate it.
- 22 (Which were all the

1	proceedings had and
2	testimony taken in the
3	above-entitled matter at
4	the time and place
5	aforesaid.)
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

1	STATE OF ILLINOIS)
2	COUNTY OF KANE)
3	I, ELLEN E. PICCONY, a Notary Public
4	duly qualified and commissioned for the State of
5	Illinois, County of Kane, do hereby certify that
6	subject to the usual terms and conditions of
7	County Court Reporters, Inc., I reported in
8	shorthand the proceedings had and testimony taken
9	at the hearing of the above-entitled cause, and
10	that the foregoing transcript is a true, correct
11	and complete report of the entire testimony so
12	taken at the time and place hereinabove set forth.
13	
14	
15	
16	
17	Notary Public
18	My Commission Expires
19	October 15, 2003.
20	
21	
22	