

Davis-Besse Nuclear Power Station

Reactor Vessel Incore Monitoring Instrumentation Nozzle Leakage Simulation Results

Davis-Besse Nuclear Power Station

Agenda

- Background on Reactor Vessel IMI Nozzles..... Jim Powers
- Simulation of Reactor Vessel IMI Nozzle
 Leakage.....Craig Hengge
- Closing Comments...... Gary Leidich

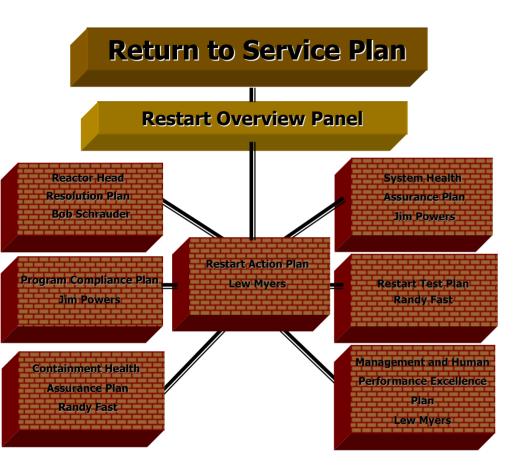
Opening Remarks

Gary Leidich Executive Vice President - FENOC

Davis-Besse Nuclear Power Station April 4, 2003

3

FENOC



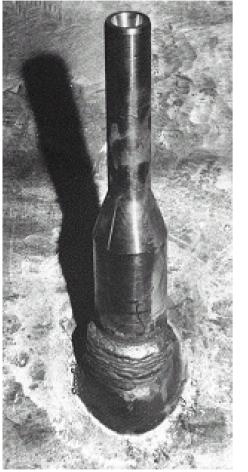
Desired Outcome

- Brief the NRC Staff on the Incore Monitoring Instrumentation (IMI) Nozzle Leakage Simulation Configuration and the Test Results
- Address the Plant Normal Operating Pressure Inspection Plan

Return to Service Plan

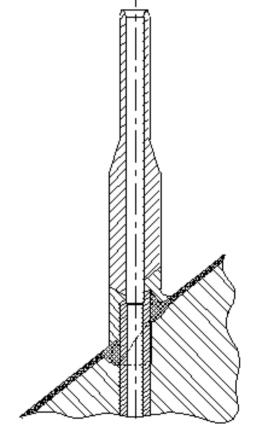
Inspection of the IMI Nozzles is part of the Containment Health Assurance Building Block in the Davis-Besse Return to Service Plan

Background on Reactor Vessel Incore Monitoring Instrumentation (IMI) Nozzles


Jim Powers Director - Davis-Besse Engineering

Davis-Besse Nuclear Power Station

April 4, 2003



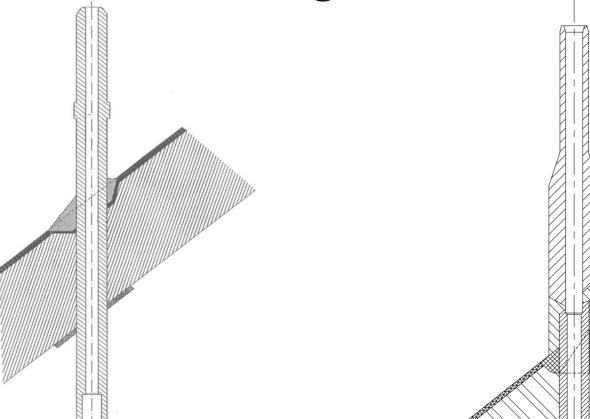
Modified IMI nozzle (inside of reactor vessel)

IMI Nozzles Configuration

- Babcock & Wilcox reactor vessel has 52 IMI nozzles
- IMI nozzles are ~ 1 inch in diameter
- Original IMI nozzles fabricated from Alloy 600 material
- J-Groove welds Alloy 182 (stress relieved)
- IMI nozzles modified (not stressed relieved) following Oconee 1-1972 Hot Functional Testing Failure

B&W Nozzle Configuration

Davis-Besse Nuclear Power Station FENOC



IMI Nozzles Industry Experience

- IMI nozzles are exposed to lower temperatures (558°F) than Control Rod Drive Mechanism (CRDM) nozzles (605°F)
- Alloy 600 material is generally less susceptible to stress corrosion cracking at lower temperatures
- Visual inspections of the IMI nozzles have not been routinely conducted in United States plants
- Inspections of IMI nozzles at thirteen French plants have not discovered cracking or leaking

EDF vs. B&W Nozzle Configuration

EDF Nozzle Configuration

B&W Current Nozzle Configuration

Davis-Besse	
clear Power Station	

Nı

April 4, 2003

Inspection Results Summer 2002

IMI Nozzles at Bottom of Reactor Vessel (Post-cleaning)

- Boron and rust deposit trails were observed on the sides and bottom of the reactor vessel
- No build-up of boric acid deposits or corrosion products on top of insulation
- No evidence of wastage on bottom of reactor vessel

Davis-Besse Nuclear Power Station

April 4, 2003

Deposit Characterization Summary

- Boron and Lithium were higher at several IMI nozzle locations than in flow trails and more comparable with previously analyzed upper head deposit samples
- Cobalt (Co⁶⁰) and Iron (Fe⁵⁹) were higher in the flow trails than at the IMI nozzle locations
- Minor species (Uranium, Barium, Thorium, Strontium, & Zirconium) were higher at several IMI nozzle locations than in the flow trails. However, the lack of activity associated with these species did not support reactor coolant as the source
- Inconsistent concentration gradients along possible flow trail paths

Davis-Besse	April 4, 2003	FENOC
Nuclear Power Station		Predictings Review Generative Conserva-

Deposit Characterization Conclusion

- From the results of the analysis, it was inconclusive whether the flow trails at the bottom of the reactor head and IMI nozzle deposits had a common source
- Framatome ANP was tasked to conduct simulation testing to determine the ability to visually detect the presence of very small leaks that would be associated with a cracked weld or IMI nozzle

Simulation of IMI Nozzle Leakage

Craig Hengge Engineer - Plant Engineering

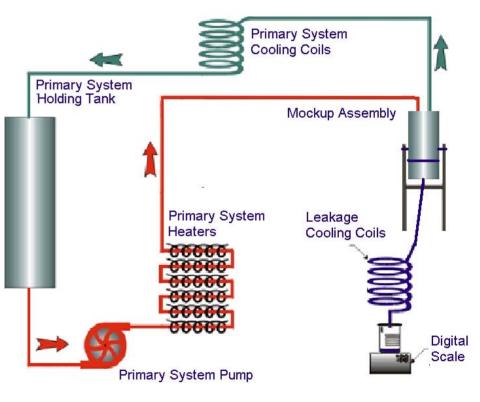
13

Davis-Besse Nuclear Power Station

Leakage Simulation Test Program Objectives

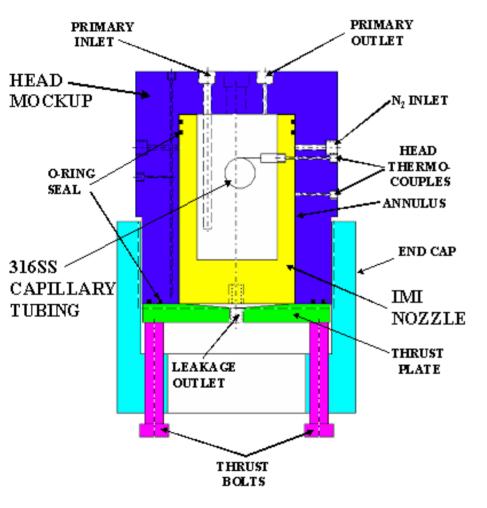
- Confirm that very small leak rates would result in visible boric acid crystals at the exit of the annulus between the nozzle and reactor vessel
- Characterize the residue deposit chemistry that exits the annulus

Leakage Simulation Test Facility


- Conducted at Framatome ANP's Hot Leak Test Facility in Lynchburg, Virginia
- Facility designed/built to achieve the primary and secondary side temperature and pressure conditions for Babcock and Wilcox pressurized water reactor systems
- Project performed in accordance with Framatome ANP Quality Assurance Program
 - Mockup design and fabrication controlled
 - Material traceability maintained during fabrication
 - Test procedures written and approved
 - Calibrated instruments used for all measurements (leak rates measured on best-effort basis)

Leakage Simulation Test Basic Description of Test

- Demineralized water containing Boric Acid and Lithium in the primary system holding tank was pumped through a series of electric heaters to achieve desired test temperature
- Water entered nozzle mockup assembly, heated up the mockup to primary side temperature and was free to leak through capillary tubing into annulus
- Pressure was monitored by transducers and temperatures by thermocouples (data recorded) 16



Hot Leak Test System

Davis-Besse Nuclear Power Station

FirstEnergy Leakage Simulation Test Mockup

- Test Assemblies consisted of an Alloy 600 nozzle (3.990 inch outer diameter) inserted into an AISI 8620 carbon steel head with a 0.010-inch annulus
- Various lengths of 0.005-inch and 0.010-inch inner diameter stainless steel capillary tubes were tested to simulate a range of potential leak rates

FirstEnergy Leakage Simulation Test Collection of Deposits

- Test leakage was condensed, collected as liquid, and weighed at discrete time intervals
- Mockup was disassembled and inspected to determine the distribution and quantity of residue deposits, and for evidence of flow assisted corrosion (FAC)
- Nozzle was removed and visually examined
- Photographs of observed deposits were taken prior to collecting the deposit samples

Test #5 (leak rate: 0.0006 gpm) Crusty yellow deposit buildup on nozzle wall at annulus discharge

Test #1 (leak rate: 0.015 gpm) Nozzle OD showing leak path

April 4, 2003


FirstEnergy Leakage Simulation Test **Parameters**

Test #2 (leak rate: 0.0017 gpm) Inside of nozzle showing capillary tube arrangement

- Five tests conducted at varying leak rates
 - Primary water leaked at controlled rates (0.0004 to 0.015 gpm) into an annulus
 - Capillary tubing was used to achieve low leak rates
 - Tests were conducted at both Mode 1 and 3 plant operating temperatures and pressures
 - Leakage was collected for analysis
 - Test mockup was inspected after each test

Davis-Besse Nuclear Power Station

FirstEnergy Leakage Simulation Test Test Matrix

<u>TEST #</u>	DURATION	BORON	LEAK RATE
1	6.3 Hours	2680 ppm	0.015 gpm
2	8 Hours	2680 ppm	0.0017 gpm
3	8 Hours	2680 ppm	0.0004 gpm
4	8 Hours	1134 ppm	0.0012 gpm
5	55 Hours	2680 ppm	0.0006 gpm (0 gpm after 47 hr)

All tests resulted in visible residue on nozzle and vessel surface
Significant Lithium deposits left at nozzle/vessel surface

Dav	is-Bes	se
Vuclear.	Power	Station

Before cleaning

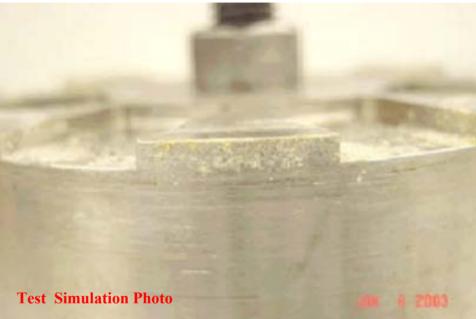
Test #1 (leak rate: 0.015 gpm) Inside of vessel head after removal of nozzle, showing eroded leak path

Test #1 (leak rate: 0.015 gpm) Post test view of nozzle/vessel head assembly

FirstEnergy Leakage Simulation Test

Test #2 (leak rate: 0.0017 gpm) Nozzle OD showing buildup of white deposits

Test #2 (leak rate: 0.0017 gpm) Close-up view of head-to-nozzle annulus showing buildup of white deposits at exit of annulus


Davis-Besse Nuclear Power Station

April 4, 2003

FirstEnergy Leakage Simulation Test

Test #3 (leak rate: 0.0004 gpm) Nozzle surface deposits

Test #3 (leak rate: 0.0004 gpm) Post test view of nozzle/head assembly & thrust plate

Davis-Besse Nuclear Power Station 23

FirstEnergy Leakage Simulation Test

Test #4 (leak rate: 0.0012 gpm) Close-up of head-to-nozzle annulus showing buildup of white deposit at exit of annulus

Test #4 (leak rate: 0.0012 gpm) Nozzle outer diameter showing buildup of white deposits at discharge of annulus 24

Davis-Besse Nuclear Power Station

Leakage Simulation Test Results

- Small leak rates (equivalent to 0.0004 gpm in mockup) were detected by the presence of a small amount of material at the annulus exit
- Large leak rates (equivalent to 0.015 gpm in the mockup) were easily detected by presence of a considerable amount of rustcolored material extending down the nozzle outer diameter
- All leak rates were detected by both Boron and Lithium concentrations in the deposits

Test #5 (leak rate: 0.0006 gpm) Crusty yellow deposit buildup on nozzle wall at annulus discharge

Leakage Simulation Test Conclusions

Test #3 (leak rate: 0.0004 gpm) Nozzle surface deposits

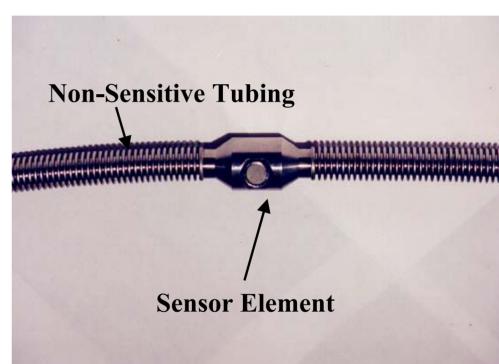
- Visible evidence of small leakage would be present on the IMI nozzle even for very small leaks
- Deposits may appear crusty with light yellow coloration
- Significant levels of Lithium (concentrations could reach levels of 15,000 ppm or higher) would be present in the deposit in addition to high Boron levels

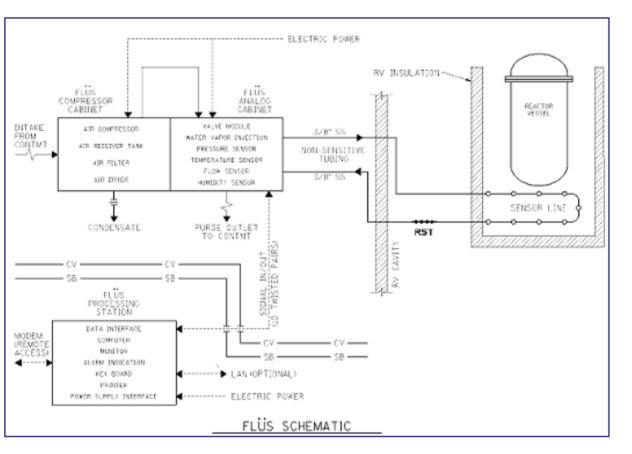
Davis-Besse Nuclear Power Station

Leakage Simulation Test Conclusion

• Based on the results of test, there is confidence that leakage would be visually discernable at an IMI nozzle

Reactor Vessel IMI Nozzles Inspection Plan


- Planned visual inspections prior to startup:
 - Obtain wipe samples from selected IMI nozzles to establish baseline chemistry
 - Perform video inspection of IMI nozzles
 - Perform visual inspection of IMI nozzles with Reactor Coolant System (RCS) pressure at 250 psig
 - Raise RCS to Mode 3 operating pressure and hold
 - Lower the RCS pressure
 - Re-perform video inspection of IMI nozzles
 - If required, obtain additional wipe samples for chemical analysis


FLÜS Online Leak Monitoring

- Davis-Besse is installing a FLÜS Online Leak Monitoring System to detect/locate under vessel leakage
- Leak detection system measures the moisture penetrating a sensor tube
- Installed or being installed in 12 units in a variety of European countries and Canada
- Operational history of 10 years

FLÜS Installation

- Install sensor tube between the reactor vessel insulation and reactor vessel
- Expected sensitivity
 of approximately
 0.004 to 0.02 gpm
 (sensitivity test during Mode 3)
- System sensitivity is dependent on the air tightness of reactor vessel insulation

Closing Comments

Gary Leidich Executive Vice President - FENOC

Davis-Besse Nuclear Power Station

