## Federal Railroad Administration, DOT

brake with no thermal damage to wheels or discs.

- (f) The brake system design shall allow a disabled train's pneumatic brakes to be controlled by a conventional locomotive, during a rescue operation, through brake pipe control alone.
- (g) An independent failure-detection system shall compare brake commands with brake system output to determine if a failure has occurred. The failure detection system shall report brake system failures to the automated train monitoring system.
- (h) Passenger equipment shall be equipped with an adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset parameters, a wheel slide alarm that is visual or audible, or both, shall alert the train operator in the cab of the controlling power car to wheel-slide conditions on any axle of the train.

## §238.433 Draft system.

- (a) Leading and trailing automatic couplers of trains shall be compatible with standard AAR couplers with no special adapters used.
- (b) All passenger equipment continues to be subject to the requirements concerning couplers and uncoupling devices contained in Federal Statute at 49 U.S.C. chapter 203 and in FRA regulations at part 231 and §232.2 of this chapter.

## § 238.435 Interior fittings and surfaces.

- (a) Each seat back and seat attachment in a passenger car shall be designed to withstand, with deflection but without total failure, the load associated with the impact into the seat back of an unrestrained 95th-percentile adult male initially seated behind the seat back, when the floor to which the seat is attached decelerates with a triangular crash pulse having a peak of 8g and a duration of 250 milliseconds.
- (b) Each seat back in a passenger car shall include shock-absorbent material to cushion the impact of occupants with the seat ahead of them.
- (c) The ultimate strength of each seat attachment to a passenger car

body shall be sufficient to withstand the following individually applied accelerations acting on the mass of the seat plus the mass of a seat occupant who is a 95th-percentile adult male:

- (1) Lateral: 4g; and
- (2) Vertical: 4g.
- (d)(1) Other interior fittings shall be attached to the passenger car body with sufficient strength to withstand the following individually applied accelerations acting on the mass of the fitting:
  - (i) Longitudinal: 8g;
  - (ii) Lateral: 4g; and
  - (iii) Vertical: 4g.
- (2) Fittings that can be expected to be impacted by a person during a collision, such as tables between facing seats, shall be designed for the mass of the fitting plus the mass of the number of occupants who are 95th-percentile adult males that could be expected to strike the fitting, when the floor of the passenger car decelerates with a triangular crash pulse having a peak of 8g and a duration of 250 milliseconds.
- (e) The ultimate strength of the interior fittings and equipment in power car control cabs shall be sufficient to resist without failure loads due to the following individually applied accelerations acting on the mass of the fitting or equipment:
  - (1) Longitudinal: 12g;
  - (2) Lateral: 4g; and
  - (3) Vertical: 4g.
- (f) To the extent possible, interior fittings, except seats, shall be recessed or flush-mounted. Corners and sharp edges shall be avoided or otherwise padded.
- (g) Energy-absorbent material shall be used to pad surfaces likely to be impacted by occupants during collisions or derailments.
- (h) Luggage stowage compartments shall be enclosed, and have an ultimate strength sufficient to resist loads due to the following individually applied accelerations acting on the mass of the luggage that the compartments are designed to accommodate:
  - (1) Longitudinal: 8g;
  - (2) Lateral: 4g; and
  - (3) Vertical: 4g.
- (i) If, for purposes of showing compliance with the requirements of this section, the strength of a seat attachment