at the minimum separation for two adjacent tracks, while traveling in opposite directions, each train traveling at the maximum authorized speed; and - (2) The impact forces that the glazed window is required to resist as specified in this section. - (e) Stenciling. Each car that is fully equipped with glazing materials that meet the requirements of this section shall be stenciled on an interior wall as follows: "Fully Equipped with FRA Part 238 Glazing" or similar words conveying that meaning, in letters at least % of an inch high. [64 FR 25660, May 12, 1999, as amended at 67 FR 19992, Apr. 23, 2002] ## § 238.423 Fuel tanks. - (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least equivalent to a fuel tank that complies with the external fuel tank requirements in §238.223(a). - (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in §238.223(b). ## § 238.425 Electrical system. - (a) Circuit protection. (1) The main propulsion power line shall be protected with a lightning arrestor, automatic circuit breaker, and overload relay. The lightning arrestor shall be run by the most direct path possible to ground with a connection to ground of not less than No. 6 AWG. These overload protection devices shall be housed in an enclosure designed specifically for that purpose with the arc chute vented directly to outside air. - (2) Head end power, including trainline power distribution, shall be provided with both overload and ground fault protection. - (3) Circuits used for purposes other than propelling the equipment shall be connected to their power source through circuit breakers or equivalent current-limiting devices. - (4) Each auxiliary circuit shall be provided with a circuit breaker located as near as practical to the point of connection to the source of power for that circuit; however, such protection may be omitted from circuits controlling safety-critical devices. - (b) Main battery system. (1) The main batteries shall be isolated from the cab and passenger seating areas by a noncombustible barrier. - (2) Battery chargers shall be designed to protect against overcharging. - (3) Battery circuits shall include an emergency battery cut-off switch to completely disconnect the energy stored in the batteries from the load. - (4) If batteries are of the type to potentially vent explosive gases, the batteries shall be adequately ventilated to prevent accumulation of explosive concentrations of these gases. - (c) Power dissipation resistors. (1) Power dissipating resistors shall be adequately ventilated to prevent overheating under worst-case operating conditions. - (2) Power dissipation grids shall be designed and installed with sufficient isolation to prevent combustion between resistor elements and combustible material. - (3) Power dissipation resistor circuits shall incorporate warning or protective devices for low ventilation air flow, over-temperature, and short circuit failures. - (4) Resistor elements shall be electrically insulated from resistor frames, and the frames shall be electrically insulated from the supports that hold them. - (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility can be achieved through equipment design or changes to the operating environment. - (2) The electronic equipment shall not produce electrical noise that interferes with trainline control and communications or with wayside signaling systems. - (3) To contain electromagnetic interference emissions, suppression of transients shall be at the source wherever possible. - (4) Electrical and electronic systems of equipment shall be capable of operation in the presence of external electromagnetic noise sources.