§ 238.411 - (b) Side collision posts. The forward end structure shall have two side collision posts, or their structural equivalent, located at approximately the onethird points laterally, each capable of withstanding the following: - (1) A shear load of 500,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint; and - (2) A horizontal, longitudinal force of 300,000 pounds, applied at a point on level with the bottom of the windshield, without exceeding its ultimate strength. - (c) Corner posts. The forward end structure shall have two full-height corner posts, or their structural equivalent, each capable of withstanding the following: - (1) A horizontal, longitudinal or lateral shear load of 300,000 pounds at its joint with the underframe, without exceeding the ultimate strength of the joint; - (2) A horizontal, lateral force of 100,000 pounds applied at a point 30 inches up from the underframe attachment, without exceeding the yield or the critical buckling stress; and - (3) A horizontal, longitudinal or lateral shear load of 80,000 pounds at its joint with the roof, without exceeding the ultimate strength of the joint. - (d) *Skin*. The skin covering the forward-facing end of each power car shall be: - (1) Equivalent to a ½-inch steel plate with a 25,000 pounds-per-square-inch yield strength—material of a higher yield strength may be used to decrease the required thickness of the material provided at least an equivalent level of strength is maintained; - (2) Securely attached to the end structure; and - (3) Sealed to prevent the entry of fluids into the occupied cab area of the equipment. As used in paragraph (d), the term "skin" does not include forward-facing windows and doors. ## § 238.411 Rear end structures of power car cabs. The rear end structure of the cab of a power car shall be designed to include the following elements, or their structural equivalent. (A conceptual imple- - mentation of this end structure is provided in Figure 2 to this subpart.) - (a) Corner posts. The rear end structure shall have two full-height corner posts, or their structural equivalent, each capable of withstanding the following: - (1) A horizontal, longitudinal or lateral shear load of 300,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint; and - (2) A horizontal, longitudinal or lateral shear load of 80,000 pounds at its joint with the roof without exceeding the ultimate strength of the joint. - (b) Collision posts. The rear end structure shall have two full-height collision posts, or their structural equivalent, each capable of withstanding the following: - (1) A horizontal, longitudinal shear load of 500,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint; and - (2) A horizontal, longitudinal shear load of 75,000 pounds at its joint with the roof without exceeding the ultimate strength of the joint. $[64\ {\rm FR}\ 25660,\ {\rm May}\ 12,\ 1999,\ {\rm as}\ {\rm amended}\ {\rm at}\ 67\ {\rm FR}\ 19991,\ {\rm Apr.}\ 23,\ 2002]$ ### §238.413 End structures of trailer - (a) Except as provided in paragraph (b) of this section, the end structure of a trailer car shall be designed to include the following elements, or their structural equivalent. (A conceptual implementation of this end structure is provided in Figure 3 to this subpart.) - (1) Corner posts. Two full-height corner posts, each capable of withstanding the following: - (i) A horizontal, longitudinal shear load of 150,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint: - (ii) A horizontal, longitudinal or lateral force of 30,000 pounds applied at a point 18 inches up from the underframe attachment without exceeding the yield or the critical buckling stress; and - (iii) A horizontal, longitudinal or lateral shear load of 20,000 pounds at its joint with the roof without exceeding the ultimate strength of the joint. - (2) Collision posts. Two full-height collision posts each capable of withstanding the following: - (i) A horizontal, longitudinal shear load of 300,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint; and - (ii) A horizontal, longitudinal shear load of 60,000 pounds at its joint with the roof without exceeding the ultimate strength of the joint. - (b) If the trailer car is designed with an end vestibule, the end structure inboard of the vestibule shall have two full-height corner posts, or their structural equivalent, each capable of withstanding the following (A conceptual implementation of this end structure is provided in Figure 4 to this subpart): - (1) A horizontal, longitudinal shear load of 200,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint; - (2) A horizontal, lateral force of 30,000 pounds applied at a point 18 inches up from the underframe attachment without exceeding the yield or the critical buckling stress; - (3) A horizontal, longitudinal force of 50,000 pounds applied at a point 18 inches up from the underframe attachment without exceeding the yield or the critical buckling stress; and - (4) A horizontal, longitudinal or lateral shear load of 20,000 pounds at its joint with the roof without exceeding the ultimate strength of the joint. #### §238.415 Rollover strength. - (a) Each passenger car and power car shall be designed to rest on its side and be uniformly supported at the top ("roof rail") and the bottom chords ("side sill") of the side frame. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Minor localized deformations to the outer side skin of the passenger car or power car is allowed provided such deformations in no way intrude upon the occupied volume of each car. - (b) Each passenger car and power car shall also be designed to rest on its roof so that any damage in occupied areas is limited to roof sheathing and framing. The allowable stress in the structural members of the occupied volumes for this condition shall be one-half yield or one-half the critical buckling stress, whichever is less. Deformation to the roof sheathing and framing is allowed to the extent necessary to permit the vehicle to be supported directly on the top chords of the side frames and end frames. #### § 238.417 Side loads. - (a) Each passenger car body structure shall be designed to resist an inward transverse load of 80,000 pounds of force applied to the side sill and 10,000 pounds of force applied to the belt rail (horizontal members at the bottom of the window opening in the side frame). - (b) These loads shall be considered to be applied separately over the full vertical dimension of the specified member for any distance of 8 feet in the direction of the length of the car. - (c) The allowable stress shall be the lesser of the yield stress, except as otherwise allowed by this paragraph, or the critical buckling stress. In calculating the stress to show compliance with this requirement, local yielding of the side skin adjacent to the side sill and belt rail, and local yielding of the side sill bend radii at the crossbearer and floor-beam connections is allowed. For purposes of this paragraph, local yielding is allowed provided the resulting deformations in no way intrude upon the occupied volume of the car. - (d) The connections of the side frame to the roof and underframe shall support the loads specified in this section. # § 238.419 Truck-to-car-body and truck component attachment. - (a) The ultimate strength of the truck-to-car-body attachment for each unit in a train shall be sufficient to resist without failure the following individually applied loads: a vertical force equivalent to 2g acting on the mass of the truck; and a force of 250,000 pounds acting in any horizontal direction on the truck, along with the resulting vertical reaction to this load. - (b) Each component of a truck (which include axles, wheels, bearings, the truck-mounted brake system, suspension system components, and any other components attached to the truck by design) shall remain attached to the