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Chapter 12

Quality Assurance:
Design, Precision and
Management

Quality assurance (QA) is an integrated
program for ensuring the reliability of
monitoring and measurement data and
includes quality control.  Quality control
(QC) refers to operational procedures for
obtaining prescribed standards of
performance in the monitoring and
measurement process.  Specific QC
elements can be developed for most, if
not all, project activities.  All project
activities, from sampling (data
collection) and laboratory analysis to
statistical analysis and reporting, are
potential error sources (Peters 1988). 
Because error is cumulative and can
significantly affect the results of a
project, all possible efforts must be made
to control it.  Therefore, quality
assurance is a continuous process that
should be implemented throughout the
entire development and operation of a
program. 

The purpose of an overall quality
assurance project plan (QAPP),
containing specific QC elements and
activities, is to minimize—and when
possible eliminate—the potential for
error.  Additionally, there are objective
mechanisms for evaluating activities
relative to pre-established measurement
quality objectives and other project
goals.  The appropriateness of the
investigator's methods and procedures
and the quality of the data to be
obtained must be ensured before the
results can be accepted and used in
decision making.  

QA is accomplished through:

< Program design;

< Investigator training;

< Standardized data gathering and
processing procedures;

< Verification of data reproducibility;

< Instrument calibration and
maintenance.

As outlined below, QA requirements
apply to all activities in an ecological
study.  More detailed guidance and
examples for QA activities should be
obtained from USEPA (1994c, and
1998a); more general guidance is
outlined by USEPA (1993b).

12.1 Program Design

A central component of QA is overall
study design which includes
formulation of questions and
hypotheses, experimental design, and
development of analysis approaches. 
The classical approach by which
scientists plan research consists of the
following steps:

< Statement of the problem to be
resolved;

< Formulation of alternative
hypotheses that will explain the
phenomena or, in the case of
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problems that do not involve
elaboration of processes, formulation
of specific research questions;

< Establishment of boundaries within
which to resolve the problem;

< Formulation of an experimental or
study design that will falsify one or
more hypotheses or answer the
specific research questions;

< Establishment of uncertainty limits
including setting acceptable
probabilities of type I and type II
errors for statistical hypothesis
testing;

< Optimization of the study design
including power analysis of the
statistical design.

Experimental advances in basic sciences
have not included the last two steps
because uncertainty limits were
inappropriate or unknown. 
Examination of experimental advances
also reveals that a high degree of
creativity and insight is required to
formulate hypotheses and study
designs; no formal planning process or
"cookbook" can guarantee creativity and
insight.  Nevertheless, documentation of
the planning process and a complete
explanation of the conceptual
framework help others evaluate the
validity of scientific and technical
achievements.

12.1.1 Formulation of a Study Design

A study design is developed to answer
the specific monitoring questions
developed in formulating the questions
and objectives.  Sampling design
considerations were discussed in
Chapter 5.

For quality assurance, some effort will
always be required for repeated samples

so that measurement error can always
be estimated from a subset of sites. 
Repeated measurement at 10% or more
of sites is common among many
monitoring programs.

12.1.2 Establishment of Uncertainty
Limits

The level of uncertainty associated with
environmental measurements (due to
natural variability, sampling error,
measurement error, or other sources of
uncertainty) propagates directly to the
uncertainty of inferences and
conclusions that can be made from the
data.  Establishing the limits of
statistical uncertainty for conclusions
also sets limits for the data to be
collected (also known as Data Quality
Objectives [DQOs]; Chaloud and Peck
1994).  As mentioned in Chapter 5, there
is a close association between sampling
intensity and uncertainty.  Reducing
uncertainty usually results in greater
costs.  Assessing uncertainty, and
optimizing the study design (below)
require at least pilot data in hand, if not
results from one year or more of
monitoring.

As an example of uncertainty limits,
USEPA’s EMAP program established
the following (Chaloud and Peck 1994):

< Estimate the status of a population
of resources with 95% confidence
intervals that are within 10% of the
estimate;

< Determine average change in status
of 20% over 10 years with 95%
confidence and statistical power of
0.8.

EMAP selected 95% confidence
intervals, however, there is nothing
“scientific” about choosing 95%
intervals over, say, 90% or 99%.  The
second limit above, determining
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change, implies that EMAP managers
were only willing to conclude a false
change in status 1 time out of 20 (Type I
error; false positive), but were willing to
conclude a false lack of change 1 time
out of 5 (Type II error, false negative).

12.1.3 Optimizing the Study Design:
Evaluation of Statistical Power

A principal aspect of probability
sampling is determining how many
samples will be required to achieve the
monitoring goals and what is the
probability of making an incorrect
decision based on the monitoring
results.  The primary tool for conducting
these analyses is statistical power
analysis.  Evaluating statistical power is
key to developing data quality criteria
and performance specifications for
decision making (USEPA 1996b) as well
as evaluating the performance of
existing monitoring programs (USEPA
1992).  Power analysis provides an
evaluation of the ability to detect
statistically significant differences in a
measured monitoring variable.  The
importance of this analysis can be seen
by examining the possible outcomes of a
statistical test.  The null hypothesis (Ho)
is the root of hypothesis testing. 
Traditionally, null hypotheses are
statements of no change, no effect, or no
difference.  For example, the mean
abundance at a test site is equal to the
mean abundance of the reference sites. 
The alternative hypothesis (Ha) is
counter to Ho, traditionally being
statements of change, effect, or
difference.  Upon rejecting Ho, Ha would
be accepted.  

The two types of decision errors that
could be made in hypothesis testing are
depicted in Table 12-1.  A Type I error
(i.e., false positive) occurs when Ho is
rejected although Ho is really true.  A
Type II error (i.e., false negative) occurs
when Ho is not rejected although Ho is

really false.  The magnitude of a Type I
error is represented by " and the
magnitude of a Type II error is
represented by $.  Decision errors are
the result of measurement and sampling
design errors that were described in
Section 12.1.1.  A proper balance
between sampling and measurement
errors should be maintained because
accuracy limits effective sample size
and vice versa (Blalock 1979). 

Comparison of Significance Level 
and Power

Regardless of the statistical test chosen
for analyzing the data, the analyst must
select the significance level of the test. 
That is, the analyst must determine
what error level is acceptable.  The
probability of making a Type I error is
equal to the significance level (") of the
test and is selected by the data analyst. 
In many cases, managers or analysts
define 1-" to be in the range of 0.90 to
0.99 (e.g., a confidence level of 90 to
99%), although there have been
environmental applications where 1-"
has been set to 0.80.  Selecting a 95%
confidence level implies that the analyst
will reject the Ho when Ho is really true,
i.e., a false positive, 5% of the time.

Type II error depends on the
significance level, sample size, number
of replicates, variability, and which
alternative hypothesis is true.  The
power of a test (1-$) is defined as the
probability of correctly rejecting Ho

when Ho is false.  In general, for a fixed
sample size, " and $ vary inversely. 
Power can be increased ($ can be
reduced) by increasing the sample size
or number of replicates.  Figure 12-1
illustrates this relationship.  Suppose
the interest is in testing whether there is
a significant difference between the
means from two independent random
samples.  As the difference in the two
sample means increases (as indicated on
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Figure 12-1

Effect of
increasing sample
size from n1 to n2

on power.  The
curves represent
the probability
distribution of the
sample means
from 2 samples,
reference and test,
and for 2 sample
sizes n1 and n2

where n2 > n1.

Table 12-1.  Errors in hypothesis testing.

Decision
State of the population (truth)

Ho is True Ho is False

Accept Ho 1-�
(Confidence level)

�

(Type II error)

Reject Ho �

(Significance level)
(Type I error)

1-�
(Power)

the x-axis), the probability of rejecting
Ho, the power, increases.  If the real
difference between the two sample
means is zero, the probability of
rejecting Ho is equal to the significance
level, �.  Figure 12-1a shows the general
relationship between � and � if � is
changed.  Figure 12-1b shows the
relationship between � and � if the
sample size is increased.  The tradition
of 95% confidence (� = 0.05) is entirely
arbitrary; there is no scientific
requirement that confidence be set at
95%.  Indeed, for environmental
protection, power is at least as
important—and possibly more
important—than confidence (Peterman
1990, Fairweather 1991).

Basic Assumptions

Usually, several assumptions regarding
data distribution and variability must
be made to determine the sample size. 
Applying any of the equations
described in this chapter is difficult
when no historical data set exists to
quantify initial estimates of proportions,
standard deviations, means, or
coefficients of variation.  To estimate
these parameters, Cochran (1963)
recommends four sources:

� Existing information on the same
population or a similar population;

� A two-step sample.  Use the first-
step sampling results to estimate the
needed factors, for best design, of 
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Equation 12-1.

Equation 12-2.

the second step.  Use data from both
steps to estimate the final precision
of the characteristic(s) sampled;

� A "pilot study" on a "convenient" or
"meaningful" subsample.  Use the
results to estimate the needed
factors.  Here the results of the pilot
study generally cannot be used in
the calculation of the final precision
because often the pilot sample is not
representative of the entire
population to be sampled;

� Informed judgment, or an educated
guess.

For evaluating existing programs,
proportions, standard deviations,
means, etc. would be estimated from
actual data.  

Some assumptions might result in
sample size estimates that are too high
or too low.  Depending on the sampling
cost and cost for not sampling enough
data, it must be decided whether to
make conservative or "best-value"
assumptions.  Because of the fixed
mobilization costs, it is probably cheaper
to collect a few extra samples the first
time than to realize later that additional
data are needed.  In most cases, the
analyst should probably consider
evaluating a range of assumptions
regarding the impact of sample size and
overall program cost.  USEPA
recommends that if the analyst lacks a
background in statistics, he/she should
consult with a trained statistician to be
certain that the approach, design, and
assumptions are appropriate to the task
at hand. 

Simple Comparison of Proportions and
Means from Two Samples

The  proportion (e.g., percent dominant
taxon) or mean (e.g., mean number of
EPT taxa) of two data sets data sets can

be compared with a number of
statistical tests including the parametric
two-sample t-test, the nonparametric
Mann-Whitney test, and two-sample
test for proportions (USEPA 1996b).  In
this case, two independent random
samples are taken and a hypothesis test
is used to determine whether there has
been a significant change.  To compute
sample sizes for comparing two
proportions, p1 and p2, it is necessary to
provide a best estimate for p1 and p2, as
well as specifying the significance level
and power (1-�).  Recall that power is
equal to the probability of rejecting Ho

when Ho is false.  Given this
information, the analyst substitutes
these values into the following equation
(Snedecor and Cochran 1980):

where Z� and Z2� correspond to the
normal deviate.  Common values of (Z�

+ Z2�)
2 are summarized in Table 12-2. 

To account for p1 and p2 being
estimated, t could be substituted for Z. 
In lieu of an iterative calculation,
Snedecor and Cochran (1980) propose
the following approach:  (1) compute no

using Equation 12-1; (2) round no up to
the next highest integer, f; and (3)
multiply no by (f+3)/(f+1) to derive the
final estimate of n. 

To compare the mean from two random
samples to detect a change of �; i.e.,
x
_

2-x
_

1, the following equation is used:

Common values of (Z� + Z2�)
2 are

summarized in Table 12-2.  To account
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Equation 12-3.

Table 12-2.  Common values of (Z� + Z2�)
2 for estimating sample size for use with Equations 12-1

and 12-2 (Snedecor and Cochran 1980).

Power,
1-��

�� for One-sided Test �� for Two-sided Test

0.01 0.05 0.10 0.01 0.05 0.10

0.80 10.04 6.18 4.51 11.68 7.85 6.18

0.85 11.31 7.19 5.37 13.05 8.98 7.19

0.90 13.02 8.56 6.57 14.88 10.51 8.56

0.95 15.77 10.82 8.56 17.81 12.99 10.82

0.99 21.65 15.77 13.02 24.03 18.37 15.77

                     Equation 12-4.

x x x x xr p s n1 ≤ ≤ ≤ ≤ ≤ ≤ ≤. . . . . . . . . . . .

for s1 and s2 being estimated, Z should
be replaced with t.  In lieu of an iterative
calculation, Snedecor and Cochran
(1980) propose the following approach: 
(1) compute no using Equation 12-2; (2)
round no up to the next highest integer,
f; and (3) multiply no by (f+3)/(f+1) to
derive the final estimate of n.

A special case of Equation 12-2 arises for
biocriteria, when we compare the mean 
of a sample to determine if the value is
below some set limit, that is, if the site is
impaired or below a reference threshold. 
The threshold is fixed by previous
investigations and decisions, and is not
a random variable.  We ask now
whether we can detect a change of �;
i.e., C-x

_
1, where C is the biocriteria limit:

In Equation 12-3, Z
�
 is most often one-

tailed, because the concern is only
whether the value is below the
threshold.

Sample Size Calculations for Means and
Proportions

For large sample sizes or samples that
are normally distributed, symmetric
confidence intervals for the mean are
appropriate.  This is because the
distribution of the sample mean will
approach a normal distribution even if
the data from which the mean is

estimated are not normally distributed. 
The Student's t statistic (t

�/2,n-1) is used
to compute symmetric confidence
intervals for the population mean, �:

This equation is appropriate if the
samples are normally distributed or the
sample size is greater than 30
(Wonnacott and Wonnacott 1969),
although Helsel and Hirsch (1992)
suggest that highly skewed data might
require more than 100 observations.

Although several approaches exist to
estimate confidence levels for any
percentile, many rely on assuming a
normal or lognormal distribution.  The
approach presented here (Conover
1980) for more than 20 observations
does not rely on these assumptions. 
Conover (1980) also provides a
procedure for smaller sample sizes.  To
calculate the confidence interval
corresponding to the median, lower
quartile, or upper quartile, the following
procedure is used.

1. Order the data from smallest to
largest observation such that
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where xp corresponds to the median; i.e.,
p=0.5, lower quartile; i.e., p=0.25, or
upper quartile; i.e., p=0.75.

2. Compute the values of r* and s* as 

 Equation 12-5.
r n p Z n p pa

*
/

.( ( ))= + −2
0 51

s n p Z n p pa
*

/
.( ( ))= + −2

0 51

where Z
�/2 is selected from a normal

distribution table.

3. Round r* and s* up to the next
highest integers r and s.  The 1-�
lower and upper confidence limits
for xp are xr and xs, respectively.

It can be seen from Equation 12-5 that
estimation of medians or quartiles from
small samples can result in large
confidence intervals for the estimate. 
For example, the 90% confidence
interval for the lower quartile of a
sample of n=10 covers the first 5
observations.  A sample of less than 10
observations would have a confidence
interval extending below the smallest
observation.  This is the reasoning
behind a general “rule of thumb” that
estimation of reference conditions
should be based on a sample of 10 or
more sites, if at all possible.  Figure 12-2
gives example sample size calculations
for comparing proportions and
population means.

12.2 Management

12.2.1 Personnel

Trained and experienced biologists
should be available to provide thorough
evaluations, provide support for various
activities, and serve as QC checks.  They
should have training and experience
commensurate with the needs of the
program.  At least one staff member
should be familiar with establishing a
QA framework.  QA programs should

document personnel responsibilities
and duties and clearly delineate project
organization and lines of communica-
tion (USEPA 1998a).  A time line
illustrating completion dates for major
project milestones or other tasks can be
a tremendously useful tool to track
project organization and progress. 

12.2.2 Resources

Laboratory facilities, adequate field
equipment, supplies, and services
should be in place and operationally
consistent with the designed purposes
of the program so that high-quality
environmental data can be generated
and processed in an efficient and cost-
effective manner (USEPA 1992). 
Adequate taxonomic references and
scientific literature should be available
to support laboratory work, data
processing, and interpretation. 

12.3 Operational Quality
Control

Protocols should be developed for
designing a data base and for screening,
archiving, and documenting data.  Data
screening identifies questionable data
based on expected values and obvious
outliers.  Screening is especially
important if data are gathered from a
variety of sources and the original
investigators and data sheets are no
longer available.  Figure 12-3 defines the
qualitative and quantitative data
characteristics that are most often used
to describe data quality.

These measurement quality indicators
require a priori consideration and
definition before the data collection
begins.  Taken collectively, they provide
a summary characterization of the data
quality needed for a particular
environmental decision.  Duplication of 
approximately 10% of the total
sampling effort is a common level for 
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Example 1—Sample size calculation for comparing proportions

To detect a difference in proportions of 0.20 with a two-sided test, " equal

to 0.05, 1-$ equal to 0.90, and an estimate of p1 and p2 equal to 0.4 and 0.6,

no is computed from Equation 12-1 as 

Rounding 126.1 to the next highest integer, f is equal to 127, and n is

computed as 126.1 x 130/128 or 128.1.  Therefore 129 samples in each

random  sample, or 258 total sam ples, are needed to detect a difference in

proportions of 0.2.  Since these are proportions, the result means that the

total count in the sample must be at least 129.  For example, to detect the

above difference in the proportion of dominant taxon (e.g., benthic

macroinvertebrates or fish) of two sites, at least 129 individuals must be

counted and identified in each estuary.

The exam ple illustrates that a statis tically significant difference can be easily

detected in proportions if suffic ient individuals are sampled.  However, it is

doubtful that a difference between 40% and 60% in dom inant taxon is

biologically meaningful.

Example 2—Sample size calculation for comparing population mean

abundance

To detect a difference of 20 in mean abundance with a two-sided test.  The

standard deviation, s, was estimated as 30 for both samples based on

previous studies; " was selected as 0.05; and 1-$ was selec ted as 0.90. 

Substituting these values into Equation 12-2 yields 

Rounding 47.3 to the next highest integer, f is equal to 48,

and n is computed as 47.3 x 51/49 or 49.2.  Therefore 50

samples in each random sample, or 100 total samples, are

needed to detect a difference of 20.  

Figure 12-2 

Example
sample size
calculations for
comparing
proportions
and population
means.

operational QC.  Replication of samples
at a randomly selected subset of field 
sites (usually, 10 percent of the total
number is considered appropriate) is
used to estimate precision, and
representativeness of the samples and
the methods.  Splitting samples into
subsamples can be used to check
precision of the methodology, and
reprocessing of finished samples is used
to check accuracy of laboratory
operations.

12.3.1 Field Operations

For the field operations aspect of an
ecological study, the major QC elements
are:  instrument calibration and
maintenance, crew training and
evaluation, field equipment, sample
handling, and additional effort checks. 
The potential errors in field operations
range from personnel deficiencies to
equipment problems.  Field notes are
integral to the documentation of
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< Precision - The level of agreement among repeated 

measurements of the same characteristic.

< Accuracy - The level of agreement between the true and the 

measured value, where the divergence between the two is 

referred to as bias.

< Representativeness - The degree to which the collected data 

accurately reflect the true system or population.

< Completeness - The amount of data collected compared to the

amount expected under ideal conditions.

< Com parability - The degree to which data from one source can be

compared to other, similar sources.

< Measurability - The degree to which measured data exceed the

detection limits of the analytical methodologies employed; often a

function of the sensitivity of instrumentation.

Figure 12-3

Six qualitative and
quantitative data
characteristics
usually employed
to describe data
quality.

activities and can be a potential error
source if incorrect recording occurs. 
Training is one of the most important
QC elements for field operations. 
Establishment and maintenance of a
voucher specimen collection should be
considered for biological data. 
Transcription errors during data entry
can be reduced with double data entry. 
Table 12-3 gives examples of QC
elements for field and laboratory
activities.

12.3.2 Laboratory Operations

The QC elements in laboratory
operations include sorting and
verification, taxonomy, duplicate
processing, archival procedures,
training, and data handling.  Potential
error sources associated with sample
processing are best controlled by staff
training.  Controlling taxonomic error
requires well-trained staff with expertise
to verify identifications.  Counting error
and sorting efficiency are usually the
most prominent error considerations;
they can be controlled by training and
by duplicate processing, sorting, and
verification procedures. 

12.3.3 Data Analysis

Errors can occur if inappropriate
statistics are used to analyze the data. 
Undetected errors in the data base or
programming can be disastrous to
interpretation.  Problems in managing
the data base can occur if steps are not
taken to oversee the data handling,
analysis, and summarization.  The use
of standardized computer software for
data base management and data
analysis can minimize errors associated
with tabulation and statistical analysis. 
A final consideration is the possible
misinterpretation of the findings.  These
potential errors are best controlled by
qualified staff and adequate training.

12.3.4 Reporting

QC in reporting includes training, peer
review, and the use of a technical editor
and standard formats.  The use of
obscure language can often mislead the
reader.  Peer review and review by a
technical editor are essential to the
development of a sound scientific
document.
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Table 12-3  Example QC elements for field and laboratory activities

Project Activity QC Element Evaluation Mechanism

Field Sampling Replicated samples at 10% of
sites by same field crew.

Calculate relative percent difference
(RPD) of index value or individual metric
score

Replicated samples at one to
two of total sites by different
field crew using same methods.

Calculate RPDs as above; use to
evaluate consistency and bias.

Physical Habitat
Assessment
(Qualitative)

Ensure appropriate training and
experience of operators;
multiple observers.

Resume or other documentation of
experience; discuss and resolve
differences in interpretation.

Physical Habitat
Assessment
(Quantitative)

Replicated measurements at
10% of sites.

Calculate RPDs between replicate
measurements; compare to
preestablished precision objectives.

Laboratory: 
Sample Sorting

Sample residue checked for
missed specimens to estimate
sorting efficiency; check
completed by separate lab staff.

Calculate percent recovery; compare to
preestablished goals.

Laboratory: 
Sample
Tracking

Logbook with record of all
sample information.

Not applicable. 

Laboratory: 
Taxonomic
Identification

Independent identification
and/or verification by specialist;
ensure appropriate and current
taxonomic literature available;
adequate training and
experience in invertebrate
identifications; reference
collection; exchange selected
samples/specimens between
taxonomists.

Calculate percent error; compare to
preestablished goals.

Data
Management

Proofreading; accuracy of
transcription.

All transcribed data entries compared by
hand to previous form—handwritten raw
data, previously computer-generated
tables, or data reports.

Data Analysis Hand-check of reduced data. For computer-assisted data reduction,
approximately 10% of reduced data
recalculated by hand from raw data to
ensure integrity of computer algorithm.

Appropriate statistics; training. Review by statistician or personnel with
statistical training.
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Case Study: Optimization of Benthic Sampling Protocols: gear, mesh size,
replicates

Ferraro et al. (1994) studied the cost-effectiveness of several alternative marine
benthic sampling protocols, including sampling gear, mesh size (0.5-mm or 1.0-
mm), and number of replicates (1-10), in southern California waters.  Alternative
sampling gear was:

• 0.1-m2 van Veen grab
• 0.06-m2 van Veen grab
• 0.1-m2 van Veen grab subsampled by 1-6 core samples, 50-300-cm2 total

area subsampled.

Laboratory processing time was recorded for each sampling alternative.  Twelve
measures of community structure were examined.  Results showed that the power
of detecting differences between sites did not increase greatly for more than 4
replicates.  Optimum cost-effectiveness was achieved with 5 core subsamples
(250-cm2) of 0.1-m2 grabs, replicated 4 times at each site (Ferraro et al. 1994).

Case Study: Optimization of Benthic Sampling: Seasonal sampling, trend
detection

Alden et al. (1997) examined seasonal and annual trends in estuarine benthic
macroinvertebrates community measures (diversity, total abundance, biomass, %
opportunities).  Samples were taken seasonally (4 x per year) from 16 Chesapeake
Bay sites for 9 years.  Long-term trends were examined by season, and the power
of detecting trends was examined for alternative sampling frequencies of 1
season, 2 seasons, or 4 seasons per year.  Finally, reference and impaired sites
were compared among seasons to determine if some seasons yield greater power
of detection of impairment than other seasons.

Trends in indicator values were apparent and detectable in all seasons.  Although
4-season sampling yielded the greatest power of trend detection, it was only
marginally better than 2-season sampling and 1 season sampling.  In general,
summer sampling was most sensitive and yielded the greatest power, allowing
detection of trends of 4%-7% change per year in abundance, diversity, and %
opportunist metrics over the 9 year period.  Biomass was much more variable: the
minimum detectable trend was approximately 20% change per year for summer-
only sampling (Alden et al. 1997).


