National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Index 201

Selection of Metrics for Index Assembly

Presented by Karen Blocksom, USEPA, NERL

Multimetric Index Development

- Database consisting of reference and stressed populations (sites)
- Classify resource (reference sites, ecoregions)
- Identify and test candidate metrics
- Select metrics for dimensionless index
- Select thresholds for assessment (set biocriteria)

Assembling an Index

- Identify suites of metrics that meet the following criteria:
 - Ecologically justifiable
 - Responsive
 - Precise
 - Provide unique information
 - Represent a range of metric categories (richness, composition, tolerance, trophic, habit, voltinism)

March 31 - April 4, 2003

Assembling an Index

- 2. Set aside a portion of the data for testing / validating the index.
- 3. Score all potential metrics.
- Calculate index alternatives by summing or averaging metric scores.

Assembling an Index

Calculate the DE and precision of each index.

6. Evaluate the alternatives.

Test the favored alternatives using the reserved data.

Identifying Redundancy

- Correlation analysis of potential metrics
- Identify pairs as redundant if the correlation coefficient, r, is > 0.9
- For r > 0.8, examine scatterplots
- Avoid suites of metrics containing both metrics in a redundant pair

Example Correlations

	Total taxa	Epy taka	Ephemerop. taxa	Plecoptera taxa	^{Tri} choptera taxa	% EPT	% Plecoptera	% Trichoptera	HB/	^{Into} lerant ^{taxa} (0-1)
EPT taxa	0.92									
Ephemerop. taxa	0.8	0.87								
Plecoptera taxa	0.77	0.86	0.63							
Trichoptera taxa	0.82	0.86	0.6	0.63						
% EPT	0.26	0.43	0.4	0.4	0.31					
% Plecoptera	0.26	0.38	0.23	0.53	0.24	0.45				
% Trichoptera	0.2	0.23	0.09	0.13	0.37	0.31	0.01			
HBI	-0.38	-0.56	-0.48	-0.54	-0.44	-0.77	-0.53	-0.37		
Intolerant (0-1)	0.84	0.94	0.81	0.83	0.82	0.41	0.37	0.2	-0.59	
Intolerant (0-3)	0.89	0.97	0.82	0.88	0.83	0.41	0.4	0.2	-0.59	0.97

Attribute groups

INDIVIDUAL CONDITION	TAXONOMIC COMPOSITION	COMMUNITY STRUCTURE	LIFE HISTORY ATTRIBUTES	SYSTEM PROCESSES
DISEASE				TROPHIC DYNAMICS
ANOMALIES CONTAMINANT	I DENTITY TOLERANCE	TAXA RICHNESS	FEEDI NG GROUPS	PRODUCTIVITY
LEVELS	RARE OR	RELATIVE ABUNDANCE	НАВІТ	MATERI AL: CYCLES
DEATH METABOLIC	ENDANGERED KEY TAXA	DOMI NANCE	VOLTINISM	PREDATI ON
RATE				RECRUI TMENT

Select Metric Suites-Examples

Metric	Α	В	С	D
Total taxa	Χ			
EPT taxa		X		
Ephemeroptera taxa			X	X
Plecoptera taxa			X	X
Trichoptera taxa			X	X
% EPT		X	X	
% Plecoptera	X			X
% Trichoptera	X			X
HBI	X	X	X	X
% 3 Dominant			X	
% 5 Dominant	X	X		
Shannon-Weiner				X
Scraper taxa	X	X	X	X
% Scrapers	X	X	X	X
Clinger taxa			X	

Index Assembly Hands-on Exercise – Selecting metrics

 Discrimination efficiencies (DE) and metric correlations for Idaho data

 Goal: Use metric evaluation information to select suites of candidate metrics and test as index alternatives

Scoring Metrics

- Creates dimensionless values that can be summed or averaged into a single index value.
- Standardizes metric values with respect to some expectation.
- Can be continuous or discrete.
- Can use expectations based on reference distributions or the entire distribution of values in a region.

Scoring metrics – adjustment for natural variation

- Some metrics vary naturally with physical features, such as watershed area, elevation, gradient, and stream order.
- Adjustment for natural factors is necessary to set appropriate expectations for scoring these metrics.
- This type of adjustment can be done by eye or using quantile regression techniques.

Watershed Area

Scoring Metrics – Discrete

- Metric values receive a discrete score (e.g., 1, 3, or 5) based on comparison to some expectation.
- "Reverse" metrics are scaled so that higher values receive lower scores.
- Metric scores are summed, sometimes rescaled to a sum of 100.

Scoring Metrics – Continuous

- Scores are scaled to the 95th percentile of all values within each region.
- Scoring is on a continuous scale from 100 to 0.
- "Reverse" metrics are scaled to the 5th percentile.
- Metric scores are averaged (or summed) to obtain index value.

Formulas:

- Score = 100 * (Max Value) / (Max 5th%) ("reverse" metrics)
- Score = 100 * Value / 95th%

Evaluating Index Alternatives

Metric	Model 1	Model 2	Model 3
Total taxa	X	X	X
Ephemeroptera taxa	X	X	X
Plecoptera taxa	X	X	X
Trichoptera taxa	X	X	X
% EPT		X	
% Plecoptera	X		X
% Clingers	X	X	
Clinger taxa			X
Scraper taxa			X
HBI			X
% 5 Dominant taxa			X
Basins DE (25th)	93.1 (47.6)	96.6 (57.1)	96.6 (50.5)
N. Mtns DE (25th)	83.8 (58.1)	89.2 (67.9)	89.2 (65.2)
C&S Mtns DE (25th)	85.7 (55.0)	90.5 (57.3)	90.5 (57.7)
DE (Wtd avg)	88.8	93.1	93.1

Index Discrimination

Index Responsiveness to Stressor Gradient

Index Score

Stressor Gradient

Index Precision

- Find replicated samples.
- Run ANOVA with Station as the grouping variable.
- Use the MSE term as an estimate of 3. variance.
- 4. Take the root of the MSE as an estimate of standard deviation.
- Calculate CV or CI

March 31 - April 4, 2003

Testing / Evaluating the Index

- Calculate the selected index using the reserved (validation) data.
- Check the "validation" samples against the "calibration" reference 25th percentile.
 - Are approximately 75% of validation reference samples above the threshold?
 - Is the percentage of validation stressed samples below the threshold comparable?

March 31 - April 4, 2003

Summary

- Select suites of metrics that meet criteria.
- Score metrics and average or sum scores into index value.
- Calculate DE and precision of alternatives.
- Select appropriate index.
- Test the DE of index with validation data.

