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Abstract 

 
Mining, traditionally a low-tech industry, is now utilizing surprisingly complex programmable electronic 
(PE) systems.  The functional safety of PE-based mining systems is an international issue and concern.  
From 1995 to 2001, there were 11 PE-related mining incidents reported in the U.S. and 71 PE-related 
mining incidents reported in Australia.  These incidents are due, in part, to unprecedented levels of system 
complexity.  The National Institute for Occupational Safety and Health (NIOSH) is addressing this issue of 
system complexity by conducting research to develop a quantitative complexity assessment methodology 
based on Normal Accident Theory (NAT).  The methodology models the behavioral interactive complexity 
at the level of system requirements.  A graph-theoretical approach is used for creating quantitative metrics 
from Software Cost Reduction (SCR) dependency graphs.  This complexity assessment methodology will 
help realize simpler, safer systems that will be easier to validate and verify.  The methodology will benefit 
mining and other industries as well. 

Introduction 

There is an increasing trend of embedding PE into a wide variety of systems.  Some reasons to embed PE 
technology are to provide increased functionality, improve reliability and to make systems more cost 
competitive.  Thus, traditional hardwired electro-mechanical and analog systems are often replaced with PE 
hardware and software.  This trend will continue due to global market pressures and industry’s quest for 
“improved” systems increasing functionality. 

Mining, traditionally a low tech industry, is now utilizing surprisingly complex computerized systems.  
Today, PE technology is embedded in diverse mining systems such as “driver-less” underground and 
surface haulage vehicles, continuous mining machines, hoists and elevators and mine atmospheric 
monitoring systems.  A recent survey reported that over 95 percent of all longwall mining systems are PE 
based (ref. 1).  This widespread embedding of PE increases our dependence on and exposure to PE-based 
systems; more importantly, it can impact safety by creating new hazards that could result in injury or death. 

The NIOSH, Pittsburgh Research Laboratory has a project addressing the functional safety of PE-based 
mining systems.  The project consists of two major, yet overlapping parts.  The first concerns mining 
industry specific best practice recommendations and guidance for PE-based mining systems (refs. 2-5).  
This work is largely based on IEC 61508 (ref. 6).  The objective for the project’s second part is to develop a 
complexity assessment methodology for PE-based mining systems.  This paper describes the approach and 
methodology for complexity assessment research. 

The next section describes how the research is motivated by the concern for safety.  Next, the relationship 
between complexity and safety is discussed.  The related research section draws distinctions between the 
research and related works in NAT and complexity metrics.  The research methodology section describes 
the experiments and measurement methods.  The system model section describes how the Software Cost 
Reduction (SCR) method is used to enable graph-theoretical approach for quantifying interactive 
complexity.  Finally, the research status and contributions are given. 

Research Motivation 

The functional safety of PE-based mining systems is an international issue and concern (ref. 7).  From 1995 
to 2001, there were 11 PE-related mining incidents in the United States; four of these were fatalities (ref. 
8).  Most likely, the total numbers of incidents are under reported in the U.S. because near misses and some 



mishaps are not reported.  Australia reports all mining incidents; from 1995 to 2001 there were 71 incidents 
documented.  In both countries, many of the incidents involved unexpected movements or startups of PE-
based mining systems.  This unpredictable system performance can and has created hazards resulting in 
injury or death. 

PE functional safety is a major concern for many industries besides mining.  PE-related mishaps causing 
mission failures, injuries, and fatalities have occurred in the chemical process industry, commercial and 
military aviation, public mass transit, and the medical electronics industy.  Neumann (ref. 9) documented 
over 400 PE-related incidents and MacKenzie determined that about 2000 deaths were PE-related (ref. 10). 

The general problem:  Our ability to understand and manage the complexities of PE-based systems have 
not kept pace with the technology’s utilization.  As a result, PE-related incidents causing mission failures, 
harm to the environment, injuries, and fatalities have occurred. 

We are ill equipped to understand and manage these complexities because there is no scientific 
methodology to identify and quantify the safety-related complexities of a PE-based system.  Quantification 
is very important; Lord Kelvin stated,  

When you can measure what you’re speaking about, and express it in numbers, you know 
something about it; but when you cannot measure it, when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you 
have scarcely, in your thoughts, advanced it to the stage of understanding. 

 
William Thomson (Lord Kelvin) (1824-1907) 
Popular lectures and Addresses, 1891-4. 

Research Objective and Specific Aims 

The research objective is to develop a complexity assessment methodology for safety-critical PE-based 
mining systems.  The first aim is to target the early life cycle stage of requirements.  This enables early 
assessment so that complexities impacting safety can be better understood and reduced before they 
propagate to other development phases.  Most errors occur at the requirements stage (refs. 11-12) and 
errors are much less costly to correct early rather than later (refs. 11, 13).   The second aim is to create a 
generalized methodology that can be utilized by other PE-based systems because the safety of PE-based 
systems is not an issue unique to the mining industry; it is an issue for many industrial sectors.  
Specifically, unpredictable system performance, during normal or foreseeable abnormal conditions, is a 
common safety issue (ref. 14). 

Complexity and Safety 
 

Webster's dictionary defines complexity as follows: 

Complexity:  (a) having many varied interrelated parts, patterns, or elements and consequently 
hard to understand fully; (b) marked by and involvement of many parts, aspects, details, notions, 
and necessitating earnest study or examination to understand or cope with (ref. 15). 

 
Complex, PE-based systems directly impact safety because of the relationships between complexity, design 
errors, new hazards, and system accidents. 

As PE utilization proliferates, escalating levels of system sophistication and complexity increase the 
likelihood of design errors.  Littlewood (ref. 16) states, “The problems essentially arise from complexity, 
which increases the possibility that design faults will persist and emerge in the final product”.  Leveson 
(ref. 17) expands upon the consequences of PE-induced system complexity: 

Many of the new hazards are related to increased complexity (both product and process) in the 
systems we are building.  Not only are new hazards created by the complexity, but complexity 



makes identifying analyzing hazards more difficult.  This complexity can also lead to a system 
accident. 

Perrow (ref. 18) defines a system accident as “the unintended interaction of multiple failures in a tightly 
coupled system that allows cascading of the failures beyond the original failures.”  Perrow theorizes that 
system accidents are inevitable or “normal” for complex, tightly coupled systems; therefore, system 
accidents are explained by NAT.  This theory has much support (refs. 17, 19-23). 
 
Quantification of NAT complexity would enable meaningful comparison of systems and options, help 
identify areas for simplification and be utilized in prediction models.  With respect to safety, a complexity 
assessment must address system-level complexities.  Safety cannot be assured if efforts are focused only on 
a part of the system because safety is an emergent property of the entire system.  Safety emerges once all 
subsystems have been integrated.  For example, the subsystem software can be totally free of “bugs” and 
employ numerous safety features, yet the system can be unsafe because of how software interacts with the 
other parts of the system.  In other words, the sum might not be as safe as the individual parts. 

Related Research 

This section reviews related works in complexity metrics and NAT such that limitations and inadequacies 
are made evident with respect to NIOSH’s complexity research. 

Complexity Metrics:  There is a plethora of complexity metrics.  Zuse (ref. 24) characterizes 98 complexity 
measures.  Ince (ref. 25) describes three categories of software complexity measures: lexemical counts, 
graph theoretical and system design structure.  NIOSH researchers extended these by adding a category for 
“integrated” thus giving four categories: 
 
Lexemic counts:  Count key language entities such as keywords and operators. 
Graph theoretical:  Graph based system models are created and key graphic characteristics  are calculated. 
System design structure:  Structure is defined in terms of internal and external module coupling. 
Integrated:  Integrated metrics synthesize existing metrics as multi-metric composites. 
 
Coskun (ref. 26) takes an integrated metrics approach by using an interdisciplinary complexity model 
encompassing the domains of mathematics, computer science, economics, psychology and cognitive 
sciences, social science and system science.  This model is used to measure architectural/structural 
complexity, data processing/reasoning/functional complexity, user interface complexity, and decision 
support/explanation complexity.  It is quite desirable to define and measure multiple types of complexity 
because a single measure cannot capture the notion of complexity.  However, these complexity metrics are 
for various software layers; hence, system level complexity is not addressed. 

Measuring complexity is difficult and there has been limited success.  McDermid  (ref. 27) supports this by 
stating: 

Complexity is both a major problem and an enigma, as there are no easy and effective ways of 
measuring it.  …There has been a lot of work on software complexity measures, but it is widely 
accepted that these are not adequate and in many cases are misleading… 

There are numerous reasons for the limited success of metrics.  Fenton’s (ref. 28) analysis of software 
metrics identifies a fundamental flaw; most measurements lack a basis in measurement theory.  Other 
problems with metrics include measurement ambiguities, potentially misleading results and the tendency to 
use concepts without validation. 

There is a much broader flaw with respect to safety; many complexity metrics exist for the subsystem of 
software, but they do not address the entire system.  Complexity must be addressed at the system level, as 
stated earlier, because safety is an emergent system property. 
 



Normal Accident Theory:  Perrow’s accident theory identifies two important system characteristics, 
interactive complexity and tight coupling, that together make complex software driven systems especially 
prone to system accidents (ref. 18).  Tables 1 and 2 respectively list Perrow’s attributes for interactive 
complexity and tight coupling. 

Table 1 – Interactive Complexity Attributes 
Adapted from reference 18. 

Complex System Attributes Comments 
Proximity Close proximity of physical components or process steps, less 

underutilized space 
Common-mode connections Many common-mode connections 
Interconnected subsystems Many interconnections 
Substitutions Limited substitutions of people, hardware, or software; exacting 

requirements 
Feedback loops Unfamiliar or unintended feedback loops 
Control parameters Multiple and interacting control parameters 
Information quality Indirect, inferential, or incomplete information 
 
 

Table 2 – Tight Coupling Attributes 
Adapted from reference 18. 

Tight Coupling Attributes Comments 
Time-dependency Less tolerant of delays 
Sequences Invariant sequences 
Flexibility Equifinality or limited ways to reach the goal or implement a function 
Slack Little or no slack in system structure or behavior 

Interactively complex systems have the potential to generate many nonlinear branching paths among 
subsystems.  These interactions can be unexpected, unplanned, incomprehensible, and unperceivable to 
system designers or system users.  Therefore, adverse outcomes are more likely, and it is less likely these 
situations will be mitigated by human intervention. 

Coupling is a measure of the strength of the interconnectedness between system components.  Tightly 
coupled systems have little or no slack thus, they rapidly respond to and propagate perturbations such that 
operators do not have the time or ability to determine what is wrong.  As a result, human intervention is 
unlikely or improper. 

NAT Limitations:  There are limitations to Perrow’s work.  NAT lacks formal measures of interactive 
complexity and coupling. Secondly, the system characteristics of interactive complexity and coupling are 
loosely defined.  Hopkins (ref. 29) supports this criticism and cites “the absence of criteria for measuring 
complexity and coupling” as significant limitations.  Kates notes the same limitations stating “the absence 
of clear criteria for measuring complexity and coupling makes his (Perrow) examples seem anecdotal, 
inconsistent, and subjective.” (ref. 30). 
 
Finally, NAT has not been operationalized for PE-based systems.  The NIOSH research will be the first to 
operationalize NAT for PE-based systems.  Operationalizion involves quantification of empirical attributes 
or indicators by measurement or assignment of numbers and scales.  It also includes the translation of 
informal definitions to observable operations and processes.  This research also develops the methodology 
for early identification and quantification of complexity at the system level. 

NAT Research:  Wolf’s empirical research strongly supports NAT (ref. 23).  He operationalized NAT for 
petroleum refineries by creating an index of complexity.  His conclusions validate NAT; refineries 
characterized by high complexity and tight coupling had more occurrences of accidental releases of 
hazardous materials and more fires and explosions.  However, the research is limited to refineries and  the 
index of complexity is not generalizeable across industrial sectors. 



Methodology 

The first phase of the complexity assessment research focuses upon measuring NAT interactive 
complexity.  Complex interactions are those of unfamiliar, unplanned, or unexpected behaviors.  In 
essence, the end user perceives system behavior as unpredictable.  Also, these behaviors could be 
unobservable or not immediately comprehensible by the end-user as stated by Perrow.  As a result, the 
system’s usability declines and a hazardous situation is created.  Therefore, it is hypothesized that there is a 
relationship between interactive complexity − the independent variable, and system predictability, 
observability and usability − the dependent variables. 

Experiments:  The research includes experiments with subjects using a PC-based simulation of a PE-based 
system.  This enables measurement of the dependent variables.  The experiments use two versions of the 
PE-based system to facilitate hypothesis testing.  The first version serves as a baseline and the second 
manipulates the independent variable.  For each version, subjects execute three test scenarios.  This gives a 
total of six tests, all randomly assigned for each user.  After each test, the subjects fill out a questionnaire 
designed to elicit their perceptions of the system. 

Measurement Methods:  A hybrid design is used for research hypothesis testing and the collection of 
quantitative and qualitative data.  A weakness encountered in metrics research concerns the failure to 
measure what is needed (ref. 28); therefore, the Goal-Question-Metric (GQM) paradigm (ref. 31) is used to 
determine what needs to be measured.  GQM is widely accepted as a very effective approach for this task.  

The dependent variables are predictability, observability, and usability and they are measured subjectively 
from the perspective of the test subjects.  For the collection of dependent variables, multiple methods are 
used.  The methodology uses the Discount Usability Engineering method (ref. 32), a human subject 
questionnaire instrument, and computer-based simulations and scenarios of case study examples.  The 
Discount Usability Engineering method is a very cost effective method having a maximum benefit-cost 
ratio with as few as three to five subjects.  Another advantage lies with the method’s simplicity; it is much 
less likely that errors and biases will be introduced from misapplication of complex methods.  A 
questionnaire instrument is also used to collect the dependent variables of system predictability, 
complexity, and usability.  The questionnaire is based on guidelines by Creswell (ref. 33).  Portions of the 
questionnaire are adaptations of two highly respected and validated instruments, the Software Usability 
Measurement Inventory (SUMI) developed at the University College Cork, Ireland (ref. 34) and the 
Questionnaire for user Interaction Satisfaction (QUIS) developed at the University of Maryland (ref. 35). 

The independent variables are measured by using a graph-theoretical approach for quantifying interactive 
complexity.  An appropriate system modeling method is needed to accommodate this approach and is 
described in the next section. 

System Model 

There are numerous types of system models, each having different strengths, weaknesses, capabilities and 
purposes.  Broadly speaking in the context of this research, a model must enable direct or indirect 
measurement of interactive complexity as captured by the system requirements.  System requirements 
define “what” the system does – this defines system behavior by specifying system inputs (stimuli), system 
outputs (responses), and the behavioral relationships between the inputs and outputs.  Typically, system 
requirements include nonfunctional requirements or constraints.  Finally, the model must be suitable for 
safety critical embedded systems.  Therefore, criteria were established to guide the selection of an 
appropriate model.  The following subset of criteria was established for model selection: 

•  Abstraction level:  The model must be applicable to the level of the system. 
•  Projection:  The projection needs to capture the external viewpoint of an end-user. 
•  Real-world applicability: The model needs to handle the complexity and size of real-world 

systems. 
•  Safety:  Undesirable or unexpected system behavior can create a hazard.  This type of behavior can 

occur during normal or abnormal conditions; thus, both conditions must be modeled. 



•  Simulation:  Capabilities must exist for the end-user to interactively execute the system such that 
end-user perceptions of complexity can be measured. 

•  System type:  The model must be applicable to reactive systems, so the model must capture the 
system’s behavior to external stimuli from the environment and humans. 

 
Based upon the complete set of criteria, SCR formal method was selected. 

SCR:  This is a powerful method for the formal specification, analysis, and validation of complex, 
embedded systems.  SCR was extended for system requirements; the extensions included the incorporation 
of nonfunctional requirements such as timing and accuracy constraints (ref. 36). 
SCR is based on the Parnas four variable model that partitions a system as four elements:  the environment, 
input devices, software, and output devices.  The model’s projection captures synchronous behavior, as 
viewed externally from the perspective of the user although the model does not explicitly depict the user as 
part of the system.  Because, in the context of this work, complexities are from the user’s perspective, we 
extend the Parnas four variable model to include the “liveware” element of the SHEL model (ref. 38) as 
depicted by Figure 1. 

Requirements are commonly conveyed and documented by a requirements document written in prose.  The 
SCR methodology translates this prose into a formal SCR specification.  Figure 2 depicts the major 
components of a formal SCR specification. 

 
 

 
Figure 1 - The Parnas four variable model extended to incorporate the human component 

of the SHEL model. 
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Figure 2 - Components of an SCR specification. 



SCR is based on a finite state machine model of the system where the system ∑ is a 4-tuple (ref. 36), 
 

∑ = (Em, S, s0,T), where (1) 
 

  Em = set of input events 
  S = set of system states 
  s0 = set of initial states where s0 f S 

T = the system transform 
 

The Parnas four variable model is event driven.  An event e is an instance in time when a mode, term, or 
variable changes value.  For instance, an input event is when a monitored quantity changes; an output event 
is when a controlled quantity changes. 
 
 e = @T(c);  a basic event where condition c changes to true        (2) 
 e = @F(c) = @T(¬c);  a basic event where condition c changes to false  (3)    
 e = @T(c) WHEN d = a   v a′;  conditional event where a = next state, a′ = old state (4) 
                 
Additionally, an integrated environment called the SCR* tool set was developed (ref. 37).  One of the 
environment’s tools is a dependency graph browser that displays dependencies between SCR model 
variables (the controlled and monitored variables, modes, and terms) and gives a graphical overview of the 
specification as shown by Figure 3.  The dependency graph also provides a mapping of controlled variables 
to monitored controlled variables.  The graph depicts each SCR variable as a node; an arrow represents a 
dependency between nodes where value of the variable at the tail depends on the value of the variable at the 
head. As the system behavioral dependencies increase, the interactive complexities increase.  Therefore, the 
dependency graph is used for direct and indirect measurements of interactive complexity.  
 

 
Figure 3 - An SCR dependency graph. Source: Naval Research Laboratories. 

 
 

Research Status 
 

The experimental design and research hypotheses are completed.  The next stage is to conduct a “dry run” 
with users running a PC-based simulation of a generic type system.  The Light Control System (LCS) case 
study was selected for this purpose.  This case study was designed by the Fraunhofer Institute for 
Experimental Software Engineering in Kaiserslautern (ref. 39) for a seminar on Requirements Capture, 
Documentation and Validation.  The dry run stage serves to facilitate refinement of the experiments and 
measurement methods.  Testing of real-world system is scheduled to begin mid 2002. 



 
Research Contributions 

 
This work will be the first to operationalize NAT for PE-based mining systems. It addresses a major a 
weakness and limitation; NAT lacks scientific quantification, and it has not been applied directly to 
computer-based systems. These are addressed by a novel approach for quantifying NAT interactive 
complexity. The approached is summarized. 
 
First, complexity metrics have traditionally been used to predict testing cost, development time and effort, 
number of errors, and numerous quality attributes. This work uses complexity metrics to address safety.  
The approach creates a measurement framework enabling the quantification of system behaviors that 
negatively impact safety. This negative impact of complexity is from the end-user’s perspective of system 
predictability, observability, and usability. Thus, this avoids two pitfalls in metrics research: addressing a 
single dimension or representing multiple dimensions of complexity with a single number. 
 
The quantification of system behavior takes place early in the system life cycle from models of system-
level requirements. This enables complexities impacting safety to identified and analyzed before they are 
propagated to subsequent life cycle phases. This is in contrast to other approaches that target the structural 
aspects of the software subsystem. The structural aspects are not measurable until the design or test stages 
of the life cycle.  
 
Lastly, the work can be generalized to PE-based systems in other industrial sectors. 
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