A METHODOLOGY FOR OBTAINING DESIGN PIER SCOUR DEPTHS

FHWAWestern Hydraulic Engineers Conference Western Hydraulic Engineers Conference April 2003 April 2003

OUTLINE

 \bigcirc Problem statement

- \bigodot Local scour at single circular piles
- \bigodot Methodology for scour at complex piers withodology for scour at complex piers

Methodology for scour at complex piers with physical model tests

 \bullet Summary

 \bigcirc

PROBLEM STATEMENT

 \bigcirc Determine the equilibrium local scour depth at a complex structure under design flow conditions

GENERAL APPROACH

• Most local scour information and knowledge is for single circular piles

• Use single pile scour knowledge to predict scour at complex structures

SINGLE PILE PREDICTIVE EQUATIONS

 \bullet Many equations in the literature

 \bullet Equations developed at University of Florida

Local Scour Definition Sketch

Background

· Research at University of Florida **Holland** Construction – Flume tests $\mathcal{L}_{\mathcal{A}}$ – Model studies - Formulation of predictive equations **• Large scale Clearwater Scour tests** $\mathcal{L}_{\mathcal{A}}$ – USGS Flume in Turners Falls, Mass. • High Velocity Live Bed Scour tests –– University of Auckland in Auckland, NZ

Predictive Equations

• Clearwater scour

 $\left(\frac{V_{\rm s}}{D}\right) = K_{\rm s}$ 2.5 $f_1\left(\frac{V_0}{D}\right) f_2\left(\frac{V}{V_{\rm c}}\right) f_3\left(\frac{D}{D_{50}}\right)$

• Live Bed scour

$$
\frac{y_s}{D} = f\left(\frac{y_o}{D}, \frac{V}{V_c}, \frac{D}{D_{50}}, \frac{V_{lp}}{V_c}\right)
$$

Predictive equations Predictive equations

 $\mathbf C$

V

• Clearwater scour $0.45 \leq \frac{v}{11} \leq$ $0.45 \leq \frac{v}{11} \leq 1$ \cdots – V_c –

 $\left(\frac{y_0}{y_0}\right)_{t=1}$ and $\left(\frac{y_0}{y_0}\right)^{0.4}$ $\left(\begin{array}{c} \mathbf{y_0} \\ \hline \mathbf{D} \end{array}\right) = \tanh \left[\begin{array}{c} \mathbf{y_0} \\ \hline \mathbf{D} \end{array}\right]$ 0 $\binom{1}{2}$ (yo)^{0.4} $f_1\left(\begin{array}{c} \underline{\mathsf{y}}_0 \ \overline{\mathsf{D}} \end{array}\right) = tanh \left[\left(\begin{array}{c} \underline{\mathsf{y}}_0 \ \overline{\mathsf{D}} \end{array}\right) \quad \right],$ *. tanh*

 $({\sf V}/{\sf V}_{\sf C})$ $({\sf V}/{\sf V}_{\sf C})$ $\frac{d}{dz} \left(\frac{V}{V_c} \right) = 1 + \frac{0.25 \ln(V/V_c)}{(V/V_c)^2}$ c $\sqrt{V/V}$ $\mathbf{v} \times \mathbf{c}$ $f_2(\frac{V}{V_c}) = 1 + \frac{0.25 \ln(V/V_c)}{(V/v_c)^2}$ V_C $\sqrt{V/V}$ *. ln*

 $\left[0.45\left(\right.\rule[-0.25ex]{0.25ex}{.096}\left(\frac{\textsf{D}}{\textsf{D}_{\text{50}}}\right)\neg 1.64\right)\right] + 0.45 \exp\left[-2.5\left(\left.\rule[-0.25ex]{0.25ex}{.096}\left(\frac{\textsf{D}}{\textsf{D}_{\text{50}}}\right)\neg 1.64\right)\right]$ 2 95 *.* $D \mid$ 4 α) \mid 0 45 α \mid α \mid \mid α \mid \mid 2 5 0 45 1 64 0 45 2 5 1 64 D_{50} , \cdots , \vert , \cdots , \vert , \cdots , \vert , \cdots , \vert , \cdots , \vert *f exp* \vert 0.45 \vert *log* \vert $\frac{D}{D}$ \vert -1.64 \vert \vert + 0.45 exp \vert -2.5 \vert *log* \vert $\frac{D}{D}$ \vert -1.

.

Predictive equations

 $\frac{\text{se}}{\text{D}} = \text{K}_{\text{S}}$ $f_1 \left(\frac{y_0}{D} \right)$ 2.2 $\left(\frac{V - V_C}{V} \right)$ + 2.5 $f_3 \left(\frac{D}{D} \right)$ $\left(\frac{V}{V} \right)$ $\frac{d_{se}}{D}$ = K_s f₁ $\left(\frac{y_0}{D}\right)\left[2.2 \left(\frac{V-V_c}{V_{lp}-V_c}\right)+2.5 \text{ f}_3 \left(\frac{D}{D_{50}}\right) \left(\frac{V_{lp}-V}{V_{lp}-V_c}\right)\right]$

lp

c c

V1.0 \leq $\frac{V}{V}$ \leq $\frac{V}{V}$

 \circ – V_{\circ} – V $0 \leq \frac{V}{V_{\Omega}} \leq -$

 $\frac{d_{\text{se}}}{D}$ = K_s 2.2 tanh $\left(\frac{y_0}{D}\right)^{0.4}$ K_S 2.2 $\tanh\left[\left(\frac{y_0}{D}\right)^{0.4}\right]$

$\mathsf{f}_1(\mathsf{y}_0\mathsf{/}\mathsf{D})$

1

 $\mathsf{D}/\mathsf{D}_{50}$ = const. $V/VC = const.$

y_o /D

Scour Dependence on V/V_c

 $\rm{f}_{2}(\rm{V/V}_{c})$

Scour Dependence on D/D₅₀

 $\mathsf{f}_3(\mathsf{D}/\mathsf{D}_{50})$

1

 $\mathsf{V}/\mathsf{V_c}$ = 1 y $_0$ /D = const.

Large Structure Experiments

- · Needed data for large D/D₅₀
- **Located large flume at USGS Lab in Turners** Falls, Massachusetts
- **Performed clearwater tests with** $\mathcal{L}_{\mathcal{A}}$ – 3 pile diameters (0.114 m, 0.305 m, 0.914 m) $-$ 3 sediment sizes (0.22 mm, 0.8 mm, 2.9 mm) \bullet D/D₅₀ values up to 4,156

USGS-BRD Laboratory

Clearwater Tests in USGS Flume

Clearwater Tests in USGS Flume

Clearwater Tests in USGS Flume

Results of Clearwater Tests

- Verified predictive equations in clearwater scour range
- **Provided new information regarding scour** dependence on:
	- $-y^{}_0/D$
	- –– Suspended fine sediment

Objectives of Live Bed Scour Study

· Obtain data in the live bed scour range **• Determine if live bed peak exists • If live bed peak exists, under what** conditions

Facilities Needed for Live Bed Scour Facilities Needed for Live Bed Scour Tests

• Flume with Holland Construction $-$ sediment recirculation capabilities $\mathcal{L}_{\mathcal{A}}$ - flow capacity to achieve required velocities **• Instrumentation for measuring flow,** bedforms and scour depth • Decided on University of Auckland

Auckland, New Zealand

Auckland, New Zealand

University of Auckland College of Engineering

Flume at the University of Auckland

5 ft wide by 4 ft deep by 148 ft long \bullet Tilting (1%) • Maximum discharge: – Water: 42 cfs (1200 l/s) (60 hp, 30 hp) $\mathcal{L}_{\mathcal{A}}$ – Sediment: 2.1 cfs (60 l/s) • Moveable instrument carriage (Non-Powered)

Auckland Flume

Flume at the University of Auckland

Test Structure

Instrumentation

Experiments

• Two Sand Sizes Holland Construction $-D_{50} = 0.27$ mm, $\mathcal{L}_{\mathcal{A}}$ $-D_{50} = 0.84$ mm, • Circular Pile, $D = 6$ in (152 mm) $\overline{}$ 22 Tests

University of Auckland Flume Test 14

- $D = 0.152$ m $V_c = 0.41$ m/s
- $D_{50} = 0.84$ mm $V_{\text{lp}} = 2.1 \text{ m/s}$
- $Y_0 = 0.38$ m $V/V_c = 2.95$
- $V = 1.21$ m/s $V_{\text{lp}}/V_{\text{c}} = 51$

Bed Forms

Live Bed Scour Hole

Live Bed Scour Hole

Ocean Engineering Associates, Inc. Civil and Coastal Engineering, University of Florida

New Zealand

Exp 202, video, fit eqn 8146

Exp 207, video, fit eqn 8146

Exp 208, pinger 5, fit eqn 8146

Exp 203, video, fit eqn 8146

Exp 204, video, fit eqn 8146

Exp 205, video, fit eqn 8146

Exp 206, video data

Predicted Vs Measured

• Using equations shown earlier equilibrium scour depths were predicted for $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the – Our clearwater tests $\mathcal{L}_{\mathcal{A}}$ – Our live bed tests $\mathcal{L}_{\mathcal{A}}$ – Data from Sterling Jones • Results on following plots

y ^s/D vs V/V c, D/D50 = 181, y ⁰/D = 2

y ^s/D vs V/V c, D/D50 = 181, y ⁰/D = 2.5

 y_s/D vs V/V_c , $D/D_{50} = 564$, $y_0/D = 2.7$

y ^s/D vs V/V c, D/D50 = 564, y ⁰/D = 1.3

Calculated vs. Measured, ys

FIELD DATA VERIFICATION

• Application of equations to a prototype structure shows good agreement

• Subject of second presentation

COMPLEX PIERS WITHOUT MODEL TESTS

• Decompose pier into its components

- \bullet Determine the "effective diameter", D \ast , of each component
- Compute the contribution to the total scour depth by each component
- Sum the component scour depths to obtain the total

Pier Column

Single Pile that will have same scour depth for same sediment and flow conditions

Pile Cap

 $y₂$

b D*** PC

Single Pile that will have same scour depth for same sediment and flow conditions

 $y_{s(pc)}$

ys

2 and y_2

PC

Pile Group

Single Pile that will have same scour depth for same sediment and flow conditions

 y_3 y_3 $y_{s(pg)}$ pg D***bHpg $y_{s(pg)}$

Total Scour Depth

$S_{s} = V_{s (col)} + V_{s (pc)} + V_{s (pg)}$

Design Scour Depths with Physical Model Tests Physical Model Tests

• For pier designs significantly different from the generic shape shown in the previous analysis Physical Model Tests are recommended • Model test design **• Interpretation of model results**

Physical Model Test Design Physical Model Test Design

• Models as large as flume will allow \circ D/D₅₀ >~50 • Sufficient test duration • Reference pile if possible • Low suspended sediment in water • Small distribution of sediment size (small sigma)

Physical Model Test Design

Reference pile

Physical Model Test Design

· Reference pile

Holland Construction $-$ Use scour at reference pile to correct for: $\,$

- Flume sediment size distribution
- Suspended fine sediment in water
- Duration of test less than required to reach equilibrium scour depth

Interpretation of Physical Model Test Results

- Compute equilibrium scour depth for reference pile
- **Compute Scour Depth Correction Factor:**

SDC = ^{Computed Scour Depth at Reference Pile}
Measured Scour Depth at Reference Pile

Compute model pier equilibrium scour depth:

 $\mathbf{y}_{\mathbf{s}(\text{model})} = \mathbf{SDC^*}$ (Measured scour depth at model pier)

 \bullet Compute effective diameter of model pier, D_{m}^{*} , using single, circular pile equation, i.e. solve for D_m^* in the following equation:

$$
\frac{y_s}{D_m^*} = 2.5 \, K_s \left\{ \tanh \left[\left(\frac{y_0}{D_m^*} \right)^{0.4} \right] \right\} \, \left\{ 1 + \frac{0.25 \, \ln \! \left(V/V_c \right)}{\left(V/V_c \right)^2} \right\}
$$

 $\left\{\frac{2.95}{2.5 \exp\left[0.45\left(\log\left(\frac{D_m^*}{D_{50}}\right)-1.64\right)\right]+0.45 \exp\left[-2.5\left(\log\left(\frac{D_m^*}{D_{50}}\right)-1.64\right)\right]\right\}}\right\}$ $\begin{pmatrix} 1 \ m \end{pmatrix}$ 1 64 $\begin{pmatrix} 1 \ + 0 & 45 \text{ eV} \end{pmatrix}$ -2 5 $\begin{pmatrix} 0 \ n \end{pmatrix}$ 50 *J* J J J J J J J J J J 150 2.95D D $\left[2.5\text{exp} \right] 0.45 \right]$ log $\left| \frac{\text{cm}}{\text{D}_{50}} \right|$ -1.64 $\left| \right|$ $+$ 0.45exp $\left| \frac{\text{m}}{\text{D}_{50}} \right|$ 1.64

• Next compute the effective diameter of the D_m^* prototype pier, D^*_p

$*$ $(Conmark \circ Con^{(n)})^*$ ${\mathsf D}_{\mathsf p}$ = (Geometric Scale of Model) ${\mathsf D}_{\mathsf m}$

• Knowing the prototype effective diameter and the design flow and sediment conditions the prototype scour depth can be computed using the single structure scour equations presented above.

Summary

• Design local scour depths for complex bridge piers can be computed without physical model tests for a large number of pier designs

• Pier designs that differ significantly from the generic shape require physical model tests as part of the analysis

Summary (cont.)

• A good physical model test design and execution is essential

• Care must be taken in the interpretation of the model scour results and their use in arriving at design scour depths for the prototype pier

Questions? Comments

Required Shear Profile Points

