

Hydraulics of Buried Invert Culverts With Natural Stream Bottoms

Presented at the 2003 Western Hydraulics Engineers Conference Stevenson, WA April 15-17, 2003

> Blake Tullis William Grenney

Utah State University

NCHRP Project 15-24 Hydraulic Loss Coefficients For Culverts

Utah Water Research Lab Capabilities

Project Objectives

Utah Water Research Laboratory

102,000 sf Facility
50,000 sf Hydraulics Section
Gravity flow rates up to 200 cfs
Large flume (8'x6'x600')
High velocity flume (4'x2'x80')
300,000 pound weight tank
Rainfall simulator/erosion bed (20'x20')
Simulated rainfall up to 31 in/hr

- •11,000 sf Environmental Quality Lab
- •Extensive computer facilities
- •Faculty, staff and student offices

72-inch venturi flow meter calibration

Southern Nevada Water Authority 180 Inch venturi flow meter serving Las Vegas

10-, 20-, & 60-inch models of 180-inch field piping/flow meter

Erosion Control

8' High Velocity Flume

Durability and failure point for erosion control blankets.

Erosion Control

Rainfall Simulator

Scale River Models

(Guadalupe River, CA)

Dam Modernization & Rehabilitation

Lake Turner,

Wesley Seale, and

Wirtz , Texas

Pipe/Culvert Testing

Stability of retaining wall blocks under high velocity (31 cfs) and shear stress.

Discharge velocity = 31 fps

HyperCalc Version 2.0					_ 🗆 🗙
	•	Number Format: Fixed Number Style: English	h	Min. Sig. Min. Decimal	5 3 ? §
itandard Conversion: Transport	ation	Transportation Tables	Í	Drainage	Misc.
Contexts: Length Area Volume Mass Force Velocity Acceleration Energy Power Pressure/Stress Dynamic Viscosity Kinematic Viscosity Flow Common Civil Structural (Electrical /	Con Cubic cubic cubic liter liter	vertion Options etric <> Metric (* Me c c mm (mm ^s) c cm (cm ^s) iter (mL) c m (m ^s) (L)	;tric <	 English C E English Cubic inch cubic feet cubic yard acre-ft teaspoon tablespoon fluid oz. cup pint 67.628 tablespoon 	english <> English
				🔲 Keep 'tea	ar-offs' on top

HY8 Energy

<mark>7 Design of Energy Dis</mark> s	sipators -				
<u>File View Options H</u> elp					
Scour Internal External					
Input					
Title: Project 1		Slope	e 0.01		
Flow 150	ft³/s	Manning's r	n 0.02 Use 4 or 5 rows of elements.		
Span <mark>5</mark>	ft	Number of slots	ts 2		
Rise 5	ft				
Output					
Element Dimens	ions	Hydraulics	Splash shield for channel		
Height 1.471	ft	Yc 3.035 ft	Splash shield height 5.265 ft		
Min Spacing 12.504	ft	Yn <mark>3.216</mark> ft	Edge height 0.164 ft		
Max Spacing 14.711	ft	Y2 NA ft	Splash guard length 7.355 ft		
Leading height NA	ft	Vc 9.885 ft/s	/s		
Leading Spacing NA	ft	Vn 9.328 ft/s	/s Splash shield for culvert		
Slot width 0.736	ft	Fr1 NA	Splash shield height 5.265 ft		
Element width 1.176	ft		Edge height 0.000 ft		
\Tumbling Flow: Circular \Tumbling Flow: Rectangular (Interior Roughness: Circular (Interior Roughness: Rectangular /					

HY8 Inp Generator

C:_Prjctlm\FHWA_IMP\NewInp\DirINP\NewFile	e.inp, English Units	
<u>File View Actions Tools Help</u>		
😈 Road and Channel 🗧 Culverts		
Culvert Inlet and Edge	+ Add Culvert - Del Culvert	🍓 Run for PC
Conventional Side Tapered Slope Tapered	Approx Fall Avail Span 1.000 ft <mark>3.000 ft s</mark>	Rise <mark>3.000 ft</mark>
Inlet edge and wall	Inlet Invert Station	100.000 ft
Thin edge projecting	Inlet Invert Elev.	<mark>1224.000</mark> ft
	Outlet Invert Station	250.000 ft
	Outlet Invert Elev.	1223.000 ft
	Invert Length	<mark>150.003 f</mark> t
	View Invert Slope	<mark>0.0067 ft</mark>
Depressed inlet	Improved Inlet Throat Station [<mark>0.000 ft</mark>
	Improved Inlet Throat Elev. <mark>(</mark>	<mark>0.000 ft</mark>
	Improved Inlet Crest Station	100.000 ft
	Improved Inlet Crest Elev.	1224.000 ft
	L1 <mark>0.000 </mark>	<mark>0.000 ft</mark>
	L2 <mark>0.000 ft L4 (</mark>	<mark>0.000 ft</mark>
Culvert#1		

HDS-5 Chart Calculator

G Hydraulic Design Charts (Nomogr	aphs)			
XHB 👔		🗆 Ke	ep Applet On Top	
Charts 1-9 Charts 10-19	Charts 20-29	Charts 30-39	Charts 40-49	Charts 50+
Headwater Depth for Conc	rete Pipe C	Culverts with	Inlet Control	
 Square Edge with Headwall 				
Groove End with Headwall				
Groove End Projecting				
3.846 Critical De S 3.846 S 16.119 Critical Ve	epth (ft) elocity (ft/s)			
Q = Discharge (cfs	;)			
0.01 Culvert Barrel Slope (ft/ft)				
4 Culvert diameter (ft)				
Leadwater (ft)				
Calc Units	nglish O	Metric		
Chart 1 Chart 2 Chart 3 Chart 4 (Charts 5 - 7 C	hart 8 Chart 9		

Prototype Hydraulic Model

A Free Surface Flow	_ 🗆 X
Eile Options	
Close All Open All I Define Section Shape Image: Colspan="2">Image: Colspan="2" Image: Colsp	
Sediment Details Sediment 1 t Depth: Section Slope and Flow Image: Depth: 2.0122 t Slope: 0.0250 Image: Depth: Imag	
Open Channel Properties Surface Profile	

Prototype Hydraulic Model

Prototype Hydraulic Model

Culvert loss coefficients, what's the big deal?

NCHRP Project 15-24 Project Objectives

- **1.** Refine and/or develop loss coefficients for conventional and nontraditional installations in environmentally sensitive applications. Specifically, this includes:
 - Determine inlet control design curves and entrance and exit loss coefficients for outlet control for various culvert shapes and end treatments. The order of priority for modeling/testing culvert shapes is circular, rectangular/square, arch, and elliptical.

- Each culvert shape tested will be evaluated for both **submerged** and **unsubmerged** conditions for the following:
 - ◆ a.
 ◆ b.
 ◆ c.

buried and/or bottomless culverts multiple circular culverts rehabilitated circular culverts

NCHRP Project 15-24 Project Objectives (continued)

2. Develop hydraulic roughness coefficients for bottomless (i.e., open footings) or buried invert culverts. Coefficients shall be developed for both full and partially full conditions and shall include various streambed materials for both concrete and metal culverts.

Phase I

- Literature Review
 - a) Identify deficiencies in loss coefficient data base for culvert/end treatment designs for environmentally sensitive culvert installations.
 - b) Review published methods for determining flow resistance coefficients for composite channels (i.e., side wall material differs from bed material).
 - c) Review published data for multi-barrel culvert installations
- Finalize work plan based on results of literature review

Phase II Laboratory Testing

Key Issues

Composite Roughness Coefficients (Flow vs. Depth relationship)

Size-scale effects by testing both small and large diameter culverts (possibly up to 48-inch diameter).

Loss coefficients for multi-barrel culverts (size and spacing, approach flow non-uniformity, etc.)

Loss coefficients for rehabilitated culverts

Supplemental Material Sources

Several culvert manufactures have agreed to provide free culvert and end treatment materials for the project

- > Advanced Drainage Systems, Inc.
- Construction Products, Inc.
- Mountain States Concrete Pipe Assoc.

Presentation of Results

- A description of the experimental design justifying the scaling techniques and model dimensions.
- A compendium of experimental data on CD ROM
- A set of design charts and graphs similar to those in the Appendix of HDS 5.
- Equations and coefficients that can be used to directly calculate values of the design parameters.