Hydrologic Design for Wetlands

By: Roger T. Kilgore, PE Kilgore Consulting and Management

Western Hydraulics Engineers Conference

April 16, 2003

~ KCM

Hydrologic Issues

- 1. Time step (monthly or daily)
- 2. Water budget interpretation (frequency and duration)
- 3. Runoff methodology (design storm v continuous)

Hydrologic Design Goals

Inundation/saturation (hydroperiod)

- Depth Requirements
- Duration
- Frequency

Coordination with wetland scientist

Duration and Frequency

Duration

- Number of days?
- Consecutive or not?

Frequency

- Exceedence probability, e.g. meet requirements 8 of 10 years?
- Can we be too wet as well as too dry?

Example

Proposed wetland mitigation site: upstream of a secondary road on Clear Creek. (South Carolina)
 Site features:

- Drainage area 695 ha
- Wetland site 4.5 ha
- Latitude 34 degrees
- Baseflow 0.0005 m³/s (spring fed)
- Soil Permeability, $K = 8 \times 10^{-5} \text{ mm/s}$

Rainfall (52-yr record)

Typical Year

- 1968
- Precipitation =1236 mm
- Dry Year
 - 1954
 - Precipitation =696 mm
- Wet Year
 - 1964
 - Precipitation = 2043 mm

Design Requirements

90 days of inundation > 500 mm for submergents over 0.5 ha in 8 of 10 years.
90 days of inundation < 500 mm for emergents over 2.0 ha in 8 of 10 years.

1968 Water Budget – Design Storm (SCS)

Budget Comparison

Monthly Budget- 1968

1954 Water Budget

Recall the Design Requirements

90 days of inundation > 500 mm for submergents over 0.5 ha in 8 of 10 years.
90 days of inundation < 500 mm for emergents over 2.0 ha in 8 of 10 years.

Depth-Duration-Frequency

Depth-Duration-Frequency

1968 90-day Inundation

1954 90-day Inundation

Comparison

	Submergents (ha)	Emergents (ha)
Requirement	0.5	2.0
1968 (average)	0.8	3.1
20% exceedence	?	?
1954 (driest)	0.01	1.59

Precip in 9 of 10 years

Runoff Method?

Design Storm (e.g. SCS) Continuous Simulation (e.g. SWMM)

Runoff Volume-1968

January 1968

July 1968

Runoff Volume

Runoff volume, Q, computed by: $Q = \frac{(P - I_a)^2}{(P + S - I_a)}$

Where,

- Q = Runoff depth
- P = Rainfall depth
- $I_a = Initial abstraction (depth)$
- S = Maximum potential retention (depth)

SCS Runoff Considerations

With SCS methodology:

- No runoff up to a threshold, I_a
- 1968: Precip.=1236 mm; Runoff=34 mm (14 days)
- 1954: Precip.=696 mm; Runoff=7.7 mm (5 days)

Other assumptions:

- Each day is independent of previous and subsequent days (conservative).
- No cumulative rainfall effects (conservative).
- Watershed size such that runoff response within 24hours (implicit).

Continuous Simulation - SWMM

- Watershed accounting of infiltration, evaporation, & runoff
- *Watershed size not specifically limited as $T_c < 10$ h for SCS approach
- SWMM more complex and data intensive

Runoff Data Requirements

* SCS

- Area
- Curve Number
- Initial Abstraction
- Daily rainfall
- Daily accounting

SWMM

- Area
- Watershed shape, slope, & roughness
- % impervious
- Infiltration Parameters
- Depression storage
- Evaporation
- Hourly rainfall
- Continuous accounting

Advantages of Continuous Simulation

Better use of precipitation data

- Better description of watershed (At least SCS v. SWMM)
- More appropriate for smaller storms? (Not a design storm methodology.)
- Note: may or may not be conservative.

Recommendations

- 1. Use daily water budget wherever possible.
- 2. Develop depth-duration-frequency curves to interpret budget results and design req.
- 3. Use continuous simulation with hourly precipitation to generate runoff.
- 4. Use exceedence probability to define extreme events (In coordination with wetland scientist).