Large Woody Debris in Rivers: Engineered Solutions for Restoration and Treating Traditional Problems

Mark Ewbank, PE Tim Abbe, PhD, PEG Herrera Environmental Consultants, Inc. Seattle, WA

Talk outline:

Introduction and scientific background - Tim

Construction and engineering – Mark

Bank erosion along rivers is a common problem that regularly threatens roads, property and infrastructure

Unfortunately, traditional bank protection techniques involve the use of non-native materials and structures that can severely impact aquatic habitat and riparian connections to the river.

Herrera Environmental Consultants

Washington state typically has ~ \$20M of road damage during a 'normal' year. When exceptional floods occur, such as the February 1996 flood, \$20M of road damage occurred in Gifford Pinchot National Forest alone.

The simplification of northwest rivers

Herrera Environmental Consultants

Forest river valleys once consisted of a complex mosaic of channels, wetlands, and uplands.

Sauk River

Herrera Environmental Consultants

White River

Snoqualmie River

Herrera Environmental Consultants

Duwamish River

We have transformed complex systems ...

into simple ones ...

What does physical complexity mean to salmon?

Salmon Redds are linked to hydraulic gradients driving hyporheic flow

Quilcene River ELJ October 2002

7 redds within 10 m of ELJ, none found from 10-50 m further away

Number of redds decreases with increasing distance from ELJs (McHenry 2002).

Herrera Environmental Consultants

ELJs Can Provide Multiple Habitat Benefits

Hydraulic refugia Habitat and refugia (pools, cover) Forest refugia (long-term erosion protection) Enhancement of hyporheic flow Creation and maintenance of side channels Sediment retention Spawning riffles Nutrient source (retain detritus & drift)

ELJs provide superior fish habitat

(e.g., Beamer & Henderson 1998; Peters et al. 1998, 2001; Piegay et al. 2001; USACE 2001, ...)

USFWS bank protection habitat comparison (Peters 2001)

- 1. Only **LWD** stabilized sites (large quantities of LWD) consistently had **greater** fish densities than control areas
- 2. Riprap and riprap with LWD had reduced fish densities
- 3. Reduced fish densities at rock deflectors during the spring and summer, greater during the winter
- 4. Adding **LWD to riprap** had **little benefit** to fish
- 5. Adding LWD to rock deflectors provided some benefit to fish

Logjam "hard points"

Herrera Environmental Consultants

Natural logjams form stable "**hard points**" that provide long-term forest refugia on floodplains that are frequently "recycled" by channel migration

Logjam "hard points" led to the idea of "Engineered Logjams"

Elements of Engineered Logjam Technology

An ELJ design process ...

Herrera Environmental C

Consultants

How can "wood" be stable in a river?

Examples of ELJ design analysis

Herrera Environmental Consultants

Examples of how we can quantify wood mechanics:

Strength limited models ...

Examples of ELJ design analysis ...

wood stability: Skin friction Case of a completely submerged timber pile in hard sand: L = 30 ft (9.1 m)D = 2 ft (0.6m)Sp. Gravity = 0.5

Examples of ELJ design analysis ...

Herrera Environmental

ital Consultants

2.0

Examples of ELJ design analysis ...

wood stability: longevity

 $R(o) = initial \log radius$ $R(t) = \log radius at time t$ $D(o) = initial \log diameter$ $D(t) = \log diameter at time t$ $M(o) = initial \log mass$ $M(t) = \log mass at time t$ 110 year old Dyea piles

2-D modeling modeling with an orthogonal grid

Example 2-D modeling output of flow around groins placed along a the outer bank of a meander

Flow Vectors

Unregistered HyperCam

Select appropriate structures based on objectives, opportunities, and constraints

Examples of ELJ design analysis ...

Structure siting

Black-top road is where Forest Road 23 washed out in 1996

Cispus River Site B, RM 19, October 1999

BEFORE: Traditional Revetment

Herrera Environmental Consultants

copyright 2002

AFTER: ELJ Flow Deflectors

Herrera Environmental Consultants

P-Cor

copyright 2002

OCT 22 2000

Do Engineered Logjams Work?

Williams River after 6 over-topping flows, November 2002

Basic ELJ Design Process

Establish a clear set of goals Identify opportunities and constraints to achieve goals Physical understanding of the river and site geology, hydrology, hydraulics, geomorphology **Select appropriate types of ELJ structures** Select appropriate size and location for ELJs **Coordinate with permitting agencies Complete engineering analyses Complete engineering designs and specifications Coordinate construction logistics Implement adaptative management plan**

Washington ELJ Project Sites: 1995-2002

copyright 2002

Example ELJ Projects which incorporated bank and/or bridge protection or gradecontrol as a principal objective.

Year	River	Sponsor
1995	Cowlitz	Private landowner
1998	N.F. Stillaguamish	State, County, Federal
1998/2001	North Creek	State
1999-2002	Elwha	Tribe, State
1999	Cispus B & C	Federal
2000	S.F. Nooksack	Tribe, State
2001	Cispus A	Federal
2002	Methow	Private landowner
2002	Quilcene	Tribe, Private landowner

The 1998 North Fork Stillaguamish Project

ELJ no.5, August 2002

Herrera Environmental Consultants

copyright 2002

"Bank-full" discharge and stage relative to 1998 N.F. Stilly ELJ structures.

ELJs were submerged <u>8 times</u> in WY99 (4 more times between 10/1/99 and 12/31/99). As of May 2000 the 5 ELJs remain intact and have thus far been successful in meeting project objectives.

North Fork Stilly ELJ #1: 1998 As-built structure

Herrera Environmental Consultants

copyright 2000 ap. Att But PMP, Ltd.

North Fork Stilly ELJ #1: 1998 Bankfull stage

Herrera Environmental Consultants

copyright 2000 ap. Mitight PMP, Ltd.

North Fork Stilly ELJ #1: 1999 After 8 peak flows equal or exceeding bankfull stage

Herrera Environmental Consultants

copyright 2000 apyright PMA, Ltd.

Flotsam Trapping Efficiency of Engineered Log Jams North Fork Stillaguamish River, 1998-1999

Displacement distance of tagged logs, 9/1/98-9/1/99

Bridges and Wood

1998: pre-existing conditions

Herrera **Environmental**

Consultants

1999: 8 peak flows >= bkf

Herrera Environmental

tal Consultants

2000: 16 peak flows >= bkf

2001: 17 peak flows >= bkf

Construction Engineering, Costs, and Implementation

Herrera Environmental Consultants

DEERE

copyright 2002

Interdisciplinary Team Approach

- •Geomorphology
- •Hydraulics
- •Hydrology
- •Riparian condition
- •Aquatic habitat
- Permitting implications
- •Landscape architecture
- •Cost estimating
- •Construction engineering

Construction Considerations

Standard Construction Large Heavy Equipment Projects Time of Year

Design Considerations

- •Safety
- •Infrastructure Protection
- •Location
- •Access (construction, maintenance, monitoring)
- •Constructability (flow diversion, materials)
- •Risk Assessment
- •Factor of Safety

More Construction Considerations

Similar to other conventional heavy equipment construction (grading, excavation, logging, rigging, structural) Makes some otherwise unbuildable projects buildable

Access and Location

Herrera Environmental Consultants

copyright 2002

Temporary channel diversions

Herrera Environmental Consultants

copyright 2002

Access and Equipment

Sustainable Solutions

cost-effective, environmentally sustainable solutions to infrastructure protection

 incorporate environmental benefits while not sacrificing function ("self mitigating")

ELJ Applications in River Engineering

Bank and road protection

flow deflection and revetment structures Bridge protection

retention of hazardous debris channel alignment

Limiting channel incision

grade control **Flood peak reduction** through upstream flood wave diffusion

Stormwater runoff treatment

Self-mitigating projects work within the regulatory environment

- 1. County (SMA)
- 2. Fish and Wildlife (HPA)
- 3. Ecology (TMDLs, 401)
- 4. US Army Corps (404)
- 5. NMFS, USFW (ESA)
- 6. NMFS (Magnuson-Stevens Fisheries Conservation Act)

Self-mitigating solutions are a win-win for us all

Herrera Environmental Consultants

copyright 2002
copyright 2002

Selection of appropriate structures for site conditions, available materials and cost

North Fork Stillaguamish River ELJ Project: 1998 - 1999

- 98.4% of the tagged logs used in the ELJs remained after 8 peak flows equal or exceeding bankfull stage
- Four of the five ELJs (1, 2, 4, & 5) experienced a net gain in wood debris, with no detected change in ELJ #3

Why we don't like cable?

Herrera Environmental Consultants

copyright 2002

Cable is: 1. Not natural 2. Not sustainable **3.** Can threaten the integrity of a structure if improperly used 4. A potential liability w.r.t to human safety

