Bottomless Culverts Scour Study

Western Hydraulics Conference Stevenson, WA

Presentation by: J. Sterling Jones

EXPERIMENTAL SET-UP FOR THE BOTTOMLESS CULVERT STUDY

U.S. Department of Transportation Federal Highway Administration

rectangular model

conspan model

U.S. Department of Transportation Federal Highway Administration

contech model

rectangular model with wingwalls

Bottomless Culvert Analysis

• Max scour occurs at u.s. corners of bottomless culverts; analogous to bridge Abutment scour.

• max scour at culverts (like abutment scour) can be conceptualized as a form of contraction scour where the bed elev adjusts to flow distribution with an amplification factor attributed to high turbulence and vorticity in a mixing zone.

THEORETICAL BACKGROUND

FLOW CONCENTRATION

DEFINITION SKETCH

y, is a flow distribution component that is computed as contraction scour

U.S. Department of Transportation Federal Highway Administration

?

CONCEPTUAL ANALYSIS

- Determine a local representative velocity, V_R , near abutment prior to scour.
- Compute the representative unit discharge, $q_{\rm R}$, near the abutment

 $q_R = v_R \cdot y_0$

 Determine the critical incipient motion velocity, V_c, for the bed material in the culvert.

CONCEPTUAL ANALYSIS (CONT'D)

- ASSUME THE UNIT DISCHARGE REMAINS CONSTANT IN THE CONTROL VOLUME.
- Calculate the equilibrium contraction scour flow depth, y₂.
- Calculate the amplification factor, K_{ADJ}, to account for vortices and secondary currents.
- Calculate the max scour flow depth

 $y_{max} = K_{ADJ} y_2$

MD DOT (CHANG) Method for q_R

used potential flow transformation

 $v_{\rm R} = K_{\rm v} \left[\frac{Q}{A_{\rm opening}} \right]$

at point 0.1 L distance from Abutment face

$$K_v = 1 + 0.8 \left(\frac{w_{\text{opening}}}{w_a}\right)^{1.5}$$

$$\mathbf{q}_{\mathsf{R}} = \mathbf{V}_{\mathsf{R}} \mathbf{x} \mathbf{y}_{\mathsf{0}}$$

GKY Method for q_R

$$\begin{split} V_{R} &= \sqrt{V_{X}^{2} + V_{Y}^{2}} \\ v_{x} &= Q \ / \ A_{opening} \\ v_{y} &= \frac{Q_{blocked}}{0.43} \frac{q}{A_{a}} \\ \end{split}$$
 where: $Q_{blocked} \frac{q}{q}$ = Approach flow blocked by embankment on one side of channel cL

A_{a ¢} = Tot approach flow area on one side of channel **¢**

$$\mathbf{q}_{\mathsf{R}} = \mathbf{V}_{\mathsf{R}} \mathbf{x} \mathbf{y}_{\mathsf{0}}$$

Shields/Manning/Blodgett Method for v_c

of Transportation

GKY V_R, SMB V_c, K_{ADJ} = f(Q_b / ($\sqrt{g} y_2^{5/2}$))

Y_{max}, measured - Y_{max}, calculated

SUMMARY

$$v_{r} = \sqrt{v_{x}^{2} + v_{y}^{2}}$$
 $v_{x} = \frac{Q}{(w_{CUV} y_{0})}$ $v_{y} = \frac{Q_{b}}{0.43 A_{a}}$

v_c from Shields, Manning, Blogdett

$$y_2 = \frac{v_R y_0}{v_c}$$

$$K_{ADJ} = K_{SHAPE} \left[1 + 0.8195 \left(\frac{Q_{blocked}}{\sqrt{g} y_2^{5/2}} \right)^{0.4089} \right]$$

where $K_{SHAPE} = 0.89$ for wingwalls

U.S. Department of Transportation Federal Highway Administration

$$y_{max} = K_{ADJ} y_2$$

Publication No. FHWA-RD-02-XXX September 2002

Bottomless Culvert Scour Study:

Phase I Laboratory Report

U.S. Department of Transportation **Federal Highway Administration**

Research and Development Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean Virginia, 22101-2296

SUGGESTED PROCEDURE:

STEP 1: Calculate V_R

$$V_x = \frac{Q}{A_{\text{opening}}} \qquad \qquad V_y = \frac{Q_{\text{blocked cL}}}{0.43 \, A_{\text{a cL}}}$$

$$V_{R} = \sqrt{V_{x}^{2} + V_{y}^{2}}$$

Step 2: Determine V_C

 $V_{\rm c} = \frac{K_{\rm u} 0.28 \, D_{\rm 50}^{1/2} y_{\rm 0}^{1/6}}{n}$

 $K_U = 1.49$ for U.S. customary units

From Blodgett

$$n = \frac{K_U \times 0.105 y_0^{1/6}}{\sqrt{g}} \quad \text{for } 185 < \frac{y_0}{D_{50}} < 30,000$$

Step 3: Calculate y₂

$$\mathbf{y}_2 = \frac{\mathbf{V}_{\mathbf{R}} \mathbf{y}_0}{\mathbf{V}_{\mathbf{C}}}$$

Step 4: compute K_{ADJ}

$$K_{ADJ} = 1.0 + 0.8195 \left(\frac{Q_{blocked}}{\sqrt{g} y_2^{5/2}}\right)^{0.4089}$$

Coef 0.8195 becomes 1.09 if Q_{blocked CL} is used

Step 5: Compute maximum scour

$$y_{max} = K_{ADJ}y_2$$

MD DOT Phase II

- Cross Vanes to reduce Inlet Scour
- Submerged Entrance Validation Tests
- Pre-Scour Flow Distribution
- Extent of Protection for Corners
- Countermeasures for Outlet Scour
- Evaluation of Proposed Std Design

rectangular model with wingwalls

EXPERIMENTAL ARRANGEMENT OF THE CULVERT WITH CROSS VANE

Federal Highway Administration

2

FABRICATION OF THE CROSS VANE

EXPERIMENTAL ARRANGEMENT THE CULVERT WITH CROSS VANE

U.S. Department of Transportation Federal Highway Administration

W/ AND W/O CROSS VANE

U.S. Department of Transportation

EXPERIMENTAL ARRANGEMENT FOR PIV WITH HORIZONTAL LIGHT SHEET

PIV POST PROCESSING VELOCITY FLOW FIELD

SCOUR MAP FOR SUBMERGED FLOW

SCOUR MAP

SCOUR MAP FOR FREE SURFACE FLOW

SCOUR MAP

U.S. Department of Transportation

SCOUR MAP FOR FREE SURFACE FLOW AND ROUND EXIT BEVEL

SCOUR MAP

U.S. Department of Transportation

SCOUR MAP FOR FREE SURFACE FLOW AND STREAMLINED EXIT BEVEL

SCOUR MAP

U.S. Department of Transportation

EXPERIMENTAL ARRANGEMENT FOR PIV WITH HORIZONTAL LIGHT SHEET

U.S. Department of Transportation **Federal Highway Administration**

2

COMPARISON TURBULENT SHEAR STRESS AND SCOUR FOR SUBMERGED FLOW

COMPARISON TURBULENT SHEAR STRESS AND SCOUR FOR FREE SURFACE FLOW

COMPARISON TURBULENT SHEAR STRESS AND SCOUR USING STREAMLINED EXIT BEVEL

MD SHA PROPOSED STD. DESIGN

CONCLUSIONS

- Scour at the U.S. corners of bottomless culverts is analogous to bridge abutment scour.
- Simple Procedure has been provided on trial basis on request; subject to revision
- •Outlet Scour is on order of magnitude of u.s. corner scour but....
- Apparent correlation between turbulent fluctuation shear stress and scour depth (may be modeled numerically)

CONCLUSIONS

 Contraction & Turbulent scour components probably should combine in addition

- Analysis limited to clear water conditions.
- Cross vanes as a countermeasure for inlet scour was not a good application
- •MD DOT is working w/ County Engr and Industry to develop a safe but affordable STD DESIGN

