

Final Report

AIR QUALITY IMPACT ASSESSMENT TECHNICAL SUPPORT DOCUMENT, LITTLE SNAKE RESOURCE MANAGEMENT PLAN, MOFFAT, ROUTT AND RIO BLANCO COUNTIES, COLORADO

Prepared for Bureau of Land Management Little Snake Field Office 455 Emerson St. Craig, Colorado 81625

and

Bureau of Land Management Colorado State Office 2850 Youngfield St. Lakewood, Colorado 80215

Prepared by ENVIRON INTERNATIONAL CORPORATION 773 San Marin Drive, Suite 2115 Novato, CA 94998

June 2008

This page intentionally left blank.

Page

TABLE OF CONTENTS

APPENDICES

Appendix A: Construction and Natural Gas Production Emissions Inventory Appendix B: Conventional Oil Production Emissions Inventory

TABLES

Table 2-1.	Past Oil and Gas Activity and Projected Development	
Table 2-2.	Single-Well Production Emissions Summary for a Natural Gas Well	
Table 2-3.	Single-Well Production Emissions Summary for an Oil Well	
Table 2-4.	Maximum compressor production emissions for a single compression	
	facility (tons/year)	
Table 2-5.	Drill rig population	
Table 2-6.	Tier 2, 3, and 4 drill rig emission factors (lb/hp-hr)	
Table 2-7.	Calculation of year of maximum emissions for alternative A/B/C	
Table 2-8.	Assumed Little Snake RMP maximum annual in-field emissions	
	summary - construction and production	
Table 3-1.	CALPUFF options used in the Project's far-field Class I and II area	
	modeling and comparison of EPA regulatory modeling default values	

	(Atkinson and Fox, 2006)	
Table 3-2.	Approximate distance and direction to Class I and other sensitive areas	
Table 3-3.	Distance and direction to sensitive lakes	
Table 3-4.	Number of gas, oil and non-producing wells for alternative A/B/C	
Table 3-5.	Number of gas, oil and non-producing wells for alternative D	
Table 3-6.	Average zone elevation	3-10
Table 3 7.	Analysis background ambient air quality concentrations (µg/m3)	3-10
Table 3-8.	Ambient standards, Class II PSD Increments, and Class I PSD	
	Increments (µg/m3)	3-12
Table 3-9.	CALPUFF-estimated PSD pollutant concentrations impacts for	
	Alternatives A/B/C	3-14
Table 3-10.	CALPUFF-estimated PSD pollutant concentrations impacts for	
	Alternative D	3-15
Table 3-11.	Comparison of maximum existing background concentrations (Table	
	3-5) plus maximum estimated impacts at any class i area due to any	
	RMP scenario with federal and state ambient air quality standards	3-16
Table 3-12.	Maximum nitrogen and sulfur deposition (kg/ha/yr) for five-year	
	CALPUFF modeling for the Alternatives A/B/C	3-17
Table 3-13.	Maximum nitrogen and sulfur deposition (kg/ha/yr) for five-year	
	CALPUFF modeling for the Alternative D	3-18
Table 3-14.	Lake acid neutralizing capacity (ANC) calculations for the Alternative	
	A/B/C Scenario	3-20
Table 3-15.	Lake acid neutralizing capacity (ANC) calculations for the Alternative	
	D Scenario	3-20
Table 3-16.	CALPUFF-estimated visibility impacts on Class I and II areas for the	
	various Project Alternatives alone using Screening Method	3-22
Table 3-17.	CALPUFF-estimated visibility impacts on Class I and II Areas for the	
	various Project Alternatives alone using Refined Method	3-23

FIGURES

Figure 1-1.	Little Snake RMP Area and Air Quality Analysis Domain	
-	Oil and gas distribution zones in the Little Snake RMPPA. Booz	
C	Allen (2007)	
Figure 3-1.	CALPUFF-lite Domain and receptors for the draft Little Snake RMP	
C	Hypothetical Air Quality Impact Analysis	
Figure 3-2.	Map of Little Snake oil and gas development zones (shown in blue)	

1.0 INTRODUCTION

This Air Quality Technical Support Document (AQTSD) was prepared to summarize and provide a detailed description of analyses performed to quantify hypothetical air quality impacts related to the draft Little Snake Resource Management Plan (RMP) and to demonstrate how future quantitative air pollutant dispersion modeling analysis could be performed once project-specific oil and gas developments are proposed. The methodologies used in the analysis were originally defined in an Air Quality Impact Assessment Modeling Protocol (Protocol) (Booz Allen Hamilton, 2007) with input from the lead agency, U.S. Department of Interior Bureau of Land Management (BLM), and the U.S. Environmental Protection Agency (EPA). This AQTSD discusses those methodologies as necessary and summarizes the air emission inventories and subsequent dispersion modeling analyses.

The Project's location in northwest Colorado included hypothetical air quality impacts within a defined study area (modeling domain) (Figure 1-1). The analysis area includes the BLM Little Snake Field Office as described in the draft RMP and all or a portion of the federal Class I Flat Tops, Mount Zirkel, and Eagles Nest Wilderness Areas, as well as Dinosaur National Monument. Impacts analyzed include those on air quality and air quality related values (AQRVs) resulting from assumed air emissions due to hypothetical oil and gas development activities within the RMP area as described in the draft RMP under the various analysis Alternatives. Only the far-field air quality and AQRV impacts of the hypothetical RMP emission sources are presented. Near-source ambient air quality impacts were not quantified, but should be similar to those determined for other nearby oil and gas development projects in the region (e.g., Hiawatha and Moxa Arch).

Based on an agreement with EPA Region 8, the CALPUF-lite modeling system (IWAQM, 1998; Earth Tech, 2001b; 2002) was used to assess the far-field air quality and AQRV impacts due to emissions from hypothetical oil and gas development. The CALPUFF-lite approach is meant to provide a conservative screening analysis. The chief difference between the CALPUFF-lite and refined CALPUFF modeling approaches is that CALPUFF-lite uses hourly meteorological data from a single meteorological observations site, as compared to refined CALPUFF modeling that uses hourly three-dimensional wind fields derived from CALMET.

The remainder of this Section describes the hypothetical analysis in further detail, provides a description of the alternatives evaluated, and presents a list of tasks performed during the study. Chapter 2.0 presents an overview of the emission inventories, and Chapter 3.0 describes the CALPUFF analyses performed for assessment of far-field direct impacts from the RMP. Chapter 4.0 provides references. Appendix A describes the Well Construction and Natural Gas Production Emissions Inventory, and Appendix B describes the Emission Inventory for Well Production.

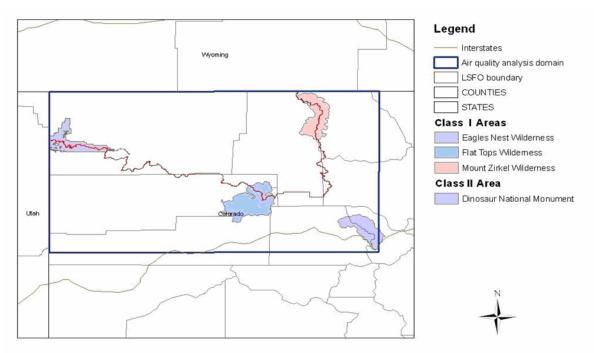


Figure 1-1. Little Snake RMP Area and Air Quality Analysis Domain.

1.1 PROJECT DESCRIPTION

The Little Snake Field Office (LSFO), Bureau of Land Management (BLM), is developing a Resource Management Plan for all the federal surface and mineral estate administered by BLM within the LSFO boundary. The Little Snake Resource Management Plan Planning Area (RMPPA) encompasses the majority of two counties in northwest Colorado – Moffat and Routt Counties – as well as a portion of northeast Rio Blanco County. The RMPPA includes approximately 1.3 million acres of BLM-administered public lands and 1.1 million acres of federally-owned mineral estate. Land ownership in the Little Snake RMPPA ranges from large tracts of BLM land to patches of public land surrounded by private and state lands. The BLM has proposed to evaluate the development of hydrocarbon resources underlying oil and gas leases owned, at least in part, by various parties within the Little Snake RMPPA in Moffat, Routt, and Rio Blanco Counties, Colorado.

1.1.1 Alternative C - Preferred Alternative

A BLM land use plan does not authorize oil and gas development, but it does identify areas that would be available for future oil and gas leasing. For analysis purposes, the Reasonable Foreseeable Development (RFD) Scenario (2005) anticipated that over the next 20 years approximately 3,031 oil and gas wells would be drilled in the Little Snake RMPPA under the Preferred Alternative (Alternative C) in addition to wells that currently exist in the RMPPA. The same number of wells also applies to the No Action Alternative (A) and Alternative B.

For all Alternatives, it is assumed that the additional wells would be drilled conventionally, i.e., with vertical well bores. All proposed wells are anticipated to be drilled during an approximate 20-year period. The average life of a well is expected to be 40 years.

1.2 ALTERNATIVES EVALUATED

Besides the Preferred Alternative C discussed in Section 1.1.1 above, several other alternatives are analyzed for this Project. These alternatives are summarized below. However, only two model runs were required to address all alternatives, since the well numbers proposed under only one alternative (Alternative D) differed from the Preferred Alternative (C).

1.2.1 Alternative A – No Action

Although this alternative proposes different land uses, it would have the same number of wells as the Preferred Alternative (C), and for the purposes of the air quality impacts analysis, is identical to the Preferred Alternative.

1.2.2 Alternative B

Although this alternative proposes different land uses, it would have the same number of wells as the Preferred Alternative (C), and for the purposes of the air quality impacts analysis, is identical to the Preferred Alternative.

1.2.3 Alternative D – Action With Resource Protection

An alternative with lower development than the Preferred Alternative is included in this analysis (Alternative D). For this alternative, it is anticipated that 2,273 wells for the RMP area would be developed (this scenario is 75% of the Preferred Alternative.)

1.3 STUDY TASKS

Modeling analyses were performed to quantify far-field pollutant concentrations within and nearby the RMP area from oil and gas development-related emissions sources. Modeling was conducted for the range of alternatives to ensure that the maximum potential for impacts was estimated. Impacts from both construction and production activities were calculated.

The following tasks were performed for air quality and AQRVs impact assessment:

- Air Emission Inventory.
 - Development of an air pollutant emission inventory for hypothetical oil and gas development activities assumed in the RMP area. The emission inventory, discussed in Chapter 2.0, included criteria pollutant emissions for construction activities, production activities, and ancillary facilities.

- Far-Field Direct Project Impact Analysis.
 - Assessment of far-field air quality concentration and AQRV impacts resulting from assumed oil and gas development activities in the RMP area. The far-field ambient air quality and AQRV impact assessment, discussed in Chapter 3.0, was performed to quantify the maximum predicted pollutant impacts at Class I areas and a sensitive Class II area within the study area resulting from assumed construction, drilling and production emissions.
- Far-Field Cumulative Impact Analysis.
 - Qualitative assessment of far-field air quality concentration and AQRV impacts resulting from activities proposed within the RMP area combined with other regional sources. This discussion is included in Section 3.7.

June 2008

2.0 EMISSIONS INVENTORY

2.1 OIL AND GAS DEVELOPMENT ALTERNATIVES

The BLM developed a Reasonable Foreseeable Development (RFD) Scenario that estimated the potential for development of up to 3,031 oil and natural gas wells in the Little Snake RMP area over the next 20 years. The RFD Scenario of 3,031 wells drilled was assumed for Alternatives A, B, and C (Note that some of these 3,031 drilled wells would be non-productive or types other than oil or gas wells). However, due to the increase in areas closed to oil and gas leasing and open to leasing with No Surface Occupancy (NSO) stipulations proposed under Alternative D, this alternative assumed a 25 percent reduction in the number of assumed wells (or 2,273 total wells drilled) that may be developed. As with Alternatives A, B, and C, some of these 2,273 drilled wells would be non-productive or other than oil or gas wells. For both scenarios, criteria pollutant emissions were inventoried for construction activities, production activities, and ancillary facilities. Criteria pollutants included nitrogen oxides (NO_x), carbon monoxide (CO), sulfur dioxide (SO₂), particulate matter less than 10 microns in diameter (PM₁₀), and particulate matter less than 2.5 microns in diameter (PM_{2.5}). VOC emissions were not part of the CALPUFF-lite modeling and are not discussed here.

Due to the lack of any specific project proposal (with the exception of the Hiawatha Regional Energy Development Project), EPA Region 8 agreed that BLM could combine assumed oil and gas activity into hypothetical distribution zones, based primarily on the major oil and gas formations in the planning area. This is the only possible approach where future development locations are generally unknown, and will not be known until future site-specific NEPA analyses are performed.

For the Hiawatha Regional Energy Development Project, the Operators' Proposed Action is to drill up to 4,208 new wells over the next 30 years within the Hiawatha Project Area in Wyoming and Colorado. The 4,208 well maximum represents a full development scenario based on currently known geologic and reservoir properties. The Operators estimate that approximately two-thirds (2,805) of the potential wells could be located within the Wyoming portion of the Project Area that is within the boundaries of the Little Snake RMPPA. Therefore, during the 20-year life of the Little Snake RMP, 935 wells could be drilled within the draft Little Snake RMP portion of the Hiawatha project area (Booz Allen, 2007).

An estimate of well numbers per distribution zone was developed using an analysis of Applications for Permit to Drill (APDs) for the time period of January 2001 through September 2007 (Booz Allen, 2007). APDs were grouped into eleven general zones: four zones representing the major oil and gas formations/existing fields in the Little Snake RMP area (including Powder Wash, Hiawatha/Vermillion/Sugar Loaf, Great Divide East of Godiva Rim, and Sand Wash/Vermillion Basins) and seven additional zones that represent the remaining areas with high oil and gas potential. The results of the analysis of modern development trends and the projected well numbers are shown in Table 2-1.

Area	Township & Range	Number of APDs 01/01/01 to 09/10/07	Percentage of APDs 01/01/01 to 09/10/07	Projected Wells – Alts A/B/C	Projected Wells – Alt D
Powder Wash	T11N – T12N R97W	21	11%	322	250
Hiawatha, Vermillion, Sugar Loaf	T11N – T12N R100W – R101W	71	37%	1,185	841
Great Divide, East of Godiva Rim	T7N – T12N R92W – R95W	55	29%	850	659
Sand Wash & Vermillion Basins	T8N – T10N R97W – R100W	22	12%	352	273
Other		21	11%	322	250
Total		190	100%	3,031	2,273

 Table 2-1.
 Past Oil and Gas Activity and Projected Development.

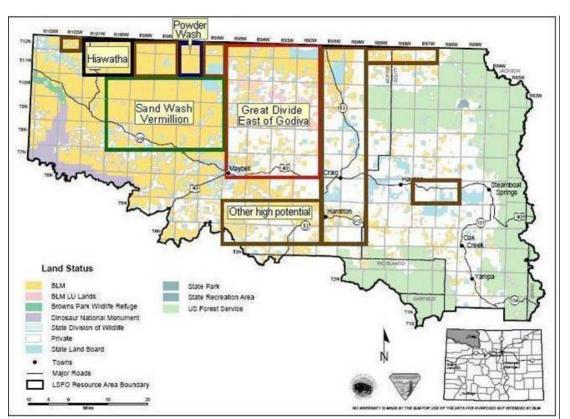


Figure 2-1. Oil and gas distribution zones in the Little Snake RMPPA. Booz Allen (2007).

2.1.1 Construction Emissions

Construction activities are a source of criteria pollutants. Construction emissions include:

- well pad and resource road construction and traffic;
- rig-move/drilling and associated traffic;
- completion/testing and associated traffic;
- pipeline installation and associated traffic; and
- wind erosion during construction activities.

Well pad and resource road emissions would include fugitive PM_{10} and $PM_{2.5}$ emissions from: (1) construction activities; and (2) traffic to and from the construction site. Other criteria pollutant emissions would occur from diesel combustion by haul trucks and heavy construction equipment. On resource roads, water would typically be used for fugitive dust control, effecting a control efficiency of 50%.

After the pad is prepared, rig-move/drilling would begin. Emissions would include fugitives from unpaved road travel to and from the drilling site and emissions from diesel drilling engines. Emissions from well completion and testing would include fugitive PM_{10} and $PM_{2.5}$ emissions from traffic and emissions from diesel haul truck tailpipes. Also, wind erosion emissions from disturbed areas would occur. During the completion phase, gas and condensate are both vented and combusted (flared) into the atmosphere. Emissions from the venting of natural gas include VOC and CO. Flaring emissions from the combustion of natural gas and condensate include PM_{10} , $PM_{2.5}$, NO_x , CO, and SO₂.

Pollutant emissions would also occur from pipeline installation activities, including general construction activities, travel to and from the pipeline construction site, and diesel combustion from on-site construction equipment.

Fugitive dust (PM_{10} and $PM_{2.5}$) emissions would occur during well pad, road, and pipeline construction due to wind erosion on disturbed areas as well as vehicle traffic.

Future required emission controls were assumed to phase into operation at 20% per calendar year (for example, it is assumed that all engines will be Tier II in 2010, but only 20% of engines will be Tier IV in 2011).

The well pad design is assumed to be single-well location (i.e., one well per well pad). The estimated size of each drill pad was 2.75 acres, of which approximately 1.75 acres would be reclaimed after the well is completed and the gas gathering pipeline is installed.

A detailed description of the emissions from each of the construction activities listed above is given in Appendix A. Note that construction emissions are taken to be identical for oil and natural gas wells.

2.1.2 **Production Emissions**

Field production equipment and operations are a source of criteria pollutants. Pollutant emission sources during field production include:

- combustion engine emissions and dust from road travel to and from well sites;
- diesel combustion emissions from haul trucks;
- combustion emissions from well site heaters;
- condensate storage tank flashing and flashing control;
- glycol dehydrator still vent flashing;
- wind erosion from well pad disturbed areas;
- emissions from central and wellhead compressors; and
- natural gas-fired reciprocating internal combustion compressor engines.

It was assumed that each well would have a three-phase separator and glycol dehydrator to process and average of 0.50 MBtu/hour product. Condensate and water would be stored in tanks, which would be serviced weekly by a tanker truck traveling on approximately 6 miles of unsurfaced access road.

Fugitive PM_{10} and $PM_{2.5}$ emissions would occur from road travel and wind erosion from well pad disturbances. Wind erosion was assumed to occur during periods of winds greater than approximately 5.4 m s⁻¹, which are estimated to occur on 3% of modeled days. A control efficiency of 50% was assumed based on the use of watering. Criteria pollutant emissions would occur from diesel combustion in haul trucks traveling in the field during production.

Total production emissions of criteria pollutants occurring from a single natural gas or oil well are presented in Tables 2-2, and 2-3, respectively. Production emission calculations are provided in detail, in Appendix A, showing all emission factors, input parameters, and assumptions.

Traffic Emissions ¹		Production Emissions ²	Total Emissions
Pollutant (tpy)		(tpy)	(tpy)
NO _x	0.18	1.2x10 ⁻⁴	0.18
SO ₂	0.003	3.0x10 ⁻⁷	0.003
PM ₁₀	0.26	1.5x10 ⁻⁵	0.26
PM _{2.5}	0.02	1.5x10 ⁻⁵	0.02

 Table 2-2.
 Single-Well Production Emissions Summary for a Natural Gas Well.

¹Includes emissions from all traffic associated with full-field production. PM₁₀ and PM_{2.5} emissions.

² Includes emissions from indirect heater, separator heater, dehydrator heater, and dehydrator flashing

Traffic E	missions ¹	Production Emissions ²	Total Emissions
Pollutant	(tpy)	(tpy)	(tpy)
NO _x	0.18	1.3x10 ⁻³	0.18
SO ₂	0.003	4.8x10 ⁻⁴	0.0035
PM ₁₀	0.26	2.5x10 ⁻²	0.29
PM _{2.5}	0.02	2.5x10 ⁻²	0.045

Table 2-3. Single-Well Production Emissions Summary for an Oil Well.

 $\frac{1}{2}$ Includes emissions from all traffic associated with full-field production. PM₁₀ and PM_{2.5} emissions.

² Includes emissions from indirect heater, separator heater, dehydrator heater, and dehydrator flashing

In addition, to be conservative, it was assumed that 10 central compressors (5,000 hp) would be required under Alternative A/B/C and 8 under Alternative D. In addition, thirty wellhead

compressors for every 1,000 wells (200 hp) were assumed. The emissions from these two sources are shown in Table 2-4.

Pollutant	Central Compressor	Wellhead Compressor					
NO _x	482.80	1.931					
CO	965.61	10.57					
SO ₂	0.966	0.004					
PM ₁₀	0.573	0.128					
PM _{2.5}	0.573	0.128					

Table 2-4. Maximum compressor production emissions for a single compression facility (tons/year).

A detailed description of the emissions from natural gas production is given in Appendix A, and oil production emissions calculations are shown in Appendix B.

2.1.3 Selection of Modeled Year

In order to provide a conservative estimate of hypothetical air quality and AQRV impacts, the year of peak emissions from oil and gas development activities within the Little Snake RMP area was modeled. In determining the year of maximum combined emissions from construction and production, several assumptions were made:

- 1. The drilling of new wells would proceed at an even pace, with approximately 152 wells drilled each year over the life of the 20 year planning period in Alternatives A/B/C and 114 wells drilled per year for Alternative D.
- 2. A new central compressor station would be built every two years during the first three to four years of the project, and an additional central compressor built during the last year of the project.
- 3. Emissions controls on the drill rigs will be phased in over time according to the following schedule (Table 2-5) as provided by the BLM (Personal communication, 2008). Emission factors for Tier 4 that were used in the CALPUFF-lite modeling are shown in Table 2-6

Table 2-5. Dhii ng population.						
Year	Tier 2 and 3	Tier 4				
2010	100%	0%				
2011	80%	20%				
2012	60%	40%				
2013	40%	60%				
2014	20%	80%				
2015-2027	0%	100%				

Table 2-5. Drill rig population.

Table 2-6. Tier 2, 3, and 4 drill rig emission factors (lb/hp-hr).

Tier	Emission Factors					
TIEI	Unit	NO _x	PM ₁₀	SOx	CO	VOC
Tier 2	lb/hp-hr	1.52E-02	3.31E-04	5.10E-05	5.73E-03	2.20E-03
Tier 3	lb/hp-hr	1.52E-02	3.31E-04	5.10E-05	5.73E-03	2.20E-03
Tier 4	lb/hp-hr	6.61E-04	3.30E-05	5.10E-05	5.73E-03	2.20E-04

Emissions for well construction and production were calculated for the final year when Tier 4 engines would be used, as well as several years when the drill rig mix was changing during the 2011-2015 period. Drill rig emissions factors for Tiers 2, 3 and 4 in Table 2-6 were used in this calculation. Maximum NOx and total emissions occur during the final year of the project (Table 2-7). This is because production emissions increase steadily over the life of the project, and offset the effect of emissions reductions due to improved drill rig controls. The final year, 2027, was therefore chosen to be the modeled year in order to estimate the maximum potential impacts due to the RMP.

Table 2-7. Calculation of year of maximum emissions for alternative A/B/C.

Project	Year	Wells	Total Number	Gas	Oil	Number of Central	Drill Rig	Emissions (tons/year))
Year		Drilled	of Wells	Wells	Wells	Compressors	Tier	SO2	NOx	PM10	All Emis
1	2008	152	152	82	30	1	100% Tier 2/3				
2	2009	152	304	164	61	1	100% Tier 2/3				
3	2010	152	456	246	91	2	100% Tier 2/3	9	987	1584	2580
4	2011	152	608	328	122	2	80% 2/3, 20% 4	16	930	1664	2610
5	2012	152	760	410	152	3	60% 2/3, 40% 4	23	840	1693	2556
6	2013	152	912	493	182	3	40% 2/3, 60% 4				
7	2014	152	1064	575	213	4	20% 2/3, 80% 4				
8	2015	152	1216	657	243	4	0% 2/3, 100% 4	10	360	1642	2012
9	2016	152	1368	739	274	5	100% Tier 4				
10	2017	152	1520	821	304	5	100% Tier 4				
11	2018	152	1672	903	334	6	100% Tier 4				
12	2019	152	1824	985	365	6	100% Tier 4				
13	2020	152	1976	1067	395	7	100% Tier 4	12	541	1703	2256
14	2021	152	2128	1149	425	7	100% Tier 4				
15	2022	152	2280	1231	456	8	100% Tier 4				
16	2023	152	2432	1313	486	8	100% Tier 4				
17	2024	152	2584	1396	517	9	100% Tier 4				
18	2025	152	2736	1478	547	9	100% Tier 4				
19	2026	152	2888	1560	577	9	100% Tier 4				
20	2027	143	3031	1637	606	10	100% Tier 4	15	1066	2044	3125

2.1.4 Total Field Emissions

Annual emissions in the RMP area under each Alternative are shown in Table 2-8. Emissions assume construction and production occurring simultaneously in the field and include one year of maximum construction emissions plus one year of production at maximum emission rates.

Construction emissions were based on well construction, drilling, drilling traffic, completion traffic, and completion flaring. Well construction emissions were based on the number of wells constructed per year and the type of well constructed. Drilling, drilling traffic, completion traffic, and completion flaring were based on the number of wells developed per year. As a conservative assumption, completion flaring operations were assumed to occur at all of the wells under construction and compression was included. Production emissions were calculated based on the total number of producing wells in the field.

Table 2-8. Assumed Little Snake RMP maximum annual in-field emissions summary - construction and production.

Alternative	Annual Development Rate per year	Pollutant	Annual Construction Emissions (tpy)	Total Producing wells	Annual Production Emissions (tpy)	Total Emissions (tpy)
Preferred	152	PM ₁₀	1543 ¹	1,637	501	2,044
Alternative		PM _{2.5}	538 ¹		70	608
A/B/C		NO _x	85		982	1,066
		SO ₂	8		7	15
Alternative D	114	PM ₁₀	1158 ¹	1,223	376	1,533
		PM _{2.5}	404 ¹		52	456
		NO _x	63		761	825
		SO ₂	6		5	11

¹ Includes wind erosion emissions.

3.0 FAR-FIELD ANALYSES

The purpose of the CALPUFF analysis was to quantify hypothetical air quality (AQ) and air quality related values (AQRVs) impacts at nearby Class I and sensitive Class II areas from assumed oil and gas activities within the RMP area due to assumed air pollutant emissions of NOx, SO₂, PM₁₀, and PM_{2.5}. The analyses were performed using the CALPUFF-lite modeling system. The Class I and sensitive Class II receptor areas analyzed in the far-field modeling were:

- Mount Zirkel Wilderness Area (Class I);
- Eagles Nest Wilderness Area (Class I);
- Flat Tops Wilderness Area (Class I); and
- Dinosaur National Monument (Federal Class II, Colorado area designated with the same SO₂ increment as Federal Class I).

Air pollutant concentrations predicted at these areas were compared to applicable national and state ambient air quality standards and PSD Class I increments. Also, potential impacts to AQRVs, which include visibility (regional haze) and atmospheric deposition (Sulfur and Nitrogen) were assessed. In addition, analyses were performed for seven sensitive lakes located within the Class I areas to assess potential lake acidification from acid deposition impacts. These lakes are:

- Lake Elbert in the Mount Zirkel Wilderness Area;
- Seven Lakes in the Mount Zirkel Wilderness Area;
- Lower NWL Packtrail Pothole in the Flat Tops Wilderness Area;
- Ned Wilson Lake in the Flat Tops Wilderness Area;
- Ned Wilson Spring in the Flat Tops Wilderness Area;
- Upper Ned Wilson Lake in the Flat Tops Wilderness Area;
- Trappers Lake in the Flat Tops Wilderness Area;
- Booth Lake in the Eagles Nest Wilderness Area; and
- Upper Willow Lake in the Eagles Nest Wilderness Area.

3.1 MODELING METHODOLOGY

The far-field ambient AQ and AQRV impact assessment was performed to quantify the potential maximum pollutant impacts at Class I areas and a sensitive Class II area which could result from construction, drilling and production emissions for the draft Little Snake RMP alternatives. A Modeling Protocol was prepared in coordination with BLM and EPA Region 8 prior to conducting the analyses (Booz Allen Hamilton, 2007). The procedures in the Modeling Protocol were followed in the CALPUFF-lite modeling analyses.

Because of the similarity between other oil and gas development projects and hypothetical assumptions from the draft Little Snake RMP, the near-field air quality impact assessment from the Moxa Arch and Hiawatha projects are also relevant to the draft Little Snake RMP; therefore, only the far-field AQ and AQRVs were addressed in this analysis.

Based on an agreement with EPA Region 8, the CALPUFF-lite modeling system (IWAQM, 1998; Earth Tech 2001b; 2002) was used to assess impacts, using a single SAMSON C:\Documents and Settings\509702\My Documents\Projects\BLM\Little Snake BLM RMP\AQ Supplement\Final AQ Support DOc\word

meteorological database and discrete downwind receptors. The study was performed using the following recent and relevant guidance sources:

- Guideline on Air Quality Models, 40 Code of Federal Regulations (C.F.R.), Part 51, Appendix W;
- Phase 2 of the Interagency Workgroup on Air Quality Modeling (IWAQM, 1998);
- Guide for Applying the EPA Class I Screening Methodology with the CALPUFF Modeling System (Earth Tech 2001b; 2002); and
- Federal Land Managers Air Quality Related Values Workgroup (FLAG), Phase I Report, December 2000 (FLAG 2000).

The CALPUFF-lite modeling approach is intended to be a conservative screening approach. The chief difference between the CALPUFF-lite and the refined CALMET/CALPUFF modeling approaches is in the meteorological inputs. The refined CALMET/CALPUFF modeling approach uses hourly three-dimensional meteorological fields to transport and disperse the CALPUFF puffs. CALPUFF-lite uses hourly meteorological data collected at a single monitoring site, similar to inputs used by the AERMOD and ISC steady-state Gaussian plume models. Since CALMET modeling is quite resource- and computer-intensive, the CALPUFF-lite approach greatly reduces the complexity and time needed to perform an analysis. CALPUFF-lite impacts were obtained for receptors located throughout the Class I areas using receptor locations developed by the USDI – National Park Service. Additional receptors were placed along the boundary and at elevated points within the Dinosaur National Monument. Although intended to be conservative, the CALPUFF-lite screening approach may not always predict maximum impacts as compared to the refined CALMET/CALPUFF modeling approach because of the complexity of three-dimensional wind fields (e.g.; recirculation of wind "puffs.").

Air pollutant emissions of NO_x , SO_2 , PM_{10} , and $PM_{2.5}$ from production wells, construction, drilling and compressors for the draft RMP alternatives were modeled. A description of the emissions inventory procedures is described in Section 2 of this AQTSD with detailed inventories provided in Appendices A and B. The processing of these emissions sources for input to the CALPUFF-lite modeling system (referred to hereafter as "CALPUFF") is described in Section 3.4.4.

CALPUFF outputs were post-processed with POSTUTIL and CALPOST to estimate: (1) concentrations for comparison to ambient standards and Class I Increments; (2) wet and dry deposition amounts for comparison to sulfur (S) and nitrogen (N) deposition thresholds and to calculate potential changes in acid neutralizing capacity (ANC) for sensitive water bodies; and (3) light extinction for comparison to visibility impact thresholds in Class I and sensitive Class II areas. A discussion of the post-processing methodology used is provided in Section 3.5.

3.2 MODELING SCENARIOS

The Reasonable Foreseeable Development (RFD) Scenario (2005) anticipated that approximately 3,031 oil and gas wells would be drilled in the Little Snake RMP area under the Preferred Alternative (Alternative C) in addition to wells that currently exist. The same number of wells also applies to the No Action Alternative (A) and Alternative B. For Alternative D, there would be a 25 percent reduction in the number of assumed wells (or 2,273 total wells) that could be developed. All emissions scenarios conservatively assume that both production

emissions (producing well sites and operational ancillary equipment including compressor stations) and construction emissions (drill rigs and associated traffic) occur simultaneously throughout the year. Compression was assumed to operate at 100% of fully permitted capacity. The emissions used to develop these field-wide scenarios are described in Section 2.

3.3 METEOROLOGICAL FIELDS

The meteorological data used were measured in Rock Springs, Wyoming (Rock Springs surface; Lander Hunt Field upper air) for the years 1985 and 1987-1990 as provided to EPA Region 8 personnel from the Colorado Department of Public Health and Environment Air Pollution Control Division (CDPHE-APCD). The data were processed with the CPRAMMET program.

3.4 DISPERSION MODEL INPUT AND OPTIONS

CALPUFF was run using the EPA-recommended default control file switch settings (Atkinson and Fox, 2006) for almost all parameters. Table 3-1 displays the CALPUFF options selected for the Project's modeling; deviations from EPA-recommended defaults are indicated and discussed below. Chemical transformations were modeled using the MESOPUFF II chemical mechanism for conversion of SO₂ to sulfate (SO₄) and NOx to nitric acid (HNO₃) and nitrate (NO₃). Each of these pollutant species was included in the CALPUFF model runs. Gaseous deposition of NOx, HNO₃, and SO₂ was modeled, as was particle deposition of SO₄, NO₃, PM_{2.5}, and PM₁₀.

3.4.1 Background Chemical Species

The Guide to CALPUFF-lite modeling recommends using monthly estimates of background ammonia and ozone concentrations for the conversion of SO₂ and NO/NO₂ to sulfates and nitrates, respectively. The CDPHE performed an analysis of background ammonia concentrations for their CALPUFF Best Available Retrofit Technology (BART) modeling for the Mount Zirkel Visibility Study, and recommended a value of 1.0 ppb for northwestern Colorado. This value was used in the CALPUFF-lite analysis. The 1.0 ppb background ammonia value is also consistent with the IWAQM guidance for forested lands (IWAQM, 1998). Monthly average ozone concentrations representative of daytime (7 a.m.-7 p.m.) periods from the Mount Zirkel Visibility Study were also used in this CALPUFF-lite analysis.

3.4.2. Deviations from EPA-Recommended Default Options

As noted in Table 3-1, several CALPUFF options deviated from EPA-recommended default settings as reported by Atkinson and Fox (2006). First, the EPA-recommended default configuration does not include any PM species, whereas this analysis included both fine $PM_{2.5}$ (PMF) and coarse PM_{10} (PMC) species. Consequently, we have 2 more emitted and modeled species than in the EPA recommendations (5 and 7 used versus 3 and 5 EPA-recommended, respectively). Finally, the EPA-recommended default value for ammonia is 10.0 ppb which, according to IWAQM (2000), is representative of grasslands. We selected a background ammonia value of 1.0 ppb based on ammonia measurements in the region from the Mt. Zirkel Visibility Study, as noted above.

_

Variable	Description	EPA Default	Our Values
METDAT	CALMET input data filename	CALMET.DAT	ISC.DAT
PUFLST	Filename for general output from CALPUFF	CALPUFF.LST	CALPUFF.LST
CONDAT	Filename for output concentration data	CONC.DAT	CONC.DAT
DFDAT	Filename for output dry deposition fluxes	DFLX.DAT	DFLX.DAT
WFDAT	Filename for output wet deposition fluxes	WFLX.DAT	WFLX.DAT
VISDAT	Filename for output relative humidities (for visibility)	VISB.DAT	VISB.DAT
METRUN	Do we run all periods (1) or a subset (0)?	0	0
IBYR	Beginning year	User Defined	User Defined
IBMO	Beginning month	User Defined	User Defined
IBDY	Beginning day	User Defined	User Defined
IBHR	Beginning hour	User Defined	User Defined
IRLG	Length of runs (hours)	User Defined	User Defined
NSPEC	Number of species modeled (for MESOPUFF II	5	7
	chemistry)		
NSE	Number of species emitted	3	7
MRESTART	Restart options (0 = no restart), allows splitting runs into	0	2 or 3
	smaller segments		
METFM	Format of input meteorology (2 = ISC)	1	2
AVET	Averaging time lateral dispersion parameters (minutes)	60	60
MGAUSS	Near-field vertical distribution (1 = Gaussian)	1	1
MCTADJ	Terrain adjustments to plume path (3 = Plume path)	3	3
MCTSG	Do we have subgrid hills? (0 = No), allows CTDM-like	0	0
	treatment for subgrid scale hills		
MSLUG	Near-field puff treatment (0 = No slugs)	0	0
MTRANS	Model transitional plume rise? (1 = Yes)	1	1
MTIP	Treat stack tip downwash? (1 = Yes)	1	1
MSHEAR	Treat vertical wind shear? (0 = No)	0	0
MSPLIT	Allow puffs to split? $(0 = No)$	0	0
MCHEM	MESOPUFF-II Chemistry? (1 = Yes)	1	1
MWET	Model wet deposition? (1 = Yes)	1	1
MDRY	Model dry deposition? (1 = Yes)	1	1
MDISP	Method for dispersion coefficients (3 = PG & MP)	3	3
MTURBVW	Turbulence characterization? (Only if MDISP = 1 or 5)	3	3
MDISP2	Backup coefficients (Only if MDISP = 1 or 5)	3	3
MROUGH	Adjust PG for surface roughness? (0 = No)	0	0
MPARTL	Model partial plume penetration? $(0 = N_0)$	1	1
MTINV	Elevated inversion strength ($0 = compute from data$)	0	0
MPDF	Use PDF for convective dispersion? (0 = No)	0	0
MSGTIBL	Use TIBL module? $(0 = No)$ allows treatment of subgrid	0	0
	scale coastal areas		
MREG	Regulatory default checks? (1 = Yes)	1	0
CSPECn	Names of species modeled (for MESOPUFF II, must be SO ₂ , SO ₄ , NOx, HNO ₃ , NO ₃)	User Defined	SO ₂ , SO ₄ , NOx, HNO ₃ , NO ₃ , PM _{2.5} , PM ₁₀
Specie Names	Manner species will be modeled	User Defined	SO ₂ , SO ₄ , NO _X , NO ₃ , HNO ₃ , PM _{2.5} , PM ₁₀
Specie Groups	Grouping of species, if any.	User Defined	
NX	Number of east-west grids of input meteorology	User Defined	127
NY	Number of north-south grids of input meteorology	User Defined	50
NZ	Number of vertical layers of input meteorology	User Defined	34

Table 3-1. CALPUFF options used in the Project's far-field Class I and II area modeling and comparison of EPA regulatory modeling default values (Atkinson and Fox, 2006).

Variable	Description	EPA Default	Our Values
DGRIDKM	Meteorology grid spacing (km)	User Defined	5
ZFACE	Vertical cell face heights of input meteorology	User Defined	0, 5000
XORIGKM	Southwest corner (east-west) of input meteorology	User Defined	150
YORIGIM	Southwest corner (north-south) of input meteorology	User Defined	4376
IUTMZN	UTM zone	User Defined	13
XBTZ	Base time zone of input meteorology	User Defined	7
IBCOMP	Southwest of Xindex of computational domain	User Defined	1
JBCOMP	Southwest of Y-index of computational domain	User Defined	1
IECOMP	Northeast of Xindex of computational domain	User Defined	50
JECOMP	Northeast of Y- index of computational domain	User Defined	34
LSAMP	Use gridded receptors (T -= Yes)	F	F
IBSAMP	Southwest of Xindex of receptor grid	User Defined	29
JBSAMP	Southwest of Y-index of receptor grid	User Defined	40
IESAMP	Northeast of Xindex of receptor grid	User Defined	48
JESAMP	Northeast of Y-index of receptor grid	User Defined	70
MESHDN	Gridded receptor spacing = DGRIDKM/MESHDN	1	1
ICON	Output concentrations? (1 = Yes)	1	1
IDRY	Output dry deposition flux? (1 = Yes)	1	1
IWET	Output wet deposition flux? (1 = Yes)	1	1
IVIS	Output RH for visibility calculations (1 = Yes)	1	1
LCOMPRS	Use compression option in output? (T = Yes)	Т	Т
ICPRT	Print concentrations? (0 = No)	0	0
IDPRT	Print dry deposition fluxes ($0 = No$)	0	0
IWPRT	Print wet deposition fluxes (0 = No)	0	0
ICFRQ	Concentration print interval (1 = hourly)	1	1
IDFRQ	Dry deposition flux print interval (1 = hourly)	1	1
IWFRQ	Wet deposition flux print interval (1 = hourly)	1	1
IPRTU	Print output units $(1 = g/m^{*3}; g/m^{*2}/s)$	1	1
IMESG	Status messages to screen? (1 = Yes)	1	2
Output Species	Where to output various species	User Defined	Default
LDEBUG	Turn on debug tracking? (F = No)	F	F
Dry Gas Dep	Chemical parameters of gaseous deposition species	User Defined	Default
Dry Part. Dep	Chemical parameters of particulate deposition species	User Defined	Default
RĆUTR	Reference cuticle resistance (s/cm)	30.	30.
RGR	Reference ground resistance (s/cm)	10.	10.
REACTR	Reference reactivity	8	8
NINT	Number of particle-size intervals	9	9
IVEG	Vegetative state (1 = active and unstressed)	1	1
Wet Dep	Wet deposition parameters	User Defined	Default
MOZ	Ozone background? (1 = read from ozone.dat)	1	0
BCKO3	Ozone default (ppb) (Use only for missing data)	80	44.7
BCKNH3	Ammonia background (ppb)	10	1.0
RNITE1	Nighttime SO ₂ loss rate (%/hr)	0.2	0.2
RNITE2	Nighttime NOx loss rate (%/hr)	2	2
RNITE3	Nighttime HNO ₃ loss rate (%/hr)	2	2
SYTDEP	Horizontal size (m) to switch to time dependence	550.	550.
MHFTSZ	Use Heffter for vertical dispersion? (0 = No)	0	0
JSUP	PG Stability class above mixed layer	5	5
CONK1	Stable dispersion constant (Eq. 2.7-3)	0.01	0.01
CONK2	Neutral dispersion constant (Eq. 2.7-4)	0.1	0.1
TBD	Transition for downwash algorithms (0.5 = ISC)	0.5	0.5
IURB1	Beginning urban land use type	10	10
IURB2	Ending urban land use type	19	19

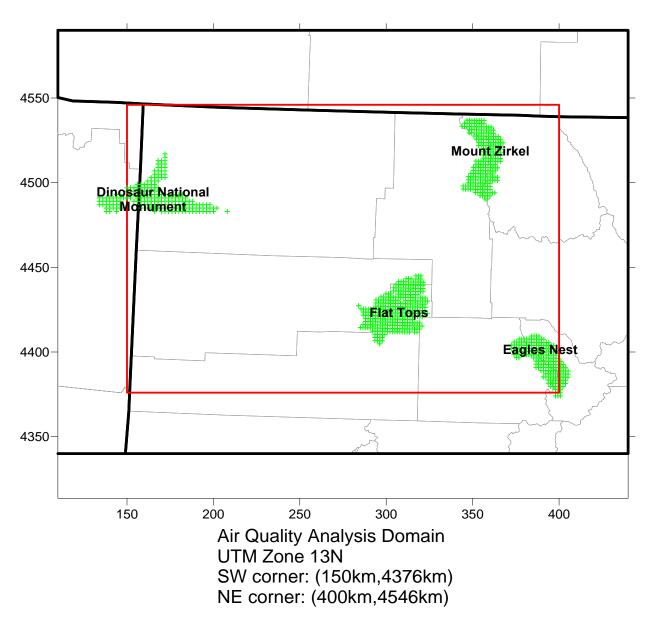
3.4.3 Model Domain and Receptors

The modeling analysis area (Figure 3-1) consisted of a 250 km by 170 km domain that includes the Little Snake RMP area, Class I and other sensitive areas. A single mixing layer was used in the vertical with the single hourly wind speed measured at the anemometer height scaled to "stack-top" as in ISC/AERMOD. The Guide to CALPUFF-lite recommends putting the top of layer 1 above the maximum expected mixing height and suggests values of 3,000 m to 5,000 m AGL (Earth Tech, 2001b; 2002). CDPHE performed an analysis to determine the maximum mixing heights in Colorado for their BART CALPUFF modeling and concluded that a 3,000 m Above Ground Level (AGL) was too low and used the mixing height maximum of 4,500 m AGL (CDPHE, 2005). Given these results, a layer 1 top (i.e., cell face 2) of 5,000 m AGL was used in this hypothetical modeling analysis.

Discrete receptors were located throughout the PSD Class I Eagles Nest, Mount Zirkel and Flat Tops wilderness areas, based on values provided by the USDA-Forest Service. Additional receptors were placed along the boundary and at elevated points within the Dinosaur National Monument. Discrete receptors were also located at sensitive lake locations identified by the USDA-Forest Service. The locations of the receptors used are shown in Figure 3-1.

Prevention of Significant Deterioration (PSD) Class I and other sensitive areas located within the modeling domain and the approximate distance of each from the Little Snake RMP area are also shown in Figure 3-1. Federal Class I areas to be evaluated are listed in Table 3-2.

Class I / Sensitive Areas	Distance from LSRMP	Direction from LSRMP	
Eagles Nest Wilderness	30 km	Southeast	
Flat Tops Wilderness	Adjacent	Southeast	
Mount Zirkel Wilderness	Adjacent	East	
Dinosaur National Monument	Adjacent	Southwest	


Table 3-2. Approximate distance and direction to Class I and other sensitive areas.

In addition, discrete receptors were placed at the following sensitive lakes identified as the most sensitive to acid deposition (Table 3-3.)

Table 3-3.	Distance and direction to sensitive lakes.
------------	--

Sensitive Lake Receptors	Distance from LSRMP Centerpoint (km)	Direction from LSRMP Centerpoint
Lake Elbert, Mount Zirkel Wilderness	90	Northeast
Seven Lakes, Mount Zirkel Wilderness	90	Northeast
Lower NWL Packtrail Pothole, Flat Tops Wilderness	55	Southeast
Ned Wilson Lake, Flat Tops Wilderness	55	Southeast
Ned Wilson Spring #1, Flat Tops Wilderness	55	Southeast
Trappers Lake, Flat Tops Wilderness	55	Southeast
Upper Ned Wilson Lake, Flat Tops Wilderness	55	Southeast
Upper NWL Packtrail Pothole, Flat Tops Wilderness	55	Southeast
Booth Lake, Eagles Nest Wilderness	150	Southeast
Upper Willow Lake, Eagles Nest Wilderness	150	Southeast

June 2008

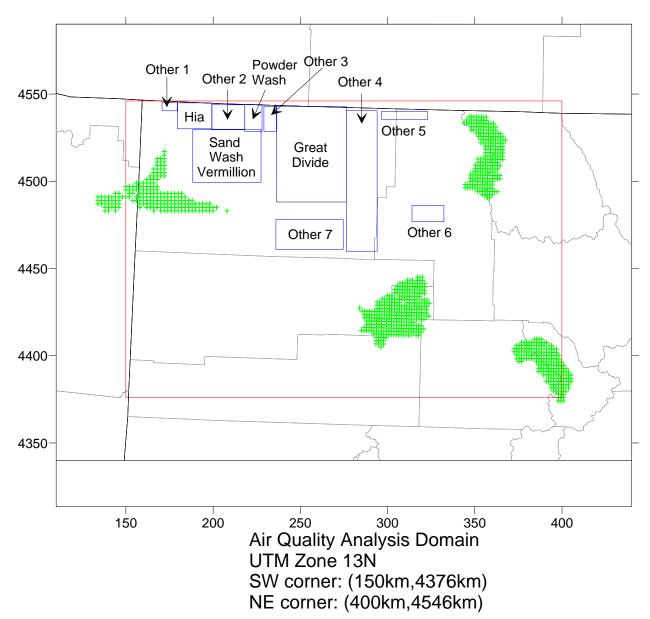
Figure 3-1. CALPUFF-lite Domain and receptors for the draft Little Snake RMP Hypothetical Air Quality Impact Analysis.

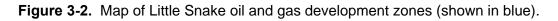
3.4.4 Emissions Processing

CALPUFF source parameters were determined for emissions from oil and gas development activities in the Little Snake Oil and Gas development zones as shown in Figure 2-1. The location of the zones within the modeling coordinate system and the receptors are shown in Figure 3-2. Location information for the original 5 zones and the 6 additional zones shown in Figures 2-1 and 3-2 were supplied by BLM (Jeremy Casterson, personal communication, 2007). Assumed RMP sources were input to CALPUFF as area sources defined by the geographic extent of these zones to idealize well operation and construction emissions. The number of natural gas, oil, and non-producing (i.e. dry holes, water wells, etc.) wells and the number of central and well head compressors expected in each of zones was specified by the BLM (Jeremy Casterson, personal communication, 2008). Tables 3-4 and 3-5 show the number of wells of each type for Alternatives A/B/C and D, respectively.

	5 /			<u> </u>		
	Gas Wells	Oil Wells	Nonproducing Wells	Total Wells	Wellhead Compressors	Central Compressors
Sand Wash	196	73	95	364	6	1
Hiawatha	606	224	292	1122	19	4
Powder	180	67	87	334	5	1
Great Divide	475	176	229	880	14	3
Other 1	3	1	1	5	0	0
Other 2	18	7	9	34	1	0
Other 3	9	3	4	16	0	0
Other 4	35	13	17	65	1	0
Other 5	93	34	44	171	3	1
Other 6	11	4	5	20	0	0
Other 7	11	4	5	20	0	0
Total	1637	606	788	3031	49	10

Table 3-4. Number of gas, oil and nonproducing wells for alternative A/B/C.


	Gas Wells	Oil Wells	Nonproducing Wells	Total Wells	Wellhead Compressors	Central Compressors
Sand Wash	147	55	71	273	4	1
Hiawatha	454	168	218	840	13	4
Powder	135	50	65	250	4	1
Great Divide	356	132	172	660	11	2
Other 1	3	1	1	5	0	0
Other 2	13	5	6	24	1	0
Other 3	6	2	3	11	0	0
Other 4	26	10	13	49	1	0
Other 5	70	26	34	130	2	0
Other 6	8	3	4	15	0	0
Other 7	9	3	4	16	1	0
Total	1227	455	591	2273	37	8


Emissions from each zone were idealized in terms of three area sources. Each of these three area sources was defined to take up the entire geographic extent of the zone. The first of the three area sources idealizes emissions from drill rigs, and has an assumed stack height of 25 meters. The number of wells drilled in each zone during the modeled year was calculated by scaling the total number of wells drilled during a given year in the whole RMP area (152 for Alternative A/B/C, 114 for alternative D) by the fraction of the total wells that lie in that zone.

The second of the three area sources idealizes emissions from construction of new wells and production from existing wells. This source includes emissions from all sources that do not fall into the category of drill rigs or central compressor station operations, and includes wellpad construction, pipeline construction, well head compression, road traffic, well flashing and flaring, etc.; the stack height was set to 10 meters. Emissions for from production activities were calculated on a per-well basis for both oil and gas wells, as shown in Table 2-2 and Table 2-3. Then, total production emissions for both oil and gas wells in each zone were calculated by multiplying the assumed number of producing oil and gas wells in that zone by the emissions per well for each pollutant. Total construction emissions were determined by multiplying emissions for construction emissions include emissions from all activities involved in building the well pad and related infrastructure except drilling (i.e. construction of well pads, roads, pipelines, etc.). The number of wells built in the modeled year in each zone was calculated by scaling the total number of wells built during a given year in the whole RMP area (152) by the fraction of the total wells that lie in that zone.

The third of the three area sources idealizes emissions from central compressor stations and has an assumed stack height of 25 meters. The number of central compressor stations and well head compressors in each zone was calculated by scaling the total number of central and well head compressors in the RMP area (10 for Alternative A/B/C, 8 for Alternative D) by the fraction of the total producing natural gas wells that lie in that zone. The number of central and well head compressors in each zone for each Alternative is shown in Tables 3-4 and 3-5.

CALPUFF-lite requires that each area source be assigned an elevation. Each area source corresponding to a zone shown in Figure 3-2 was therefore assigned a mean elevation. The mean elevation was determined by laying a 4 km x 4 km mesh over the entire modeling domain, and determining an average elevation for each zone from the elevation of all of the 4 km x 4 km cells lying within each zone. This average elevation was then assigned to be the elevation of the three area sources for that zone. Average zone elevations are shown in Table 3-6.

Zone	Elevation (m)
Sand Wash/Vermillion	1971
Powder Wash	2094
Hiawatha/Vermillion/ Sugar Loaf	2137
Great Divide /East of Godiva	2009
Other 1	2410
Other 2	2099
Other 3	1971
Other 4	2125
Other 5	2288
Other 6	2098
Other 7	2094

 Table 3-6.
 Average zone elevation.

3.5 POST-PROCESSING PROCEDURES AND BACKGROUND AIR QUALITY DATA

3.5.1 Criteria Pollutants

Ambient air concentration data collected at monitoring sites in the region provide a measure of background conditions in existence during the most recent available time period (Table 3-7). Regional monitoring-based background values for criteria pollutants (PM_{10} , $PM_{2.5}$, CO, NO_x , and SO_2) were collected at monitoring sites in northwestern Colorado and Wyoming. Direct modeled pollutant concentrations were compared to PSD Class I and Class II increments. However, comparison to PSD increments is intended to indicate potential significance, and is not intended to represent a regulatory PSD Increment Consumption Analysis. Ambient air background concentrations shown in Table 3-7 were added to modeled pollutant concentrations (expressed in micrograms per cubic meter [μ g/m³]) to arrive at total ambient air quality impacts for comparison to National Ambient Air Quality Standards (NAAQS) and Colorado Ambient Air Quality Standards (CAAQS).

Pollutant	Averaging Period	Measured Background Concentration
Carbon monoxide (CO)	1-hour	2,299
Carbon monoxide (CO)	8-hour	1,148
Nitrogen dioxide (NO ₂)	Annual	3.4
Ozone (O ₃)	8-hour	68
PM	24-hour	119
PM ₁₀	Annual	25
PM _{2.5}	24-hour	20
F1V1 _{2.5}	Annual	8
	3-hour	132
Sulfur dioxide (SO ₂)	24-hour	43
	Annual	9

Table 3-7. Analysis background ambient air quality concentrations (µg/m³).

Source: LSRMP DEIS (BLM 2007)

3.5.2 Visibility

Potential visibility impacts were estimated by comparing predicted atmospheric extinction (derived from modeled speciated aerosols and observed daily f(RH) values) to observed data collected by the IMPROVE Program. The visibility methodology used an established approach used by BLM in previous studies. Both the Seasonal Federal Land Mangers' Air Quality Related Values Workgroup (FLAG) Screening Analysis Spreadsheet Method (Archer 2003) and the Daily FLAG Refined Analysis Spreadsheet Method (Archer 2008) were used.

The Seasonal FLAG Screening Analysis Spreadsheet was prepared based on the FLAG published method to evaluate potential visibility impacts at mandatory federal PSD Class I areas (FR 66:2, pp 382-383; Wednesday, January 3, 2001), as well as monthly f(RH) values subsequently provided by FLAG.

The Daily FLAG Refined Analysis Spreadsheet was prepared based on the FLAG published method to evaluate potential visibility impacts at mandatory federal PSD Class I areas (FR 66:2, pp 382-383; Wednesday, January 3, 2001), using available speciated aerosol measurements collected on the White River National Forest and representative measured hourly average relative humidity measurements.

3.5.3 Lake Chemistry

The most recent lake chemistry background acid neutralizing capacity (ANC) data were obtained from the USDA-Forest Service for each sensitive lake listed in Table 3-3. The 10th percentile lowest ANC values were calculated for each lake, and potential impacts were calculated following procedures provided by the USDA-Forest Service (2000).

3.6 CLASS I AND SENSITIVE CLASS II AREA FAR-FIELD AIR QUALITY AND AQRV IMPACT ASSESSMENT

For each far-field sensitive area, CALPUFF-modeled concentration impacts were post-processed with POSTUTIL and CALPOST to derive: (1) concentrations for comparison to ambient standards (CAAQS and NAAQS) and PSD Increments; (2) deposition rates for comparison to sulfur (S) and nitrogen (N) deposition thresholds and to calculate changes to ANC at sensitive lakes; and (3) light extinction changes for comparison to visibility impact thresholds.

3.6.1 Far-Field Concentration Impacts

Under federal and state PSD regulations, increases in ambient air concentrations in Class I and II areas are limited by PSD Increments. Specifically, emissions associated with a particular development may increase ambient concentrations above baseline levels only within those specific increments developed for SO₂, PM₁₀, and NO₂.

Modeled concentrations predicted in Federal PSD Class I and II areas for all alternatives were compared to appropriate PSD Increments. These demonstrations are for informational purposes only and are not regulatory PSD Increment consumption analyses, which would be completed, as necessary, during CDPHE-APCD permitting processes.

The CALPOST and POSTUTIL post-processors were used to summarize potential concentration impacts of NO₂, SO₂, PMF, and PMC, and were compared to applicable ambient air quality C:\Documents and Settings\509702\My Documents\Projects\BLM\Little Snake BLM RMP\AQ Supplement\Final AQ Support DOc\word files\Appendix B\Sec3_LS_TSD_CALPUFF_revsd_071708.docx3-11

standards, PSD Class I and Class II increments, and significance levels. Table 3-8 lists the ambient standards and PSD Class I increments to which the potential concentration impacts were compared.

 PM_{10} concentrations were computed by adding predicted CALPUFF concentrations of PMF, PMC, SO_4 , and NO_3 , whereas $PM_{2.5}$ concentrations were calculated as the sum of modeled PMF, SO_4 , and NO_3 concentrations.

Pollutant/Averaging Time	Ambient Air Quality Standards		PSD Class II	PSD Class I	
	National Colorado		Increment	Increment	
Carbon monoxide (CO)					
1-hour ¹	40,000	40,000			
8-hour ¹	10,000	10,000			
Nitrogen dioxide (NO ₂)					
Annual ²	100	100	25	2.5	
Ozone (O ₃)					
8-hour ³	157	157			
PM ₁₀					
24-hour ¹	150	150	30	8	
Annual			17	4	
PM _{2.5}					
24-hour	35				
Annual ²	15				
Sulfur dioxide (SO ₂)					
3-hour ¹	1,300	700 ⁴	512	25	
24-hour ¹	365	100 ⁴	91	5	
Annual ²	80	15 ⁴	20	2	

Table 3-8.	Ambient standards.	Class II PSD Increments	and Class I PSD I	ncrements (ua/m ³).

1 No more than one exceedance per year.

2 Annual arithmetic mean.

3 Average of annual fourth-highest daily maximum 8-hour average.

4 Colorado Ambient Air Quality Standards are more stringent than the Federal standards .

Note: On September 21, 2006, EPA announced final revisions to the National Ambient Air Quality Standards for particulate matter. The revision strengthens the 24-hour $PM_{2.5}$ standard from 65 to 35 ug/m³ and revokes the annual PM_{10} standard of 50 ug/m³. EPA retained the existing annual $PM_{2.5}$ standard of 15 ug/m³ and the 24-hour PM_{10} standard of 150 ug/m³.

3.6.1.1 Far-Field Concentration Results

The maximum predicted concentrations of NO₂, SO₂, PM₁₀, and PM_{2.5} at any receptor within each of the PSD Class I and Class II areas for all modeled alternatives are shown in Tables 3-9 and 3-10. Table 3-9 displays the maximum direct pollutant concentrations at Class I and Class II areas due to Alternatives A/B/C and compares them to the PSD increments. The highest potential estimated impacts due to assumed oil and gas activities in the RMP area occur in Dinosaur National Monument whose impacts are:

- Less than 1% of the PSD Class I increments for annual, 24-hour and 3-hour SO₂ concentrations;
- Less than 4% and 15% of the PSD Class I area increments for annual and 24-hour PM_{10} , respectively; and
- Less than 2% of the PSD Class I area increment for annual NO₂

Table 3-10 displays the maximum estimated potential direct pollutant concentrations due to Alternative D and compares them to the PSD increments. As in Alternatives A/B/C, the highest potential estimated impacts due to assumed oil and gas activities in the RMP area occur in Dinosaur National Monument whose impacts are:

- Less than 1% of the PSD Class I increments for annual, 24-hour and 3-hour SO₂ concentrations;
- Less than 3% and 11% of the PSD Class I area increments for annual and 24-hour $PM_{10,}$ respectively; and
- Less than 2% of the PSD Class I area increment for annual NO₂.

The PSD Class I SO₂ increments are applicable in Dinosaur National Monument under Colorado law, but less stringent Class II NO₂ and SO₂ federal increments apply within Dinosaur National Monument.

Tables 3-9 and 3-10 show that the estimated potential air quality impacts due to any of the draft Little Snake RMP alternatives would not exceed any PSD Class I area increment at any Class I or Class II area. For areas and all pollutants, Alternatives A/B/C have larger impacts than Alternative D.

The CALPUFF-estimated potential maximum concentration increments due to any Project alternative with the cumulative emissions at any Class I or sensitive Class II area were combined with the existing maximum background concentrations (see Table 3-8) in the region to obtain a total estimated concentration that is compared against the NAAQS and CAAQS in Table 3-11. The maximum CALPUFF-estimated potential impacts due to any alternative occur at the Dinosaur National Monument Class II Area. Table 3-11 shows compliance with all State and federal ambient air quality standards when the maximum RMP impacts are added to the maximum background concentrations to obtain a total predicted concentration.

In summary, the modeling results indicate that, for the Alternative A/B/C and Alternative D scenarios, impacts would not exceed any air quality standards (CAAQS and NAAQS) or PSD increments (The PSD demonstrations are for informational purposes only and do not constitute a regulatory PSD increment consumption analysis).

		Concentration Estimates (µg/m ³)			
Species and Averaging Time	PSD Class I Area Increment (µg/m ³)	DINO	EANE	FLAT	MOZI
1985	(F3)				
SO ₂ Annual	2.00	0.0007	0.0000	0.0001	0.0006
SO ₂ 24-Hour*	5.00	0.0090	0.0004	0.0011	0.0040
SO ₂ 3-Hour*	25.00	0.0240	0.0010	0.0037	0.0094
PM ₁₀ Annual	4.00	0.0958	0.0020	0.0096	0.0723
PM ₁₀ 24-Hour*	8.00	1.1395	0.0578	0.1713	0.4162
NO ₂ Annual	2.50	0.0275	0.0001	0.0011	0.0229
1987					
SO ₂ Annual	2.00	0.0009	0.0000	0.0001	0.0005
SO ₂ 24-Hour*	5.00	0.0062	0.0002	0.0008	0.0038
SO ₂ 3-Hour*	25.00	0.0180	0.0009	0.0028	0.0069
PM ₁₀ Annual	4.00	0.1275	0.0014	0.0083	0.0658
PM ₁₀ 24-Hour*	8.00	0.8661	0.0318	0.1001	0.3612
NO ₂ Annual	2.50	0.0373	0.0001	0.0009	0.0197
1988					
SO ₂ Annual	2.00	0.0006	0.0000	0.0001	0.0005
SO ₂ 24-Hour*	5.00	0.0046	0.0004	0.0009	0.0017
SO ₂ 3-Hour*	25.00	0.0168	0.0018	0.0029	0.0047
PM ₁₀ Annual	4.00	0.0816	0.0013	0.0067	0.0635
PM ₁₀ 24-Hour*	8.00	0.6606	0.0421	0.0954	0.2160
NO ₂ Annual	2.50	0.0245	0.0001	0.0009	0.0188
1989					
SO ₂ Annual	2.00	0.0006	0.0000	0.0000	0.0004
SO ₂ 24-Hour*	5.00	0.0041	0.0002	0.0006	0.0028
SO ₂ 3-Hour*	25.00	0.0127	0.0005	0.0019	0.0073
PM ₁₀ Annual	4.00	0.0925	0.0007	0.0047	0.0535
PM ₁₀ 24-Hour*	8.00	0.6238	0.0212	0.0871	0.2679
NO ₂ Annual	2.50	0.0278	0.0000	0.0005	0.0156
1990					
SO ₂ Annual	2.00	0.0007	0.0000	0.0001	0.0003
SO ₂ 24-Hour*	5.00	0.0053	0.0003	0.0008	0.0016
SO ₂ 3-Hour*	25.00	0.0160	0.0011	0.0025	0.0057
PM ₁₀ Annual	4.00	0.1065	0.0011	0.0071	0.0482
PM ₁₀ 24-Hour*	8.00	0.8147	0.0290	0.0872	0.2589
NO ₂ Annual	2.50	0.0331	0.0001	0.0010	0.0137

 Table 3-9.
 CALPUFF-estimated PSD pollutant concentrations impacts for Alternatives A/B/C.

*Highest second high at any receptor in the Class I area.

Species and Averaging Time PSD Class I (µg/m³) INO EAR FLAT MOZI 1895 I <tdi< td=""></tdi<>			Concentration Estimates (µg/m ³)								
Averaging Time(µg/m³)DINOEANEFLATMOZI1985		PSD Class I									
1985 Image: market instant ins											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(µg/m³)	DINO	EANE	FLAT	MOZI					
SO2 24-Hour* 5.00 0.0069 0.0003 0.0088 0.0029 SO2 3-Hour* 25.00 0.0182 0.0008 0.0028 0.0067 PM ₁₀ Annual 4.00 0.0727 0.0015 0.0074 0.0522 PM ₁₀ 24-Hour* 8.00 0.8736 0.0441 0.1285 0.2963 NO2 Annual 2.50 0.0229 0.0001 0.0009 0.0125 1987 SO2 Annual 2.00 0.0007 0.0000 0.0007 0.0022 0.0048 PM ₁₀ Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM ₁₀ Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM ₁₀ Annual 2.50 0.0307 0.0001 0.0007 0.0108 NO2 Annual 2.50 0.0303 0.0007 0.0101 0.0003 SO2 Annual 2.00 0.0035 0.0003 0.0007 0.0112 SO2 Annual 2.											
SO2 3-Hour* 25.00 0.0182 0.0008 0.0028 0.0067 PM10 Annual 4.00 0.0727 0.0015 0.0074 0.0522 PM10 24-Hour* 8.00 0.8736 0.0441 0.1285 0.2963 NO2 Annual 2.50 0.0229 0.0001 0.0009 0.0125 1987											
PM_{10} Annual 4.00 0.0727 0.0015 0.0074 0.0522 PM_{10} 24-Hour* 8.00 0.8736 0.0441 0.1285 0.2963 NO_2 Annual 2.50 0.0229 0.0001 0.0009 0.0125 1987 SO_2 Annual 2.00 0.0007 0.0000 0.0006 0.0027 SO_2 Ashour* 25.00 0.0138 0.0007 0.0022 0.0048 PM_{10} Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM_{10} Annual 4.00 0.05536 0.0244 0.0758 0.2568 NO_2 Annual 2.50 0.0307 0.0001 0.0007 0.0107 1988 0.0035 0.0003 0.0007 0.0012 SO_2 Annual 2.00 0.0128 0.0014 0.0022 0.0035 SO_2 Annual 2.00 0.0012 0.0005 0.0000											
PM10 24-Hour* 8.00 0.8736 0.0441 0.1285 0.2963 NO2 Annual 2.50 0.0229 0.0001 0.0009 0.0125 1987	_	25.00	0.0182	0.0008	0.0028	0.0067					
NO2 Annual 2.50 0.0229 0.0001 0.0009 0.0125 1987 SO2 Annual 2.00 0.0007 0.0000 0.0004 0.0027 SO2 24-Hour* 5.00 0.0047 0.0002 0.0022 0.0048 PM10 Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM10 24-Hour* 8.00 0.6536 0.0244 0.0758 0.2568 NO2 Annual 2.50 0.0307 0.0001 0.0007 0.0107 1988 0.0004 0.0000 0.0003 SO2 Annual 2.00 0.0044 0.0007 0.0012 0.0003 0.0007 0.0010 SO2 Annual 2.00 0.0035 0.0003 0.0007 0.0012 0.0035 SO2 Annual 4.00 0.0619 0.0010 0.0052 0.0462 PM10 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 <td>-</td> <td>4.00</td> <td>0.0727</td> <td></td> <td></td> <td>0.0522</td>	-	4.00	0.0727			0.0522					
1987 Image: constraint of the symbol is a symbol is symbol is a symbol is a symbol is	PM ₁₀ 24-Hour*	8.00	0.8736	0.0441	0.1285	0.2963					
SO2 Annual 2.00 0.0007 0.0000 0.0000 0.0004 SO2 24-Hour* 5.00 0.0138 0.0007 0.0022 0.0048 SO2 3-Hour* 25.00 0.0138 0.0007 0.0022 0.0048 PM10 Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM10 24-Hour* 8.00 0.6536 0.0244 0.0758 0.2568 NO2 Annual 2.50 0.0307 0.0001 0.0007 0.0117 1988 SO2 Annual 2.00 0.0004 0.0000 0.0003 SO2 Annual 2.00 0.0035 0.0003 0.0007 0.0012 SO2 Annual 2.00 0.0128 0.0014 0.0022 0.0035 SO2 3-Hour* 25.00 0.0128 0.0014 0.0022 0.0035 SO2 Annual 2.50 0.0203 0.0010 0.0007 0.0103 SO2 Annual 2.50 0.0031 0.0001 0.00035 0.002	=	2.50	0.0229	0.0001	0.0009	0.0125					
SO2 24-Hour* 5.00 0.0047 0.0002 0.0006 0.0027 SO2 3-Hour* 25.00 0.0138 0.0007 0.0022 0.0048 PM10 Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM10 24-Hour* 8.00 0.6536 0.0244 0.0758 0.2568 NO2 Annual 2.50 0.0307 0.0001 0.0007 0.0107 1988 SO2 Annual 2.00 0.0004 0.0000 0.0003 0.0012 SO2 Annual 2.00 0.0128 0.0014 0.0022 0.0035 SO2 3-Hour* 25.00 0.0128 0.0014 0.0022 0.0035 SO2 3-Hour* 25.00 0.0213 0.0010 0.0052 0.0462 PM10 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO2 Annual 2.50 0.0003 0.0001 0.0003 0.00020 SO2 Annual <											
SO2 3-Hour* 25.00 0.0138 0.0007 0.0022 0.0048 PM10 Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM10 24-Hour* 8.00 0.6536 0.0244 0.0758 0.2568 NO2 Annual 2.50 0.0307 0.0001 0.0007 0.0107 1988		2.00	0.0007			0.0004					
PM ₁₀ Annual 4.00 0.0966 0.0011 0.0064 0.0477 PM ₁₀ 24-Hour* 8.00 0.6536 0.0244 0.0758 0.2568 NO ₂ Annual 2.50 0.0307 0.0001 0.0007 0.0107 1988		5.00	0.0047	0.0002	0.0006	0.0027					
PM ₁₀ 24-Hour* 8.00 0.6536 0.0244 0.0758 0.2568 NO ₂ Annual 2.50 0.0307 0.0001 0.0007 0.0107 198 SO ₂ Annual 2.00 0.0004 0.0000 0.0000 0.0003 SO ₂ Annual 2.00 0.0035 0.0003 0.0007 0.0012 SO ₂ A-Hour* 5.00 0.0128 0.0014 0.0022 0.0035 SO ₂ 3-Hour* 25.00 0.0128 0.0010 0.0052 0.0462 PM ₁₀ Annual 4.00 0.0619 0.0010 0.0052 0.0462 PM ₁₀ 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO ₂ Annual 2.50 0.0203 0.0001 0.0007 0.0103 SO ₂ Annual 2.00 0.0005 0.0000 0.0003 0.0020 SO ₂ 24-Hour* 5.00 0.0031 0.0011 0.0005 0.0020 SO ₂ 3-Hour*	SO ₂ 3-Hour*	25.00	0.0138	0.0007	0.0022	0.0048					
NO2 Annual 2.50 0.0307 0.0001 0.0007 0.0107 1988 <t< td=""><td></td><td>4.00</td><td>0.0966</td><td>0.0011</td><td>0.0064</td><td>0.0477</td></t<>		4.00	0.0966	0.0011	0.0064	0.0477					
1988 Image: SO2 Annual 2.00 0.0004 0.0000 0.0000 0.0003 SO2 24-Hour* 5.00 0.0035 0.0003 0.0007 0.0012 SO2 3-Hour* 25.00 0.0128 0.0014 0.0022 0.0035 PM10 Annual 4.00 0.0619 0.0010 0.0052 0.0462 PM10 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO2 Annual 2.50 0.0203 0.0001 0.0007 0.0103 1989 SO2 Annual 2.00 0.0005 0.0000 0.0003 0.0007 0.0103 SO2 Annual 2.00 0.0005 0.0000 0.0000 0.0003 0.0003 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	PM ₁₀ 24-Hour*	8.00	0.6536	0.0244	0.0758	0.2568					
SO2 Annual 2.00 0.0004 0.0000 0.0003 SO2 24-Hour* 5.00 0.0035 0.0003 0.0007 0.0012 SO2 3-Hour* 25.00 0.0128 0.0014 0.0022 0.0035 PM10 Annual 4.00 0.0619 0.0010 0.0052 0.0462 PM10 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO2 Annual 2.50 0.0203 0.0001 0.0007 0.0103 1989 0.0005 0.0000 0.0003 SO2 Annual 2.00 0.0031 0.0001 0.0005 0.0000 0.0003 SO2 Annual 2.00 0.0031 0.0001 0.0005 0.0020 SO2 Annual 2.00 0.0037 0.0044 0.0052 0.0020 SO2 3-Hour* 25.00 0.0071 0.0066 0.0389 PM10 Annual 4.00 0.0231 0.0000 0.0004 0.0087 1990	NO ₂ Annual	2.50	0.0307	0.0001	0.0007	0.0107					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1988										
SO2 3-Hour* 25.00 0.0128 0.0014 0.0022 0.0035 PM10 Annual 4.00 0.0619 0.0010 0.0052 0.0462 PM10 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO2 Annual 2.50 0.0203 0.0001 0.0007 0.0103 1989	SO ₂ Annual	2.00	0.0004	0.0000	0.0000	0.0003					
PM ₁₀ Annual 4.00 0.0619 0.0010 0.0052 0.0462 PM ₁₀ 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO ₂ Annual 2.50 0.0203 0.0001 0.0007 0.0103 1989	SO ₂ 24-Hour*	5.00	0.0035	0.0003	0.0007	0.0012					
PM ₁₀ 24-Hour* 8.00 0.4996 0.0321 0.0724 0.1582 NO ₂ Annual 2.50 0.0203 0.0001 0.0007 0.0103 1989		25.00	0.0128	0.0014	0.0022	0.0035					
NO2 Annual 2.50 0.0203 0.0001 0.0007 0.0103 1989 <t< td=""><td>PM₁₀ Annual</td><td>4.00</td><td>0.0619</td><td>0.0010</td><td>0.0052</td><td>0.0462</td></t<>	PM ₁₀ Annual	4.00	0.0619	0.0010	0.0052	0.0462					
1989Image: style	PM ₁₀ 24-Hour*	8.00	0.4996	0.0321	0.0724	0.1582					
SO2 Annual 2.00 0.0005 0.0000 0.0000 0.0003 SO2 24-Hour* 5.00 0.0031 0.0001 0.0005 0.0020 SO2 3-Hour* 25.00 0.0097 0.0004 0.0014 0.0052 PM10 Annual 4.00 0.0701 0.0006 0.0036 0.0389 PM10 24-Hour* 8.00 0.4730 0.0159 0.0663 0.1986 NO2 Annual 2.50 0.0231 0.0000 0.0004 0.0087 1990 0.0005 0.0000 0.0004 0.0087 SO2 Annual 2.00 0.0005 0.0000 0.0000 0.0003 0.0003 SO2 Annual 2.00 0.0041 0.0003 0.0000 0.0012 SO2 Annual 2.00 0.0012 0.0088 0.0012 0.0038 SO2 3-Hour* 5.00 0.0122 0.0088 0.0018 0.0038 PM10 Annual 4.00 0.0805 0.0009 0.0555 0.0350 </td <td>NO₂ Annual</td> <td>2.50</td> <td>0.0203</td> <td>0.0001</td> <td>0.0007</td> <td>0.0103</td>	NO ₂ Annual	2.50	0.0203	0.0001	0.0007	0.0103					
SO2 24-Hour* 5.00 0.0031 0.0001 0.0005 0.0020 SO2 3-Hour* 25.00 0.0097 0.0004 0.0014 0.0052 PM ₁₀ Annual 4.00 0.0701 0.0006 0.0036 0.0389 PM ₁₀ 24-Hour* 8.00 0.4730 0.0159 0.0663 0.1986 NO2 Annual 2.50 0.0231 0.0000 0.0004 0.0087 1990 SO2 Annual 2.00 0.0005 0.0000 0.0003 0.0003 SO2 Annual 2.00 0.0041 0.0003 0.0012 0.0003 SO2 3-Hour* 5.00 0.0122 0.0008 0.0012 0.0038 SO2 3-Hour* 25.00 0.0122 0.0008 0.0018 0.0038 PM ₁₀ Annual 4.00 0.0805 0.0009 0.0055 0.0350 PM ₁₀ 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	1989										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SO ₂ Annual	2.00	0.0005	0.0000	0.0000	0.0003					
PM ₁₀ Annual 4.00 0.0701 0.0006 0.0036 0.0389 PM ₁₀ 24-Hour* 8.00 0.4730 0.0159 0.0663 0.1986 NO ₂ Annual 2.50 0.0231 0.0000 0.0004 0.0087 1990 SO ₂ Annual 2.00 0.0005 0.0000 0.0000 0.0003 SO ₂ 24-Hour* 5.00 0.0041 0.0003 0.0006 0.0012 SO ₂ 3-Hour* 5.00 0.0122 0.0008 0.0018 0.0038 PM ₁₀ Annual 4.00 0.0805 0.0009 0.0055 0.0350 PM ₁₀ 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	SO ₂ 24-Hour*	5.00	0.0031	0.0001	0.0005	0.0020					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SO ₂ 3-Hour*	25.00	0.0097	0.0004	0.0014	0.0052					
NO2 Annual 2.50 0.0231 0.0000 0.0004 0.0087 1990 <th< td=""><td>PM₁₀ Annual</td><td>4.00</td><td>0.0701</td><td>0.0006</td><td>0.0036</td><td>0.0389</td></th<>	PM ₁₀ Annual	4.00	0.0701	0.0006	0.0036	0.0389					
1990 Image: Mark Stress of the s	PM ₁₀ 24-Hour*	8.00	0.4730	0.0159	0.0663	0.1986					
SO2 Annual 2.00 0.0005 0.0000 0.0000 0.0003 SO2 24-Hour* 5.00 0.0041 0.0003 0.0012 0.0012 SO2 3-Hour* 25.00 0.0122 0.0008 0.0018 0.0038 PM10 Annual 4.00 0.0805 0.0009 0.0055 0.0350 PM10 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	NO ₂ Annual	2.50	0.0231	0.0000	0.0004	0.0087					
SO2 24-Hour* 5.00 0.0041 0.0003 0.0006 0.0012 SO2 3-Hour* 25.00 0.0122 0.0008 0.0018 0.0038 PM10 Annual 4.00 0.0805 0.0009 0.0055 0.0350 PM10 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	1990										
SO2 3-Hour* 25.00 0.0122 0.0008 0.0018 0.0038 PM10 Annual 4.00 0.0805 0.0009 0.0055 0.0350 PM10 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	SO ₂ Annual	2.00	0.0005	0.0000	0.0000	0.0003					
PM ₁₀ Annual 4.00 0.0805 0.0009 0.0055 0.0350 PM ₁₀ 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	SO ₂ 24-Hour*	5.00	0.0041	0.0003	0.0006	0.0012					
PM ₁₀ 24-Hour* 8.00 0.6209 0.0226 0.0658 0.1889	SO ₂ 3-Hour*	25.00	0.0122	0.0008	0.0018	0.0038					
	PM ₁₀ Annual	4.00	0.0805	0.0009	0.0055	0.0350					
NO ₂ Annual 2.50 0.0276 0.0001 0.0007 0.0074	PM ₁₀ 24-Hour*	8.00	0.6209	0.0226	0.0658	0.1889					
	NO ₂ Annual	2.50	0.0276	0.0001	0.0007	0.0074					

Table 3-10. CALPUFF-estimated PSD pollutant concentrations impacts for Alternative D	Table 3-10.	CALPUFF-estimated PSD	pollutant concentrations im	pacts for Alternative D.
--	-------------	-----------------------	-----------------------------	--------------------------

*Highest second high at any receptor in the Class I area.

Pollutant /	Amb	ient Air Qua	Estimated Impact (µg/m³)		
Averaging Time	National	Colorado	Background ¹	Increment ²	
NO ₂					
Annual	100	100	3.4	3.4	0.037
PM ₁₀					
24-hour	150	150	120	119	1.140
Annual			25	25	0.127
PM _{2.5}					
24-hour	35		21	20	1.105
Annual	15		8	8	0.124
SO ₂					
3-hour	1,300	700	132	132	0.024
24-hour	365	100	43	43	0.009
Annual	80	15	9.0	9	0.001

Table 3-11. Comparison of maximum existing background concentrations (Table 3-5) plus maximum estimated impacts at any class i area due to any RMP scenario with federal and state ambient air quality standards.

1 Maximum current background concentration in the region (Table 3-5)

2 Maximum Cumulative Emissions Plus Project increment concentration at any Class I or Class II area for any of the modeling years

3.6.2 Sulfur and Nitrogen Deposition

Maximum predicted total sulfur (S) and nitrogen (N) deposition impacts were estimated for each of the RMP alternatives. The POSTUTIL utility was used to estimate total S and N fluxes from CALPUFF predicted wet and dry fluxes of SO₂, SO₄, NO_x, NO₃, and HNO₃. The N associated with ammonium (NH₄) is assumed to be bound to SO₄ and NO₃ was also included in the N deposition. CALPOST was then used to summarize the annual S and N deposition values from the POSTUTIL program. The maximum calculated total annual S and N deposition at any receptor in each Class I and Class II area was reported. Total deposition impacts from the RMP alternatives and background values were compared to USDA-Forest Service levels of concern, defined as 5 kg/ha-yr for S and 3 kg/ha-yr for N (Fox et al. 1989). It is understood that the USDA-Forest Service Region 2 no longer considers these levels protective; however, in the absence of alternative peer-reviewed values, comparisons with these national values were made. The maximum predicted total annual N and S deposition impacts at Class I and sensitive Class II areas for the different alternatives are given in Tables 3-12 and 3-13. Modeling results for Alternatives A/B/C and Alternative D indicate there were no significant direct Project total N or S deposition impacts. The maximum nitrogen deposition impacts are more than a factor of 100 lower than the 3.0 kg/ha/yr level of concern. Impacts from Alternative D were lower than for Alternative A/B/C for all areas

Total Deposition	Ν	S
FS Threshold	3.000	5.000
Dinosaur NM		
1985	0.0057	0.0002
1987	0.0080	0.0003
1988	0.0056	0.0002
1989	0.0069	0.0003
1990	0.0070	0.0002
Eagles Nest		
1985	0.0001	0.0000
1987	0.0001	0.0000
1988	0.0001	0.0000
1989	0.0000	0.0000
1990	0.0001	0.0000
Flat Top		
1985	0.0004	0.0000
1987	0.0005	0.0000
1988	0.0004	0.0000
1989	0.0002	0.0000
1990	0.0005	0.0000
Mount Zirkel		
1985	0.0059	0.0002
1987	0.0052	0.0002
1988	0.0051	0.0002
1989	0.0041	0.0001
1990	0.0039	0.0001

annual average at max receptor

Total Deposition	Ν	S
FS Threshold	3.000	5.000
Dinosaur NM		
1985	0.0047	0.0002
1987	0.0066	0.0002
1988	0.0046	0.0002
1989	0.0057	0.0002
1990	0.0058	0.0002
Eagles Nest		
1985	0.0001	0.0000
1987	0.0001	0.0000
1988	0.0001	0.0000
1989	0.0000	0.0000
1990	0.0001	0.0000
Flat Top		
1985	0.0003	0.0000
1987	0.0004	0.0000
1988	0.0003	0.0000
1989	0.0002	0.0000
1990	0.0004	0.0000
Mount Zirkel		
1985	0.0034	0.0002
1987	0.0029	0.0001
1988	0.0029	0.0001
1989	0.0023	0.0001
1990	0.0022	0.0001

annual average at max receptor

3.6.3 Acid Neutralizing Capacity Calculations for Sensitive Lakes

The CALPUFF-lite predicted annual deposition fluxes of S and N at sensitive lake receptors listed in Section 3.2.3 were used to estimate the potential change in sensitive lake ANC. The change in ANC were calculated following the January 2000, USDA-Forest Service Rocky Mountain Region's *Screening Methodology for Calculating ANC Change to High Elevation Lakes, User's Guide* (USDA-Forest Service 2000). The predicted changes in ANC were compared with the Level of Acceptable Change (LAC) thresholds of 10% for lakes with existing ANC values greater than 25 microequivalents per liter (μ eq/l) and 1 μ eq/l for lakes with background ANC values of 25 μ eq/l and less. Of the lakes in the study area identified by the USDA Forest Service as acid sensitive, only Upper Ned Wilson Lake is considered very acid sensitive as it has an ANC value of less than 25 μ eq/l (12.7 μ eq/l; see Table 3-14).

ANC calculations were performed for each of the RMP alternatives, with the results presented in Tables 3-14 and 3-15. For the sensitive lakes that have background ANC above 25 μ eq/l, the maximum change in ANC was 0.08%. Therefore, assumed deposition impacts from direct oil and gas development emissions would not contribute significantly to an increase in acidification at any of the sensitive lakes with background ANC > 25 μ eq/l. The estimated change at Upper Ned Wilson Lake was 0.002 μ eq/l for both the Alternative A/B/C and Alternative D scenarios. Thus, neither Alternatives A/B/C nor Alternative D is estimated to have an adverse impact on lake acidity at any lake in the region.

	Background	Tot S Dep	Tot N Dep	ppt	Delta ANC	Delta ANC	East	North	Elevation	Longitude	Latitude	Elevation
	(ueq/l)	(kg/ha-yr)	(kg/ha-yr)	(m)	(percent)	(ueq/l)	UTM 13	UTM 13	(meters)	NAD27	NAD27	feet
BOOTH LAKE	85.8	3.0E-06	4.6E-05	0.9	0.0007	n/a	388113	4394910	3501	106.3050	39.6986	11485
UPPER WILLOW LAKE	132.8	2.0E-06	3.1E-05	0.7	0.0004	n/a	399208	4388895	3469	106.1747	39.6458	11380
LOWER NWL PACKTRAIL POTHOLE	29.6	1.4E-05	2.4E-04	1.1	0.0083	n/a	301574	4426586	3383	107.3233	39.9681	11100
NED WILSON LAKE	39.6	1.3E-05	2.3E-04	1.1	0.0059	n/a	301532	4425909	3383	107.3239	39.9614	11100
NED WILSON SPRING	740.6	1.3E-05	2.3E-04	1.1	0.0003	n/a	301450	4425479	3365	107.3244	39.9581	11040
TRAPPERS LAKE	661.2	1.4E-05	2.4E-04	0.9	0.0005	n/a	309555	4428635	2934	107.2305	39.9883	9627
UPPER NED WILSON LAKE	12.7	1.4E-05	2.4E-04	1.1	0.0193	0.002	301535	4426001	3389	107.3236	39.9628	11120
UPPER NWL PACKTRAIL POTHOLE	47.9	1.4E-05	2.4E-04	1.1	0.0051	n/a	301590	4426308	3383	107.3231	39.9656	11100
LAKE ELBERT	60.2	9.5E-05	1.9E-03	1.4	0.0252	n/a	355649	4499340	3286	106.7069	40.6342	10780
SEVEN LAKES	36.2	1.2E-04	3.0E-03	1.2	0.0768	n/a	358320	4528340	3271	106.6819	40.8958	10733
	Lowest 10th				10 percent	1 ueq/l						
	Percentile				threshold	threshold						

Table 3-14. Lake acid neutralizing capacity (ANC) calculations for the Alternative A/B/C Scenario.

Table 3-15. Lake acid neutralizing capacity (ANC) calculations for the Alternative D Scenario.

	Background		Tot N Dep	ppt	Delta ANC	Delta ANC	East	North	Elevation	Longitude	Latitude	Elevation
	(ueq/l)	(kg/ha-yr)	(kg/ha-yr)	(m)	(percent)	(ueq/l)	UTM 13	UTM 13	(meters)	NAD27	NAD27	feet
BOOTH LAKE	85.8	2.2E-06	3.5E-05	0.9	0.0005	n/a	388113	4394910	3501	106.3050	39.6986	11485
UPPER WILLOW LAKE	132.8	1.5E-06	2.3E-05	0.7	0.0003	n/a	399208	4388895	3469	106.1747	39.6458	11380
LOWER NWL PACKTRAIL POTHOLE	29.6	1.1E-05	1.9E-04	1.1	0.0064	n/a	301574	4426586	3383	107.3233	39.9681	11100
NED WILSON LAKE	39.6	1.0E-05	1.8E-04	1.1	0.0045	n/a	301532	4425909	3383	107.3239	39.9614	11100
NED WILSON SPRING	740.6	1.0E-05	1.8E-04	1.1	0.0002	n/a	301450	4425479	3365	107.3244	39.9581	11040
TRAPPERS LAKE	661.2	1.1E-05	1.9E-04	0.9	0.0004	n/a	309555	4428635	2934	107.2305	39.9883	9627
UPPER NED WILSON LAKE	12.7	1.1E-05	1.9E-04	1.1	0.0149	0.002	301535	4426001	3389	107.3236	39.9628	11120
UPPER NWL PACKTRAIL POTHOLE	47.9	1.1E-05	1.9E-04	1.1	0.0040	n/a	301590	4426308	3383	107.3231	39.9656	11100
LAKE ELBERT	60.2	7.2E-05	1.4E-03	1.4	0.0182	n/a	355649	4499340	3286	106.7069	40.6342	10780
SEVEN LAKES	36.2	9.1E-05	1.9E-03	1.2	0.0490	n/a	358320	4528340	3271	106.6819	40.8958	10733
	Lowest 10th				10 percent	1 ueq/l						
	Percentile				threshold	threshold						

3.6.4 Visibility

The hypothetical CALPUFF-lite model-predicted concentration impacts at far-field PSD Class I and sensitive Class II receptors were post-processed with CALPOST to estimate potential impacts to visibility (regional haze) for each analyzed alternative and cumulative sources for comparison to visibility impact thresholds. CALPOST estimated visibility impacts from predicted concentrations of PMC, PMF, SO₄, and NO₃ using the original IMPROVE reconstructed mass extinction equation (Malm et al., 2000) as recommended by FLAG (2000) and EPA (2003a, b).

Change in atmospheric light extinction relative to background conditions is used to measure regional haze. Analysis thresholds for atmospheric light extinction are set forth in FLAG (2000) report results as a percent change in light extinction over natural background conditions. The thresholds of concern are defined as 5% from a single emission source and 10% from multiple sources changes over the measured reference background condition. Potential visibility impacts are also expressed as a change in deciviews (dv) over natural background where 1.0 dv represents a "just noticeable change," numerically equal to a 10% change in extinction over natural background. The BLM uses a 1.0 dv "just noticeable change" as a significance threshold; however, there are no applicable local, state, tribal, or federal regulatory visibility standards. Other federal agencies use a 0.5 dv change as a screening threshold for significance. The USDA-Forest Service and USDI – National Park Service compare direct project impacts to the 0.5 dv level, and those comparisons are included in this document. Lastly, the reader should be aware that Class II areas are not subject to the National Visibility Goal of no manmade impairment of visibility within federal mandatory Class I areas.

3.6.4.1 Visibility Impacts due to Little Snake RMPPA Alternatives

Table 3-16 shows the CALPUFF-estimated visibility impacts at the Class I and sensitive II areas due to Alternatives A/B/C using the screening method described above. Alternatives A/B/C are estimated to have a potentially significant adverse impact at Mount Zirkel Wilderness Area and Dinosaur National Monument but not at the Eagles Nest and Flat Tops Wilderness Areas. The largest potential visibility impacts are estimated to occur at the Dinosaur National Monument Class II Area, with Alternatives A/B/C exceeding the 1.0 dv threshold on zero to 5 days out of the 5-year period, or up to 1.4% of modeled days. Impacts at the Mount Zirkel Class I Area were slightly smaller, with zero to 4 days exceeding the 1.0 dv threshold, or up to 1.1% of modeled days. Impacts for Alternative D were smaller than those for Alternatives A/B/C. At Dinosaur National Monument, the 1.0 dv threshold was exceeded on zero to 2 (0.5%) of modeled days; no days were predicted to exceed a 1.0 dv "just noticeable change" at Mount Zirkel Class I Area.

The results of the refined visibility analysis are shown in Table 3-17. No days were predicted to exceed a 1.0 dv "just noticeable change" at either the Flat Tops or Eagles Nest Class I areas. Under Alternative A/B/C, the 1.0 dv threshold was exceeded at Dinosaur Class II area on zero to 5 days (1.4%), and zero to 2 days (0.5%) at the Mount Zirkel Class I area. For Alternative D, zero to 3 days (0.8%) were predicted to exceed 1.0 dv at Dinosaur Class II area, and zero to one day (0.3%) at the Mount Zirkel Class I Area.

	Z Z		8	lt_ab	с			alt_d			
		1985	1987	1988	1989	1990	1985	1987	1988	1989	1990
	Number of days at or above 0.5 dv	0	1	0	0	0	0	0	0	0	0
Flat Tops Wilderness	Number of days at or above 1.0 dv	0	0	0	0	0	0	0	0	0	0
	Number of days at or above 0.5 dv	11	9	0	2	1	6	4	0	1	0
Mount Zirkel Wilderness	Number of days at or above 1.0 dv	4	1	0	1	0	0	0	0	0	0
	Number of days at or above 0.5 dv	0	0	0	0	0	0	0	0	0	0
Eagles Nest Wilderness	Number of days at or above 1.0 dv	0	0	0	0	0	0	0	0	0	0
	Number of days at or above 0.5 dv	7	17	9	5	8	6	13	5	3	6
Dinosaur NM	Number of days at or above 1.0 dv	3	5	1	0	2	2	2	0	0	2

Table 3-16. CALPUFF-estimated visibility impacts on Class I and II areas for the various

 Project Alternatives alone using Screening Method.

Table 3-17. CALPUFF-estimated visibility impacts on Class I and II Areas for the various Project Alternatives alone	e using Refined
Method.	-

Flat Tops	s Wilderness Area (White River Nationa	al Forest)									
		19	985	19	987	19	88	19	89	19	90
		Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
alt_abc	Number of days at or above 0.5 dv	0	1	0	1	0	0	0	0	0	0
	Number of days at or above 1.0 dv	0	0	0	0	0	0	0	0	0	0
alt_d	Number of days at or above 0.5 dv	0	0	0	1	0	0	0	0	0	0
	Number of days at or above 1.0 dv	0	0	0	0	0	0	0	0	0	0
Mount Zi	rkel Wilderness Area										
		19	985	19	987	19	88	19	89	19	90
		Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
alt_abc	Number of days at or above 0.5 dv	3	10	2	8	0	2	1	3	0	1
	Number of days at or above 1.0 dv	0	2	0	2	0	0	0	2	0	0
alt_d	Number of days at or above 0.5 dv	0	5	1	4	0	0	0	2	0	0
	Number of days at or above 1.0 dv	0	1	0	1	0	0	0	0	0	0
Eagles N	est Wilderness Area (White River Natio	onal Forest)									
		19	985	-	987	-	88	-	89	-	90
		Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
alt_abc	Number of days at or above 0.5 dv	0	0	0	0	0	0	0	0	0	0
	Number of days at or above 1.0 dv	0	0	0	0	0	0	0	0	0	0
alt_d	Number of days at or above 0.5 dv	0	0	0	0	0	0	0	0	0	0
	Number of days at or above 1.0 dv	0	0	0	0	0	0	0	0	0	0
Dinosau	National Monument (White River National Monument (White River National Monument (White River National Monument)	onal Forest)								
		1985		-	987	-	88	-	89	-	90
		Minimum	Maximum	Minimum	1	1	Maximum	Minimum	Maximum	Minimum	Maximum
alt_abc	Number of days at or above 0.5 dv	6	11	10	24	5	15	3	9	4	12
	Number of days at or above 1.0 dv	2	4	1	5	0	2	0	1	0	2
alt_d	Number of days at or above 0.5 dv	5	7	8	15	1	12	1	3	2	7
	Number of days at or above 1.0 dv	1	3	0	3	0	1	0	0	0	2

3.7 CUMULATIVE IMPACTS DUE TO LITTLE SNAKE RMP ALTERNATIVES

The background conditions included in this hypothetical analysis reflect observed impacts from cumulative air pollutant emission sources. Additionally, this is a cumulative analysis in the sense that it considers all reasonable foreseeable oil and gas development in the planning area regardless of surface or mineral ownership. However, this type of analysis is not able to address other reasonably foreseeable future activities (such as coal mine expansions and new power plant facilities). If future development locations are identified, site-specific NEPA analyses (including direct, indirect, and cumulative quantitative air quality impact analysis) will be performed. Regional cumulative air quality impact assessments that are directly relevant to the Little Snake RMP were not available at the time when the present study was performed (Scott Archer, BLM; personal communication 2007).

However, it is useful to point out there are a limited number of air pollutant emission sources located within the RMP area; there are a few cities and towns, very limited oil and gas extraction activities, a few coal mines, and two coal-fired power plants. These two power plants, the Hayden and Craig Power plants, have historically been shown to have a significant impact on visibility at the Mount Zirkel Class I area (Watson et al. 1996). As a result of that study, and a subsequent legal consent decree, the Hayden and Craig Power Plants have installed pollution controls resulting in emission reductions of approximately 14,000 tons/year SO₂ and 7,000 tons/year NOx for each plant (Scott Archer, BLM; personal communication, 2007). These two power plants are located closer to the mandatory federal Class I PSD areas (Mount Zirkel, Flat Tops, and Eagles Nest) than most of the assumed oil and gas activity in the Little Snake RMP area. The Little Snake RMP Alternatives A/B/C and D are projected to bring a maximum increase of 15 and 11 tons/year SO₂ to the region, respectively. These increases are approximately 0.2% of the SO₂ existing reduction from these two power plants combined. The Little Snake RMP Alternatives A/B/C and D are projected to increase NOx emissions in the study area by 1,066 and 825 tons/year, respectively. These increases are approximately 8% of the total emissions reduction at both power plants. Thus, as total SO₂ and NO_x emissions in the Little Snake RMP area are lowered in the future, cumulative air quality and AQRV will be reduced from historic levels.

4.0 REFERENCES

- Archer, S.F. 2003. DRAFT Microsoft Excel © Seasonal FLAG Screening Analysis Spreadsheet. USDI - Bureau of Land Management, National Science and Technology Center. Denver, Colorado.
- Archer, S.F. 2007. DRAFT Microsoft Excel © Mesa Verde Daily FLAG Refined Analysis Spreadsheet. USDI - Bureau of Land Management, National Science and Technology Center, Denver, Colorado.
- Atkinson, D. and T. Fox. 2006. Dispersion Coefficients for Regulatory Air Quality Modeling in CALPUFF. Memorandum from U.S. EPA/OAQPS to Kay T. Prince, EPA Region 4. March 16.
- Booz Allen Hamilton, 2007. Air Quality Impact Assessment Protocol, Little Snake Resource Management Plan, Moffat, Routt and Rio Blanco Counties, Colorado. Prepared for Bureau of Land Management Little Snake Field Office, Craig Colorado, and Bureau of Land Management Colorado State Office. Lakewood, Colorado. November.
- Bureau of Land Management. 2005. Reasonable Foreseeable Development: Oil and Gas in the Little Snake Field Office Administrative Boundary.
- Bureau of Land Management. 2007. Draft Environmental Impact Statement for the Little Snake Resource Management Plan. BLM\CO\PL-07\002.
- Colorado Department of Health and the Environment. 2005. CALMET/CALPUFF BART Protocol for Class I federal Are Individual Source Attribution Visibility Impairment Modeling Analysis. Colorado Department of Health and the Environment, Air Pollution Control Division, Denver, Colorado. October 24.
- Earth Tech. 2001a. The Southwest Wyoming Regional CALPUFF Air Quality Modeling Study Final Report. Earth Tech, Inc., Concord, Massachusetts. February.
- Earth Tech. 2001b. Guide for Applying the EPA Class I Screening Methodology with the CALPUFF Modeling System. Earth Tech, Inc., Concord, Massachusetts. September. (http://www.src.com/calpuff/Screen_Guide.PDF).
- Earth Tech 2002. Guide for Applying the EPA Class I Screening Methodology with the CALPUFF Modeling System. Earth Tech, Inc., Concord, Massachusetts. January.
- Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors (AP-42), Vol. 1, Stationary Point and Area Sources, Fifth Edition. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.
- Environmental Protection Agency. 1999. "Draft Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hr Ozone NAAQS". Draft (May 1999),

U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, N.C

- Environmental Protection Agency. 2001. "Guidance for Demonstrating Attainment of Air Quality Goals for PM_{2.5} and Regional Haze", Draft Report, U.S. Environmental Protection Agency, Research Triangle Park, NC.
- Environmental Protection Agency. 2003a. Guidance for Tracking Progress Under the Regional Haze Rule. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.
- Environmental Protection Agency. 2003b. Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.
- Environmental Protection Agency. 2005. Air Toxics Database. Dose-Response Assessment for Assessing Health Risks Associated With Exposure to Hazardous Air Pollutants, Table 2. Office of Air Quality Planning and Standards (OAQPS). Technology Transfer Network Air Toxics Website. http://www.epa.gov/ttn/atw/toxsource/table2.html. Data accessed October 20, 2006.
- Environmental Protection Agency. 2005. "Regional Haze Regulations and Guidelines for Best Available Technology (BART) Determinations". Fed. Reg./Vol. 70, No. 128/Wed. July 6, 2005, Rules and Regulations, pp. 39104-39172. 40 CFR Part 51, FRL-7925-9, RIN AJ31.
- Environmental Protection Agency. 2007. Guidance on the Use of Models and other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM_{2.5} and Regional Haze. Office of Air Quality Planning and Standards, Air Modeling Group. Research Triangle Park, North Carolina (<u>http://www.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf</u>).
- Federal Land Managers' Air Quality Related Values Workgroup. 2000. Federal Land Managers' Air Quality Related Values Workgroup (FLAG) Phase I Report. U.S. Forest Service-Air Quality Program, National Park Service-Air Resources Division, U.S. Fish and Wildlife Service-Air Quality Branch. December.
- Fox, Douglas, Ann M. Bartuska, James G. Byrne, Ellis Cowling, Rich Fisher, Gene E. Likens, Steven E. Lindberg, Rick A. Linthurst, Jay Messer, and Dale S. Nichols. 1989. A Screening Procedure to Evaluate Air Pollution Effects on Class I Wilderness Areas. General Technical Report RM-168. U.S.D.A. Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado. 36 pp.
- Gas Research Institute. 1999. GRI-HAPCalc® Version 3.01. Gas Research Institute. Des Plaines, Illinois.
- Interagency Workgroup on Air Quality Modeling. 1998. Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling

Long Range Transport Impacts. EPA-454/R-98-019. Office of Quality Planning and Standards. U.S. EPA, Research Triangle Park, North Carolina. December.

- Malm, W., M. Pitchford, M. Scruggs, J. Sisler, R. Ames, S. Copeland, K. Gebhart and D. Day.
 2000. Spatial and Seasonal Patterns and Temporal Variability of Haze and its
 Constituents in the United States. Cooperative Institute for Research in the Atmosphere,
 Colorado State University, Fort Collins, CO. May.
- USDA-Forest Service. 2000. Screening Methodology for Calculating ANC Change to High Elevation Lakes, User's Guide. U.S. Department of Agriculture (USDA) Forest Service, Rocky Mountain Region. January.
- Watson, J.G., Blumenthal, D., Chow, J., Cahill, C., Richards, L.W., Dietrich, D., Morris, R., Houck, J., Dickson, R.J., and Andersen, S., 1996, Mt. Zirkel Wilderness Area reasonable attribution study of visibility impairment. Desert Research Institute. Reno, Nevada.

APPENDIX A

Project Emissions Inventory for Natural Gas Well and Oil Well Construction And Natural Gas Well Production This page intentionally left blank.

Table A.1.1.1: Alternatives A/B/C Assumptions

INPUTS & ASSUMPTIONS									
Description	Value	Source	Notes						
Control Efficiency (C) of watering	0.5	BLM 2003; Table APP a21.xls							
TSP Emission Factor	EPA, AP-42, Volume I, Section 13.2.3 Heavy Construction	Tons TSP/acre-month							
Conversion factor for TSP to PM-10 0.26 BLM 2003; Table APP_a21.xls Percentage of TSP									
Conversion factor for PM-10 to PM2.5 0.15 BLM 2003; Table APP_a21.xls Percentage of PM-10									
Total number of pads (year 30)	1637	BLM 2008							
Number wells to estimate construction emissions in yr 12	152	BLM 2008							
Compression per well 200 BLM 2008									
Average HP of the central compressor station 5,000 Pinedale 2005									
Total number of well head compressors	49	BLM 2008							
Well Emission Assumptions:									
Emission factors derived from AP-42 or otherwise noted.									
Gas compressors assumed to be BACT equipped.									
Assume diesel fuel sulfur content of 15ppm for diesel engines.									
Well condensate production assumed to be from wells with Best Available C	Control Technology	BACT).							
Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} for and flashing emissions.	the following catego	ries, heavy equipment traffic, natural ga	s compression, dehydrators, separators						
Hazardous Air Pollutants (HAPS) assumed to be 10% of VOCs and formaldehyde added for gas compression emissions									
For central compressors 30,000hp/1000 wells									
For well head compressors, assume 200 Hp/compressor, installed on 30 of every 1,000 wells.									
Assume natural gas heating value of 1,020 Btu/scf (BLM, 2003).									
Assume that natural gas compressors would operate at full capacity.									
86 is the total number of precipitation days for Kemmerer WY, Western Reg	gional Climate Cente	er.							

IN	PUTS & ASSU	MPTIONS	
Description	Value	Source	Notes
Control Efficiency (C)of watering	0.5	BLM 2003; Table APP_a21.xls	
TSP Emission Factor	1.2	EPA, <i>AP-42</i> , Volume I, Section 13.2.3 Heavy Construction Operations (1/95)	Tons TSP/acre-month
Conversion factor for TSP to PM-10	0.26	BLM 2003; Table APP_a21.xls	Percentage of TSP
Conversion factor for PM-10 to PM2.5	0.15	BLM 2003; Table APP_a21.xls	Percentage of PM-10
Number of wells drilled	152	BLM 2008	
Total number of pads	1637	BLM 2008	
Number of wells to estimate construction emissions	152	BLM 2008	
Number of well head compressors in 2021	49	BLM 2008	
HP compression per well	200	EOG Resources	
HP of central compressor stations	5,000	BLM 2008	

Table A.1.1.2: Alternatives A/B/C Natural Gas and Oil Pad Construction Fugitive Dust Assumptions

Table A1.1.3: Proposed Action, Natural Gas and Oil Pad Construction, Fugitive Dust Calculations Emissions Estimation for Construction Activities: Long-Term Development

										Emission	IS			
Area Disturbed for NG Wells	Emission Estimation	Disturbed Area (acre) ^a		Total # of Well Pads	Total Disturbed	(lb/we	II pad or	lb/stn)	(ton/project)			lb/hr/source		ton/year/so urce
	Basis	(acre)	Complete	Stations	Area (acre)	TSP	PM10	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}	PM _{2.5}
Drilling Roads, Producing Roads, Drilling Well Pad & Producing Well Pad, New Pipeline and Electric Line	per Well Pad	2.75	7	1,637	4,502	770	200	30	630	164	25	1.19	0	0
Central Compressor Station	per station	1.50	4	10	15	240	62	9	1	0	0	0.65	0	0
Totals					4,517		Total		631	164	25			

^a From gross surface disturbance projections BLM Note: number of compressor stations are for new construction

TSP= 1.2 tpy/acre-month x 4,502 acres x 7/30 days x 0.5 dust control efficiency = 630 tons

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per day = 24

Table A1.1.4: Alternatives A/B/C Gas Analysis

Pinedale Frontier Formation Gas Analysis

			Molecular	Molecular Weight of each
Gas Component	Mol%	Mol%/100	Weight	Component
N ₂	1.2953	0.012953	28.01	0.363
Methane (C1)	83.3591	0.833591	16.04	13.371
CO ₂	0.1265	0.001265	44.01	0.056
Ethane (C2)	8.7362	0.087362	30.07	2.627
Propane (C3)	4.1642	0.041642	44.10	1.836
I-Butane (iC4)	0.6661	0.006661	58.12	0.387
N-Butane (nC4)	0.9106	0.009106	58.12	0.529
I-pentane (iC5)	0.2129	0.002129	72.15	0.154
N-pentane (nC5)	0.1908	0.001908	72.15	0.138
Hexanes (C6)	0.1454	0.001454	84.18	0.122
Heptanes (C7)	0.1317	0.001317	100.20	0.132
Octanes (C8)	0.058	0.00058	114.23	0.066
Nonanes	0.0032	0.000032	114.23	0.004
TOTAL	100			19.785

MW = Mol%/100*MW

Methane (C1) = 0.833591*16.04 = 13.371

 $VOC = C_3^+$ components = 3.368

VOC Weight Percent = 3.368/19.785*100 = 17.02%

BTU Value 1,189

Pinedale Frontier Formation Condensate Analysis

WELL NAME:	Frontier Well
COMPONENT	<u>MOL%</u>
	0.0000
H2S	0.0000
02	0.0000
CO2	0.0000
N2	0.0000
C1	0.4064
C2	1.7056
C3	3.3635
IC4	2.2423
NC4	3.0113
IC5	3.8486
NC5	3.5648
Hexanes	14.1300
Heptanes	44.6335
Benzene	1.8256
Toluene	8.5229
E-Benzene	0.7922
Xylene	6.2070
n-C6	5.7245
2,2,4-Trimethylpentane	0.0219
Total	100.000

Table A1.1.5: Alternatives A/B/C Emissions Factors for Construction Equipment

	Emission Factors for Construction Equipment									
		Emission	n Factors	(g/hp-hr)						
Equipment	NO _x	NO _x PM ₁₀ SO ₂ CO VOCs		VOCs	Equipment Category in AP- 42 ^a					
Backhoe	8.81	0.81	0.86	2.71	0.97	Wheeled Loader				
Dozer	7.81	0.69	0.85	2.15	0.75	Track-Type Tractor				
Blade	7.14	0.63	0.87	1.54	0.36	Motor Grader				
Trencher	11.01	0.90	0.93	4.60	1.01	Miscellaneous				
Trackhoe	9.30	0.66	0.85	2.26	1.11	Track-Type Loader				

^a BLM, 2003, table APP_A21.

Source: EPA, AP-42, Volume II, Section II-7 Heavy-Duty Construction Equipment (9/85).

	Equipment	Capacity	# of	Av. Load	# of Oper.	# of Oper. Days	# of Oper. Hrs	# of Well										Emiss										
Construction Site	Туре	(hp)	Units	Factor		per Well Pad	per Well Pad	Pads or	(lb/well pad, lb/station, or lb/project)				(ton/e	quipmer	nt type)		(1	on/cons	n/construction site)			lb/hour/source			ton/year/source			
	Type	(112)	01113	(%)	per Day	or per Station	or per Station	Stations	NOx	PM ₁₀	SO ₂	co	voc	NOx	PM ₁₀ ^a	SO2	со	voc	NOx	PM ₁₀	SO ₂	со	voc	PM ₁₀	SO2	со	NOx	SO
Drilling Roads	Blade	100	1	80	10	3	30	152	38	3.3	4.6	8	1.9	3	0.3	0.3	0.6	0.1	5.5	0.5	0.6	1.4	0.4	0.1	0	0.3	0	0.0
Drining Roads	Backhoe	80	1	75	10	3	30	152	35	3.2	3.4	11	3.8	3	0.2	0.3	0.8	0.3	5.5	0.5	0.0	1.4	0.4	0.1	0	0.4	0	0.0
Producing Roads	Blade	100	1	80	10	3	30	152	38	3.3	4.6	8	1.9	3	0.3	0.3	0.6	0.1	5.5	0.5	0.6	14	0.4	0.1	0	0.3	0	0.0
Touting Roads	Backhoe	80	1	75	10	3	30	152	35	3.2	3.4	11	3.8	3	0.2	0.3	0.8	0.3	5.5	0.5	0.0	1.4	0.4	0.1	0	0.4	0	0.0
Drilling Well Pad	Backhoe	80	1	75	10	2	20	152	23	2.1	2.3	7	2.6	2	0.2	0.2	1	0.2	1.8	0.2	0.2	0.5	0.2	0.1	0	0.4	0	0.0
Producing Well Pad	Backhoe	80	1	75	10	2	20	152	23	2.1	2.3	7	2.6	2	0.2	0.2	1	0.2	1.8	0.2	0.2	0.5	0.2	0.1	0	0.4	0	0.0
	Blade	100	1	80	10	1	10	152	13	1.1	1.5	3	0.6	1	0.1	0.1	0.2	0.0						0.1	0	0.3	0	0.0
New Pipeline	Trencher	175	1	80	10	1	10	152	34	2.8	2.9	14	3.1	3	0	0	1	0	4	0.4	0.4	2	0.4	0.3	0	1.4	0	0
	Backhoe	80	1	75	10	1	10	152	12	1.1	1.1	4	1.3	1	0.1	0.1	0.3	0.1						0.1	0	0.4	0	0.0
Well Head	Dozer	350	1	80	8	2	16	49	77	6.8	8.4	21	7.4	2	0.17	0.21	0.5	0.2	2.9	0.3	0.3	0.8	0.3	0.4	1	1.3	0	0.00
Compressors	Backhoe	80	2	80	8	2	16	49	40	3.7	3.9	12	4.4	1	0.09	0.10	0.30	0.11	2.9	0.3	0.5	0.0	0.3	0.2	0	0.8	0	0.00
Central Compressor	Dozer	350	1	80	8	2	16	10	77	6.8	8.4	21	7.4	0	0.03	0.04	0.1	0.0	0.6	0.1	0.1	0.2	0.1	0.4	1	1.3	0	0.00
Station	on Backhoe 80	2	80	8	2	16	10	40	3.7	3.9	12	4.4	0	0.02	0.02	0.06	0.02	0.0	0.1	0.1	0.2	0.1	0.2	0	0.8	0	0.00	
																	Subtota	al	22	2.0	2.3	6.5	2.0					

Table A1.1.6: Alternatives A/B/C Natural Gas and Oil Well Pad Construction Emissions

Table A1.1.7: Alternatives A/B/C Emissions Factors for Industrial Engines Emission Factors for Industrial Engines (Tier IV)

Emission Source				Emiss	ion Factors		
Emission Source	Fuel Type	Unit	NO _x	PM ₁₀	SOx	СО	VOC
Industrial Engine ^a	Diesel	lb/hp-hr	6.61E-04	3.30E-05	5.10E-05	5.73E-03	2.20E-04
Industrial Engine ^o	Diesel	lb/hp-hr	2.40E-02	5.73E-04	4.05E-04	5.50E-03	7.05E-04

^a BLM 2008 from memo

^b EPA, *AP-42*, Volume I, Section 3.4 Large Stationary Diesel and all Stationary Dual Fuel Engines (10/96).

Table A1.1.8: Alternatives A/B/C Emissions Estimates for Industrial Engines

Emissions Estimatio	n for Industrial Engines
---------------------	--------------------------

Construction Site	Equipment	Canacity		Av. Load	# of Operating	# of Operating	# of Operating											Emiss	ions									
Activity	Type	(hp)	# of Units	Factor (%)	Hours	Days	Hours	# of Wells		(lb/v	vell)				(ton/ed	quipme	nt type)			(ton/pro	ject acti	ivity)		lb	/hr/sourc	ce	ton/yr/	source
,	.,,	((,,,	per Day	per Well	per Well		NOx	PM ₁₀	SO ₂	со	VOC	NOx	${\rm PM_{10}}^{a}$	SOx	со	VOC	NOx	PM ₁₀ ^a	SOx	со	VOC	$\mathbf{PM_{10}}^{a}$	SOx	со	NOx	SOx
	Main Deck	2,100	1	42	24	25	600	152	350	17	27	2,911	117	27	1	2	221	9						0	0	5	0	0
Rig-up, Drilling, and Rig-down	Auxiliary Pump	600	1	42	8	25	200	152	33	2	3	277	11	3	0	0	21	1	30	1.5	2.4	254	10	0	0	1	0	0
	Generator	150	1	75	24	10	240	152	18	1	1	155	6	1	0	0	12	0						0	0	1	0	0
	Main Deck	2100	1	42	24	5	120	152	70	3	5	606	23	5	0	0	46	2						0	0	5	0	0
Well Completion & Testing	Auxiliary Pump	225	1	42	24	4	96	152	6	0	0	52	2	0	0	0	4	0	6	0	0	55	2	0	0	1	0	0
	Power Swivel	150	1	75	24	4	96	152	7	0	1	62	2	1	0	0	5	0						0	0	1	0	0
									4.84E+02	24	37	4,063					Subtota	al	37	2	3	309	12					

Table A1.1.9: Alternatives A/B/C Field Generator Emissions **Emission Factors for Field Generators**

Emission Source				Emis	sion Factors	6	
Emission Source	Fuel Type	Unit	NOx	PM ₁₀	SOx	СО	VOC
Industrial Engine ^a	Diesel	g/hp-hr	4.90E+00	2.20E-01	9.30E-01	3.70E+00	4.90E+00
Industrial Engine	Diesel	lbs/hp-hr	1.08E-02	4.80E-04	2.05E-03	8.20E-03	1.08E-02

^a From USA - Nonroad Diesel Engines Tier 2 Emission Standards Emission factors for a < 600 hp generator, (NOx & VOC = 4.9 g/bhp-hr)

Construction Site	Equipment	Capacity		Av. Load	# of Operating	# of Operating	# of Operating									Emi	ssions						
Activity	Туре	(hp)	# of Units		Hours	Days	Hours	# of Wells		(lb/\	vell)					(ton/ed	quipment typ	pe)	lb/i	nr/sourc	e	ton/yr/	source
	.,,,-	()		(%)	per Day	per Well	per Well		NOx	PM ₁₀	SO ₂	со	voc	NOx	$\text{PM}_{10}{}^{a}$	SOx	СО	VOC	PM ₁₀	SO2	со	NOx	SO ₂
Field Generators	Field Generators for Pumps & Lighting		1	75	12	8	96	152	78	3	15	59	78	6	0	1	4	6	0	0	1	0	0
												TOTA	LS	6	0.3	1	4	6				-	

Table A1.1.10: Alternatives A/B/C Temporary Emissions Estimates for Field Generators Temporary Emissions Estimation for Field Generators

Table A1.1.11: Alternatives A/B/C Estimate of Emissions Factors for Emissions from Well Construction Flaring

 Unit
 NO_x
 PM₁₀
 SO₂
 CO

 lb/MMscf
 76.0
 7.6
 0.6
 413.3

 lb/MMBtu
 6.80E-02
 6.80E-03
 5.37E-04
 3.70E-01

Emission Factors for Flaring

Emission factors for NOx & CO Source: EPA, *AP-42*, Volume I, Section 13.5 Industrial Flares Emission factors for PM10 & SO2 from EPA, AP-42, Volume I, Section 1.4 Natural Gas Combustio

Table A1.1.12: Alternatives A/B/C Emissions from Well Completion Flaring

		Gas Production		Av. Heat							E	Emission	s					
	Well Completion	Estimato	# of Days		# of Wells		(lb/w	vell)			(tons)				lb/hr/sourc	e	ton/	/yr/source
	Flaring	(MMSCF) per day	of Flaring	of Gas btu/scf		NO _x	PM ₁₀	SO2	со	NOx	PM ₁₀ ^a	SOx	со	PM ₁₀	SO2	со	NOx	SO2
F	laring	1	2	1020	152	139	15.2	1.2	755	11	1	0.1	57	0.3	0.0	15.7	0	0
								TOTALS		11	1	0.1	57					

Emissions = EVH where E= emission factor; V= gas volume; H= heat content

NOx= 0.068lbs/MMBtu*1.0 MMSCFD*1020 Btu/scf = 69.5 lbs per well* 2 days = 139 lbs per well

PM10 & SO2 Emissions = EV where E= emission factor; V= gas volume

PM10 = 7.6 lbs/MMSCF*1.0 MMSCFD = 7.6 lbs/well*2days = 15.2 lbs per well

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per day = 24

Table A1.1.13: Alternatives A/B/C VOC Emissions from Well Completion Flaring

VOC Emissions Well Flaring

Well Completion Flaring	VOC Emission Factor Ibs per well	# of Wells	VOC Emission s tons
Flaring	8,863	152	674

Assume average VOC content 17 % Average Mole Weight 19.785 Gas production rate of 1.0 MMSCF per well per day Assume 2 days of flaring

Flare Gas wt= 2.0 MMSCF*1.000.00scf/MMSCF*19.785 lbs/lbs-mole 379.49scf/mole

VOC Emissions= 104,272 lbs/well*0.17VOC wt%*0.5 efficiency destruction = 8,863 lbs/well

HAPs are estimated at 10% of VOC amounts and are shown on total spread sheets Assume same gas production rate for short term and long term new constructed wells of 1.0 MMSCFD

Emission Factor:	0.3733 llb/hr/	100m ²		napter 13.2.5 (EPA 2004), Industrial Wind Ero	osion
Control Efficiency:	50%		using Johan Field, V	Wyoming meterological data.	
Disturbed Area:					
Well Pad Construction:		2.75 acres	11128.87 m ²		
Central Compressor Const	ruction:	1.50 acres	6070.29 m ²		
Access Road Construction	:	3.00 acres	12140.58 m ²		
Pipeline Construction:		0.50 acres	2023.43 m ²		

Table A1.1.14: Alternatives A/B/C Natural Gas and Oil Well Pad Construction Wind Erosion

Source Parameters

147 1-km area sources

sigma z=2.33 m

PM ₁₀ Emission Calculations:	PM ₁₀	PM _{2.5}		Control	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
	Emission Factor	Emission Factor	Area	Efficiency	Emissions	Emissions	Emissions	Emissions
	(IIb/hr/100m ²)	(IIb/hr/100m ²)	100 m ²	(%)	(lb/hr)	(lb/hr)	(g/sec)	(g/sec)
Well Pad Construction:	0.3733	0.1493	111.29	50	20.77	8.31	2.62	1.05
Central Compressor Construction	0.3733	0.1493	60.70	50	11.33	4.53	1.43	0.57
Resource Road Construction:	0.3733	0.1493	121.41	50	22.66	9.06	2.86	1.14
Pipeline Construction:	0.3733	0.1493	20.23	50	3.78	1.51	0.48	0.19
Total:					58.54	23.41	7.38	2.95

Assumptions for converting emissions to tons per year; used in AERMOD calculation

8760 = hours per year

Table A1.1.15: Alternatives A/B/C Fugitive Dust Emissions from Commuting Vehicles.	
Emission Factors for Road Traffic.	

Emissio	n Factors for	Road Traffic		
	Parameter	PM ₁₀	PM _{2.5}	
	k	1.8	0.27	
$k (s/12)^{a} (W/3)^{d}$	а	1	1	
$E (Ib/VMT) = \frac{k (s/12)^{a} (W/3)^{d}}{(M/0.2)^{c}}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA, AP-42, Volume I, Section 13.2.2 Un	paved Roads (9/98)		
Function/Variable Description	Assumed Value		Reference	
E = size-specific emission factor (lb/VMT)				
		EPA, AP-42, Volu	ime I,	
s = surface material silt content (%)	5.1		paved Roads (9/98)	
W = mean vehicle weight (tons)	Listed in the table below			
		default value in El	PA, <i>AP-4</i> 2, Volume	l,
M = surface material moisture content (%)	0.2	Section 13.2.2 Un	paved Roads (9/98)	
CE = control efficiency for watering (%)	50		pen Fugitive Dust Sering of Unpaved Su	

Table A1.1.16: Alternatives A/B/C Fugitive Dust Emissions Estimates for Natural Gas and Oil Well Pad **Construction Road Traffic**

Emissions Estimation for Road Traffic

									PM ₁₀			PM ₂	5			Emissions	
		Av.	Bound Trin	# of Round Trips	Miles Traveled	Total # of			Emissio	ns			Emissions	5			ton/year/
Construction Site	Vehicle Type	Vehicle	Distance	per Well Pad or	per Well Pad or		Controlled	(lb/well pad,			Controlled Em.	(lb/well			lb/hr/s	ource	source
Destination	venicie rype	Weight (Ib)	(mi)	per Station	per Station	Stations	Em. Factor (Ib/VMT)	lb/stn, or lb/proj.)	(ton/veh. type)	(ton/const. site)		pad, lb/stn, or lb/proj.)	(ton/veh. type)	(ton/const. site)	PM ₁₀	PM _{2.5}	PM _{2.5}
Drilling Roads	Semi Trucks	60,000	6	2	12	1,637	1.21	15	12	12	0.18	2.2	1.8	1.8	0	0	0
Producing Roads	Semi Trucks	60,000	6	2	12	1,637	1.21	15	12	12	0.18	2.2	1.8	1.8	0	0	0
Drilling Well Pad	Haul Trucks	45,000	6	2	12	1,637	1.05	13	10	14	0.16	1.9	1.5	2.2	0	0	0
Drinning wen Pau	Pickup Trucks	7,000	6	2	12	1,637	0.41	5.0	4	14	0.06	0.7	0.6	2.2	0	0	0
Producing Well Pad	Haul Trucks	45,000	6	2	12	1,637	1.05	13	10	14	0.16	1.9	1.5	2.2	0	0	0
Floudeling Well Fau	Pickup Trucks	7,000	6	2	12	1,637	0.41	5.0	4	14	0.06	0.7	0.6	2.2	0	0	0
New Pipeline	Haul Trucks	45,000	6	2	12	1,637	1.05	13	10	14	0.16	1.9	1.5	2	0	0	0
i tetti i peline	Pickup Trucks	7,000	6	2	12	1,637	0.41	5	4	14	0.06	0.7	0.6	2	0	0	0
Electric Line	Haul Trucks	45,000	6	2	12	1,637	1.05	12.6	10	14	0.16	1.9	1.5	2.2	0	0	0
	Pickup Trucks	7,000	6	2	12	1,637	0.41	5.0	4	14	0.06	0.7	0.6	2.2	0	0	0
Well Head	Semi Trucks	60,000	6	2	12	49	1.21	15	0.4		0.18	2	0.1		0	0	0
Compressors	Haul Trucks	45,000	6	2	12	49	1.05	13	0	1	0.16	2	0.0	0	0	0	0
Compressors	Pickup Trucks	7,000	6	2	12	49	0.41	5	0		0.06	1	0.0		0	0	0
Central	Semi Trucks	60,000	6	2	12	10	1.21	15	0.1		0.18	2	0.0		0	0	0
Compressor	Haul Trucks	45,000	6	2	12	10	1.05	13	0	0	0.16	2	0.0	0	0	0	0
Station	Pickup Trucks	7,000	6	2	12	10	0.41	5	0		0.06	1	0.0		0	0	0
								Subtotal		82				12			

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per day = 10 days per source = 21

Table A1.1.17: Alternatives A/B/C Fugitive Dust Emissions Estimates for Natural Gas and Oil Well Pad Construction Road Traffic

		Av. Vehicle	Round Trip	# of Round Trips	Miles Traveled	Total # of	Controlled		PM ₁₀ Emissio	ns		PM ₂	Emissions			Emissions	ton/yea
Construction Site Activity	Vehicle Type	Weight	Distance (mi)	per Well Pad or per Station *	per Well Pad or per Station	Wells or Stations	Em. Factor	(lb/well)	(ton/veh.	(ton/proj. activity)	Controlled Em. Factor (Ib/VMT)	(lb/well)	(ton/veh.	(ton/proj.		source	source
	Semi Rig Transport	(lb)					(Ib/VMT)		type)	(comproj. docivicy)			type)	activity)	PM ₁₀	PM25	PM ₂
	& Drill Rig	80,000	6	5	30	1,637	1.40	42	34		0.21	6.3	5.1		0	0	0
	Fuel Haul Truck Mud Haul Truck.	50,000	6	5	30	1,637	1.10	33	27.1		0.17	5.0	4.1		0	0	
-	Water Hauling	60,000	6	5	30	1,637	1.21	36	30		0.18	5	4.5		0	0	0
-	Rig Crew	7,000	6	5	30	1,637	0.41	12	10.1		0.06	1.9	1.5		0	0	0
ig-up, Drilling, and	Rig Mechanics	12,000	6	5	30	1,637	0.54	16	13.3		0.08	2.4	2.0		0	0	0
ig-down	Co. Supervisor	7,000	6	5	30	1,637	0.41	12	10	191	0.06	1.9	1.5	29	0	0	0
	Tool Pusher	7,000	6	5	30	1,637	0.41	12	10.1		0.06	1.9	1.5		0	0	0
-	Mud Logger	7,000	6	5	30	1,637	0.41	12	10.1		0.06	1.9	1.5		0	0	0
1	Mud Engineer	7,000	6	5	30	1,637	0.41	12	10.1		0.06	1.9	1.5		0	0	0
1	Logger, Engr Truck	45,000	6	5	30	1,637	1.05	31.4	25.7		0.16	4.7	3.9		0	0	0
	Drill Bit Delivery	7,000	6	5	30	1,637	0.41	12	10		0.06	1.9	1.5		0	0	0
	Semi Casing Haulers	60,000	6	2	12	1,637	1.21	14.5	12		0.18	2.2	1.8		0	0	0
	Semi Completion, Unit Rig	120,000	6	8	48	1,637	1.71	82	67.2		0.26	12.3	10.1		0	0	0
	Semi Fracing Blender	85,000	6	2	12	1,637	1.44	17	14.1		0.22	2.6	2.1		0	0	0
	Semi Pumping Tank Battery	80,000	6	2	12	1,637	1.40	17	13.7		0.21	2.5	2.1		0	0	0
	Tubing Truck	60,000	6	2	12	1,637	1.21	14.5	11.9		0.18	2.2	1.8		0	0	0
	Haul Cementer, Pump Truck	85,000	6	2	12	1,637	1.44	17	14.1		0.22	2.6	2.1		0	0	0
	Haul Cementer, Cement Truck	60,000	6	8	48	1,637	1.21	58	47.5		0.18	8.7	7.1		0	0	0
	Haul Completion, Equip Truck	45,000	6	2	12	1,637	1.05	12.6	10.3		0.16	1.9	1.5		0	0	0
	Haul Service Tools	7,000	6	2	12	1,637	0.41	5.0	4.1		0.06	0.7	0.6		0	0	0
	Haul Perforators Logging Truck	45,000	6	2	12	1,637	1.05	12.6	10.3		0.16	1.9	1.5		0	0	0
I	Haul Anchor Installation	40,000	6	2	12	1,637	0.99	11.9	9.7		0.15	1.8	1.5		0	0	0
	Haul Anchor Testing	12,000	6	2	12	1,637	0.54	6.5	5.3		0.08	1.0	0.8		0	0	0
	Haul Fracing Tank	40,000	6	2	12	1,637	0.99	11.9	9.7		0.15	1.8	1.5		0	0	0
ſ	Haul Fracing Pump	85,000	6	2	12	1,637	1.44	17.3	14.1		0.22	2.6	2.1		0	0	0
esting	Haul Fracing Chemical	45,000	6	2	12	1,637	1.05	12.6	10.3		0.16	1.9	1.5		0	0	0
ſ	Haul Fracing Sand	60,000	6	2	12	1,637	1.21	14.5	11.9		0.18	2.2	1.8		0	0	0
ſ	Haul Fracing Other	85,000	6	2	12	1,637	1.44	17.3	14.1		0.22	2.6	2.1		0	0	0
	Haul Welders	12,000	6	2	12	1,637	0.54	6.5	5.3	437	0.08	1.0	0.8	66	0	0	0
-	Haul Water Truck	60,000	6	8	48	1,637	1.21	58	48		0.18	9	7.1		0	0	0
	Pickup Cementer,	7,000	6	2	12	1,637	0.41	5.0	4.1		0.06	0.7	0.6		0	0	0
ī	Engineer Pickup Chasing	10,000	6	2	12	1,637	0.49	5.9	4.9		0.07	0.9	0.7		0	0	0
ī	Crew Pickup Completion Crew	10,000	6	8	48	1,637	0.49	23.7	19.4		0.07	3.6	2.9		0	0	0
ī	Pickup Completion Pusher	7,000	6	8	48	1,637	0.41	19.8	16.2		0.06	3.0	2.4		0	0	0
ī	Pickup Perforators	7,000	6	8	48	1,637	0.41	19.8	16.2		0.06	3.0	2.4		0	0	0
	Engineer Pickup Fracing	10,000	6	2	12	1,637	0.49	5.9	4.9		0.07	0.9	0.7		0	0	0
I	Engineer Pickup Co.	7,000	6	8	48	1,637	0.41	19.8	16.2		0.06	3.0	2.4		0	0	0
Ī	Supervisor Miscellaneous	7,000	6	8	48	1,637	0.41	19.8	16.2		0.06	3.0	2.4		0	0	0
	Supplies Pickup Roustabout	12,000	6	2	12	1,637	0.54	6	5.3		0.08	1.0	0.8		0	0	0
	Crew Semi Trucks	60,000	6	2	12	49	1.21	15	0.4		0.08	2	0.8		0	0	0
/ell Head	Haul Trucks	45,000	6	2	12	49	1.05	13	0.4		0.18	2	0.0		0	0	0
ompressors		45,000	6	2	12	49	0.41	13 5	0		0.16	2			0	0	0
	Pickup Trucks					49	-						0.0				0
ontrol	Semi Trucks	60,000 45.000	6	2	12	10	1.21	15	0.1		0.18	2	0.0		0	0	0
ompressor Staton	Haul Trucks		6			-		-				2					
	Pickup Trucks	7,000	6	2	12	10	0.41	5	0		0.06	1	0.0		0	0	0
								Subtotal		628	1			94			

Table A1.1.18: Alternatives A/B/C Exhaust Emission Factors from **Commuting Vehicles.**

Ve	hicle			Emission Fa	actors (g/mi)		
Туре	Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ª	со	voc
Light-Duty Gasoline Truck	LDGT2	1.01	0.10	0.08	0.11	11.64	0.75
Heavy-Duty Diesel Truck	HDDV	8.13	1.96	1.81	1.63	17.09	4.83

Emission Factors for Road Traffic

 $^{\rm a}$ From BLM, 2003, APP_A21, table 1.1.2.2, estimated using EPA PART5 Model (1995) $^{\rm v}$ Including tire and brake wear emissions.

Source: EPA, AP-42, Volume II, Appendix H-117, Table 3.1A.2 Light Duty Gasoline Powered Trucks II and

Appendix H-259, Table 7.1.2 Heavy Duty Diesel Powered Vehicles (High Altitude; Model Year 1991-1997; 50,000 mileage)

Table A1.1.19: Alternatives A/B/C Exhaust Emissions Estimates for Natural Gas and Oil Well Pad Construction Road Traffic

Emissions Estimation for Road Traffic

	Vehicle		Round	# of Round Trips	Miles	Total # of												Emissi	ons												
Construction Site Destination		1	Trip Distance	per Well Pad	Traveled per Well Pad or	Well Pads or		(lb/wel	I pad, Ib/sta	ation, or I	b/project)				ton/vehic	le type)				(te	on/const	ruction s	site)			lb/hr/s	source		ton	/year/sourc	:e
Destination	Туре	Class	(mi)	or per Station	per Station	Stations	NOx	PM ₁₀	PM _{2.5}	SO2	со	voc	NOx	PM ₁₀	PM _{2.5}	SO2	со	voc	NOx	PM ₁₀	PM _{2.5}	SO2	со	voc	PM ₁₀	PM _{2.5}	SO ₂	со	NOx	PM _{2.5}	SO2
Drilling Roads	Semi Trucks	HDDV	6	2	12	1,637	0.22	0.05	0.05	0.04	0.45	0.13	0.2	0.04	0.04	0.04	0.4	0.1	0.2	0.04	0.04	0.04	0.4	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Producing Roads	Semi Trucks	HDDV	6	2	12	1,637	0.22	0.05	0.05	0.04	0.45	0.13	0.2	0.04	0.04	0.04	0.4	0.1	0.2	0.04	0.04	0.04	0.4	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Drilling Well Pad	Haul Trucks	HDDV	6	2	12	1,637	0.22	0.05	0.05	0.04	0.45	0.13	0.2	0.04	0.04	0.04	0.4	0.1	0.2	0.04	0.04	0.04	0.6	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Drining Weir Fad	Pickup Trucks	LDGT2	6	2	12	1,637	0.03	0.003	0.002	0.003	0.31	0.02	0.0	0.002	0.002	0.002	0.3	0.02	0.2	0.04	0.04	0.04	0.0	0.1	0.00	0.000	0.000	0.001	0.00	0.00	0.0
Producing Well	Haul Trucks	HDDV	6	2	12	1,637	0.22	0.05	0.05	0.04	0.45	0.13	0.2	0.04	0.04	0.04	0.4	0.1	0.2	0.04	0.04	0.04	0.6	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Pad	Pickup Trucks	LDGT2	6	2	12	1,637	0.03	0.003	0.002	0.003	0.31	0.02	0.0	0.002	0.002	0.002	0.3	0.02	0.2	0.04	0.04	0.04	0.0	0.1	0.00	0.000	0.000	0.001	0.00	0.00	0.0
New Pipeline	Haul Trucks	HDDV	6	2	12	1,637	0.22	0.05	0.05	0.04	0.45	0.13	0.2	0.0	0.0	0.04	0.4	0.1	0.2	0.0	0.0	0.0	0.6	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
New Pipeline	Pickup Trucks	LDGT2	6	2	12	1,637	0.03	0.00	0.00	0.00	0.31	0.02	0.0	0.002	0.002	0.002	0.3	0.02	0.2	0.0	0.0	0.0	0.0	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Electric Line	Haul Trucks	HDDV	6	2	12	1,637	0.22	0.05	0.05	0.04	0.45	0.13	0.2	0.04	0.04	0.04	0.4	0.10	0.2	0.04	0.04	0.04	0.6	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Electric Line	Pickup Trucks	LDGT2	6	2	12	1,637	0.03	0.003	0.002	0.003	0.31	0.02	0.0	0.002	0.002	0.002	0.3	0.02	0.2	0.04	0.04	0.04	0.0	0.1	0.00	0.000	0.000	0.001	0.00	0.00	0.0
Central	Semi Trucks	HDDV	6	2	12	10	0.22	0.05	0.05	0.04	0.45	0.13	0.0	0.000	0.000	0.000	0.00	0.001							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Compressor	Haul Trucks	HDDV	6	2	12	10	0.22	0.05	0.05	0.04	0.45	0.13	0.0	0.000	0.000	0.000	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Station	Pickup Trucks	LDGT2	6	2	12	10	0.03	0.00	0.00	0.00	0.31	0.02	0.0	0.000	0.000	0.000	0.0	0.00							0.00	0.00	0.00	0.00	0.00	0.00	0.0
																	Subtot	a	1.1	0.3	0.2	0.2	3.2	0.7							

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per day = 10 days per source = 21

 Table A1.1.20: Alternatives A/B/C Emissions Estimates for Natural Gas and Oil Well Construction Road Traffic

 Enternatives A/B/C Emissions Estimates for Natural Gas and Oil Well Construction Road Traffic

			Round	# of Round	195144																										
Construction Site	Vehicle Type	Vehicle	Trip	Trips	Traveled	Total # of Wells or												Emission	1												
Activity		Class	Distance (mi)	per Well Pad or	per Well or per Station	Stations	NOx	PM ₁₀	(Ib/ PM25	well) SO ₂	CO	VOC	NOx	(1 PM ₁₀	ton/vehic PM _{2.5}	le type) SO ₂	CO	VOC	10 _x 1	(1 PM ₁₀	PM25	sct activi SO2	τy) CO	VOC	PM ₁₀	Ib/hr/s PM _{2.5}		co	NO _x	PM _{2.5} S	SO2
	Semi Rig Transport	HDDV	6	12	72	152	1.29	0.31	0.29	0.26	2.71	0.77	0.1	0.02	0.02	0.02	0.2	0.06							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Fuel Haul Truck	HDDV	6	12	72	152	1.29	0.31	0.29	0.26	2.71	0.77	0.1	0.02	0.02	0.02	0.2	0.1							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Mud Haul Truck, Water	HDDV	6	12	72	152	1.29	0.31	0.29	0.26	2.71	0.77	0.1	0.0	0.0	0.0	0.2	0.1							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Rig Crew	LDGT2	6	12	72	152	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.001	0.001	0.001	0.1	0.01							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Rig Mechanics	HDDV	6	2	12	152	0.22	0.05	0.05	0.04	0.45	0.13	0.0	0.004	0.004	0.003	0.0	0.01							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Rig-up, Drilling,	Co. Supervisor	LDGT2	6	12	72	152	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.00	0.00	0.00	0.1	0.01	0.5	0.1	0.1	0.1	1.7	0.3	0.00	0.00	0.00	0.01	0.00	0.00	0.0
and Rig-down	Tool Pusher	LDGT2	6	12	72		0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Mud Logger	LDGT2	6	12	72	152	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00		0.0
	Mud Engineer	LDGT2	6	12	72	152	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00		0.0
	Logger, Engr Truck	HDDV	6	12	72	152	1.29	0.31	0.29	0.26	2.71	0.72	0.0	0.0	0.0	0.0	0.2	0.1							0.00	0.00	0.00	0.01	0.00		0.0
						152						-	_					-							-						
	Drill Bit Delivery	LDGT2	6	12	72	152	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.00	0.00	0.00		0.01	_						0.00	0.00	0.00	0.01	0.00		0.0
	Semi Casing Haulers Semi Completion,	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01		0.03							0.00	0.00	0.00	0.01	0.00		0.0
	Unit Rig Semi Fracing	HDDV	6	20	120	152	2.15	0.52	0.48	0.43	4.52	1.28	0.2	0.04	0.04	0.03	0.3	0.10							0.00	0.00	0.00	0.02	0.00	0.00	0.0
	Blender	HDDV	6	4	24	152	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.00	0.00	0.00	0.0
	Semi Pumping Tank Battery	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Tubing Truck	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Haul Cementer, Pump Truck	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Haul Cementer, Cement Truck	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Haul Completion Equip Truck	HDDV	6	20	120	152	2.15	0.52	0.48	0.43	4.52	1.28	0.2	0.04	0.04	0.03	0.3	0.10							0.00	0.00	0.00	0.02	0.00	0.00	0.0
	Haul Service Tools	LDGT2	6	6	36	152	0.08	0.01	0.01	0.01	0.92	0.06	0.0	0.00	0.00	0.00	0.1	0.00							0.00	0.00	0.00	0.00	0.00	0.00	0.0
	Haul Perforators Logging Truck	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Haul Anchor Installation	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Haul Anchor Testing	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.03							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Haul Fracing Tank	HDDV	6	4	24		0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.00	0.00	0.00	0.0
	- Haul Fracing Pump	HDDV	6	4	24	152	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Well Completion & Testing	Haul Fracing	HDDV	6	4	24	152	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.00	0.00	0.00	0.0
	Chemical Haul Fracing Sand	HDDV	6	4	24	152	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.01		0.02							0.00	0.00	0.00	0.00	0.00		0.0
	Haul Fracing Other	HDDV	6	4	24	152	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.01		0.02							0.00	0.00	0.00	0.00	0.00		0.0
	Haul Fracing Other	HDDV	6	4	24	152	0.43	0.10	0.10	0.09		0.26		0.01	0.01	0.01		0.02	1.6	0.4	0.3	0.3	4.3	0.8	0.00	0.00	0.00	0.00	0.00		0.0
	Haul Water Truck	HDDV	6	4	120	152	2.15	0.10	0.10	0.09	0.90	1.28	0.0	0.01	0.04	0.01	-	0.02							0.00	0.00	0.00	0.00	0.00		0.0
	Pickup Cementer.		-			152		0.02			4.52																	0.02			
	Engineer	LDGT2	6	6	36	152	0.08	0.01	0.01	0.01	0.92	0.06	0.0	0.00	0.00	0.00		0.00							0.00	0.00	0.00	0.00	0.00		0.0
	Pickup Chasing Crew Pickup Completion	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00		0.0
	Crew	HDDV	6	20	120	152	2.15	0.52	0.48	0.43	4.52	1.28	0.2	0.0	0.0	0.0	0.3	0.1							0.00	0.00	0.00	0.02	0.00		0.0
	Pickup Completion Pusher	LDGT2	6	20	120	152	0.27	0.026	0.020	0.030	3.08	0.20	0.02	0.002	0.002	0.002	0.2	0.02							0.00	0.000	0.000	0.015	0.00	0.00 0	0.00
	Pickup Perforations Engineer	LDGT2	6	20	120	152	0.27	0.026	0.020	0.030	3.08	0.20	0.02	0.002	0.002	0.002	0.2	0.02							0.00	0.000	0.000	0.015	0.00	0.00 0	0.00
	Pickup Fracing Engineer	HDDV	6	4	24	152	0.43	0.104	0.096	0.086	0.90	0.26	0.03	0.008	0.007	0.007	0.1	0.02							0.00	0.000	0.000	0.004	0.00	0.00 0	0.00
	Pickup Co. Supervisor	LDGT2	6	20	120	152	0.27	0.026	0.020	0.030	3.08	0.20	0.02	0.002	0.002	0.002	0.2	0.02							0.00	0.000	0.000	0.015	0.00	0.00 0	0.00
	Pickup Misc Supplies	LDGT2	6	20	120	152	0.27	0.026	0.020	0.030	3.08	0.20	0.02	0.002	0.002	0.002	0.2	0.02							0.00	0.000	0.000	0.015	0.00	0.00 0	0.00
	Pickup Roustabout Crew	HDDV	6	6	36	152	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
	Semi Trucks	HDDV	6	6	150	49	2.69	0.65	0.60	0.54	5.65	1.60	0.1	0.016	0.015	0.013	0.14	0.039							0.00	0.00	0.00	0.03	0.00	0.00	0.0
Well Head Compressors	Haul Trucks	HDDV	6	6	36	49	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.004	0.004	0.003	0.03	0.01							0.00	0.00	0.00	0.00	0.00		0.0
	Pickup Trucks	LDGT2	6	6	36	49	0.65	0.16	0.14	0.13	0.92	0.38	0.0	0.000	0.000	0.000	0.0	0.00							0.00	0.00	0.00	0.00	0.00		0.0
	Semi Trucks	HDDV	6	6	150	8							0.0	0.003	0.002	0.002	0.02	0.006												0.00	0.0
Central Compressor	Haul Trucks	HDDV	6	6	36	8	2.69	0.65	0.60	0.54	5.65	1.60	0.0	0.001	0.001	0.001	-	0.00							0.00	0.00	0.00	0.03	0.00	0.00	0.0
Station	Pickup Trucks	LDGT2	6	6	36	8	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.000	0.000	0.000		0.00							0.00	0.00	0.00	0.01	0.00	0.00	0.0
L	rickup Houks	10012	0		30	0	0.08	0.01	0.01	0.01	0.92	0.06	0.0	3.000	0.000	0.000		ubtotal			0.4				0.00	0.00	0.00	0.00	0.00	0.00	0.0
																	s	uptotal	4.1	0.5	0.4	0.4	6	1.1	1						

Table A1.1.21: Alternatives A/B/C Emission Factors for Central Compressor **Stations**

Emission Factors for Natural Gas-Fired Compressors

Com	pressor	Horse-Power			Emi	ission Factor	rs (g/hp-hr) ^{a,}	d	
COIL	ipressor	Rating	NOx ^{a,}	PM ₁₀ ^{b,c}	SO2 ^b	со	VOC	нсно	Formaldehyde
Central Compressor Station	Rich Burn	5,000	1.00	5.2E-03	2.0E-03	2.00	1.00	0.07	0.08

١

^a From State of Wyoming AQD BACT for all except Formaldehyde
 ^b From BLM, 2003. Source: EPA, AP-42, Volume I, Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2 & 3.2-3 (7/00).
 ^c From BLM, 2003. Emission factor for PM_{2.5} was assumed to be the same as that for PM₁₀.

^d Formaldehyde emission factor is from Table B.2.10 of Johah Infill Drilling Project Technical Support Document, which references the Bird Canyon Permit

Table A1.1.22: Alternatives A/B/C Emissions Estimates for Central Compressor Stations Emissions Estimation for Compressors

Type of	Total # of Operating	Operating		Total I	Emissions (to	on/year)		
Compressors	Station-Year	Hours per Year	NOx	PM ₁₀	SO2	со	voc	нсно
Central Compressor Station	10	8,760	483	3	1	966	483	34
		Total	483	3	1	966	483	34

Emissions per

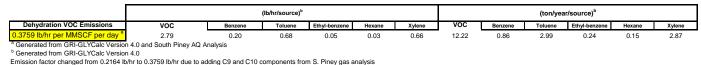
Compressor = emission factor g/hp-hr*compressor engine hp rating*(453.6g/lb)

NOX Emissions= $(1.0 \text{ g/hp-hr}^{+5},000 \text{ hp})/453.6 \text{g/lb} = 110.23 \text{ lb per hour}^{+8760 \text{ hours}^{+10}} \text{ stations}/2000 \text{ lb per ton} = 483 \text{ tpy}$

	_				Capacity			Emission	Factors (g/l	np-hr)		
	Compressor		Make	Model	(hp)	NOx ^{a, d}	PM ₁₀ ^{b,c}	SO2 ^b	со	VOC	нсно	CH₂O ^e
Well Head	Lean Burn	50%	Caterpillar	G3516LE	200	1.00	6.6E-02	2.0E-03	0.50	1.0E+00	0.07	0.08
Compressors	Rich Burn	50%	Waukesha	7044GSI	200	1.00	6.6E-02	2.0E-03	2.00	1.0E+00	0.05	0.08

^a BACT

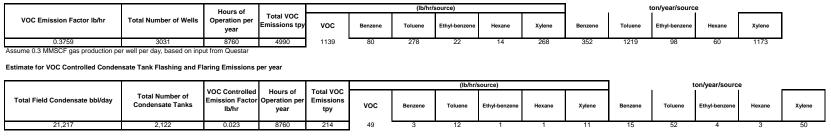
^b From BLM Rawlins RMP, 2005. Source: EPA, *AP-42*, Volume I, Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2 & 3.2-3 (7/00). ^c From BLM Rawlins RMP, 2005. Emission factor for PM_{2.5} was assumed to be the same as that for PM₁₀.


^d Equipped with oxidizing catalyst and from Caterpillar gas engine technical data ^e Formaldehyde emission factor is from Table B.2.10 of Johah Infill Drilling Project Technical Support Document, which references the Bird Canyon Permit

Type of	Total # of	Operating			Total Emi	ssions (ton/y	ear)		
Compressors	Operating Station- Year	Hours per Year	NOx	PM ₁₀	SO ₂	со	VOC	НСНО*	CH₂O
Well Head Compressors	49	8,760	94.63	6.25	0.19	118.29	94.63	5.68	7.57
		Total	94.63	6.25	0.19	118.29	94.63	5.68	7.57

Table A1.1.24: Alternatives A/B/C Emissions Estimates for Well Head Compressors Emissions Estimation for Compressors

Total conventional well production based on 50,000 CF/day/well *HCHO= formaldehyde


Table A1.125: Alternatives A/B/C VOC Emission Factors for Dehydration and Condensate Tank Flashing During Natural Gas Production Operations VOC Emission Factors Dehydration and Condensate Tank Flashing

			F	lashir	ig Ei	niss	ior	IS					
	0.023	lb/hr	cont	rolled	а		0.3	387	lb/hr	un	con	trol	led ^a
a.													

a from E&P Tank Version 2.0 as per South Piney AQ Analysis

Table A1.1.26: Alternatives A/B/C VOC Emissions for Dehydration and Condensate Tank Flashing During Natural Gas Production Operations Estimate for Dehydration VOC Emissions per year

Assume 10 barrels of condensate and produced water per MMCF HAP emissions represented on summary tables

Assume 70% of condensate tanks operate with a combustion chamber emission control device

Estimate for VOC Uncontrolled Condensate Tank Flashing Emissions per year

		VOC			(lb/hr/source)						ton/year/sou			ŀ	1
Total Field Condensate bbl/day	Total Number of Condensate Tanks	Uncontrolled	Hours of Operation per year	Total VOC Emissions tpy	voc	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene
9,093	909	0.387	8760	1541	352	25	86	7	4	83	109	376	30	18	362

Assume 10 barrels of condensate and produced water per MMCF

HAP emissions represented on summary tables

Assume 30% of condensate tanks operate without an emission control device

Assume one tank per well

Table A1.1.27: Alternatives A/B/C Emissions Factors for Dehydrator Heaters for Production Operations

Production Emissions

Unit	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC
lb/MMscf	100	7.6	0.6	84	5.5
lb/MMBtu [∞]	9.80E-02	7.45E-03	5.88E-04	8.24E-02	5.39E-03

Emission Factors for Dehydrator Heaters

^a From BLM, 2003. Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} .

^b From BLM, 2003. Assumed a fuel heating value of 1,020 Btu/scf.

Source: EPA, AP-42, Volume I, Section 1.4 Natural Gas Combustion (7/98).

Table A1.1.28: Alternatives A/B/C Emissions Estimates for Dehydrator Hest	aters
Emission Estimate for Dehydrator Heaters	

Operating Hours	Dehydrator	Fuel	Number of				Total E	Emissio	ns (ton/	year)			
per Year ^a	Heater Size MMBtu/hr	Usage MMCF/yr	Number of Wells	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.10	0.21	3031	33	2	0	27	2	0	0	0	0	0

^a Assumed operating 15 minutes per hour per day Assume Dehydrator Heater Operation at each well site HAP emissions represented on summary tables

 Table A1.1.29: Alternatives A/B/C Emission Factors for Three-Phase Separator Heaters

 Emission Factors for Three-Phase Separator Heaters

Unit	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC
lb/MMscf	100	7.6	0.6	84	5.5
lb/MMBtu ^b	9.80E-02	7.45E-03	5.88E-04	8.24E-02	5.39E-03

Table A1.130: Alternatives A/B/C Emission Estimates for Three-Phase Separator Heaters **Emission Estimates for Three Phase Separator Heaters**

Operating Hours	Separator	Fuel	Number of				Total E	Emissio	ns (ton/y	/ear)			
per Year ^a	Size MMBtu/hr	Usage MMCF/yr	Wells	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.75	1.61	3031	244	19	1	205	13	0	0	0	0	0

^a Assumed operating 15 minutes per hour per day Assume Dehydrator Heater Operation at each well site

Table A1.1.31: Alternatives A/B/C Emission Factors for Condensate Tank Heaters Emission Estimates for Condensate Tank Heaters

Operating Hours	Tank Heater	Fuel	Number of				Total E	missio	ns (ton/y	/ear)			
per Year ^a	Size MMBtu/hr	Usage MMCF/vr	Condensate Tanks	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.50	1.07	3031	163	12	1	137	9	0	0	0	0	0

^a Assumed operating 15 minutes per hour per day

Assume a separator and heater for each well

Table A1.1.32: Alternatives A/B/C Emission Estimates for Produced Water Tank Heaters Emission Estimates for Produced Water Tank Heaters

	Tank Heater	Fuel	Number of				Total I	Emissio	ns (ton/	year)			
Operating Hours per Year ^a	Size MMBtu/hr	Usage	Produced Water Tanks	NOv	PM ₁₀	SO2	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.50	1.07	3031	163	12	1	137	9	0	0	0	0	0

^a Assumed operating 15 minutes per hour per day

Assume a heater for each tank

Emission Fac	tors for Roa	ad Traffic			
	Constant	PM ₁₀	PM _{2.5}	1	
	k	1.8	0.27		
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1		
$E [Ib/VMT] = \frac{N(0/12)^{\circ}(W/0)}{(M/0.2)^{\circ}}$	d	0.5	0.5		
	с	0.2	0.2		
Source: EPA (1995), AP-42, Section 13.2.2 Unpaved F	Roads (9/98).			
Variable Description	Assumed Value		Reference	0	
	value		Kelelelici	5	
E = size-specific emission factor (lb/VMT)					
s = surface material silt content (%)	5.1	BLM, 2003. (E Section 13.2.2			
W = mean vehicle weight (tons)	3.5	Assume a ligh	t-duty truck of	7,000 lb (BLM,2003)	
M = surface material moisture content (%)	0.2	default value in EPA, <i>AP-4</i> 2 , Volume I, Section 13.2.2 Unpaved Roads (9/98)			
CE = control efficiency for watering (%)	50			<i>ve Dust Sources</i> , npaved Surfaces	

Table A1.1.33: Alternatives A/B/C Fugitive Dust Emission Factors for Production Operations Road Traffic

Table A1.1.34: Alternatives A/B/C Fugitive Dust Emissions Estimates for Production Operations Road Traffic Emissions Estimation for Road Traffic

									PM ₁₀			PM _{2.5}			
			A		Total #				Emi	ssions		Emis	sions	Emissions	(lb/hr/stn)
Activity	Compressor Station	Vehicle Type	Av. Vehicle Weight (Ib)	Total # of Operating Stations	Inspection Visits per Station per year	Total # of Inspection Visits per year	Total # Miles per Inspection	Em. Factor (Ib/VMT) a	(lb/stn-yr)	(ton/proj.)	Em. Factor (Ib/VMT)	(lb/stn-yr)	(ton/proj.)	PM ₁₀	PM _{2.5}
Inspection Visits for Compressor Stations	Central Compressor Station	Pickup Truck	7,000	10	52	520	10	0.63	6.3	1.6	0.09	0.9	0.25	0.0050609	0.001316
								Total		1.6			0.2		

^a BLM, 2003. Table APP_A21, field and sales compressors are visited using a 200 hp pick up truck (4 wheels) once a week

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per inspection = 24

Table A1.1.35: Alternatives A/B/C Exhaust Emission Factors for Production Operations Road Traffic Exhaust Emission Factors for Road Traffic

Vahiala Class		E	mission Fa	actors (g/mi)		
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	CO	VOC
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75

^a From BLM, 2003, table 1.1.2.2

^b Including tire and brake wear emissions.

Source: EPA, *AP-42*, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II (High Altitude; Model Year 1991-1997; 50,000 mileage) (1985).

			Av.	Total # of	Total #	Total # of	Total #												Emis	sions														
Activity	Compressor Station	Vehicle Type	Vehicle	Operating		Inspection Visits				(lb/stati	on-yr)							(tor	/project)										(lb/hr/	stn)				
			(lb)	Stations	Station per year	per year	Inspection	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xytene
Inspection Visits for Compressor Stations	Central Compressor Station	Pickup Truck	7,000	10	52	520	10	0.02	0.0022	0.0017	0.00	0.26	0.02	0.006	0.001	0.000	0.001	0.067	0.004	0	0	0	0	0	1.7E-06	1.3E-06	1.99E-06	0.00021	1.3E-05	0	0	0	0	(
												Total		0.01	0.00	0.00	0.00	0.07	0.00															

Table A1.1.36: Alternatives A/B/C Exhaust Emission Estimates for Production Operations Road Traffic Extract Emission Estimation for Road Traffic

" BLM, 2003. Table APP_A21, field and sales compressors are visited using a 200 hp pick up truck (4 wheels) once a week

Emissions per well = emission factor g/mile*total miles per inspection/453.6 g/lb

raffic				
Emission F	actors for Road Tra	affic		
	Constant	PM ₁₀	PM _{2.5}	
	k	1.8	0.27	
k(a/12) ^a (\\\/2) ^d		1	1	

Table A1.1.37: Alternatives A/B/C Fugitive Dust Emission Factors for Well Workover Road Traffic

$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	a	1	1				
(IVI/0.2)	d	0.5	0.5				
	С	0.2	0.2	J			
Source: EPA (1995), AP-42, Section 13.2.2 Unp	oaved Roads (9/98).					
	-	1					
E = size-specific emission factor (lb/VMT)							
		BLM, 2003. (B					
s = surface material silt content (%)	5.1	Section 13.2.2 (9/98))	Conpaved F	Roads			
W= mean vehicle weight (tons)	60	Assume worke	over rig 120	,000 lbs			
W= mean vehicle weight (tons)	30	Assume haul t	truck 60,000) lbs			
		Assume picku	p truck weig	ght of			
W = mean vehicle weight (tons)	3.5	7,000 lbs Default value i					
M = surface material moisture content (%)	0.2	Volume I,					
		Section 13.2.2 EPA, Control					
CE = control efficiency for watering (%)	50	Sources,		-			

Table A1.1.38: Alternatives A/B/C Fugitive Dust Emission Estimates for Well Workover Road Traffic

				Fugitive Du	ıst Emissio	ns Estima	tion for Ro	ad Traffie	;						
		Av.	Round Trip	# of Round	Miles	Total # of Wells	Emissio	PM ₁₀ Emiss	sione	Emission	PM _{2.5}	ssions	lb/hr/		ton/ye ar/wel
Activity	Vehicle Type	Vehicle Weight (Ib)	Distance (mi)	Trips per Well	Traveled per Well	Wells Drilled	n Factor (Ib/VMT)			Factor	(lb/well)	(ton/proj.)		PM _{2.5}	
Well Workover	Workover Rig	120,000	3	2	6	152	2.6	16	1	0.1	1	0.0	0.32689	0.012	#####
	Haul Truck Pickup Truck	60,000 7,000	3	2	6 6	152 152	1.8 0.6	11 4	1 0	0.4 0.2	2	0.2 0.1	0.23114		
	I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	_			Total		2			0.3			

^aBLM, 2003. Table APP_A21.

^b BLM, 2003. No dust control measures would be applied.

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per round trip (driving time only, Workover Rig) = 24

hours per round trip (driving time only, Haul Truck) = 24

hours per round trip (driving time only, Pickup Truck) = 24

	Emission Fa	ctors for Ind	ustrial Engir	ies						
Eucl Type		Emissio	n Factors (Ib	/hp-hr)						
Fuel Type	NO _x	PM ₁₀	SO _x	CO	VOC					
Diesel	2.40E-02 5.73E-04 4.05E-04 5.50E-03 7.05E-04									

 Table A1.1.39: Alternatives A/B/C Exhaust Emission Factors for Well Workover On-Site Industrial Engines

EPA, AP-42, Volume I, Section 3.4 Large Stationary Diesel and all Stationary Dual Fuel Engines (10/96).

Table A1.1.40: Alternatives A/B/C Exhaust Emission Estimates for Well Workover On-Site Industrial Engin	ies
On-Site Exhaust Emissions Estimation for Industrial Engines	

																Emiss	ions																
			O an a sliter	Ave.	Operating	Total # of			(lb/well)				(ton/	project)						lb/l	hr/sour	се							to	on/year/sou	rce)		
Ac	ctivity	Equipment	Capacity (hp)	Load Factor (%)	Hours per well	Wells Drilled	NOx	PM ₁₀	SOx	со	voc	NOx	PM ₁₀	SOx	со	voc	PM ₁₀	SOx	со	voc	Benzene	Toluene	Ethyl- benzen e	Hexane	Xylene	NOx	SOx	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Well Wo	orkover	Truck- Mounted Unit	600	0.7	30	3,031	302	7	5	69	9	458	10.9	7.7	105.0	13.5	0.2	0.2	2.3	0.3	0	0	0	0	0	0.17	2.31	0.2961	0	0	0	0	0

Emissions per well
=
emission factor lb/hp-hr*engine hp rating*operating hours*engine load factor %

NOx Emissions= <u>302 lb/well*3,031 wells</u> = 458 tons 2000lb/ton

Table A1.1.41: Alternatives A/B/C Exhaust Emission Factors for Well Workover Road Traffic
Emission Factors for Road Traffic

Vehicle Class		E	mission Fac	tors (g/mi)		
venicle class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	CO	VOC
Light Duty Gasoline Truck (LDGT2)	1.01	0.10	0.08	0.11	11.64	0.75
Heavy-Duty Diesel Truck (HDDV)	8.13	1.96	1.81	1.63	17.09	4.83

^a BLM, 2003. Estimated using the EPA PART5 model (1995). ^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-259, Table 7.1.2 Heavy Duty Diesel Powered Vehicles (High Altitude; Model Year 1991-1997; 50,000 mileage).

Table A1.1.42: Alternatives A/B/C Exhaust Emission Estimates for Well Workover Road Traffic Our Goal Emission Control Emission Emission Emission Estimates for Well Workover Road Traffic

	Vehic	le	Round Trip		Miles	Total # of	Emission	5																													
Activity			Distance	Round Trip	Traveled	Wells			(ib)	well)					(ton/p	roject)							(ib/h	r/sourc	:e)							(to	ns/year/sour	ce)			
Activity	Туре	Class	(mi)	Per Well	per Well	Drilled	NOx	PM ₁₀	PM _{2.5}	SO _x	CO	VOC	NOx	PM ₁₀	PM _{2.5}	SO _x	со	VOC	PM ₁₀	PM _{2.5}	SO_{x}	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexan	e Xylene	NOx	PM _{2.5}	SO _x	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
	Workover Rig	HDDV	3	2	6	3,031	0.1	0.0	0.0	0.0	0.2	0.1	0.2	0.0	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0.0	0.0	0.0	0.0	0	0	0	0	(
Well Workover	Haul Truck	HDDV	3	2	6	3,031	0.1	0.0	0.0	0.0	0.2	0.1	0.2	0.0	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0.0	0.0	0.0	0.0	0	0	0	0	(
	Pickup Truck	LDGT2	3	2	6	3,031	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0.0	0.0	0.0	0.0	0	0	0	0	(
						TOTAL							0.3	8 0.1	0.1	0.1	0.9	0.2																			

Workover Rig Emissions per well <u>emission factor g/mile*distance in miles</u> = (453.6 g/lb) imptions for converting emissions to Ibs/hr/kource: used in AFRMOD calculation hours per round trip (driving time only, Workover Rig) = 24 hours per round trip (driving time only, Hall Truck) = 24 hours per round trip (driving time only, Pickup Truck) = 24

 Table A1.1.43: Alternatives A/B/C Fugitive Dust Emission Factors for Well and

 Pipeline Road Traffic

Emissio	n Factors for R	oad Traffic		
	Constant	PM ₁₀	PM _{2.5}	1
	k	1.8	0.27	
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1	
$E [Ib/VMT] = \frac{I(0, 12)(11, 0)}{(M/0.2)^{c}}$	d	0.5	0.5	
	с	0.2	0.2	
E = size-specific emission factor (lb/VMT)				
	1	-		
		BLM. 2003. (EPA, <i>AP-4</i> 2, Vo	olume I.
s = surface material silt content (%)	5.1		2 Unpaved Road	
W = mean vehicle weight (tons)	3.5	Assume a lig	ht-duty truck of 7	7,000 lb (BLM,2003)
M = surface material moisture content (%)	0.2		in EPA, <i>AP-4</i> 2 , 2 Unpaved Road	,
Control efficiency for watering (%) =	50		of Open Fugitive Watering of Unp	e <i>Dust Sources</i> , paved Surfaces

Table A1.1.44: Alternatives A/B/C Fugitive Dust Emission Estimates for Well and Pipeline Road Traffic Well & Pipeline Fugitive Dust Emissions Estimation for Road Traffic

			Round Trip	# of Wells	# of Visits	Miles Traveled	Total # of		PM ₁₀			PM _{2.5}	
Activity	Vehicle Type	Av. Vehicle	Distance	Visited	per Well	per Well	Operating	Em. Factor	Emi	ssions	Em.	Emis	ssions
-		Weight (lb)	(mi/day)	per Day ^a	per Year ^b	per Year	Well-Yr	(Ib/VMT) [°]	(lb/well-yr)	(ton/proj.)	Factor (Ib/VMT)	lb/well-yı	(ton/proj.)
Visits for Inspection and Repair	200-hp Pickup	7,000	75	120	2	1.25	3,031	0.63	0.8	1	0.09	0.1	0.2

^a BLM, 2003. Table APP_A21.xls

^b BLM, 2003. Table APP_A21.xls

^c BLM, 2003. Table APP_A21.xls

<u>Assumptions for converting emissions to lbs/hr/source: used in AERMOD calculation</u> hours per round trip (driving time only,200-hp Pickup) = 24

Table A1.1.45: Alternatives A/B/C Exhaust Emission Factors for Well and Pipeline Road Traffic **Exhaust Emission Factors for Road Traffic**

Vahiala Class			Emission	Factors (g/n	ni)	
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	CO	VOC
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75

 ^a From BLM, 2003, table 1.1.2.2
 ^b From BLM, 2003, table 1.1.2.2; including tire and brake wear emissions.
 Source: EPA, *AP-42*, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II (High Altitude; Model Year 1991-1997; 50,000 mileage) (1985).

Table A1.1.46: Alternatives A/B/C Exhaust Emission Estimates for Well and Pipeline Road Traffic Well & Pipeline Exhaust Emission Estimates for Well and Pipeline Road Traffic

	Vehi	cle	Round Trip	# of Wells			Total # of														Emiss	sions															_
Activity		01	Distance	Visited	per Well	per Well	Operating			(lb/well-	yr)					(ton/pro	ject)						(lb/hr/	source)								(ton	/year/sou	irce)			_
	Туре	Class	(mi/day)	per Day *	per Year ^b	per Year	Well-Yr	NOx	PM ₁₀	PM _{2.5}	SO _x	CO	VOC	NOx	PM ₁₀	PM ₂₅	SOx	CO	VOC	PM ₁₀ I	PM25 S	0, CC	VOC	Benzene	Toluene	Ethyl-	Hexane	Xylene	NO _x F	PM2.5	SO _x	VOC	Benzene	Toluene	Ethyl-	Hexane	Cylene
Visits for Inspection and Repair	200-hp Pickup	LDGT2	75	120	2	1.25	3,031	0.00	0.000	0.000	0.000	0.0	0.00	0.00	0.000	0.000	0.000	0.0	0.00	0.00	0.00 0.	00 0.0	0.00	0	0	0	0	0	0.00	0.00	0.00	0.00	0	0	0	0	0

^a From BLM, 2003, APP_A21, table 1.2.5.2 ^b Wells visited once per month

Assumptions for converting emissions to Ibs/hr/source; used in AERMOD calculation hours per round trip (driving time only.200-hp Pickup) = 24

Table A1.1.47: Alternatives A/B/C Road Maintenance Emissions Estimation Information

Maintenance ^a	E	Equipment/Vehic	le	Road Length	# of Operating
Maintenance	Туре	Fuel	Capacity (hp)	Worked On per Day	Hours per Day
	Heavy Equipment ^b	Diesel	135 °	6	10
Summer	Commuting Vehicle	Gasoline	225	6 ^d	1 ^e
Winter	Heavy Equipment ^b	Diesel	135 °	5	10
	Commuting Vehicle	Gasoline	225	6 ^d	1.5 ^e

^a BLM, 2003. Road maintenance would be made twice in summer and once in winter every year.

^b BLM, 2003. Assume a motor grader.

^c BLM, 2003. Assume 135 hp.

^d BLM, 2003. Average round trip mileage on unpaved road.

^e BLM, 2003. Assume one round trip per day.

Estimation of Total and Cumulative Length of Roads

Total Length of Roads Built (mi/pad) ^{a,b}	0.9
Cumulative Length of Roads Maintained ^c (mi)	2,728

^a Reflects combination of drilling and producing roads

^b = drilling roads 0.5 mile per well and access roads are 0.4 mile per well for a total of 0.9 mile per well pad ^c = 0.9 miles of road built per pad*1861 well pads = 1,675 miles of roads to maintain

Estimation of Total Operation Days and Hours

Season	# of Operation per Year	Cumulative Length of Roads (mi-yr)	Road Length Worked On (mi/day)	# of Operating Hours per Day	Total # of Operating Days	Total # of Operating Hours
Summer	2	2,728	6	10	909	9,093
Winter	1	2,728	5	10	546	5,456
				Total	1,455	14,549

Table A1.1.48: Alternatives A/B/C Road Maintenance Fugitive Dust Emissions Factors for Grader

Pollutant	Emission Factor Equation (Ib/VMT)	S ^a (mph)	Emission Factor (Ib/VMT)
PM ₁₀	$E = (0.6)(0.051) S^2$	5	0.765
PM _{2.5}	$E = (0.031)(0.04) \ S^{2.5}$	5	0.069

Emission Factors for Grader

^a Assumed a mean vehicle speed (S) of 5 mph. (BLM, 2003) Source: EPA, *AP-42*, Volume I, Section 11.9 Western Surface Coal Mining (10/9

Table A1.1.49: Alternatives A/B/C Road Maintenance Fugitive Dust Emissions Estimates for Grader Fugitive Dust Emissions Estimation for Grader

			Total # of		PM ₁₀ PM _{2.5}		M _{2.5}			tonkinger		
	Activity	Equipment	Operating	Mean Vehicle Speed (mph)	Total Miles Maintained	Em. Factor		Em. Factor	Emissions	lb/h	r/well	ton/year/ well
			Hours ^a	opcou (mpn)	mannannou	(Ib/VMT)	(ton/proj.)	(Ib/VMT)	(ton/proj.)	PM ₁₀	PM _{2.5}	PM _{2.5}
Ma	Road aintenance	Grader	8,729	5	43,646	0.765	17	0.069	1.5	0.153	0.013864	0.0005

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 200

Table A1.1.50: Alternatives A/B/C Road Maintenance Exhaust Emission Factors for Grader Emission Factors for Grader

Equipmont		Emission Factors (g/hp-hr)						
Equipment	NO _x	\mathbf{PM}_{10}^{a}	SO ₂	CO	VOC			
Grader	7.14	0.63	0.87	1.54	0.36			

^a Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} . (BLM, 2003) Source: EPA, *AP-42*, Volume II, Section II-7 Heavy-Duty Construction Equipment (1985).

Table A1.1.51: Alternatives A/B/C Road Maintenance Exhaust Emission Estimates for Grader Exhaust Emissions Estimation for Grader

	Total # of								Emissi	ons											
Activity	Vohiclo Type			(lb/hr)			(ton/project)			(ton/year/source)				_							
Activity	venicie Type	Capacity (IIP)	Hours ^a	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	SOx	VOC	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene
Road Maintenance	Grader	135	8,729	2.13	0.19	0.26	0.46	0.11	9	0.8	1.1	2.0	0.5	0	0	0	0	0	0	0	0

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 2003) ^b Emissions of PM_{2.5} were assumed to be the same as those for PM₁₀.

Table A1.1.52: Alternatives A/B/C Fugitive Dust Emission Factors for Commuting Maintenance Vehicles

Emission Factors for Commuting Maintenance	Vehicles Road	d Traffic		
	Constant	PM ₁₀	PM _{2.5}]
	k	1.8	0.27	
$E [lb/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(W/3)^{d}}$	а	1	1	
$E \left[\frac{M}{0.2} \right]^{c}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Unpav	ved Roads (9/98	8).		
	Assumed			
Variable Description	Value	Reference		
E = size-specific emission factor (lb/VMT) s = surface material silt content (%) W = mean vehicle weight (tons)	5.1 3.5	DLIVI, 2003. (Section 13.2 Assume a ligh	2 I Innaved Rr	,
M = surface material moisture content (%)	0.2			n EPA, <i>AP-4</i> 2 , npaved Roads (9/98
Control efficiency for watering (%) =	50	,	, Section 5.3.	of Open Fugitive 1 Watering of

Table A1.1.53: Alternatives A/B/C Fugitive Dust Emission Estimates for Commuting Maintenance Vehicles Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

			Round Trip	Operating	-		M ₁₀	PM _{2.5}	
Activity	Vehicle Type	Av. Vehicle Weight (Ib)	Distance		Total Miles Traveled	Em. Factor	Emissions	Em. Factor	Emissio ns
		5 (1)	(mi/day)	Days		(lb/VMT) ^a (ton/proj.)		(Ib/VMT) ^a	(ton/proj
Road Maintenance	Pickup Truck	7,000	6	1,455	8,729	0.63	2.8	0.09	0.4

^a No dust control measures would be applied (BLM, 2003).

 Table A1.1.54: Alternatives A/B/C Exhaust Emission Factors for Commuting Maintenance Vehicles

 Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic

	Emission Factors (g/mi)										
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ª	СО	VOC					
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75					

^a BLM, 2003. Estimated using the EPA PART5 model (1995).

^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table A1.1.55: Alternatives A/B/C Exhaust Emission Estimates for Commuting Maintenance Vehicles Exhaust Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

ſ		Vehicle		Round Trip	Total # of	Total Miles		Emissions (ton/project)					
	Activity			Distance Operating Traveled									
		Туре	Class	(mi/day)	Days		NO _x	PM ₁₀	PM _{2.5}	SOx	CO	VOC	
	Road Maintenance	Pickup Truck	LDGT2	6	1,455	8,729	0.01	0.001	0.001	0.001	0.11	0.01	

Emissions = <u>emission factor g/mile*total distance in miles</u> (453.6 g/lb)(2000lb/ton)

 Table A1.1.56: Alternatives A/B/C Fugitive Emissions Factors for Long-Term Production

 Operations. Compressor Maintenance Vehicles Road Traffic.

Emission Factors for Compressor Mainte				
			. Long ton	
	Constant	PM ₁₀	PM _{2.5}	1
	k	1.8	0.27	-
$E [Ib/VMT] = \frac{((s/12)^{a}(W/3))^{d}}{(M/0.2)^{c}}$	а	1	1	
$(M/0.2)^{c}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2	Unpaved Roads	(9/98).		-
	Assumed			
Variable Description	Value	<u>Reference</u>		
E = size-specific emission factor (lb/VMT)				
		BLM 2003		42, Volume I,
s = surface material silt content (%)	5.1		•	l Roads (9/98))
W = mean vehicle weight (tons)	3.5			ck of 7,000 lb (BLM,2003
	5.5			<i>P-4</i> 2, Volume I,
M = surface material moisture content (%)	0.2			l Roads (9/98)
			•	Fugitive Dust Sources,
Control efficiency for watering (%) =	50		•	of Unpaved Surfaces
		Section 5.3.	i watenng	or onpaved Surfaces

Table A1.1.57: Alternatives A/B/C Fugitive Emissions Estimates for Long-Term Production **Operations. Compressor Maintenance Vehicles Road Traffic.**

E			I Tastic I and the Data description
FUDITIVA DUST EMISSIONS	Ferimation for Compresso	r Maintenance Venicies Roa	d Traffic: Long-term Production

							Round Trip		PI	VI ₁₀	PM	2.5
Activity		Av. Vehicle Weight (lb)		# of Stations	# of Visits per Year	Total # of Round Trips	Distance		Em. Factor (Ib/VMT) ^a	Emissions (ton/proj.)	Em. Factor (Ib/VMT) ^d	Emission s (ton/proj.
Maintenance Visits to Central Compressor Stations	Pickup Truck	7,000	Central Compressor Station	10	3	30	10	300	0.63	0.1	0.09	0.0
				-	-		-	Total	-	0.1		0.0

^a No dust control measures would be applied (BLM, 2003, table APP_A21.xls).

<u>Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation</u> hours per round trip (driving time only, Pickup) = 24

Table A1.1.58: Alternatives A/B/C Exhaust Emissions Factors for Long-Term Production Operations. Compressor Maintenance Vehicles Road Traffic.

Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic: Long-term Production

Vahiela Class	Emission Factors (g/mi)								
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	CO	VOC			
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75			

^a BLM, 2003. Estimated using the EPA PART5 model (1995).

^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table A1.1.59: Alternatives A/B/C Exhaust Emissions Estimates for Long-Term Production **Operations.** Compressor Maintenance Vehicles Road Traffic. Emissions Estimation for Road Traffic

Activity							Dame d Tala				Emissio	ns							
	Veh	icle	Compressor		# of Visits	l otal # of		I otal Miles					(to	on/project)					
	Туре	Class	Station	Stations	per Year	ar Round Trips	(mi)	Traveled	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Maintenance Visits to Compressor Stations	Pickup Truck	LDGT2	Central Compressor Station	10	2	20	10	200	0.000	0.0000	0.0000	0.0000	0.003	0.000	0	0	0	0	0
	Total						0.000	0.0000	0.0000	0.0000	0.00	0.000							

Emissions per

Station = emission factor g/mile*total distance in miles (453.6 g/lb)(2000lb/ton)

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per round trip (driving time only, Pickup) = 24

Table A1.1.60: Alternatives A/B/C Natural Gas Well Condensate VOC Emissions

	VOC Losses										
Components	Working Loss (Ibs) ^a	Breathing Loss (Ibs) ^a	Total Emissions per tank (tons)	Total Number of Tanks	Total Tank Emissions (tpy)	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Gasoline (RVP8)	1082.95	985	2068	88	91.07	0.23626	0.0006	2.4E-05	0.00033	0.01046	0.00042

Meteorological Data used in Emissions Calculations: Grand Junction, Colorado (Avg Atmospheric Pressure = 12.27 psia) ^a Calculated from Tanks 4.0

Table A1.1.61: Proposed Action Natural Gas Well Condensate Truck LoadoutVOC and HAP Emissions

Natural Gas Well Condensate Truck Loadout VOC Emissions

_							lb/h	nr/source)	
	Pollutant	Emission Factor (Ibs/1,000 gallons)	Annual Condensate Volume bbl ^a	Condensate (1,000 gallons)	Total Emissions tpy	voc	Benzene	Toluene	Ethyl- benzene	Hexane
	VOCs	19.17	6,637,890	278,791	5	1.09335992	4.5E-06	3E-07	2.7E-06	8.5E-05

a Assume 50,000CFY conventional gas production, 9 bbl condensate per MMCF gas production

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per year that condensate tank has working and breathing losses (total emissions) = 8760

hours per year that condensate truck loadout occurs (used in calculation) = 8760

VOC and HAP emissions from Table B.2.8 of Jonah Technical Support Document; listed for Condensate Storage Tank

Table A1.2.1: Alternative D Assumptions

	INPUTS & ASSUMPTIONS												
Description	Value	Source	Notes										
Control Efficiency (C) of watering	0.5	BLM 2003; Table APP_a21.xls											
TSP Emission Factor	1.2	EPA, <i>AP-42</i> , Volume I, Section 13.2.3 Heavy Construction	Tons TSP/acre-month										
Conversion factor for TSP to PM-10	0.26	BLM 2003; Table APP_a21.xls	Percentage of TSP										
Conversion factor for PM-10 to PM2.5	0.15	BLM 2003; Table APP_a21.xls	Percentage of PM-10										
Total number of pads (year 30)	1227	BLM 2008											
Number wells to estimate construction emissions in yr 12	114	BLM 2008											
Compression per well	200	BLM 2008											
Average HP of the central compressor station	5,000	Pinedale 2005											
Total number of well head compressors	37	BLM 2008											

Well Emission Assumptions:

Emission factors derived from AP-42 or otherwise noted.

Gas compressors assumed to be BACT equipped.

Assume diesel fuel sulfur content of 15ppm for diesel engines.

Well condensate production assumed to be from wells with Best Available Control Technology (BACT).

Emission factor for PM_{2.5} was assumed to be the same as that for PM₁₀ for the following categories, heavy equipment traffic, natural gas compression, dehydrators, separators and flashing emissions.

Hazardous Air Pollutants (HAPS) assumed to be 10% of VOCs and formaldehyde added for gas compression emissions

For central compressors 30,000hp/ 1000 wells

For well head compressors, assume 200 Hp/compressor, installed on 30 of every 1,000 wells.

Assume natural gas heating value of 1,020 Btu/scf (BLM, 2003).

Assume that natural gas compressors would operate at full capacity.

86 is the total number of precipitation days for Kemmerer WY, Western Regional Climate Center.

INPUTS & ASSUMPTIONS											
Description	Value	Source	Notes								
Control Efficiency (C)of watering	0.5	BLM 2003; Table APP_a21.xls									
TSP Emission Factor	1.2	EPA, <i>AP-42</i> , Volume I, Section 13.2.3 Heavy Construction Operations (1/95)	Tons TSP/acre-month								
Conversion factor for TSP to PM-10	0.26	BLM 2003; Table APP_a21.xls	Percentage of TSP								
Conversion factor for PM-10 to PM2.5	0.15	BLM 2003; Table APP_a21.xls	Percentage of PM-10								
Number of wells drilled	114	BLM 2008									
Total number of pads	1227	BLM 2008									
Number of wells to estimate construction emissions	114	BLM 2008									
Number of well head compressors in 2021	37	BLM 2008									
HP compression per well	200	EOG Resources									
HP of central compressor stations	5,000	BLM 2008									

Table A.1.2.62: Alternative D Natural Gas and Oil Pad Construction Fugitive Dust Assumptions

Table A1.2.3: Alternative D, Natural Gas and Oil Pad Construction Fugitive Dust Emissions Emissions Estimation for Construction Activities: Long-Term Development

								Emissio	าร					
Emission Estimation	Disturbed Area	Avg. Number of Days to	Well Pads	Total Disturbed	(lb/we	ell pad or l	b/stn)	(ton/project)			lb/hr/source		ton/year/so urce	
Basis	(acre)	Complete	Stations	Area (acre)	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}	PM _{2.5}	
per Well Pad	2.75	7	1,227	3,374	770	200	30	472	123	18	1.19	0	0	
per station	1.50	4	8	12	240	62	9	1	0	0	0.65	0	0	
Totals								473	123	18				
	Estimation Basis per Well Pad	Estimation Basis (acre) ^a	Estimation Basis Disturbed Area (acre) ^a Avg. Number of Days to Complete per Well Pad 2.75 7	Estimation Basis Disturbed Area (acre) ^a Avg. Number of Days to Complete Well Pads or Stations per Well Pad 2.75 7 1.227	Emission Estimation Basis Disturbed Area (acre) ^a Avg. Number of Days to Complete Well Pads or Stations Total Disturbed Area (acre) per Well Pad 2.75 7 1.227 3.374	Emission Estimation Basis Disturbed Area (acre) ^a Avg. Number of Days to Complete Well Pads or Station Total Disturbed Area (acre) ^a (I/b/Well Disturbed TSP per Well Pad 2.75 7 1,227 3,374 770 per station 1.50 4 8 12 240	Emission Estimation Disturbed Area (acre) ^a Avg. Number of Days Complete Weil Pad or Stations Total Area (acre) ^a (lb/weil val) TSP Meil PM ₁₀ per Well Pad 2.75 7 1.227 3.374 7/0 200 per station 1.50 4 8 12 240 62	Emission Estimation Basis Disturbed Area (acre) ^a Avg. Number of Days Complete Well Pad or Stations Total or Stations International Complete Total or Stations International Complete Total or Stations International Complete Total or Stations International Complete Total Or Stations International Complete Total Or Stations International Complete Inte	Emission Estimation Basis Disturbed Area (acre) ^a Avg. Number of Days Complete Well Pad or Stations Total or Stations International Technical Area (acre) International Technice (acre) Internatis (acrec)	Emission Basis Disturbed Area (acro) ^a Avg. Number of pain Network Tape of pain Network Tape of pain Network Image of pain Image of pain Image of pain Image of pain	Emission Basis Disturbed Area (acro ³ Avg. Numper Opping (Corport (Corport) Tay (Corport (Corport) Image (Corport) Image (Ensistion Basis Disturbed Area (acre) ^a Avg. Number of Days Complete Mell Pad Status Top Pation Image: Home of Days Pation Mell Pad Status Mell Pad Status	Emission Basin Disturbed Area (acro ⁺) Area Sumperform Tell Parts Station Tell Parts Processing Tell Parts Parts Tell Parts Parts Tell Parts Te	

^a From gross surface disturbance projections BLM

Note: number of compressor stations are for new construction

TSP= 1.2 tpy/acre-month x 3,374 acres x 7/30 days x 0.5 dust control efficiency = 472 tons

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per day = 24

Table A1.2.4: Alternative D Gas Analysis Pinedale Frontier Formation Gas Analysis

			Molecular	Molecular Weight of each
Gas Component	Mol%	Mol%/100	Weight	Component
N ₂	1.2953	0.012953	28.01	0.363
Methane (C1)	83.3591	0.833591	16.04	13.371
CO ₂	0.1265	0.001265	44.01	0.056
Ethane (C2)	8.7362	0.087362	30.07	2.627
Propane (C3)	4.1642	0.041642	44.10	1.836
I-Butane (iC4)	0.6661	0.006661	58.12	0.387
N-Butane (nC4)	0.9106	0.009106	58.12	0.529
I-pentane (iC5)	0.2129	0.002129	72.15	0.154
N-pentane (nC5)	0.1908	0.001908	72.15	0.138
Hexanes (C6)	0.1454	0.001454	84.18	0.122
Heptanes (C7)	0.1317	0.001317	100.20	0.132
Octanes (C8)	0.058	0.00058	114.23	0.066
Nonanes	0.0032	0.000032	114.23	0.004
TOTAL	100			19.785

MW = Mol%/100*MW

Methane (C1) = 0.833591*16.04 = 13.371

 $VOC = C_3^+ components = 3.368$

VOC Weight Percent = 3.368/19.785*100 = 17.02%

BTU Value 1,189

Pinedale Frontier Formation Condensate Analysis

WELL NAME:	Frontier Well
COMPONENT	MOL%
H2S	0.0000
02	0.0000
CO2	0.0000
N2	0.0000
C1	0.4064
C2	1.7056
C3	3.3635
IC4	2.2423
NC4	3.0113
IC5	3.8486
NC5	3.5648
Hexanes	14.1300
Heptanes	44.6335
Benzene	1.8256
Toluene	8.5229
E-Benzene	0.7922
Xylene	6.2070
n-C6	5.7245
2,2,4-Trimethylpentane	0.0219
Total	100.000

	En	nission Fac	tors for Cons	struction E	quipment	
		Emissi	on Factors (g/hp-hr)		
Equipment	NO _x	PM ₁₀	SO2	со	VOCs	Equipment Category in AP 42 ^a
Backhoe	8.81	0.81	0.86	2.71	0.97	Wheeled Loader
Dozer	7.81	0.69	0.85	2.15	0.75	Track-Type Tractor
Blade	7.14	0.63	0.87	1.54	0.36	Motor Grader
Trencher	11.01	0.90	0.93	4.60	1.01	Miscellaneous
Trackhoe	9.30	0.66	0.85	2.26	1.11	Track-Type Loader

Table A1.2.5: Alternative D Exhaust Emissions Factors for Construction Equipment

^a BLM, 2003, table APP_A21.

Source: EPA, AP-42, Volume II, Section II-7 Heavy-Duty Construction Equipment (9/85).

Construction Site	Equipment		# of Units	Av. Load	# of Oper. Hrs	# of Oper. Days per Well Pad	# of Oper. Hrs per Well Pad	# of Well Pads or	(lb/well p	ad, lb/sta	tion, or	b/proje	ect)		(ton/e	quipmei	nt type)	Emiss		on/cons	struction	site)		lb/	hour/sou	rce	ton/yea	ar/source
	Туре	(hp)	Units	Factor (%)	per Day	or per Station	or per Station	Stations	NOx	PM ₁₀	SO2	со	voc	NOx	PM ₁₀ ^a	SO ₂	со	voc	NOx	PM ₁₀	SO ₂	со	voc	PM ₁₀	SO ₂	со	NOx	SO ₂
Drilling Roads	Blade	100	1	80	10	3	30	114	38	3.3	4.6	8	1.9	2	0.2	0.3	0.5	0.1	41	0.4	0.5	1.1	0.3	0.1	0	0.3	0	0.0
Drining Roads	Backhoe	80	1	75	10	3	30	114	35	3.2	3.4	11	3.8	2	0.2	0.2	0.6	0.2	4.1	0.4	0.0		0.0	0.1	0	0.4	0	0.0
Producing Roads	Blade	100	1	80	10	3	30	114	38	3.3	4.6	8	1.9	2	0.2	0.3	0.5	0.1	4.1	0.4	0.5	1.1	0.3	0.1	0	0.3	0	0.0
Troducing Roads	Backhoe	80	1	75	10	3	30	114	35	3.2	3.4	11	3.8	2	0.2	0.2	0.6	0.2	4.1	0.4	0.0	1.1	0.0	0.1	0	0.4	0	0.0
Drilling Well Pad	Backhoe	80	1	75	10	2	20	114	23	2.1	2.3	7	2.6	1	0.1	0.1	0	0.1	1.3	0.1	0.1	0.4	0.1	0.1	0	0.4	0	0.0
Producing Well Pad	Backhoe	80	1	75	10	2	20	114	23	2.1	2.3	7	2.6	1	0.1	0.1	0	0.1	1.3	0.1	0.1	0.4	0.1	0.1	0	0.4	0	0.0
	Blade	100	1	80	10	1	10	114	13	1.1	1.5	3	0.6	1	0.1	0.1	0.2	0.0						0.1	0	0.3	0	0.0
New Pipeline	Trencher	175	1	80	10	1	10	114	34	2.8	2.9	14	3.1	2	0	0	1	0	3	0.3	0.3	1	0.3	0.3	0	1.4	0	0
	Backhoe	80	1	75	10	1	10	114	12	1.1	1.1	4	1.3	1	0.1	0.1	0.2	0.1						0.1	0	0.4	0	0.0
Well Head	Dozer	350	1	80	8	2	16	37	77	6.8	8.4	21	7.4	1	0.13	0.16	0.4	0.1	2.2	0.2	0.2	0.6	0.2	0.4	1	1.3	0	0.00
Compressors	Backhoe	80	2	80	8	2	16	37	40	3.7	3.9	12	4.4	1	0.07	0.07	0.23	0.08	2.2	0.2	0.2	0.0	0.2	0.2	0	0.8	0	0.00
Central Compressor	Dozer	350	1	80	8	2	16	8	77	6.8	8.4	21	7.4	0	0.03	0.03	0.1	0.0	0.5	0.0	0.0	0.1	0.0	0.4	1	1.3	0	0.00
Station	Backhoe	80	2	80	8	2	16	8	40	3.7	3.9	12	4.4	0	0.01	0.02	0.05	0.02	5.5	5.0	0.0	0.1	0.0	0.2	0	0.8	0	0.00
																	Subtota	al	17	1.5	1.8	4.9	1.5					

Table A1.2.6: Alternative D Natural Gas and Oil Well Pad Construction Exhaust Emissions

ſ	Emission Source				Emissio	on Factors		
	Emission Source	Fuel Type	Unit	NO _x	PM ₁₀	SOx	СО	VOC
	Industrial Engine ^a	Diesel	lb/hp-hr	6.61E-04	3.30E-05	5.10E-05	5.73E-03	2.20E-04
	Industrial Engine ^b	Diesel	lb/hp-hr	2.40E-02	5.73E-04	4.05E-04	5.50E-03	7.05E-04

Table A1.2.7: Alternative D Exhaust Emission Factors for Industrial Engines Emission Factors for Industrial Engines (Tier IV)

^a BLM 2008 from memo

^b EPA, *AP-42*, Volume I, Section 3.4 Large Stationary Diesel and all Stationary Dual Fuel Engines (10/96).

Construction Site	Equipment	Capacity		Av. Load	# of Operating	# of Operating	# of Operating											Emiss	ions									
Activity	Туре	(hp)	# of Units	Factor (%)	Hours	Days	Operating Hours	# of Wells		(lb/v	vell)				(ton/e	quipme	nt type)			(ton/pro	ject acti	ivity)		lb	/hr/sourc	e	ton/yr/	source
	.,,,.	(per Day	per Well	per Well		NOx	PM ₁₀	SO ₂	со	VOC	NOx	$\textbf{PM}_{10}{}^{a}$	SOx	со	VOC	NOx	PM 10 a	SOx	со	VOC	\mathbf{PM}_{10}^{a}	SOx	со	NOx	SOx
	Main Deck	2,100	1	42	24	25	600	114	350	17	27	2,911	117	20	1	2	166	7						0	0	5	0	0
Rig-up, Drilling, and Rig-down	Auxiliary Pump	600	1	42	8	25	200	114	33	2	3	277	11	2	0	0	16	1	23	1.1	1.8	191	8	0	0	1	0	0
	Generator	150	1	75	24	10	240	114	18	1	1	155	6	1	0	0	9	0						0	0	1	0	0
1	Main Deck	2100	1	42	24	5	120	114	70	3	5	606	23	4	0	0	35	1						0	0	5	0	0
Well Completion & Testing	Auxiliary Pump	225	1	42	24	4	96	114	6	0	0	52	2	0	0	0	3	0	5	0	0	41	2	0	0	1	0	0
	Power Swivel	150	1	75	24	4	96	114	7	0	1	62	2	0	0	0	4	0						0	0	1	0	0
									4.84E+02	24	37	4,063					Subtota	al	28	1	2	232	9					

 Table A1.2.8: Alternative D Emission Estimates for Industrial Engines

 Emissions Estimation for Industrial Engines

Table A1.2.9: Alternative D Field Generator Emission Factors Emission Factors for Field Generators (Tier II)

Emission Source	Fuel Type			Emiss	ion Factors		
Emission Source	гиеттуре	Unit	NO _x	PM ₁₀	SOx	СО	VOC
Industrial Engine ^a	Diesel	g/hp-hr	4.90E+00	2.20E-01	9.30E-01	3.70E+00	4.90E+00
Industrial Engine	Diesel	lbs/hp-hr	1.08E-02	4.80E-04	2.05E-03	8.20E-03	1.08E-02

^a From USA - Nonroad Diesel Engines Tier 2 Emission Standards

Emission factors for a < 600 hp generator, (NOx & VOC = 4.9 g/bhp-hr)

 Table A1.2.10: Alternative D Temporary Exhaust Emissions Estimates for Field Generators

 Temporary Emissions Estimation for Field Generators

Construction Site			# of	Av. Load	# of Operating	# of Operating	# of Operating	# of Wells		(lb/	voli)					ssions quipmer	at type)		lb/	nr/source	•	tophr	/source
Activity	Туре	(hp)	Units	Factor (%)	Hours per Day	Days per Well	Hours per Well		NOx	PM ₁₀	SO ₂	со	VOC	NOx	PM ₁₀ ^a	SOx	CO	VOC	PM ₁₀	SO ₂			SO ₂
Field Generators	Field Generators for Pumps & Lighting	100	1	75	12	8	96	114	78	3	15	59	78	4	0	1	3	4	0	0	1	0	0
												TOTAL	S	4	0.2	1	3	4					

Table A1.2.11: Alternative D Estimate of Emission Factors for Emissions From Well ConstructionFlaring

Emission Factors for Flaring

Unit	NO _x	PM ₁₀	SO ₂	CO
lb/MMscf	76.0	7.6	0.6	413.3
lb/MMBtu	6.80E-02	6.80E-03	5.37E-04	3.70E-01

Emission factors for NOx & CO Source: EPA, *AP-42*, Volume I, Section 13.5 Industrial Flares Emission factors for PM10 & SO2 from EPA, AP-42, Volume I, Section 1.4 Natural Gas Combustion

	Gas Production		Av. Heat					-	Em	issions	0						
Well Completion	ell Completion Fstimate # of Days Content # o					(lb/w	/ell)			(tons)			lb	/hr/sou	rce	ton/yr/	source
Flaring	(MMSCF) per day	of Flaring	of Gas btu/scf	Wells	NOx	PM ₁₀	SO ₂	со	NO _x	PM ₁₀ ^a	SOx	со	PM ₁₀	SO2	со	NO _x	SO ₂
Flaring	1	2	1020	114	139	15.2	1.2	755	8	1	0.1	43	0.3	0.0	15.7	0	0
							TOTALS		8	1	0.1	43					

Table A1.2.12: Alternative D Emissions From Well Completion Flaring

Emissions = EVH where E= emission factor; V= gas volume; H= heat content

NOx= 0.068lbs/MMBtu*1.0 MMSCFD*1020 Btu/scf = 69.5 lbs per well* 2 days = 139 lbs per well

PM10 & SO2 Emissions = EV where E= emission factor; V= gas volume

PM10 = 7.6 lbs/MMSCF*1.0 MMSCFD = 7.6 lbs/well*2days = 15.2 lbs per well

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per day = 24

Table A1.2.13: Alternative D VOC Emissions from Well Completion Flaring VOC Emissions Well Flaring

Well Completion Flaring	VOC Emission Factor Ibs per well	# of Wells	VOC Emissio ns tons
Flaring	8,863	114	504

Assume average VOC content 17 % Average Mole Weight 19.785 Gas production rate of 1.0 MMSCF per well per day Assume 2 days of flaring

Flare Gas wt= 2.0 MMSCF*1,000,00scf/MMSCF*19.785 lbs/lbs-mole 379.49scf/mole

VOC Emissions= 104,272 lbs/well*0.17VOC wt%*0.5 efficiency destruction = 8,863 lbs/well

HAPs are estimated at 10% of VOC amounts and are shown on total spread sheets Assume same gas production rate for short term and long term new constructed wells of 1.0 MMSCFD

Emission Factor:	0.3733 llb/hr	/100m ²		hapter 13.2.5 (EPA 2004), Industrial Wind Erosion Wyoming meterological data.
Control Efficiency:	50%		using Jonan Field,	wyonning meterological data.
Disturbed Area:				
Well Pad Construction:		2.75 acres	11128.87 m ²	
Central Compressor Cons	struction:	1.50 acres	6070.29 m ²	
Access Road Constructio	n:	3.00 acres	12140.58 m ²	
Pipeline Construction:		0.50 acres	2023.43 m ²	

Table A1.2.14: Alternative D Natural Gas and Oil Well Pad Construction Wind Erosion

Source Parameters

147 1-km area sources sigma z=2.33 m

PM ₁₀ Emission Calculations:	PM ₁₀	PM _{2.5}		Control	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
	Emission Factor	Emission Factor	Area	Efficiency	Emissions	Emissions	Emissions	Emissions
	(llb/hr/100m ²)	(IIb/hr/100m ²)	100 m ²	(%)	(lb/hr)	(lb/hr)	(g/sec)	(g/sec)
Well Pad Construction:	0.3733	0.1493	111.29	50	20.77	8.31	2.62	1.05
Central Compressor Construction	0.3733	0.1493	60.70	50	11.33	4.53	1.43	0.57
Resource Road Construction:	0.3733	0.1493	121.41	50	22.66	9.06	2.86	1.14
Pipeline Construction:	0.3733	0.1493	20.23	50	3.78	1.51	0.48	0.19
Total:					58.54	23.41	7.38	2.95

Emission	Factors for	Road Traffic		
	Parameter	PM ₁₀	PM _{2.5}	
	k	1.8	0.27	
$k (s/12)^{a} (W/3)^{d}$	а	1	1	
$E (lb/VMT) = \frac{k (s/12)^{a} (W/3)^{d}}{(M/0.2)^{c}}$	d	0.5	0.5	
	с	0.2	0.2	
Source: EPA, AP-42, Volume I, Section 13.2.2 Unp	aved Roads (9/98)		
	Assumed			
Function/Variable Description	Value		Reference	
E = size-specific emission factor (lb/VMT)				
		EPA, AP-42, Volu	me I,	
s = surface material silt content (%)	5.1		paved Roads (9/98)	
W = mean vehicle weight (tons)	Listed in the table below			
		default value in EF	PA, AP-42, Volume I,	
M = surface material moisture content (%)	0.2	Section 13.2.2 Un	paved Roads (9/98)	
CE = control efficiency for watering (%)	50		ben Fugitive Dust Sou ering of Unpaved Surf	

Table A1.2.15: Alternative D Fugitive Dust Emissions from Commuting Vehicles.Emission Factors for Road Traffic.

Table A1.2.16: Alternative D Fugitive Dust Emissions Estimates for Natural Gas and Oil Well Pad Construction Road Traffic

									PM10			PM ₂	5			Emissions	
		Av.	Bound Trin	# of Round Trips	Miles Traveled	Total # of			Emissio	ns			Emissions	3			ton/year/
Construction Site	Vehicle Type	Vehicle			per Well Pad or	Well Pads or	Controlled	(lb/well pad,			Controlled Em.	(lb/well			lb/hr/s	source	source
Destination	venicie Type	Weight (lb)	Distance (mi)	per Station	per Weil Pad or per Station	Stations	Em. Factor (Ib/VMT)	lb/stn, or lb/proj.)	(ton/veh. type)	(ton/const. site)	Factor (Ib/VMT)	pad, lb/stn, or lb/proj.)	(ton/veh. type)	(ton/const. site)	PM ₁₀	PM _{2.5}	PM _{2.5}
Drilling Roads	Semi Trucks	60,000	6	2	12	1,227	1.21	15	9	9	0.18	2.2	1.3	1.3	0	0	0
Producing Roads	Semi Trucks	60,000	6	2	12	1,227	1.21	15	9	9	0.18	2.2	1.3	1.3	0	0	0
Drilling Well Pad	Haul Trucks	45,000	6	2	12	1,227	1.05	13	8	11	0.16	1.9	1.2	1.6	0	0	0
Jilling well Fau	Pickup Trucks	7,000	6	2	12	1,227	0.41	5.0	3		0.06	0.7	0.5	1.0	0	0	0
Producing Well Pad	Haul Trucks	45,000	6	2	12	1,227	1.05	13	8	11	0.16	1.9	1.2	1.6	0	0	0
Toducing weil Fau	Pickup Trucks	7,000	6	2	12	1,227	0.41	5.0	3	11	0.06	0.7	0.5	1.0	0	0	0
New Pipeline	Haul Trucks	45,000	6	2	12	1,227	1.05	13	8	11	0.16	1.9	1.2	2	0	0	0
vew ripeline	Pickup Trucks	7,000	6	2	12	1,227	0.41	5	3	11	0.06	0.7	0.5	-	0	0	0
Electric Line	Haul Trucks	45,000	6	2	12	1,227	1.05	12.6	8	11	0.16	1.9	1.2	1.6	0	0	0
	Pickup Trucks	7,000	6	2	12	1,227	0.41	5.0	3		0.06	0.7	0.5	1.0	0	0	0
Vell Head	Semi Trucks	60,000	6	2	12	37	1.21	15	0.3		0.18	2	0.0		0	0	0
Compressors	Haul Trucks	45,000	6	2	12	37	1.05	13	0	1	0.16	2	0.0	0	0	0	0
Joinpressors	Pickup Trucks	7,000	6	2	12	37	0.41	5	0		0.06	1	0.0		0	0	0
Central	Semi Trucks	60,000	6	2	12	8	1.21	15	0.1		0.18	2	0.0		0	0	0
Compressor	Haul Trucks	45,000	6	2	12	8	1.05	13	0	0	0.16	2	0.0	0	0	0	0
Station	Pickup Trucks	7,000	6	2	12	8	0.41	5	0		0.06	1	0.0		0	0	0
								Subtotal		62				9			

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per day = 10 days per source = 21

Table A1.2.17: Alternative D Fugitive Dust Emissions Estimates for Natural Gas and Oil Well Construction Road Traffic

		Av.	Round Trip	# of Round Trips		Trank Bard			PM10			PM ₂				Emissions	
Construction Site Activity	Vehicle Type	Vehicle Weight	Distance	per Well Pad or	Miles Traveled per Well Pad or	Total # of Wells or	Controlled Em. Factor		Emission (ton/veh.		Controlled Em.		Emissions (ton/veh.	(ton/proj.	lb/hr/s	ource	ton/year/ source
Activity		(lb)	(mi)	per Station *	per Station	Stations	(Ib/VMT)	(lb/well)	type)	(ton/proj. activity)	Factor (Ib/VMT)	(Ib/well)	type)	activity)	PM ₁₀	PM _{2.5}	PM _{2.5}
	Semi Rig Transport & Drill Rig	80,000	6	5	30	1,227	1.40	42	26		0.21	6.3	3.9		0	0	0
	Fuel Haul Truck	50,000	6	5	30	1,227	1.10	33	20.3		0.17	5.0	3.0		0	0	0
	Mud Haul Truck, Water Hauling	60,000	6	5	30	1,227	1.21	36	22		0.18	5	3.3		0	0	0
	Rig Crew	7,000	6	5	30	1,227	0.41	12	7.6		0.06	1.9	1.1		0	0	0
		12,000	6	5	30	1,227	0.54	16	10.0		0.08	2.4	1.5		0	0	0
Rig-up, Drilling, and	Rig Mechanics	7,000	6	5	30	1,227	0.41	12	8	143	0.06	1.9	1.1	21	0	0	0
Rig-down	Co. Supervisor	7.000	6	5	30	1.227	0.41	12	7.6		0.06	1.9	1.1		0	0	0
	Tool Pusher	7,000	6	5	30	1,227	0.41	12			0.06				0	0	0
	Mud Logger	-					-		7.6			1.9	1.1				
	Mud Engineer	7,000	6	5	30	1,227	0.41	12	7.6		0.06	1.9	1.1		0	0	0
	Logger, Engr Truck	45,000	6	5	30	1,227	1.05	31.4	19.3		0.16	4.7	2.9		0	0	0
	Drill Bit Delivery	7,000	6	5	30	1,227	0.41	12	8		0.06	1.9	1.1		0	0	0
	Semi Casing Haulers	60,000	6	2	12	1,227	1.21	14.5	9		0.18	2.2	1.3		0	0	0
	Semi Completion, Unit Rig	120,000	6	8	48	1,227	1.71	82	50.4		0.26	12.3	7.6		0	0	0
	Semi Fracing Blender	85,000	6	2	12	1,227	1.44	17	10.6		0.22	2.6	1.6		0	0	0
	Semi Pumping Tank Battery	80,000	6	2	12	1,227	1.40	17	10.3		0.21	2.5	1.5		0	0	0
	Tubing Truck	60,000	6	2	12	1,227	1.21	14.5	8.9		0.18	2.2	1.3		0	0	0
	Haul Cementer, Pump Truck	85,000	6	2	12	1,227	1.44	17	10.6		0.22	2.6	1.6		0	0	0
	Haul Cementer, Cement Truck	60,000	6	8	48	1,227	1.21	58	35.6		0.18	8.7	5.3		0	0	0
	Haul Completion, Equip Truck	45,000	6	2	12	1,227	1.05	12.6	7.7		0.16	1.9	1.2		0	0	0
	Haul Service Tools	7,000	6	2	12	1,227	0.41	5.0	3.0		0.06	0.7	0.5		0	0	0
	Haul Perforators	45,000	6	2	12	1,227	1.05	12.6	7.7		0.16	1.9	1.2		0	0	0
	Logging Truck Haul Anchor	40,000	6	2	12	1,227	0.99	11.9	7.3		0.15	1.8	1.1		0	0	0
	Installation Haul Anchor	12,000	6	2	12	1,227	0.54	6.5	4.0		0.08	1.0	0.6		0	0	0
	Testing	40,000	6	2	12	1,227	0.99	11.9	7.3		0.15	1.8	1.1		0	0	0
	Haul Fracing Tank	85,000	6	2	12	1,227	1.44	17.3	10.6		0.22	2.6	1.6		0	0	0
Well Completion & Testing	Haul Fracing Pump Haul Fracing			2	12			-	7.7						0	0	0
	Chemical	45,000	6			1,227	1.05	12.6			0.16	1.9	1.2				
	Haul Fracing Sand	60,000	6	2	12	1,227	1.21	14.5	8.9		0.18	2.2	1.3		0	0	0
	Haul Fracing Other	85,000	6	2	12	1,227	1.44	17.3	10.6	329	0.22	2.6	1.6	49	0	0	0
	Haul Welders	12,000	6	2	12	1,227	0.54	6.5	4.0		0.08	1.0	0.6		0	0	0
	Haul Water Truck	60,000	6	8	48	1,227	1.21	58	36		0.18	9	5.3		0	0	0
	Pickup Cementer, Engineer	7,000	6	2	12	1,227	0.41	5.0	3.0		0.06	0.7	0.5		0	0	0
	Pickup Chasing Crew	10,000	6	2	12	1,227	0.49	5.9	3.6		0.07	0.9	0.5		0	0	0
	Pickup Completion Crew	10,000	6	8	48	1,227	0.49	23.7	14.5		0.07	3.6	2.2		0	0	0
	Pickup Completion Pusher	7,000	6	8	48	1,227	0.41	19.8	12.2		0.06	3.0	1.8		0	0	0
	Pickup Perforators Engineer	7,000	6	8	48	1,227	0.41	19.8	12.2		0.06	3.0	1.8		0	0	0
	Pickup Fracing Engineer	10,000	6	2	12	1,227	0.49	5.9	3.6		0.07	0.9	0.5		0	0	0
	Pickup Co. Supervisor	7,000	6	8	48	1,227	0.41	19.8	12.2		0.06	3.0	1.8		0	0	0
	Miscellaneous Supplies	7,000	6	8	48	1,227	0.41	19.8	12.2		0.06	3.0	1.8		0	0	0
	Pickup Roustabout Crew	12,000	6	2	12	1,227	0.54	6	4.0		0.08	1.0	0.6		0	0	0
	Semi Trucks	60,000	6	2	12	91	1.21	15	0.7		0.18	2	0.1		0	0	0
Well Head	Haul Trucks	45,000	6	2	12	91	1.05	13	1		0.16	2	0.1		0	0	0
Compressors	Pickup Trucks	7,000	6	2	12	91	0.41	5	0		0.06	1	0.0		0	0	0
	Semi Trucks	60,000	6	2	12	8	1.21	15	0.1		0.18	2	0.0		0	0	0
Central	Haul Trucks	45,000	6	2	12	8	1.05	13	0		0.16	2	0.0		0	0	0
Compressor Staton	Pickup Trucks	7.000	6	2	12	8	0.41	5	0		0.16	- 1	0.0		0	0	0
	rickup HUCKS	1,000	ь	2	12	đ	U.41	5	U		U.Ub	1	0.0	1	U	U	U

Table A1.2.18: Alternative D Exhaust Emission Factors for Commuting Vehicles

Ve	hicle			Emission Fa	ictors (g/mi)		
Туре	Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ª	со	voc
Light-Duty Gasoline Truck	LDGT2	1.01	0.10	0.08	0.11	11.64	0.75
Heavy-Duty Diesel Truck	HDDV	8.13	1.96	1.81	1.63	17.09	4.83

Emission Factors for Road Traffic

^a From BLM, 2003, APP_A21, table 1.1.2.2, estimated using EPA PART5 Model (1995)

^b Including tire and brake wear emissions.

Source: EPA, AP-42, Volume II, Appendix H-117, Table 3.1A.2 Light Duty Gasoline Powered Trucks II and

Appendix H-259, Table 7.1.2 Heavy Duty Diesel Powered Vehicles (High Altitude; Model Year 1991-1997; 50,000 mileage) (6/30/95).

Table A1.2.19: Alternative D Exhaust Emissions Estimates for Natural Gas and Oil Well Construction Road Traffic Enternative Read Traffic

	Vehicle		Round	# of Round Trips	Miles	Total # of												Emissio	ns												_
Construction Site Destination			Trip Distance	per Well Pad	Traveled per Well Pad or	Well Pads or		(lb/wel	l pad, lb/st:	ation, or I	b/project)			(ton/vehic	le type)				(te	on/const	ruction s	site)			lb/hr/s	ource		ton	Wear/source	:0
Deschation	Туре	Class	(mi)	or per Station	per Station	Stations	NOx	PM ₁₀	PM _{2.5}	SO2	со	VOC	NOx	PM ₁₀	PM _{2.5}	SO2	со	voc	NO _x	PM ₁₀	PM2.5	SO2	со	VOC	PM ₁₀	PM _{2.5}	SO2	со	NOx	PM _{2.5}	SO2
Drilling Roads	Semi Trucks	HDDV	6	2	12	1,227	0.22	0.05	0.05	0.04	0.45	0.13	0.1	0.03	0.03	0.03	0.3	0.1	0.1	0.03	0.03	0.03	0.3	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Producing Roads	Semi Trucks	HDDV	6	2	12	1,227	0.22	0.05	0.05	0.04	0.45	0.13	0.1	0.03	0.03	0.03	0.3	0.1	0.1	0.03	0.03	0.03	0.3	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Drilling Well Pad	Haul Trucks	HDDV	6	2	12	1,227	0.22	0.05	0.05	0.04	0.45	0.13	0.1	0.03	0.03	0.03	0.3	0.1	0.1	0.03	0.03	0.03	0.5	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Drilling well Pad	Pickup Trucks	LDGT2	6	2	12	1,227	0.03	0.003	0.002	0.003	0.31	0.02	0.0	0.002	0.001	0.002	0.2	0.01	0.1	0.03	0.03	0.03	0.5	0.1	0.00	0.000	0.000	0.001	0.00	0.00	0.0
Producing Well	Haul Trucks	HDDV	6	2	12	1,227	0.22	0.05	0.05	0.04	0.45	0.13	0.1	0.03	0.03	0.03	0.3	0.1	0.1	0.03	0.03	0.03	0.5	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Pad	Pickup Trucks	LDGT2	6	2	12	1,227	0.03	0.003	0.002	0.003	0.31	0.02	0.0	0.002	0.001	0.002	0.2	0.01	0.1	0.03	0.03	0.03	0.5	0.1	0.00	0.000	0.000	0.001	0.00	0.00	0.0
New Pipeline	Haul Trucks	HDDV	6	2	12	1,227	0.22	0.05	0.05	0.04	0.45	0.13	0.1	0.0	0.0	0.03	0.3	0.1	0.1	0.0	0.0	0.0	0.5	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
New Pipeline	Pickup Trucks	LDGT2	6	2	12	1,227	0.03	0.00	0.00	0.00	0.31	0.02	0.0	0.002	0.001	0.002	0.2	0.01	0.1	0.0	0.0	0.0	0.5	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Electric Line	Haul Trucks	HDDV	6	2	12	1,227	0.22	0.05	0.05	0.04	0.45	0.13	0.1	0.03	0.03	0.03	0.3	0.08	0.1	0.03	0.03	0.03	0.5	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Electric Line	Pickup Trucks	LDGT2	6	2	12	1,227	0.03	0.003	0.002	0.003	0.31	0.02	0.0	0.002	0.001	0.002	0.2	0.01	0.1	0.03	0.03	0.03	0.5	0.1	0.00	0.000	0.000	0.001	0.00	0.00	0.0
Central	Semi Trucks	HDDV	6	2	12	8	0.22	0.05	0.05	0.04	0.45	0.13	0.0	0.000	0.000	0.000	0.00	0.001							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Compressor	Haul Trucks	HDDV	6	2	12	8	0.22	0.05	0.05	0.04	0.45	0.13	0.0	0.000	0.000	0.000	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Station	Pickup Trucks	LDGT2	6	2	12	8	0.03	0.00	0.00	0.00	0.31	0.02	0.0	0.000	0.000	0.000	0.0	0.00							0.00	0.00	0.00	0.00	0.00	0.00	0.0
																	Subtot	al	0.9	0.2	0.2	0.2	2.4	0.5							

Assumptions for converting emissions to lbs/hr/source: used in AERMOD calculation hours per day = 10 days per source = 21

Table A1.2.20: Alternative D Exhaust Emissions Estimates for Natural Gas and Oil Well Construction Road Traffic Pre-trace Estimates for Read Traffic

Odd Odd <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th> <th>Round</th> <th># of Round</th> <th>Miles</th> <th>Total # of</th> <th></th> <th>Emissio</th> <th>ons</th> <th></th>	· · · · · · · · · · · · · · · · · · ·			Round	# of Round	Miles	Total # of												Emissio	ons												
	Construction Site Activity	Vehicle Type	Vehicle Class																			ton/proj	ect activi	ity)								
		Page: Dia Tengonasi	HDDV				444													NOx	PM10	PM _{2.5}	SO ₂	co	voc							
Hard							114											-														
matrix							114	_					-																			
							114											_														
							114						-																			
conditionalcondition	Bigue Delling	Rig Mechanics	HDDV	6	2		114	0.22	0.05	0.05	0.04	0.45	0.13	0.0	0.003	0.003	0.002	0.0	0.01							0.00	0.00	0.00	0.00	0.00	0.00	
	and Rig-down	Co. Supervisor	LDGT2	6	12		114	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.00	0.00	0.00	0.1	0.01	0.4	0.1	0.1	0.1	1.3	0.2	0.00	0.00	0.00	0.01	0.00	0.00	
		Tool Pusher	LDGT2	6	12	72	114	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
implement <		Mud Logger	LDGT2	6	12	72	114	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
Dec lege cond leg		Mud Engineer	LDGT2	6	12	72	114	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
		Logger, Engr Truck	HDDV	6	12	72	114	1.29	0.31	0.29	0.26	2.71	0.77	0.1	0.0	0.0	0.0	0.2	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
main field		Drill Bit Delivery	LDGT2	6	12	72	114	0.16	0.02	0.01	0.02	1.85	0.12	0.0	0.00	0.00	0.00	0.1	0.01							0.00	0.00	0.00	0.01	0.00	0.00	0.0
ham ici ici< ici< ici ici<		Semi Casing Haulers	HDDV	6	6	36	114	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.01	0.00	0.00	0.0
Part of b		Semi Completion,	HDDV	6	20	120		2.15	0.52	0.48	0.43	4.52	1.28	0.1	0.03	0.03	0.02	0.3	0.07							0.00	0.00	0.00	0.02	0.00	0.00	0.0
Part of the pa		Semi Fracing	HDDV	6	4	24		0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Image Image <th< td=""><td></td><td>Semi Pumping Tank</td><td>HDDV</td><td>6</td><td>6</td><td>36</td><td></td><td>0.65</td><td>0.16</td><td>0.14</td><td>0.13</td><td>1.36</td><td>0.38</td><td>0.0</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.1</td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.01</td><td>0.00</td><td>0.00</td><td>0.0</td></th<>		Semi Pumping Tank	HDDV	6	6	36		0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.01	0.00	0.00	0.0
Name Name <th< td=""><td></td><td></td><td>HDDV</td><td>6</td><td>6</td><td>36</td><td></td><td>0.65</td><td>0.16</td><td>0.14</td><td>0.13</td><td>1.36</td><td>0.38</td><td>0.0</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.1</td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.01</td><td>0.00</td><td>0.00</td><td></td></th<>			HDDV	6	6	36		0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.01	0.00	0.00	
Norm Norm Norm Norm No		Haul Cementer,	HDDV		-			0.65	0.16	0.14	0.13				0.01	0.01	0.01	_	0.02									0.00		0.00	0.00	
Net of the set of the		Haul Cementer,	HDDV					0.65		-								-														
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																																
Implement Implement <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>114</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							114																									
And Part Part Part Part Part Part Part Part			-				114	_										-														
head image		Logging Truck			6		114		0.16	0.14		1.36		0.0	0.01	0.01	0.01	-								0.00						
And and a bit or interpret interp			HDDV	6	6		114	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1								0.00	0.00	0.00	0.01	0.00	0.00	
Main marchane Main mar		Haul Anchor Testing	HDDV	6	6	36	114	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.01	0.01	0.01	0.1	0.02							0.00	0.00	0.00	0.01	0.00	0.00	0.0
marcine of particities marcine marcine of particities <t< td=""><td></td><td>Haul Fracing Tank</td><td>HDDV</td><td>6</td><td>4</td><td>24</td><td>114</td><td>0.43</td><td>0.10</td><td>0.10</td><td>0.09</td><td>0.90</td><td>0.26</td><td>0.0</td><td>0.01</td><td>0.01</td><td>0.00</td><td>0.1</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td></t<>		Haul Fracing Tank	HDDV	6	4	24	114	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01							0.00	0.00	0.00	0.00	0.00	0.00	0.0
hermain image <	Well Completion &		HDDV	6	4	24	114	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01							0.00	0.00	0.00	0.00	0.00	0.00	0.0
hair handsigned field	I esting		HDDV	6	4	24	114	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01							0.00	0.00	0.00	0.00	0.00	0.00	0.0
hardweders 1000 6.0 4.0 1.0 0.0 0.0 0.0 <th0< td=""><td></td><td>Haul Fracing Sand</td><td>HDDV</td><td>6</td><td>4</td><td>24</td><td>114</td><td>0.43</td><td>0.10</td><td>0.10</td><td>0.09</td><td>0.90</td><td>0.26</td><td>0.0</td><td>0.01</td><td>0.01</td><td>0.00</td><td>0.1</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td></th0<>		Haul Fracing Sand	HDDV	6	4	24	114	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Hardware Hor Geo A <t< td=""><td></td><td>Haul Fracing Other</td><td>HDDV</td><td>6</td><td>4</td><td>24</td><td>114</td><td>0.43</td><td>0.10</td><td>0.10</td><td>0.09</td><td>0.90</td><td>0.26</td><td>0.0</td><td>0.01</td><td>0.01</td><td>0.00</td><td>0.1</td><td>0.01</td><td></td><td>0.2</td><td>0.2</td><td>0.2</td><td></td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td></t<>		Haul Fracing Other	HDDV	6	4	24	114	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01		0.2	0.2	0.2		0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Phary Grandword (Participant) Ph		Haul Welders	HDDV	6	4	24	114	0.43	0.10	0.10	0.09	0.90	0.26	0.0	0.01	0.01	0.00	0.1	0.01	1.2	0.3	0.3	0.2	3.2	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Image Image <th< td=""><td></td><td>Haul Water Truck</td><td>HDDV</td><td>6</td><td>20</td><td>120</td><td>114</td><td>2.15</td><td>0.52</td><td>0.48</td><td>0.43</td><td>4.52</td><td>1.28</td><td>0.1</td><td>0.03</td><td>0.03</td><td>0.02</td><td>0.3</td><td>0.07</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.02</td><td>0.00</td><td>0.00</td><td>0.0</td></th<>		Haul Water Truck	HDDV	6	20	120	114	2.15	0.52	0.48	0.43	4.52	1.28	0.1	0.03	0.03	0.02	0.3	0.07							0.00	0.00	0.00	0.02	0.00	0.00	0.0
Phyche Matrix Matrix<			LDGT2	6	6	36	114	0.08	0.01	0.01	0.01	0.92	0.06	0.0	0.00	0.00	0.00	0.1	0.00							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Physic Out Out<			HDDV	6	6	36		0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.0	0.0	0.0	0.1	0.0							0.00	0.00	0.00	0.01	0.00	0.00	0.0
Phase-Greening Log Participation Descripation			HDDV	6	20	120		2.15	0.52	0.48	0.43	4.52	1.28	0.1	0.0	0.0	0.0	0.3	0.1							0.00	0.00	0.00	0.02	0.00	0.00	0.0
Principandian Data		Pickup Completion	LDGT2	6	20	120		0.27	0.026	0.020	0.030	3.08	0.20	0.02	0.001	0.001	0.002	0.2	0.01							0.00	0.000	0.000	0.015	0.00	0.00	0.00
Partial Partine Partia Partia Partial Partial Partial Partial Partial Partial P		Pickup Perforations	LDGT2		20			0.27		0.020	0.030			0.02	0.001	0.001	0.002	0.2											0.015		0.00	0.00
Industry		Pickup Fracing		6					0.104	0.096		0.90	0.26	0.02	0.006	0.005		0.1								0.00						
Businerial Busineria Busineria Busineria		Pickup Co.		-				_							_																	
Partial Relations Hory Gal				-			114	-										_														
Owe Owe <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>114</td> <td></td> <td>0.000</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td>							114																				0.000			0.00		
Max Hange Max Hange <t< td=""><td></td><td>Crew</td><td></td><td></td><td></td><td></td><td></td><td>0.65</td><td>0.16</td><td>0.14</td><td>0.13</td><td>1.36</td><td>0.38</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.01</td><td>0.00</td><td>0.00</td><td></td></t<>		Crew						0.65	0.16	0.14	0.13	1.36	0.38					-								0.00	0.00	0.00	0.01	0.00	0.00	
Compression Period Compression Period Compression Set (Compression) Compression <	Well Head			-	-			2.69	0.65	0.60	0.54	5.65	1.60		0.0.12											0.00	0.00	0.00	0.03	0.00	0.00	
Semi Tucks HOOV 6 6 150 0.00 0.01 0.01 0.00								0.65	0.16	0.14	0.13	1.36	0.38													0.00	0.00	0.00	0.01	0.00	0.00	
Contract		Pickup Trucks	LDGT2	6	6	36	37	0.08	0.01	0.01	0.01	0.92	0.06	0.0	0.000	0.000	0.000	0.0	0.00							0.00	0.00	0.00	0.00	0.00	0.00	0.0
Company Hall Trucks HODV 6 6 36 36 0.16 0.13 1.36 0.38 0.0 0.001 0.01 <th< td=""><td>Central</td><td>Semi Trucks</td><td>HDDV</td><td>6</td><td>6</td><td>150</td><td>8</td><td>2.69</td><td>0.65</td><td>0.60</td><td>0.54</td><td>5.65</td><td>1.60</td><td>0.0</td><td>0.003</td><td>0.002</td><td>0.002</td><td>0.02</td><td>0.006</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.03</td><td>0.00</td><td>0.00</td><td>0.0</td></th<>	Central	Semi Trucks	HDDV	6	6	150	8	2.69	0.65	0.60	0.54	5.65	1.60	0.0	0.003	0.002	0.002	0.02	0.006							0.00	0.00	0.00	0.03	0.00	0.00	0.0
Pickup Trucks LDGT2 6 6 6 36 8 0.08 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00	Compressor	Haul Trucks	HDDV	6	6	36	8	0.65	0.16	0.14	0.13	1.36	0.38	0.0	0.001	0.001	0.001	0.01	0.00							0.00	0.00	0.00	0.01	0.00	0.00	0.0
Subtotal 1.6 0.4 0.3 0.3 4 0.8		Pickup Trucks	LDGT2	6	6	36	8	0.08	0.01	0.01	0.01	0.92	0.06	0.0	0.000	0.000	0.000	0.0	0.00							0.00	0.00	0.00	0.00	0.00	0.00	0.0
																		:	Subtotal	1.6	0.4	0.3	0.3	4	0.8							

Table A1.2.21: Alternative D Emission Factors and Estimates for Central Compressor Stations Emission Factors for Natural Gas-Fired Compressors

Con	npressor	Horse-Power			Emi	ssion Factor	's (g/hp-hr) ^{a,}	,d	
COL	ipressor	Rating	NOx ^{a,}	PM ₁₀ ^{b,c}	SO ₂ ^b	со	VOC	НСНО	Formaldehyde
Central Compressor Station	Rich Burn	5,000	1.00	5.2E-03	2.0E-03	2.00	1.00	0.07	0.08

^a From State of Wyoming AQD BACT for all except Formaldehyde ^b From BLM, 2003. Source: EPA, *AP-42*, Volume I, Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2 & 3.2-3 (7/00).

 $^{\rm c}$ From BLM, 2003. Emission factor for $\rm PM_{2.5}$ was assumed to be the same as that for $\rm PM_{10}$

^d Formaldehyde emission factor is from Table B.2.10 of Johah Infill Drilling Project Technical Support Document, which references the Bird Canyon Permit

Emissions Estimation for Compressors

Type of	Total # of Operating	Operating		Total I	Emissions (te	on/year)					Emis	sions (Ib/hr))	
Compressors	Station-Year	Hours per Year	NOx	PM ₁₀	SO2	со	VOC	нсно	Formaldehyde	PM ₁₀	SO ₂	со	voc	Formal- dehyde
Central Compressor Station	8	8,760	386	2	1	772	386	27	4	0	0	176	88	0.88
		Total	386	2	1	772	386	27						

Emissions per

Compressor = emission factor g/hp-hr*compressor engine hp rating*(453.6g/lb)

NOX Emissions= (1.0 g/hp-hr*5,000 hp)/453.6g/lb = 110.23 lb per hour*8760 hours*8 stations/2000lb per ton = 386 tpy

Table A1.2.22: Alternative D Emission Factors for Well Head Compressors

	_				Capacity			Emission	Factors (g/l	np-hr)		
	Compressor		Make	Model	(hp)	NOx ^{a, d}	PM ₁₀ ^{b,c}	SO2 ^b	со	voc	нсно	CH₂O ^e
Well Head	Lean Burn	50%	Caterpillar	G3516LE	200	1.00	6.6E-02	2.0E-03	0.50	1.0E+00	0.07	0.08
Compressors	Rich Burn	50%	Waukesha	7044GSI	200	1.00	6.6E-02	2.0E-03	2.00	1.0E+00	0.05	0.08

Emission Factors for Natural Gas-Fired Compressors

^a BACT

^b From BLM Rawlins RMP, 2005. Source: EPA, AP-42, Volume I, Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2 & 3.2-3 (7/00).

^c From BLM Rawlins RMP, 2005. Emission factor for PM_{2.5} was assumed to be the same as that for PM₁₀.

 $^{\rm d}\,$ Equipped with oxidizing catalyst and from Caterpillar gas engine technical data

^e Formaldehyde emission factor is from Table B.2.10 of Johah Infill Drilling Project Technical Support Document, which references the Bird Canyon Permit

Type of	Total # of	Operating			Total Emis	ssions (ton/y	ear)		
Compressors	Operating Station- Year	Hours per Year	NOx	PM ₁₀	SO2	со	VOC	НСНО*	CH₂O
Well Head Compressors	37	8,760	71.46	4.72	0.14	89.32	71.46	4.29	5.72
		Total	71.46	4.72	0.14	89.32	71.46	4.29	5.72

Table A1.2.23: Alternative D Emissions Estimates for Well Head Compressors Emissions Estimation for Compressors

Total conventional well production based on 50,000 CF/day/well *HCHO= formaldehyde

Table A1.2.24: Alternative D VOC Emission Factors for Dehydration and CondensateTank Flashing During Production Operations

VOC Emission Factors Dehydration and Condensate Tank Flashing

Dehydration VOC Emissions

0.3759 lb/hr per MMSCF per day ^a

^a Generated from GRI-GLYCalc Version 4.0 and South Piney AQ Analysis Emission factor changed from 0.2164 lb/hr to 0.3759 lb/hr due to adding C9 and C10 components from S. Piney gas analysis

ssions
0.387 lb/hr uncontrolled ^a

^a from E&P Tank Version 2.0 as per South Piney AQ Analysis

Table A1.2.25: Alternative D VOC Emissions for Dehydration and Condensate Task Flashing During Production Operations

1	Total Field Condensate bbl/day							(lb/hr/	source)				1	ton/year/sourc	e	
	Total Field Condensate bbl/day	Total Number of Condensate Tanks	VOC Controlled Emission Factor Ib/hr		Total VOC Emissions tpy		Benzene	Toluene	Ethyl-benzene	Hexane	Xylene	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene
	15,911	1,591	0.023	8760	160	37	3	9	1	0	9	11	39	3	2	38

Assume 10 barrels of condensate and produced water per MMCF

HAP emissions represented on summary tables

Assume 70% of condensate tanks operate with a combustion chamber emission control device

Estimate for VOC Uncontrolled Condensate Tank Flashing Emissions per year

		VOC			(lb/hr/source)						ton/year/sou				
Total Field Condensate bbl/day	Total Number of Condensate Tanks	Uncontrolled	Hours of Operation per year	Total VOC Emissions tpy	voc	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene
6,819	682	0.387	8760	1156	264	19	64	5	3	62	82	282	23	14	272

Assume 10 barrels of condensate and produced water per MMCF HAP emissions represented on summary tables Assume 30% of condensate tanks operate without an emission control device Assume one tank per well

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per year = 8760

 Table A1.2.26: Alternative D Emission Factors for Dehydrator Heaters for Production

 Operations

Unit	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC
lb/MMscf	100	7.6	0.6	84	5.5
lb/MMBtu [®]	9.80E-02	7.45E-03	5.88E-04	8.24E-02	5.39E-03

Emission Factors for Dehydrator Heaters

^a From BLM, 2003. Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} .

^b From BLM, 2003. Assumed a fuel heating value of 1,020 Btu/scf.

Source: EPA, AP-42, Volume I, Section 1.4 Natural Gas Combustion (7/98).

Table A1.2.27: Alternative D Emissions Estimates for Dehydrator Heaters for Production Operations

per Year ^a	Dehydrator	Fuel	Number of				Total I	Emissio	ns (ton/y	year)			
	Heater Size MMBtu/hr	Usage MMCF/yr	Wells	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.10	0.21	2273	24	2	0	20	1	0	0	0	0	0

Emission Estimate for Dehydrator Heaters

^a Assumed operating 15 minutes per hour per day

Assume Dehydrator Heater Operation at each well site

HAP emissions represented on summary tables

Table 1.2.28: Alternative D Emission Factors for Three-Phase Separator HeatersEmission Factors for Three-Phase Separator Heaters

Unit	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC
lb/MMscf	100	7.6	0.6	84	5.5
lb/MMBtu [®]	9.80E-02	7.45E-03	5.88E-04	8.24E-02	5.39E-03

Table A1.2.29: Alternative D Emissions Estimates for Three-Phase Separator-Heaters **Emission Estimates for Three Phase Separator Heaters**

Operating Hours	Separator	Fuel	Number of				Total E	Emissio	ns (ton/y	year)			
Operating Hours per Year ^a	Size MMBtu/hr	Usage MMCF/yr	Wells	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.75	1.61	2273	183	14	1	154	10	0	0	0	0	0

^a Assumed operating 15 minutes per hour per day Assume Dehydrator Heater Operation at each well site

Table A1.2.30	Alternative 3	D Emissions	Estimates for	Condensate	Tank Heaters
----------------------	---------------	--------------------	----------------------	------------	--------------

	Tank Heater	Fuel	Emission Es	timates f	for Conde	nsate Ta			ns (ton/	vear)			
Operating Hours per Year ^a	Size MMBtu/hr	Usage MMCF/yr	Condensate Tanks	NOx	PM ₁₀	SO ₂	CO			Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.50	1.07	2273	122	9	1	102	7	0	0	0	0	0
^a Assumed operation Assume a separate	. .	•	day										

Table A1.2.31: Alternative D Emission Estimates for Produced Water Tank Heaters Emission Estimates for Produced Water Tank Heaters

Operating Hours	Tank Heater	Fuel	Number of				Total I	Emissio	ns (ton/	year)			
	Size MMBtu/hr	Usage	Produced Water Tanks	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.50	1.07	2273	122	9	1	102	7	0	0	0	0	0

^a Assumed operating 15 minutes per hour per day Assume a heater for each tank

Table A1.2.32: Alternative D Fugitive Dust Emission Factors for ProductionOperations Road Traffic

Emission F	actors for R	oad Traffic		
	Constant	PM ₁₀	PM _{2.5}	7
	k	1.8	0.27	1
$E[lb/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(11/2)^{a}(W/3)^{d}}$	а	1	1	
$E[ID/VIVIT] = (M/0.2)^{c}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Unpaved	Roads (9/98).		_
	Accumed			
Variable Description	Assumed Value		Refere	Ince
variable Description	Value		Refere	
E = size-specific emission factor (lb/VMT)				
s = surface material silt content (%)	5.1	BLM, 2003. (E Section 13.2.2		
W = mean vehicle weight (tons)	3.5	Assume a ligh	t-duty truck of	f 7,000 lb (BLM,2003)
M = surface material moisture content (%)	0.2	default value in Section 13.2.2		
CE = control efficiency for watering (%)	50			<i>ive Dust Sources</i> , Inpaved Surfaces (1988

Table A1.2.33: Alternative D Fugitive Dust Emissions Estimates for Production Operations Road Traffic Emissions Estimation for Road Traffic

									PM ₁₀			PM _{2.5}			
					Total #				Emi	ssions		Emis	sions	Emissions	(lb/hr/stn)
Activity	Compressor Station	Vehicle Type	Av. Vehicle Weight (Ib)	Total # of Operating Stations	Inspection Visits per Station per year	Inspection Visits	Total # Miles per Inspection	Em. Factor (Ib/VMT) a	(lb/stn-yr)	(ton/proj.)	Em. Factor (Ib/VMT)	(lb/stn-yr)	(ton/proj.)	PM ₁₀	PM _{2.5}
Inspection Visits for Compressor Stations	Central Compressor Station	Pickup Truck	7,000	8	52	416	10	0.63	6.3	1.3	0.09	0.9	0.20	0.0050609	0.001053
								Total		1.3			0.2		

^a BLM, 2003. Table APP_A21, field and sales compressors are visited using a 200 hp pick up truck (4 wheels) once a week

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per inspection = 24

Table A1.2.34: Alternative D Exhaust Emission Factors for Production Operations Road Traffic Exhaust Emission Factors for Road Traffic

Vahiala Class			Emission	Factors (g/mi)		
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ª	СО	VOC
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75

^a From BLM, 2003, table 1.1.2.2

^b Including tire and brake wear emissions.

Source: EPA, *AP-42*, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II (High Altitude; Model Year 1991-1997; 50,000 mileage) (1985).

	Av. Total # Total # Emissions																																	
Activity	Compressor Station		Vehicle Weight	Operating		Inspection Visits				(lb/stati	on-yr)							(ton	/project)										(lb/hr/st	in)				
			(lb)	Stations	Station per year	per year	Inspection	NOx	PM ₁₀	PM25	SOx	со	VOC	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene	PM ₁₀	PM _{2.5}	SOx	со	VOC B	Benzene T	Foluene	Ethyl- H	lexane	Xylene
Inspection Visits for Compressor Stations	Central Compressor Station	Pickup Truck	7,000	8	52	416	10	0.02	0.00	0.00	0.00	0.26	0.02	0.005	0.000	0.000	0.001	0.053	0.003	0	0	0	0	0	1.7E-06	1.3E-06	1.99E-06	0.00021 1	3E-05	0	0	0	0	0
												Total		0.00	0.00	0.00	0.00	0.05	0.00															

Table A1.2.35: Alternative D Exhaust Emissions Estimates for Production Operations Road Traffic Exhaust Emissions Estimation for Road Traffic

*BLM, 2003. Table APP_A21, field and sales compressors are visited using a 200 hp pick up truck (4 wheels) once a week

Emissions per well = emission factor g/mile*total miles per inspection/453.6 g/lb

Emission Fac	tors for Road	Traffic		
	Constant	PM ₁₀	PM _{2.5}	
	k	1.8	0.27	
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1	
$E[ID/VIVIT] = (M/0.2)^{c}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Unp	paved Roads (9/98).		
E = size-specific emission factor (lb/VMT)				
		BLM, 2003. (EPA, <i>AP-4</i> 2,	Volume I,
s = surface material silt content (%)	5.1	Section 13.2.2	2 Unpaved Ro	oads (9/98))
W= mean vehicle weight (tons)	60	Assume work	over rig 120,0	000 lbs
W= mean vehicle weight (tons)	30	Assume haul	truck 60,000	lbs
		Assume picku	p truck weigl	nt of 7,000
W = mean vehicle weight (tons)	3.5	lbs		
M = surface material moisture content (%)	0.2	Default value Section 13.2.2		
CE = control efficiency for watering (%)	50	EPA, Control Sources,	of Open Fugi	itive Dust

Table A1.2.36: Alternative D Fugitive Dust Emission Factors for Well Workover Road Traffic

				Fugitive Du	ıst Emissio	ns Estima	tion for Ro	oad Traffi	•						
		Av.	PM ₁₀ Emis	sions	Emission	PM _{2.5}	ssions	lb/hr/		ton/ye ar/wel					
Activity	Vehicle Type	Vehicle Weight (Ib)	Distance (mi)	Trips per Well	Traveled per Well	Wells Drilled	n Factor (Ib/VMT)	(Ib/woll)	ton/proj	Factor (Ib/VMT)	(lb/well)	(ton/proj.)	PM ₁₀	PM _{2.5}	PM _{2.5}
Well Workover	Workover Rig	120,000	3	2	6	114	2.6	16	1	0.1	1	0.0	0.32689	0.012	#####
	Haul Truck	60,000	3	2	6	114	1.8	11	1	0.4	2	0.1	0.23114	0.044	#####
	Pickup Truck	7,000	3	2	6	114	0.6	4	0	0.2	1	0.1	0.07895	0.022	#####
		2			0.2										

Table A1.2.37: Alternative D Fugitive Dust Emissions Estimates for Well Workover Road Traffic

^a BLM, 2003. Table APP_A21. ^b BLM, 2003. No dust control measures would be applied.

Table A1.2.38: Alternative D Exhaust Emission Factors for Well Workover On-Site Industrial Engines

	Emission Fa	ctors for Ind	ustrial Engir	ies											
Eucl Type	Emission Factors (lb/hp-hr)														
Fuel Type	NO _x	PM ₁₀	SOx	СО	VOC										
Diesel	2.40E-02	5.73E-04	4.05E-04	5.50E-03	7.05E-04										

EPA, AP-42, Volume I, Section 3.4 Large Stationary Diesel and all Stationary Dual Fuel Engines (10/96).

Table A1.2.39: Alternative D Exhaust Emission Estimates for Well Workover On-Site Industrial Engines On-Site Exhaust Emission Estimation for Industrial Engines

			Ave.	Operating	Total # of			(ib/well)			1	(ton	project)		EIIIIS	50115			lb/l	hr/sour	ce							ton/year/source)				
Activity	Equipment	(hp)	Operating Load Factor (%)	Hours	Wells Drilled	NOx	PM ₁₀	SOx	со	voc	NOx	PM ₁₀	SOx	со	voc	PM ₁₀	SOx	со	voc	Benzene		Ethyl- benzen e	Hexane	Xylene	NOx	SOx	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Well Workover	Truck- Mounted Unit	600	0.7	30	114	302	7	5	69	9	17	0.4	0.3	4.0	0.5	0.2	0.2	2.3	0.3	0	0	0	0	0	0.17	2.31	0.2961	0	0	0	0	0

Emissions per well

= emission factor lb/hp-hr*engine hp rating*operating hours*engine load factor %

NOx Emissions= <u>302 lb/well*114 wells</u> = 17 tons 2000lb/ton

Table 63: Alternative D Exhaust Emission Factors for Well Workover Road Traffic
Emission Factors for Road Traffic

Vehicle Class			Emission Fa	ctors (g/mi)		
venicie class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ª	CO	VOC
Light Duty Gasoline Truck (LDGT2)	1.01	0.10	0.08	0.11	11.64	0.75
Heavy-Duty Diesel Truck (HDDV)	8.13	1.96	1.81	1.63	17.09	4.83

^a BLM, 2003. Estimated using the EPA PART5 model (1995). ^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-259, Table 7.1.2 Heavy Duty Diesel Powered Vehic (High Altitude; Model Year 1991-1997; 50,000 mileage).

Table A1.2.41: Alternative D Exhaust Emission Estimates for Well Workover Road Traffic On-Road Exhaust Emissions Estimation for Road Traffic

	Vehic	:le	Round Trip		Miles	Total # of	Emission	IS																													
Activity				Round I rip		Wolls			(Ib	(lb/well) (ton/project) (lb/hr/source) (tons/year/source)																											
Addrig	Туре	Class	(mi)			Drilled	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene 1	foluene	Ethyl- benzene	Hexane	Xylene	NOx	PM _{2.5}	SOx	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
	Workover Rig	HDDV	3	2	6	114	0.1	0.0	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0.0	0.0	0.0	0.0	0	0	0	0	0
Well Workover	Haul Truck	HDDV	3	2	6	114	0.1	0.0	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0.0	0.0	0.0	0.0	0	0	0	0	0
	Pickup Truck	LDGT2	3	2	6	114	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0.0	0.0	0.0	0.0	0	0	0	0	0
						TOTAL							0.0	0.0	0.0	0.0	0.0	0.0																			

Workover Rig Emissions per well <u>emission factor g/mile*distance in miles</u> = (453.6 g/lb)

Assumptions for converting emissions to bis/ht/source; used in AERMOD calculation hours per round trip (driving time only, Workover Rig) = 24 hours per round trip (driving time only, Haul Truck) = 24 hours per round trip (driving time only, Pickup Truck) = 24

Emissio	on Factors for R	oad Traffic		
	Constant	PM ₁₀	PM _{2.5}	7
	k	1.8	0.27	
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1	
$(M/0.2)^{c}$	d	0.5	0.5	
	С	0.2	0.2	
E = size-specific emission factor (lb/VMT)		· · ·	EPA, <i>AP-4</i> 2, \	
s = surface material silt content (%)	5.1	· · ·	2 Unpaved Roa	
W = mean vehicle weight (tons)	3.5	Assume a ligh	nt-duty truck of	7,000 lb (BLM,2003)
M = surface material moisture content (%)	0.2		in EPA, <i>AP-42</i> 2 Unpaved Roa	
Control efficiency for watering (%) =	50			ive Dust Sources, npaved Surfaces

Table A1.2.42: Alternative D Fugitive Dust Emissions for Well and Pipeline Road Traffic

Table A1.2.43: Alternative D Fugitive Dust Emission Estimates for Well and Pipeline Road Traffic Well & Pipeline Fugitive Dust Emissions Estimation for Road Traffic

			Round Trip	# of Wells	# of Visits	Miles Traveled	Total # of		PM ₁₀			PM _{2.5}	
Activity	Vehicle Type	Av. Vehicle	Distance	Visited	per Well	per Well		Em. Factor	Emi	ssions	Em.	Emis	ssions
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Weight (lb)	(mi/day)	per Day ^a	per Year ^b	per Year	Well-Yr	(Ib/VMT) [°]	(lb/well-yr)	(ton/proj.)	Factor (Ib/VMT)	lb/well-yı	r(ton/proj.)
Visits for Inspection and Repair	200-hp Pickup	7,000	75	120	2	1.25	114	0.63	0.8	0	0.09	0.1	0.0

^a BLM, 2003. Table APP_A21.xls

^b BLM, 2003. Table APP_A21.xls

^c BLM, 2003. Table APP_A21.xls

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per round trip (driving time only,200-hp Pickup) = 24

Table A1.2.44: Alternative D Exhaust Emission Factors for Well and Pipeline Road Traffic **Exhaust Emission Factors for Road Traffic**

Vahiala Class			Emission	Factors (g/n	ni)	
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	СО	VOC
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75

^a From BLM, 2003, table 1.1.2.2

^b From BLM, 2003, table 1.1.2.2; including tire and brake wear emissions. Source: EPA, *AP-42*, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II (High Altitude; Model Year 1991-1997; 50,000 mileage) (1985).

Table A1.2.45: Alternative D Exhaust Emission Estimates for Well and Pipeline Road Traffic Well & Pipeline Exhaust Emissions Estimates for Well and Pipeline Road Traffic

	Vehi	cle	Round Trip	# of Wells	# of Visits	Miles Traveled	Total # of														Em	issions															
Activity	Turne	Class	Distance	Visited	per Well	per Well	Operating			(lb/well-	yr)					(ton/pro	ject)						(lb/hr	/source)								(ton/	year/sou	ırce)			
	Туре	Class	(mi/day)	per Day *	per Year ^b	per Year	Well-Yr	NOx	PM ₁₀	PM _{2.5}	SOx	CO	VOC	NOx	PM ₁₀	PM _{2.5}	SO _x	CO	VOC	PM ₁₀	PM _{2.5}	SO _x (O VOC	Benzen	e Toluene	Ethyl-	Hexane	Xylene	NOx	PM _{2.5}	SOx	VOC I	Benzene	Toluene	Etnyi- benzene	Hexane Xy	lene
Visits for Inspection , and Repair	200-hp Pickup	LDGT2	75	120	2	1.25	114	0.00	0.000	0.000	0.000	0.0	0.00	0.00	0.000	0.000	0.000	0.0	0.00	0.00	0.00	0.00 0	.00 0.00	0	0	0	0	0	0.00	0.00	0.00	0.00	0	0	0	0	0

^a From BLM, 2003, APP_A21, table 1.2.5.2 ^b Wells visited once per month

Assumptions for converting emissions to Ibs/hr/source; used in AERMOD calculation hours per round trip (driving time only,200-hp Pickup) = 24

Table A1.2.46: Alternative D Road Maintenance Emissions Estimation Information

Maintenance ^a	E	Equipment/Vehic	le	Road Length	# of Operating
Maintenance	Туре	Fuel	Capacity (hp)	Worked On per Day	Hours per Day
	Heavy Equipment ^b	Diesel	135 °	6	10
Summer	Commuting Vehicle	Gasoline	225	6 ^d	1 ^e
Winter	Heavy Equipment ^b	Diesel	135 °	5	10
	Commuting Vehicle	Gasoline	225	6 ^d	1.5 ^e

^a BLM, 2003. Road maintenance would be made twice in summer and once in winter every year.

^b BLM, 2003. Assume a motor grader.

^c BLM, 2003. Assume 135 hp.

 $^{\rm d}$ BLM, 2003. Average round trip mileage on unpaved road.

^e BLM, 2003. Assume one round trip per day.

Estimation of Total and Cumulative Length of	Roads
Total Length of Roads Built (mi/pad) ^{a,b}	0.9
Cumulative Length of Roads Maintained ^c (mi)	14

^a Reflects combination of drilling and producing roads
 ^b = drilling roads 0.5 mile per well and access roads are 0.4 mile per well for a total of 0.9 mile per well pad

^c = 0.9 miles of road built per pad*1861 well pads = 1,675 miles of roads to maintain

Estimation of Total Operation Days and Hours

Season	# of Operation per Year	Cumulative Length of Roads (mi-yr)	Road Length Worked On (mi/day)	# of Operating Hours per Day	Total # of Operating Days	Total # of Operating Hours
Summer	2	14	6	10	5	48
Winter	1	14	5	10	3	29
				Total	8	77

Emission Factors for Grader

Pollutant	Emission Factor Equation (Ib/VMT)	S ^a (mph)	Emission Factor (Ib/VMT)
PM ₁₀	$E = (0.6)(0.051) S^2$	5	0.765
PM _{2.5}	E = (0.031)(0.04) S ^{2.5}	5	0.069

^a Assumed a mean vehicle speed (S) of 5 mph. (BLM, 2003)

Source: EPA, AP-42, Volume I, Section 11.9 Western Surface Coal Mining (10/98).

Table A1.2.47: Alternative D Road Maintenance Fugitive Dust Emission Factors for Grader

Pollutant	Emission Factor Equation (Ib/VMT)	S ^a (mph)	Emission Factor (Ib/VMT)
PM ₁₀	$E = (0.6)(0.051) S^2$	5	0.765
PM _{2.5}	$E = (0.031)(0.04) S^{2.5}$	5	0.069

Emission Factors for Grader

^a Assumed a mean vehicle speed (S) of 5 mph. (BLM, 2003)

Source: EPA, AP-42, Volume I, Section 11.9 Western Surface Coal Mining (10/9

Table A1.2.48: Alternative D Road Maintenance Fugitive Dust Emissions Estimates for Grader Fugitive Dust Emissions Estimation for Grader

		Total # of			PN	1 ₁₀	Р	M _{2.5}			tonhand
Activity	Equipment	Operating	Mean Vehicle Speed (mph)	Total Miles Maintained	Em. Factor		Factor	Emissions	lb/h	r/well	ton/year/ well
		Hours ^a	opoou (mpn)	mannannou	(Ib/VMT)	(ton/proj.)	(Ib/VMT)	(ton/proj.)	PM ₁₀	PM _{2.5}	PM _{2.5}
Road Maintenance	Grader	6,546	5	32,731	0.765	13	0.069	1.1	0.153	0.013864	0.0005

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 200

Table A1.2.49: Alternative D Road Maintenance Exhaust Emission Factors for Grader Emission Factors for Grader

Equipmont		Emiss			
Equipment	NO _x	PM ₁₀ ^a	SO ₂	СО	VOC
Grader	7.14	0.63	0.87	1.54	0.36

^a Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} . (BLM, 2003) Source: EPA, *AP-42*, Volume II, Section II-7 Heavy-Duty Construction Equipment (1985).

			Total # of						Emissi	ons											
Activity	Activity Vehicle Type Capacity (hp) Operating		(lb/hr)				(ton/project)				(ton/year/source)						_				
Activity	venicie i ype	Capacity (iip)	Hours ^a	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	SOx	voc	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene
Road Maintenance	Grader	135	6,546	2.13	0.19	0.26	0.46	0.11	7	0.6	0.9	1.5	0.4	0	0	0	0	0	0	0	0

Table A1.2.50: Alternative D Road Maintenance Exhaust Emissions Estimates for Grader Exhaust Emissions Estimation for Grader

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 2003) ^b Emissions of PM₂₅ were assumed to be the same as those for PM₁₀.

Emission Factors for Commuting Maintenance	Vehicles Road	I Traffic		
	Constant	PM ₁₀	PM _{2.5}	1
	k	2.6	0.38	1
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1	
$E[ID/VINT] = (M/0.2)^{c}$	d	0.5	0.5	
	с	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Unpav	ed Roads (9/98	5).		
Variable Description	Assumed Value	Reference		
E = size-specific emission factor (lb/VMT) s = surface material silt content (%) W = mean vehicle weight (tons) M = surface material moisture content (%)	5.1 3.5 0.2	BLM, 2003.	2 Unpayed Ro nt-duty truck o Default value	
Control efficiency for watering (%) =	50		, Section 5.3	of Open Fugitive .1 Watering of

Table A1.2.51: Alternative D Fugitive Dust Emission Factors for CommutingMaintenance Vehicles

Table A1.2.52: Alternative D Fugitive Dust Emission Estimates for Commuting Maintenance Vehicles

			Round Trip	Total # of			VI ₁₀	PM ₂	.5
Road Pickup Tru	Vehicle Type	Av. Vehicle Weight (Ib)	Distance (mi/day)	Operating Days	Total Miles Traveled	Em. Factor (Ib/VMT) ^a	Emissions (ton/proj.)	Em. Factor (Ib/VMT) ^a	Emissio ns (ton/proj
Road Maintenance	Pickup Truck	7,000	6	1,091	6,546	0.63	2.1	0.09	0.3

Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

^a No dust control measures would be applied (BLM, 2003).

Table A1.2.53: Alternative D Exhaust Emission Factors for Commuting Maintenance Vehicles Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic

Vahiele Class			Emission Fa	ctors (g/mi)		
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	CO	VOC
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75

^a BLM, 2003. Estimated using the EPA PART5 model (1995). ^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table A1.2.54: Alternative D Exhaust Emission Estimates for Commuting Maintenance Vehicles Exhaust Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

	Activity	Ve	hicle	Round Trip	·		Emissions (ton/project)							
		Туре	Class	Distance (mi/day)	Operating Days	Traveled	NOx	PM ₁₀	PM _{2.5}	SO _x	СО	VOC		
	Road Maintenance	Pickup Truck	LDGT2	6	1,091	6,546	0.01	0.001	0.001	0.001	0.08	0.01		

Emissions = <u>emission factor g/mile*total distance in miles</u> (453.6 g/lb)(2000lb/ton)

Table A1.2.55: Alternative D Fugitive Emission Factors for Long-Term ProductionOperations. Compressor Maintenance Vehicles Road Traffic.

Emission Factors for Compressor Maintena				tion
	Constant	PM ₁₀	PM _{2.5}	1
	k	1.8	0.27	1
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1	
$E [Ib/VMT] = \frac{R(3/12)(W/3)}{(M/0.2)^{c}}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Un	paved Roads (9/9	8).		-
Variable Description	Assumed Value	<u>Reference</u>		
E = size-specific emission factor (lb/VMT)		BLM, 2003. (El	ρα αρ.ας \/	olume l
s = surface material silt content (%)	5.1	Section 13.2.2		
W = mean vehicle weight (tons)	3.5		•	7,000 lb (BLM,2003)
M = surface material moisture content (%)	0.2	Default value in Section 13.2.2	EPA, AP-42,	Volume I,
Control efficiency for watering (%) =	50			e Dust Sources, paved Surfaces

Table A1.2.56: Alternative D Fugitive Emissions Estimates for Long-Term Production Operations.Compressor Maintenance Vehicles Road Traffic.

					# of Visits per Year	s Total # of	Round Trip		PN	/I ₁₀	PM	-
Activity	Vehicle Type	Av. Vehicle Weight (Ib)		# of Stations			Distance (mi)	Total Miles Traveled	Em. Factor (Ib/VMT) ^a	(ton/proi.)	Em. Factor (Ib/VMT) ^d	Emission s (ton/proj.
Maintenance Visits to Central Compressor Stations	Pickup Truck	7,000	Central Compressor Station	8	3	24	3	72	0.63	0.0	0.09	0.0
								Total		0.0		0.0

^a No dust control measures would be applied (BLM, 2003, table APP_A21.xls).

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per round trip (driving time only, Pickup) = 24

Table 64: Alternative D Exhaust Emission Factors for Long-Term Production Operations.Compressor Maintenance Vehicles Road Traffic.

Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic: Long-term Production

Vahiala Class	Emission Factors (g/mi)												
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	СО	VOC							
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75							

^a BLM, 2003. Estimated using the EPA PART5 model (1995).

^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table A1.2.58: Alternative D Exhaust Emissions Estimates for Long-Term Production Operations. Compressor Maintenance Vehicles Road Traffic.

							Round Trip				Emissio	ns							
Activity	Veh	icie	Compressor	# of	# of Visits	I otal # of	Distanco	I otal Miles					(to	on/project)					
-	Туре	Class	Station	Stations	per Year	Round Trips	(mi)	Traveled	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Maintenance Visits to Compressor Stations	Pickup Truck	LDGT2	Central Compressor Station	8	2	16	10	160	0.000	0.0000	0.0000	0.0000	0.002	0.000	0	0	0	0	0
							Total		0.000	0.0000	0.0000	0.0000	0.00	0.000					

Emissions per

Station = emission factor g/mile*total distance in miles (453.6 g/lb)(2000lb/ton)

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per round trip (driving time only, Pickup) = 24

Table A1.2.59: Alternative D Natural Gas Well Condensate VOC Emissions Tanks 4.0 Natural Gas Well Condensate VOC Emissions

City: Price, Utah Type of Tank: Vertical Fixed Roof Size: 400 bbl Shell height: 20 ft Diameter: 12 ft Ave. Liquid height: 10 ft Turnovers: 12 Color: White Assume 9 bbl per MMCF gas production

_

Natural Gas Well Condensate VOC Emissions

			VOC Losses		
Components	Working Loss (lbs) ^a	Breathing Loss (lbs) ^a	Total Emissions per tank (lbs)	Total Number of Tanks	Total Tank Emissions (tpy)
Gasoline (RVP8)	1082.95	985	2068	88	91.07

Meteorological Data used in Emissions Calculations: Grand Junction, Colorado (Avg Atmospheric Pressure = 12.27 psia) ^a Calculated from Tanks 4.0

Table A1.2.60: Alternative D Natural Gas Well Condensate Truck Loadout VOC and HAP Emissions

Natural Gas Well Condensate Truck Loadout VOC Emissions

Emissions were estimated based on Equation (1) of AP-42, Section 5.2

 L_L = Loading Loss pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia)

M = molecular weight of vapors, pounds per pounds-mole (lb/lb-mole)

T = temperature of bulk liquid loaded (F+460)

$$\begin{split} S &= 1.45 \mbox{ (From Table 5.2-1, splash loading into tanker truck)} \\ P &= 8.0 \mbox{ psia} \\ M &= 68 \mbox{ lbs/lb-mole} \\ T &= 512.62, \mbox{ liquid bulk temp is 52.95 (from Tanks 4.0)} \end{split}$$

L_L = 12.46 (1.45*8*68)/512.62 19.17297023

L_L = 19.17 lbs/1,000 gal

Natural Gas Well Condensate Truck Loadout VOC Emissions

					lb/hr/source								
Pollutant	Emission Factor (lbs/1,000 gallons)	Annual Condensate Volume bbl ^a	Condensate (1,000 gallons)	Total Emissions tpy	voc	Benzene	Toluene	Ethyl- benzene	Hexane				
VOCs	19.17	4,977,870	209,071	4	0.81992976	3.4E-06	2E-07	2E-06	6.4E-05				

a Assume 50,000CFY conventional gas production, 9 bbl condensate per MMCF gas production

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per year that condensate tank has working and breathing losses (total emissions) = 8760

hours per year that condensate truck loadout occurs (used in calculation) = 8760

VOC and HAP emissions from Table B.2.8 of Jonah Technical Support Document; listed for Condensate Storage Tank

	TPY p	er tank
Compound	Controlled 98%	Uncontrolled
VOC	1	15.9
HAP	0.1	0.8
Benzene	0.0024	0.0367
Toluene	0.0001	0.0021
Ethylbenzene	0.0014	0.022
n-Hexane	0.0443	0.6891
Xylene	0.0018	0.0279

This page intentionally left blank.

APPENDIX B

Project Emissions Inventory for Oil Well Production

This page intentionally left blank.

Unit	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC
lb/MMscf	100	7.6	0.6	84	5.5
lb/MMBtu [▷]	9.80E-02	7.45E-03	5.88E-04	8.24E-02	5.39E-03

 Table B1.1.1: Alternatives A/B/C Emission Factors for Three-Phase Separator Heaters

 Emission Factors for Three-Phase Separator Heaters

Table B1.1.2: Alternatives A/B/C Emission Estimates for Three-Phase Separator Heaters **Emission Estimates for Three Phase Separator Heaters**

Operating Hours	Separator	Fuel	Number of				Total I	Emissio	ns (ton/y	year)			
per Year ^a	Size MMBtu/hr	Usage MMCF/yr	Wells	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
2,190	0.75	1.61	606	1	4	0	41	3	0	0	0	0	0
^a Assumed operatir	ng 15 minutes j	per hour per	day	0.0013									

^a Assumed operating 15 minutes per hour per day Assume Dehydrator Heater Operation at each well site

Emission Factor	s for Road T	Traffic					
	Constant	PM ₁₀	PM _{2.5}				
	k	1.8	0.27				
к(s/12) ^a (W/3) ^d	а	1	1				
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	d	0.5	0.5				
	с	0.2	0.2				
Source: EPA (1995), AP-42, Section 13.2.2 Unpa	ved Roads (9	9/98).		-			
E = size-specific emission factor (lb/VMT)			-UA AU_AO	Volume I			
s = surface material silt content (%)	5.1	BLM, 2003. (EPA, <i>AP-42</i> , Volume Section 13.2.2 Unpaved Roads (9/98))					
W= mean vehicle weight (tons)	60	Assume workover rig 120,000 lbs					
W= mean vehicle weight (tons)	30	Assume haul truck 60,000 lbs					
W = mean vehicle weight (tons)	3.5	Assume picku 7,000 lbs Default value i					
M = surface material moisture content (%)	0.2	Volume I,					
CE = control efficiency for watering (%)	50	Section 13.2.2 EPA, Control o Sources,					

Table B1.1.3: Alternatives A/B/C Fugitive Dust Emission Factors for Well Workover Road Traffic

Fugitive Dust Emissions Estimation for Road Traffic Fugitive Dust Emissions Estimation for Road Traffic PM2.5 ton/year Av. Round Trip # of Round Miles Total # of Emission Emission Emission Emissions Ib/hr/well /well															
Activity Vehic	Vehicle Type	Av. Vehicle	Distance	# of Round Trips per Well	Miles Traveled	Vells	Emissio	Emis	sions	Emission	Emi	ssions	lb/hr/well		/well
		Weight (lb)			per Well	i iiciis	n Factor (Ib/VMT)		ton/proj	Factor (Ib/VMT)	(lb/well)	(ton/proj.)	PM ₁₀ PM _{2.5}		PM _{2.5}
Vell Workover	Workover Rig	120,000	3	2	6	0	2.6	16	0	0.1	1	0.0	0.32689	0.012	0.0003
	Haul Truck	60,000	3	2	6	0	1.8	11	0	0.4	2	0.0	0.23114	0.044	0.0011
	Pickup Truck	7,000	3	2	6	0	0.6	4	0	0.2	1	0.0	0.07895	0.022	0.000

Table B1.1.4: Alternatives A/B/C Fugitive Dust Emission Estimates for Well Workover Road Traffic

^a BLM, 2003. Table APP_A21.

^b BLM, 2003. No dust control measures would be applied.

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per round trip (driving time only, Workover Rig) = 24

hours per round trip (driving time only, Haul Truck) = 24

hours per round trip (driving time only, Pickup Truck) = 24

	Emission Factors for Industrial Engines												
		Emission Factors (lb/hp-hr)											
Fuel Type	NO _x	PM ₁₀	SOx	CO	VOC								
Diesel	2.40E-02	5.73E-04	4.05E-04	5.50E-03	7.05E-04								

Table B1.1.5: Alternatives A/B/C Exhaust Emission Factors for Well Workover On-Site Industrial Engines

EPA, AP-42, Volume I, Section 3.4 Large Stationary Diesel and all Stationary Dual Fuel Engines (10/96).

			A				Emissions																									
		Consolution	Ave.	Operating	Total # of			(lb/well)				(tor	/project)						lb/	hr/sour	ce							to	n/year/sour	ce)		
Activity	Equipment	Capacity (hp)	Load Factor (%)	Hours per well	Wells Drilled	NOx	PM ₁₀	SOx	со	voc	NOx	PM ₁₀	SOx	со	voc	PM ₁₀	SOx	со	voc	Benzene	Toluene	Ethyl- benzen e	Hexane	Xylene	NOx	SOx	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Well Workover	Truck- Mounted Unit	600	0.7	30	0	302	7	5	69	9	0	0.0	0.0	0.0	0.0	0.2	0.2	2.3	0.3	0	0	0	0	0	0.17	2.31	0.2961	0	0	0	0	(

Table B1.1.6: Alternatives A/B/C Exhaust Emission Estimates for Well Workover On-Site Industrial Engines On-Site Exhaust Emissions Estimation for Industrial Engines

Emissions per well = emission factor lb/hp-hr*engine hp rating*operating hours*engine load factor %

NOx Emissions= <u>302 lb/well*0 wells</u> = 0 tons 2000lb/ton

 Table B1.1.7: Alternatives A/B/C Road Maintenance Emissions Estimation

 Information

Maintenance ^a	E	Equipment/Vehic	le	Road Length	# of Operating
Maintenance	Туре	Fuel	Capacity (hp)	Worked On per Day	Hours per Day
	Heavy Equipment ^b	Diesel	135 °	6	10
Summer	Commuting Vehicle	Gasoline	225	6 ^d	1 ^e
Winter	Heavy Equipment ^b	Diesel	135 °	5	10
	Commuting Vehicle	Gasoline	225	6 ^d	1.5 ^e

^a BLM, 2003. Road maintenance would be made twice in summer and once in winter every year.

^b BLM, 2003. Assume a motor grader.

^c BLM, 2003. Assume 135 hp.

^d BLM, 2003. Average round trip mileage on unpaved road.

^e BLM, 2003. Assume one round trip per day.

Estimation of Total and Cumulative Length of Roads

Total Length of Roads Built (mi/pad) ^{a,b}	0.9
Cumulative Length of Roads Maintained ^c (mi)	545

^a Reflects combination of drilling and producing roads

^b = drilling roads 0.5 mile per well and access roads are 0.4 mile per well for a total of 0.9 mile per well pad

^c = 0.9 miles of road built per pad*1861 well pads = 1,675 miles of roads to maintain

Table B1.1.8: Alternatives A/B/C Road Maintenance Fugitive Dust Emissions Factors for Grader

Season	# of Operation per Year	Cumulative Length of Roads (mi-yr)	Road Length Worked On (mi/day)	# of Operating Hours per Day	Total # of Operating Days	Total # of Operating Hours
Summer	2	545	6	10	182	1,818
Winter	1	545	5	10	109	1,091
				Total	291	2,909

Estimation of Total Operation Days and Hours

Emission Factors for Grader

Pollutant	Emission Factor Equation (Ib/VMT)	S ^a (mph)	Emission Factor (Ib/VMT)
PM ₁₀	$E = (0.6)(0.051) S^2$	5	0.765
PM _{2.5}	$E = (0.031)(0.04) S^{2.5}$	5	0.069

^a Assumed a mean vehicle speed (S) of 5 mph. (BLM, 2003) Source: EPA, *AP-42*, Volume I, Section 11.9 Western Surface Coal Mining (10/98).

Table B1.1.2: Alternatives A/B/C Road Maintenance Fugitive Dust Emissions Estimates for Grader Fugitive Dust Emissions Estimation for Grader

					PM	I ₁₀	Р	M _{2.5}			tenhaarl	
Activity	Equipment			Total Miles Maintained	Em. Factor		Em. Factor	Emissions	lb/hr/well		ton/year/ well	
		Hours ^a	Speed (mph)	(Ib/VMT) (ton/proj.)		(ton/proj.)	(Ib/VMT)	(ton/proj.)	PM ₁₀	PM _{2.5}	PM _{2.5}	
Road Maintenance	Grader	1,745	5	8,726	0.765	3	0.069	0.3	0.153	0.013864	0.0005	

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 200

Table B1.1.3: Alternatives A/B/C Road Maintenance Exhaust Emission Factors for Grader
Emission Factors for Grader

Equipment		Emission Factors (g/hp-hr)								
Equipment	NO _x	PM ₁₀ ^a	SO ₂	СО	VOC					
Grader	7.14	0.63	0.87	1.54	0.36					

^a Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} . (BLM, 2003) Source: EPA, *AP-42*, Volume II, Section II-7 Heavy-Duty Construction Equipment (1985).

			Total # of		Emissions																
Activity	Vehicle Type	Canacity (bp)	Operating	(lb/hr)				(ton/project)				(ton/year/source)					_				
Activity		Hours a	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	SOx	VOC	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene	
Road Maintenance	Grader	135	1,745	2.13	0.19	0.26	0.46	0.11	2	0.2	0.2	0.4	0.1	0	0	0	0	0	0	0	0

Table B1.1.4: Alternatives A/B/C Road Maintenance Exhaust Emission Estimates for Grader Exhaust Emissions Estimation for Grader

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 2003) ^b Emissions of PM_{2.5} were assumed to be the same as those for PM₁₀.

Table B1.1.5: Alternatives A/B/C Fugitive Dust Emission Factors for Commuting Maintenance Vehicles

Emission Factors for Commuting Maintenance	e Vehicles Road	d Traffic					
	Constant	PM ₁₀	PM _{2.5}	1			
	k	1.8	0.27				
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1				
$E [lb/VMT] = \frac{M(0, 12)(0, 0)}{(M/0.2)^{c}}$	d	0.5	0.5				
	С	0.2	0.2				
Source: EPA (1995), AP-42, Section 13.2.2 Unpa	ved Roads (9/98	3).					
Variable Description	Assumed Value	Reference					
E = size-specific emission factor (lb/VMT)							
s = surface material silt content (%)	5.1	DLIVI, 2003.	, , , , , , , , , , , , , , , , , , ,				
W = mean vehicle weight (tons)	3.5	Section 13.2.2.1 Innaved Roads (9/98)) Assume a light-duty truck of 7,000 lb (BLM,200					
M = surface material moisture content (%)	0.2	BLM, 2003. Default value in EPA, AP-42,					
		Volume I, See	ction 13.2.2 L	Inpaved Roads (9/98)			
Control efficiency for watering (%) =	50	BLM, 2003. E	EPA, Control	of Open Fugitive			
		Dust Sources	s, Section 5.3	.1 Watering of			
		Unpaved Sur	faces (1988)	-			

Table B1.1.6: Alternatives A/B/C Fugitive Dust Emission Estimates for Commuting Maintenance Vehicles Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

			Round Trip	Total # of			M ₁₀	PM ₂	5			ton/year/
Activity	Vehicle Type	Av. Vehicle	Distance	Operating	Total Miles	Em. Factor	Emissions	Em. Factor	Emissio	lb/hr		well
		Weight (Ib)	(mi/day)	Days	Traveled	(Ib/VMT) ^a	(ton/proj.)	(Ib/VMT) ^a	ns (ton/proj	PM ₁₀	PM _{2.5}	PM _{2.5}
Road Maintenance	Pickup Truck	7,000	6	291	1,745	0.63	0.6	0.09	0.1	0.126321	0.018948	0.0000

^a No dust control measures would be applied (BLM, 2003).

Table B1.1.7: Alternatives A/B/C Exhaust Emission Factors for Commuting Maintenance Vehicles Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic

Vahiala Class		Emission Factors (g/mi)											
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	CO	VOC							
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75							

^a BLM, 2003. Estimated using the EPA PART5 model (1995). ^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table B1.1.8: Alternatives A/B/C Exhaust Emission Estimates for Commuting Maintenance Vehicles Exhaust Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

	Vehicle		Round Trip	Total # of	Total Miles		Emissions (ton/project)						
Activity			Distance	Operating	Traveled								
	Туре	Class	(mi/day)	Days	Haveled	NOx	PM ₁₀	PM _{2.5}	SOx	CO	VOC		
Road Maintenance	Pickup Truck	LDGT2	6	291	1,745	0.00	0.000	0.000	0.000	0.02	0.00		

Emissions = <u>emission factor g/mile*total distance in miles</u> (453.6 g/lb)(2000lb/ton)

Table B1.1.9: Alternatives A/B/C Fugitive Emissions Factors for Long-Term Production Operations. Oil Tanker Road Traffic.

Emission Factors for Compressor Mainte		Road Traffic	: Long-terr	n Production		
	Constant	PM ₁₀	PM _{2.5}	1		
	k	1.8	0.27			
$E [Ib/VMT] = \frac{((s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1			
$E [Ib/VMT] = \frac{(0.12)(0.05)}{(M/0.2)^{c}}$	d	0.5	0.5			
	С	0.2	0.2			
Source: EPA (1995), AP-42, Section 13.2.2	Unpaved Roads	(9/98).		-		
	Assumed					
Variable Description	Value	<u>Reference</u>				
E = size-specific emission factor (lb/VMT)						
		BLM. 2003.	(EPA. AP-4	12, Volume I,		
s = surface material silt content (%)	5.1		•	Roads (9/98))		
W = mean vehicle weight (tons)	3.5			k of 7,000 lb (BLM,2003		
M = surface material moisture content (%)	0.2	Default value	e in EPA, Al	P-42, Volume I, Roads (9/98)		
Control efficiency for watering (%) =	50	EPA, Control of Open Fugitive Dust Sources Section 5.3.1 Watering of Unpaved Surfaces				

Table B1.1.10: Alternatives A/B/C Fugitive Emissions Estimates for Long-Term Production Operations. Oil Tanker Road Traffic. Fugitive Dust Emissions Estimation for Oil Tanker Road Traffic: Long-term Production

						Round Trip		PI	VI ₁₀	PM	2.5
Activity		Av. Vehicle Weight (lb)	# of Stations	# of Visits per Year	Total # of Round Trips	Distance		Em. Factor (Ib/VMT) ^a	Emissions (ton/proj.)	Factor	Emission s (ton/proj.
Travel to Transport Oil	Oil Tanker	75,000	606	4	2,424	10	24,240	2.07	25.1	0.31	3.8
							Total		25.1		3.8

^a No dust control measures would be applied (BLM, 2003, table APP_A21.xls).

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per round trip (driving time only) = 24

Table B1.1.11: Alternatives A/B/C Exhaust Emissions Factors for Long-Term ProductionOperations. Oil Tanker Road Traffic.

Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic: Long-term Production

Vahiela Class		Emission Factors (g/mi)										
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	СО	VOC						
Heavy Duty Truck	8.13	1.96	1.81	1.63	17.09	4.83						

^a BLM, 2003. Estimated using the EPA PART5 model (1995).

^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table B1.1.12: Alternatives A/B/C Exhaust Emissions Estimates for Long-Term Production **Operations.** Oil Tanker Road Traffic. Emissions Estimation for Road Traffic

			Round Trip						Emissio	ns								
Activity	Veh	icie		# of Visits	l otal # of	Dictore	I otal Miles		(ton/project									
-	Туре	Class	Stations	per Year	Round Trips	(mi)	Traveled	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Maintenance Visits	Oil Tanker	HDDV	606	4	2,424	10	24,240	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
						Total		0.000 0.0001 0.0001 0.0001 0.0008 0.0002				0.0002						

Emissions per

Station = <u>emission factor g/mile*total distance in miles</u> (453.6 g/lb)(2000lb/ton)

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per round trip (driving time only) = 24

 Table B1.2.1: Alternative D Emission Factors for Three-Phase Separator Heaters

 Emission Factors for Three-Phase Separator Heaters

Unit	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC
lb/MMscf	100	7.6	0.6	84	5.5
lb/MMBtu [¤]	9.80E-02	7.45E-03	5.88E-04	8.24E-02	5.39E-03

Table B1.2.2: Alternative D Emission Estimates for Three-Phase Separator Heaters Emission Estimates for Three Phase Separator Heaters

Operating Hours	Separator	Fuel	Number of		Total Emissions (ton/year)									
per Year ^a	Size MMBtu/hr	Usage MMCF/yr	Wells	NOx	PM ₁₀	SO ₂	со	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene	
2,190	0.75	1.61	455	1	3	0	31	2	0	0	0	0	0	

^a Assumed operating 15 minutes per hour per day Assume Dehydrator Heater Operation at each well site

Emission Factor	s for Road T	raffic		
	Constant	PM ₁₀	PM _{2.5}	
	k	1.8	0.27	
к(s/12) ^a (W/3) ^d	а	1	1	
$E [Ib/VMT] = \frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	d	0.5	0.5	
	С	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Unpa	ved Roads (9	9/98).		-
		1		
E = size-specific emission factor (lb/VMT)		BLM, 2003. (E	- UA AU-AU	Volume I
s = surface material silt content (%)	5.1	Section 13.2.2 (9/98))		
W= mean vehicle weight (tons)	60	Assume worko	over rig 120	,000 lbs
W= mean vehicle weight (tons)	30	Assume haul t	ruck 60,000) lbs
W = mean vehicle weight (tons)	3.5	Assume picku 7,000 lbs Default value i		
M = surface material moisture content (%)	0.2	Volume I,		
CE = control efficiency for watering (%)	50	Section 13.2.2 EPA, Control of Sources,		

 Table B1.2.3: Alternative D Fugitive Dust Emission Factors for Well Workover Road

 Traffic

	Fugitive Dust Emissions Estimation for Road Traffic														
	Activity Vehicle Type Vehicle Distance Trips Traveled Wells Emissio Emissions Emission Emissions											ton/year/			
Activity	Vehicle Type	Vehicle	Distance	Trips	Traveled	Wells	Emissio	Emis	sions	Emission	Emis	ssions	lb/hr/	well	well
Activity		Weight (lb)		per Well	per Well	Drilled	n Factor (Ib/VMT)		ton/proj	Factor (Ib/VMT)	(lb/well)	(ton/proj.)	PM ₁₀	PM _{2.5}	PM _{2.5}
Well Workover	Workover Rig	120,000	3	2	6	0	2.6	16	0	0.1	1	0.0	0.32689	0.012	0.0003
	Haul Truck	60,000	3	2	6	0	1.8	11	0	0.4	2	0.0	0.23114	0.044	0.0011
	Pickup Truck	7,000	3	2	6	0	0.6	4	0	0.2	1	0.0	0.07895	0.022	0.0005

Table B1.2.4: Alternative D Fugitive Dust Emission Estimates for Well Workover Road Traffic

^a BLM, 2003. Table APP_A21.

^b BLM, 2003. No dust control measures would be applied.

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation

hours per round trip (driving time only, Workover Rig) = 24

hours per round trip (driving time only, Haul Truck) = 24

hours per round trip (driving time only, Pickup Truck) = 24

	Emission Fa	ctors for Ind	ustrial Engir	ies								
Emission Factors (lb/hp-hr)												
Fuel Type	NO _x	PM ₁₀	SOx	CO	VOC							
Diesel	2.40E-02	5.73E-04	4.05E-04	5.50E-03	7.05E-04							

Table B1.2.5: Alternative D Exhaust Emission Factors for Well Workover On-Site Industrial Engines

EPA, AP-42, Volume I, Section 3.4 Large Stationary Diesel and all Stationary Dual Fuel Engines (10/96).

									-																							
			Ave.	Operating	g Total # of			(lb/well)			Emission (ton/project)				ons			lb/i	hr/sour	се				1				on/year/sou	rce)			
Activity	Equipment	Capacity (hp)	Operating Load Factor (%)	Hours	Wells Drilled	NOx	PM ₁₀	SOx	со	voc	NOx	PM ₁₀	SOx	со	voc	PM ₁₀	SOx	со	voc	Benzene	Toluene	Ethyl- benzen e	Hexane	Xylene	NOx	SOx	voc	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Well Workover	Truck- Mounted Unit	600	0.7	30	0	302	7	5	69	9	0	0.0	0.0	0.0	0.0	0.2	0.2	2.3	0.3	0	0	0	0	0	0.17	2.31	0.2961	0	0	0	0	C
Emissions per we =																																
NOx Emissions=	302 lb/well* 2000		= 0 tons																													

Table B1.2.6: Alternative D Exhaust Emission Estimates for Well Workover On-Site Industrial Engines On-Site Exhaust Emissions Estimation for Industrial Engines

Table B1.2.7: Alternative D Road Maintenance Emissions Estimation Information

Maintenance ^a	E	Equipment/Vehic	le	Road Length	# of Operating
Maintenance	Туре	Fuel	Capacity (hp)	Worked On per Day	Hours per Day
	Heavy Equipment ^b	Diesel	135 °	6	10
Summer	Commuting Vehicle	Gasoline	225	6 ^d	1 ^e
Winter	Heavy Equipment ^b	Diesel	135 °	5	10
	Commuting Vehicle	Gasoline	225	6 ^d	1.5 ^e

^a BLM, 2003. Road maintenance would be made twice in summer and once in winter every year.

^b BLM, 2003. Assume a motor grader.

^c BLM, 2003. Assume 135 hp.

^d BLM, 2003. Average round trip mileage on unpaved road.

^e BLM, 2003. Assume one round trip per day.

Estimation of Total and Cumulative Length of Roads

Total Length of Roads Built (mi/pad) ^{a,b}	0.9
Cumulative Length of Roads Maintained $^{\circ}$ (mi)	545

^a Reflects combination of drilling and producing roads

^b = drilling roads 0.5 mile per well and access roads are 0.4 mile per well for a total of 0.9 mile per well pad

^c = 0.9 miles of road built per pad*1861 well pads = 1,675 miles of roads to maintain

Table B1.2.8: Alternative D Road Maintenance Fugitive Dust Emissions Factors for Grader

Season	# of Operation per Year	Cumulative Length of Roads (mi-yr)	Road Length Worked On (mi/day)	# of Operating Hours per Day	Total # of Operating Days	Total # of Operating Hours
Summer	2	545	6	10	182	1,818
Winter	1	545	5	10	109	1,091
				Total	291	2,909

Estimation of Total Operation Days and Hours

Emission Factors for Grader

Pollutant	Emission Factor Equation (Ib/VMT)	S ^a (mph)	Emission Factor (Ib/VMT)
PM ₁₀	$E = (0.6)(0.051) S^2$	5	0.765
PM _{2.5}	$E = (0.031)(0.04) S^{2.5}$	5	0.069

^a Assumed a mean vehicle speed (S) of 5 mph. (BLM, 2003)

Source: EPA, AP-42, Volume I, Section 11.9 Western Surface Coal Mining (10/98).

Table B1.2.9: Alternative D Road Maintenance Fugitive Dust Emissions Estimates for Grader Fugitive Dust Emissions Estimation for Grader

		Total # of			PN	I ₁₀	Р	M _{2.5}			ton/year/	
Activity	Equipment	Operating	Mean Vehicle Speed (mph)	Total Miles Maintained	Em. Factor		Em. Factor	Emissions	lb/h	r/well	well	
		Hours ^a	obeen (b.)		(Ib/VMT)	(ton/proj.)	(Ib/VMT)	(ton/proj.)	PM ₁₀	PM _{2.5}	PM _{2.5}	
Road Maintenance	Grader	1,745	5	8,726	0.765	3	0.069	0.3	0.153	0.013864	0.0005	

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 200

Table B1.2.13: Alternative D Road Maintenance Exhaust Emission Factors for Grader
Emission Factors for Grader

Equipmont		Emission Factors (g/hp-hr)									
Equipment	NO _x	PM ₁₀ ^a	SO ₂	CO	VOC						
Grader	7.14	0.63	0.87	1.54	0.36						

^a Emission factor for $PM_{2.5}$ was assumed to be the same as that for PM_{10} . (BLM, 2003) Source: EPA, *AP-42*, Volume II, Section II-7 Heavy-Duty Construction Equipment (1985).

			Total # of						Emissi	ons											
			Operating	(lb/hr)				(ton/project)				(ton/year/source)									
Activity	venicie Type	Capacity (hp)	Hours ^a	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	PM ₁₀ ^b	SOx	со	voc	NOx	SOx	VOC	Benzene	Toluene	Ethyl-benzene	Hexane	Xylene
Road Maintenance	Grader	135	1,745	2.13	0.19	0.26	0.46	0.11	2	0.2	0.2	0.4	0.1	0	0	0	0	0	0	0	0

Table B1.2.11: Alternative D Road Maintenance Exhaust Emission Estimates for Grader Exhaust Emissions Estimation for Grader

^a Assumed that a grader would operate for 60% of the time, considering hours for preparation and closing of the shift, lunch break, and other extra activities. (BLM, 2003) ^b Emissions of PM_{2.5} were assumed to be the same as those for PM₁₀.

 Table B1.2.12: Alternative D Fugitive Dust Emission Factors for Commuting

 Maintenance Vehicles

Emission Factors for Commuting Maintenance	Vehicles Road	d Traffic		
	Constant	PM ₁₀	PM _{2.5}]
	k	1.8	0.27	
E [lb/VMT] = $\frac{k(s/12)^{a}(W/3)^{d}}{(M/0.2)^{c}}$	а	1	1	
$E [Ib/VMT] = \frac{N(0,12)^{c}}{(M/0.2)^{c}}$	d	0.5	0.5	
	с	0.2	0.2	
Source: EPA (1995), AP-42, Section 13.2.2 Unpav	ed Roads (9/98	3).		
	Assumed	D (
Variable Description	Value	Reference		
E = size-specific emission factor (lb/VMT) s = surface material silt content (%) W = mean vehicle weight (tons)	5.1 3.5	DLIVI, 2003. (Section 13.2) Assume a ligh	2 I Innaved R	
M = surface material moisture content (%)	0.2			in EPA, <i>AP-4</i> 2, npaved Roads (9/98
Control efficiency for watering (%) =	50		, Section 5.3	of Open Fugitive 1 Watering of

Table B1.2.13: Alternative D Fugitive Dust Emission Estimates for Commuting Maintenance Vehicles Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

			Round Trip	Total # of			VI ₁₀	PM _{2.}	5
Activity	Vehicle Type	Av. Vehicle Weight (lb)	Distance (mi/day)	Operating Days	Total Miles Traveled	Factor	Emissions (ton/proj.)		Emissio ns (ton/proj
Road Maintenand	ce Pickup Truck	7,000	6	291	1,745	0.63	0.6	0.09	0.1

^a No dust control measures would be applied (BLM, 2003).

Table B1.2.14: Alternative D Exhaust Emission Factors for Commuting Maintenance Vehicles Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic

Vahiala Class		Emission Factors (g/mi)												
Vehicle Class	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	СО	VOC								
Light-Duty Gasoline Truck	1.01	0.10	0.08	0.11	11.64	0.75								

^a BLM, 2003. Estimated using the EPA PART5 model (1995).

^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table B1.2.15: Alternative D Exhaust Emission Estimates for Commuting Maintenance Vehicles Exhaust Emissions Estimation for Commuting Maintenance Vehicles Road Traffic

Activity	Ve	hicle	I Total Miles								
	Distance Operating Traveled										
	Туре	Class	(mi/day)	Days		NO _x	PM ₁₀	PM _{2.5}	SOx	CO	VOC
Road Maintenance	Pickup Truck	LDGT2	6	291	1,745	0.00	0.000	0.000	0.000	0.02	0.00

Emissions = <u>emission factor g/mile*total distance in miles</u> (453.6 g/lb)(2000lb/ton)

 Table B1.2.16: Alternative D Fugitive Emissions Factors for Long-Term Production

 Operations. Oil Tanker Road Traffic.

Emission Factors for Compressor Mainte		s Road Traffic	: Long-ter	m Production			
	Constant	PM ₁₀	PM _{2.5}	1			
	k	1.8	0.27				
$E [Ib/VMT] = \frac{((s/12)^{a}(W/3))^{d}}{(M/0.2)^{c}}$	а	1	1				
$E [Ib/VMT] = \frac{(0/12)^{(0/13)}}{(M/0.2)^{c}}$	d	0.5	0.5				
	С	0.2	0.2				
Source: EPA (1995), AP-42, Section 13.2.2	Unpaved Roads	s (9/98).		_			
	Assumed	. (
Variable Description	Value	<u>Reference</u>					
E = size-specific emission factor (lb/VMT)		BLM, 2003.	(EPA, <i>AP-</i>	42, Volume I,			
s = surface material silt content (%)	5.1	Section 13.2	.2 Unpaved	d Roads (9/98))			
W = mean vehicle weight (tons)	3.5	Assume a lig	ht-duty true	ck of 7,000 lb (BLM,2003			
M = surface material moisture content (%)	0.2	Default value in EPA, <i>AP-42</i> , Volume I, Section 13.2.2 Unpaved Roads (9/98)					
Control efficiency for watering (%) =	50	EPA, <i>Control of Open Fugitive Dust Sources</i> , Section 5.3.1 Watering of Unpaved Surfaces					

Table B1.2.17: Alternative D Fugitive Emissions Estimates for Long-Term ProductionOperations. Oil Tanker Road Traffic.

Fugitive Dust Emissions Estimation for Oil Tanker Road Traffic: Long-term Production

Activity						Round Trip		PM ₁₀		PM2.5	
		Av. Vehicle Weight (lb)	# of Stations	# of Visits per Year	Total # of Round Trips	Distance		Em. Factor (Ib/VMT) ^a	Emissions (ton/proj.)	Factor	Emission s (ton/proj.
Travel to Transport Oil	Oil Tanker	75,000	455	4	1,820	10	18,200	2.07	18.8	0.31	2.8
							Total		18.8		2.8

^a No dust control measures would be applied (BLM, 2003, table APP_A21.xls).

<u>Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation</u> hours per round trip (driving time only, Pickup) = 24

Table B1.2.18: Alternative D Exhaust Emissions Factors for Long-Term Production Operations. Oil Tanker Road Traffic. Exhaust Emission Factors for Commuting Maintenance Vehicles Road Traffic: Long-term Production

•	0

Vehicle Class	Emission Factors (g/mi)											
	NO _x	PM ₁₀ ^{a,b}	PM _{2.5} ^{a,b}	SO _x ^a	СО	VOC						
Heavy Duty Truck	8.13	1.96	1.81	1.63	17.09	4.83						

^a BLM, 2003. Estimated using the EPA PART5 model (1995).

^b BLM, 2003. Including tire and brake wear emissions.

Source: EPA (1985), AP-42, Volume II, Appendix H-116, Table 7.1.2 Light Duty Gasoline Powered Trucks II

Table B1.2.18: Alternative D Exhaust Emissions Estimates for Long-Term Production Operations. Oil Tanker Road Traffic.

Activity	V-h	1				Round Trip				Emissio	ns							
	Veh	ICIE	# of	# of Visits	Total # of	Distance	Total Miles					(to	on/project)					
-	Туре	Class	Stations	per Year	Round Trips	(mi)	Traveled	NOx	PM ₁₀	PM _{2.5}	SOx	со	VOC	Benzene	Toluene	Ethyl- benzene	Hexane	Xylene
Maintenance Visits to Compressor Stations	Oil Tanker	HDDV	455	4	1,820	10	18,200	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
						Total		0.000	0.0001	0.0001	0.0001	0.0008	0.0002					

Emissions per

Station = emission factor g/mile*total distance in miles (453.6 g/lb)(2000lb/ton)

Assumptions for converting emissions to lbs/hr/source; used in AERMOD calculation hours per round trip (driving time only) = 24