MOVES Update for FACA Modeling Workgroup

February 11, 2003

Outline

- Implementation Plan
- Publication Status
- Peer Review Panel
- Analysis Issues
 - Emission Data Gathering
 - Fleet & Activity Data Sources
 - VSP Refinement
 - Vehicle Characterization
 - Modal Binning Options
 - Well-To-Pump Modeling
 - Advanced Technology Issues

MOVES Implementation Plan

MOVES GHG (on-road)

- Scope change under consideration:
 - Draft release: December 2003
 - Fuel consumption, CO₂, CH₄, N₂O inventories 1999 forward
 - Would include well-to-pump and policy evaluation components
- Add mesoscale implementation mid-2004

• Full on-road implementation: Fall 2005

- Add HC, CO, NOx, Toxics, PM, NH₃, SO₂
- Microscale analysis capability
- Will replace MOBILE6
- Off-Road: 2006
 - Will replace NONROAD

Publication Status

- Design and Implementation Plan
 - Comment period closed December 20th
 - Comments under evaluation

• Emission Analysis Plan for MOVES GHG

- Comment period extended to March 3rd
- Background reports:
 - Shootout reports (Sensors, EPA, UCR, NCSU, ENVIRON)
 - Modal binning analysis (NCSU)
 - Physical Emission Rate Estimator (Ed Nam)
 - Data gathering summary (ERG)
 - CO2/CH4 analysis (ERG)

Peer Review Panel

- Established per agency guidelines
- Independent panel chosen and administered by 3rd party contractor (Southwest Research)
- Panel members:
 - Dr. Ted Russell, Georgia Tech, Chair of NRC panel which reviewed EPA models
 - Dr. Marc Ross, University of Michigan
 - Michael Replogle, Co-Director of the Environmental Defense Fund Transportation Project

Emission Data Gathering

- Adding data (mostly second-by-second) in EPA Mobile Source Observation Database from:
 - CARB (UCC data, N₂O)
 - CRC (E-55 and other studies)
 - UC Riverside (CMEM, HD Trailer, N₂O)
 - Environment Canada (N₂O and other studies)
 - WVU (Thousands of HD chassis tests)
 - IM240 programs (Millions of vehicles)
 - NC State (on-board testing)
 - New York State (IM240 tests)
 - University of Texas

Fleet & Activity Data Sources

Registration databases

- Populations, vehicle characteristics
- Vehicle In-Use Survey
 - Truck subpopulations, mileage accumulation

• Ward's Automotive Yearbook

- Sales, vehicle characteristics
- Weigh-In-Motion Data
 - Heavy-duty weight distribution
- Highway Performance Monitoring System
 - Total VMT, VMT distributions by time/roadway/vehicle class
- Heavy-Duty Driving Surveys
- MOBILE6 analyses
 - Driving surveys, speed distributions

VSP Refinement

- 14 VSP bin approach showed bias by average speed for fuel and pollutants
- Emission analysis plan proposed to bin by VSP and average speed
- Further investigation reveals bias might be eliminated with improved road load terms (for fuel)
- To be presented at CRC (Nam et al)

Vehicle Characterization

• Source Use Types

- Subsets of HPMS vehicle classes
- Grouped by differences in <u>activity</u>

• Source Bins

- Subsets of source use types
- Grouped by differences in <u>emissions</u>

Source Use Types

HPMS Class	MOVES Use Type	
Passenger Cars	Passenger Cars	
	Passenger Trucks	
Other 2-axle / 4-tire Vehicles	Light Commercial Trucks	
Single Unit Trucks	Refuse	
	Trucks	
	Single-Unit	
	Commercial Trucks	
	Single-Unit	
	Delivery Trucks	
	Motorhomes	
	Interstate Buses	
Buses	Urban Buses	
	School Buses	
	Combination	
	Commercial Trucks	
Combination Trucks	Combination Delivery Trucks	
Motorcycles	Motorcycles	

MOVES GHG Source Bins

- Fuel consumption / CO₂
 - Fuel/engine technology
 - Average weight (if VSP is used)
 - Engine size
- CH_4/N_2O
 - Fuel/engine technology
 - Emission standard
 - Aftertreatment technology

Modal Binning Options

Fuel	Criteria Pollutants	Emission Rates	Comments
VSP & Weight Bins	VSP Bins	Gram/sec	Current proposal; hundreds of bins
Power Bins	Power Bins	Gram/sec	Significantly reduces bins
Power Bins	VSP Bins	Gram/sec	VSP better than power for criteria pollutants
Power Bins	VSP Bins	Gram/Gallon	Likely fewest number of bins

Well-To-Pump Modeling

- Initiating cooperative effort with DOE and ANL to integrate GREET and MOVES
 - Would add well-to-pump emission capability to MOVES for life cycle policy analysis

Issues:

- Improving time resolution of GREET
- Inclusion of vehicle cycle emissions
- Technology and fuel pathways to include

Advanced Technology Issues

Modeling hybrid electric vehicles

- Many implementation strategies
 - Engine sizing, engine use strategies
- How to fit in modal binning framework?
- Modeling fuel cell vehicles
 - Direct H₂ vs. On-board reforming
 - Hybrid strategies