

Review of MOVES Draft Design

Chris Lindhjem ENVIRON International Corporation Novato, CA

Robert Slott, Robert Sawyer, Alison Pollack

Purpose of this work

- Review of the EPA's plans for the MOVES model to replace MOBILE6
 - Approach design
 - Available data
 - Issues specific to greenhouse gases
 - New emissions measurement methods

Organization

- Vehicle selection and fleet characterization
- Emissions modeling
- In-use adjustments
- Activity data integration
- Accuracy, bias, and uncertainty
- Greenhouse gas specifics
- Portable Emission Monitoring System (PEMS)

Fleet definitions

• Vehicle bin definitions

– Many unique bin descriptions to populate or combine

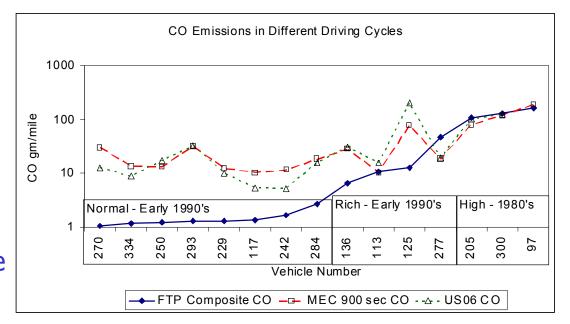
• Data availability (as of Sept. 15, 2003)

Vehicle Class	Weight (Ibs)	Precontrol ~ (<1980)	Tier 0 ~ (1980 – 1995)	Tier 1 ~ (1996 – 2001)
LDGV	All	2,237	35,088	1,643
LDGT1	<6,000 ¹	86	4,691	663
LDGT2	>6,000	37	249	5
LDDV	Any	7	30	1
LDDT	Any	0	18	0
		Precontrol ~ (<1985)	Intermediate ~ (1985 – 1993)	Advanced ~ (1994 – 2001)
HDGV	Any	0	39	39
LHDDV	<19,500	0	7	13
MHDDV	19.5 – 33 k	4	15	21
HHHDDV	>33,000	14	22	18
Bus		2	5	42

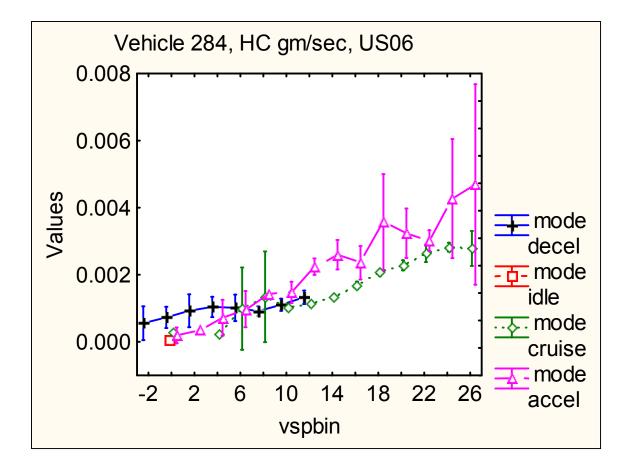
Light-duty high emitters

Data availability low (>2 g/mile HC or NOx)

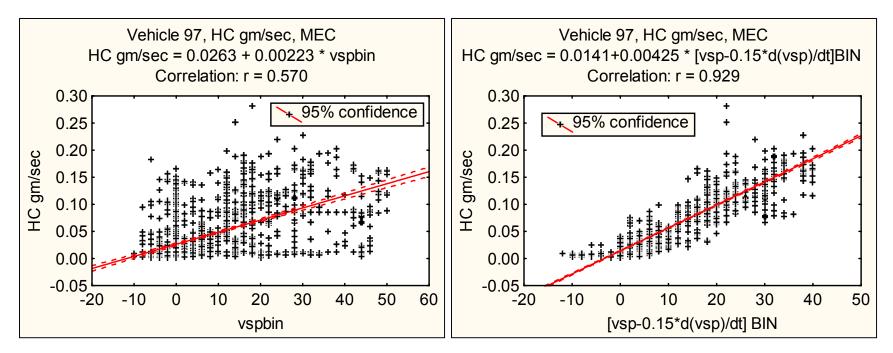
Vehicle Class	Weight (lbs)	Precontrol ~ (<1980)	Tier 0 ~ (1980 – 1995)	Tier 1 ~ (1996 – 2001)
LDGV	All	599	1072	2
LDGT1	<6,000 ¹	39	294	0
LDGT2	>6,000	11	20	0


Unknown selection bias

- Remote sensing to determine high emitter fleet fractions
- Define types of high emitters


Light-duty high emitters (cont.)

- Identify high emitter fleet fractions by in-use sampling
 - Removes selection bias
 - Allows selective testing for high emitters
 - Characterize the vehicle behavior at sites

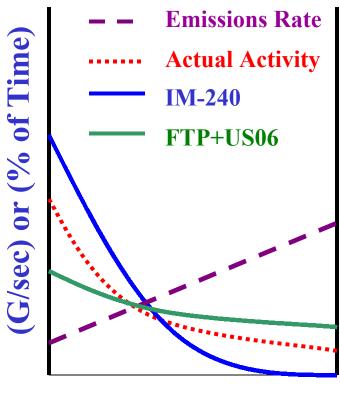


Emission modeling (light-duty normal)

Is it mode (acceleration, cruise, etc.)?

Emission modeling (light-duty high emitter)

Or d(VSP)/dt?


Additional vehicle activity variables are necessary and to identify other failure modes.

Binning emissions and activity

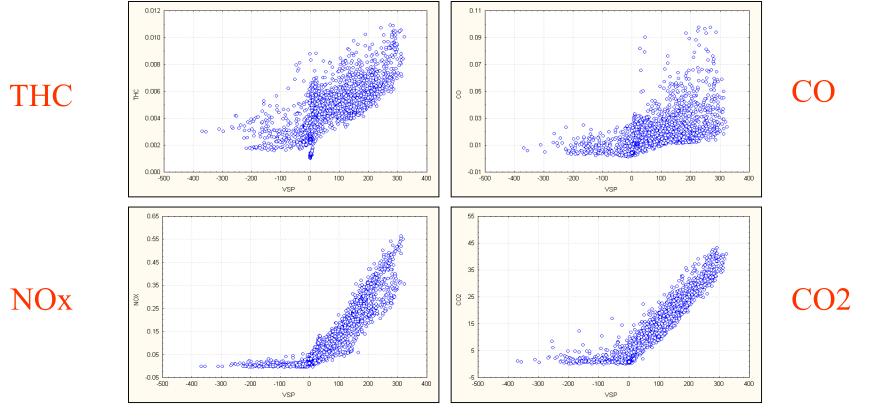
- Understand that bins are an interim step
- But why bin for the final analysis?
- Replace bins with analytical expressions determined from data regressions
- Bins could lead to bias, especially at high VSP where IM-240 data does not occur

Binning bias – Example for a combined > 15 VSP Bin

Example VSP Bin

|--|

Instrumented Vehicles ($(EF \sim 1)$
VSP Bin 15 – 20;	73%
VSP Bin >20;	27%


Data IM-240 (EF ~ 0.89)	
VSP Bin 15 – 20;	87%
VSP Bin >20;	13%

Data FTP + US06 (EF	~ 1.12)
VSP Bin 15 – 20;	58%
VSP Bin >20;	42%

Emission modeling (heavy-duty)

- CO2 and NOx correlated with VSP (NOx modal discussed in CRC E-55)
- CO (CO correlates with PM) and THC need additional investigation; speed, recent VSP, and d(VSP)/d(t) all potential important variables

P (kW)

11

P (kW)

In-use adjustments

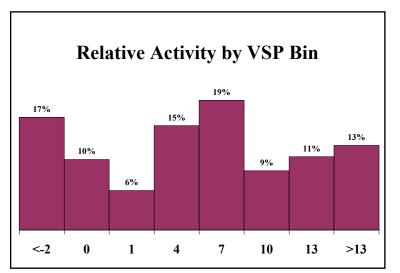
Humidity corrections

– Date to studies in 1970s

• Temperature and Altitude corrections

Cycle total adjustments only

• Fuel effects (Cycle totals only)


- Current adjustments of laboratory or PEMS data should be revisited
- Adjustment different by VSP level or other modes?

Incorporation of activity data

• Significant increase in data collection needs

- Currently only speed and VMT, so vehicle behavior offers the opportunity for a vast improvement
- VSP and other behavior distributions by congestion level and roadway type
- Model encourages smaller road links else a wider range of activity distributions, such as shown for a 2 intersection link

MOVES Workshop December 2, 2003

Accuracy, bias, and uncertainty

- Unknown vehicle and activity bin descriptions
- Uncertainty within each bin (need to collect more data for the largest and most variable emissions)
 - High emitters or high usage vehicles
 - High VSP or other high emission activity
 - Cold starts
- Larger number of bins increases the uncertainty by reducing data within each bin especially in terms of number of vehicles
- Current proposals to estimate uncertainty have not yet addressed the proper range of input variable uncertainty

Greenhouse gas issues

- Fuel consumption correlates well with VSP for light and heavy-duty vehicles
- PERE can be used to inform modeling
- Necessary to include other greenhouse gases?
 - $-N_2O$, 3% of CO_2 importance within transportation
 - CH_4 , 0.2% of CO₂ importance within transportation

PEMS method

Time matching description lacking

- Could vary by VSP level
- Adds to noise at 1 Hz level
- Cycle totals comparable with laboratory methods
- Data filtering (raw laboratory and PEMS results incompatible at 1 Hz level due to exhaust flow data)
- Activity collection
 - Roadway type
 - Congestion conditions instead of just speed
 - Not just average conditions but distributions

Summary and Recommendations

Vehicle definitions

- Bin definitions may need to be combined
- Identify high emitters fleet fractions from in-use measurements and target testing to high emitters
- Investigate how new vehicles\technologies behave and age

Emissions Modeling

- Modeling of regulated pollutants and high emitters will require additional light-duty vehicle activity terms
- Additional activity terms are also helpful for modeling lightduty normal emitters and fuel consumption
- Diesel CO (PM) emissions deserve more investigation
- Reconsider binning vehicle activity in favor of regressions

Summary and Recommendations

- In-use adjustments; dated and incompatible with MOVES using vehicle activity parameters
- Raise the level of interest in activity data collection
- Analysis should consider the number of vehicle bins in terms of data population; target testing on high emitters, high VSP, high usage
- Greenhouse gases; fuel consumption easiest to model, why worry about nitrous oxide and methane?
- PEMS measurements comparable with laboratory but more emphasis on data filtering

Acknowledgement

Coordinating Research Council

- Support; Project E-68
- Helpful review
- EPA OTAQ (especially John Koupal, Carl Fulper, Carl Scarbro, and Dave Bochenek)