Developing Draft Emission Rates for MOVES2006: Criteria pollutant emissions from Light-Duty Vehicles

FACA Modeling Workgroup Meeting August 8, 2006

Assessment and Standards Division EPA Office of Transportation & Air Quality

Outline

Recap MOVES design

Review Data Sources

- MOVES 2004
- Additional for MOVES2006
 - I/M program data
 - Remote Sensing
- Options to represent I/M

Addressing Measurement Error

- Example: preconditioning
- Approach and example: time-series alignment
- Model-year by Age Coverage
- Next Steps

Emissions Source (SourceBin)

MOVES classifies light-duty vehicles on basis of

- Fuel type
 - Gasoline, diesel, CNG, LPG, Ethanol, Hydrogen
- Engine Technology
 - "conventional" internal combustion
- Regulatory Class
 - LDV, LDT
- Model Year Group
 - 36 groups covering 1960 2050

ModelYearGroups (for Analysis...) Pre Tier 1 ... And Post Tier 1 ...

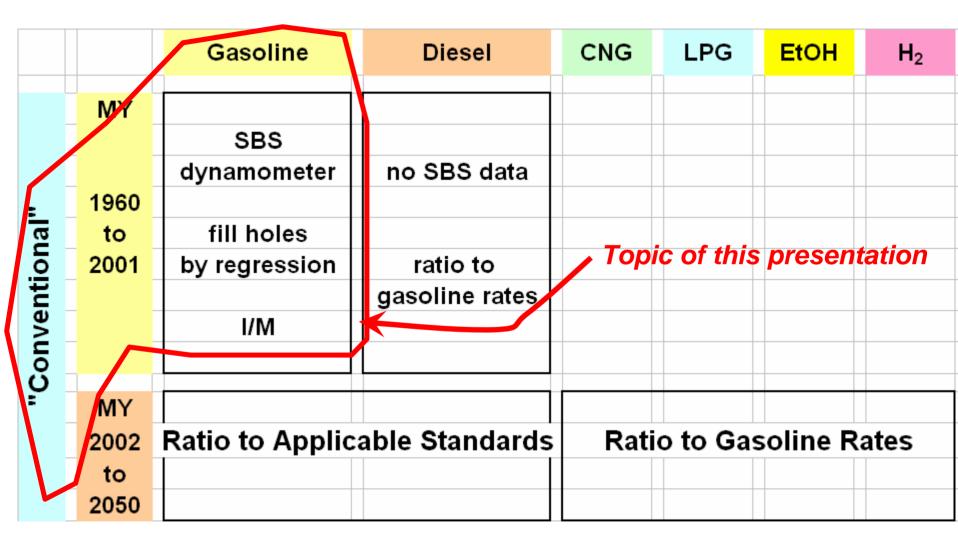
MY	LDV & LDT	MY	LDV LDT				
				LDT1	LDT2	LDT3	LDT4
1979		1994	FTP Tier	1 Certific	ation		
1980		1995					
1981	3-way catalysts	1996	FTP Tier	1 Final In	-Use	FTP Tier 1 Cert	tification &
1982		1997				Interim In-Use	
1983	I/M programs	1998				FTP Tier 1 Fina	al In-use
1984		1999	FTP NLE	V begins			
1985		2000					
1986		2001	SFTP NL	EV begins	s		
1987		2002					
1988		2003					
1989		2004		Tier 2	Require	ments take ef	fect
1990	CAA Amendments						
1991		2005					
1992		2006					
1993		2007					

Vehicle Age (Deterioration)

• MOVES estimates deterioration by providing different rates for seven age groups

- 0-3 years,
- 4-5 years,
- 6-7 years,
- 8-9 years,
- 10-14 years,
- 15-19 years,
- 20 + years

Operating Mode


- MOVES uses distinct emission rates for different "modes" of driving
- Modes are defined in terms of vehicle speed, acceleration
- Rates estimated for 23 modes:
 - Deceleration/braking (1 mode)
 Idle (1 mode)
 Coast (2 modes)
 Cruise/acceleration (19 modes)

Operating Modes for Running Exhaust Emissions

		Spee	d Class	(mph)	
		1-25	<u> 25-50</u>	<u> 50 +</u>	
30)+	16	30	40	
27	-30				For coast and cruise,
(kW/tonne) (kW/tonne) 18 15	-27		29	39	13 modes retained
Ū 21	-24		28	38	from MOVES2004, <i>plus</i>
18	8-21			4	8 modes added for
A 15	-18			37	MOVES2006.
vy 12	-15		27		PLUS
-9	12	15	25		One mode each for idle, and
SE 12 9- 6-3 3-0	9	14	24	35	decel/braking
<u>S</u> 3-0	6	13	23		Gives a total of
0-,	3	12	22	33	23 opModes
< (0	11	21		7

Overview: Data and Methods

Scope

• Goal: develop emission rates

- Process: running exhaust
- Pollutants: CO, THC, NOx
- Emissions Sources:
 - Fuel:
 - Regulatory Classes:
 - Model years: 1960 2001

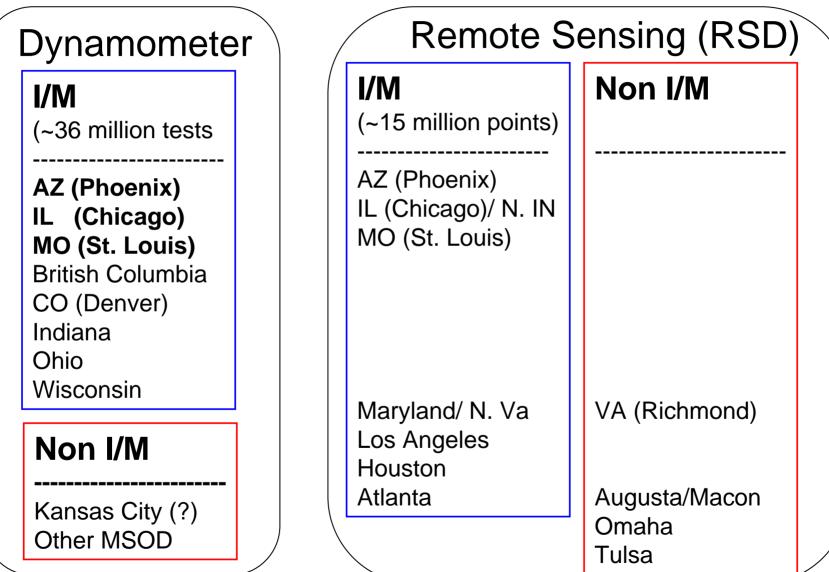
gasoline

LDV, LDT

- Temperature range (68-86 deg. F)
- Geographic scope: national default averages
- representing I/M and non I/M areas
- Calendar Years: 1990, 2002 +

• Questions:

- What data is available and suitable?
- How combine dynamometer and RSD measurements?



Data Sources: MOVES2004

Program	Sponsor	#vehicles			
New York Instrumentation/Protocol Assessment	NYSDEC	6,661			
Basic Emission Rates on Multiple Schedules	NVFEL	62			
Basic Emission Rates on Multiple Schedules (with AC on/off)	NVFEL	35			
Opacity and Exhaust Emissions in Gasoline Vehicles during an IM240	NVFEL	104			
Inventory Cycles/LA92 Exhaust Emissions	NVFEL	20			
(plus additional programs in OTAQ's Mobile-Source Observation Database)					
Issues with reliance on these data for MO -Limited coverage of model-year and age					

- -heavy reliance on single large program in one region (NE)?
- -Presence of vehicles certified to CA standards?
- -Mixture of vehicles representing I/M and non I/M conditions?

Additional Data for MOVES2006?

Pros and Cons

Lab vs. I/M vs. RSD

	Lab	I/M	RSD
High Emitters		\odot	00
Controlled Conditions	\odot		
Sample Size		\odot	©
Operating Range	\odot		
Data Points per Vehicle	☺ ☺	©	
MY X Age coverage		00	Û
Covers non I/M areas	÷		00

I/M Program Data **MO (St. Louis)**

- Type:
- Exemption:
- Tests:
 - MY 1980 and earlier: curb idle
 - MY 1981 to 1995
 - MY 1996 and later
- Screening?:
- Fast Pass:
- Fast Fail:
- We have:
- **Clean screen (RSD)**

2 most recent MY

IM240

OBDII

centralized on biennial cycle

at 31 sec or later

NO

CY 2000 to 2005

NO

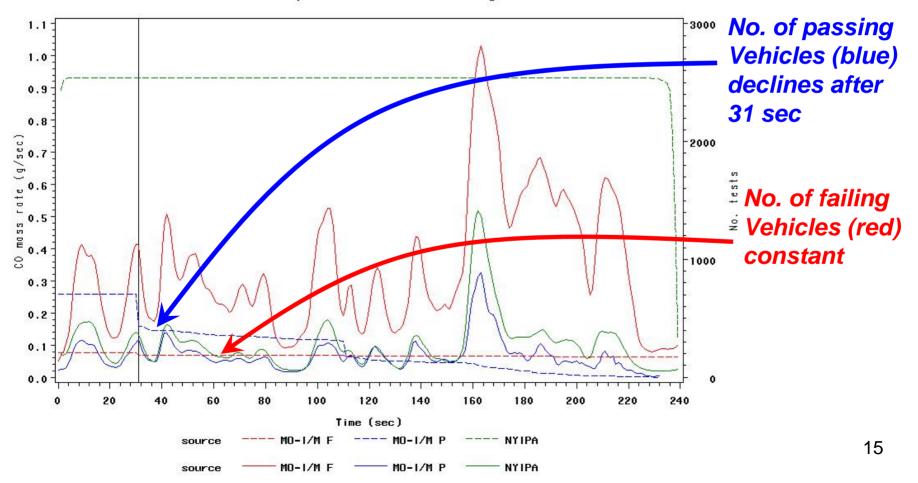
- Appr. 2 million tests
- Random sample:
- Back to Back sample: NO

I/M Program Data MO (St. Louis)

- Issues:
 - Clean Screen Bias
 - OBD Screen Bias
 - Fast-pass bias
 - Lack of preconditioning (?)
 - Misalignment of time series

• CONCLUSION:

- Exclude for MOVES2006
- REASON: lack of preconditioning compounded by fastpass bias


Example: Fast-Pass Bias (MO I/M) Vehicle Representation over I/M240

Gasoline, LDV, MY 1986-89, 10-14 years of age

Mass Rate: Averages by second over IM240 for two Programs

GAS, LDV, MYG=8689, AgeGroup=1014

Ambient Temperature between 68 and 86 deg. F

I/M Program Data AZ (Phoenix)

- Type:
- Exemption:
- Tests:
 - MY 1980 and earlier:
 - MY 1981 to 1995
 - MY 1996 and later
- Screening?:
- Fast Pass:
- Fast Fail:
- We have:
- Random sample:
- thru 1999, "2% of fleet" since 2002 "stratified random in triplicate"
- Back to Back sample: NO

4 most recent MY

centralized on biennial cycle

- IM240 (through 1999) IM147 (since 2000) OBDII
- NO at 31 sec
- at 31 sec or later
- YES CY 1994 to 2004

I/M Program Data AZ (Phoenix)

• Issues:

- OBD Screen Bias (if using program data)
- Fast-pass/ Fast-fail bias (if using program data)
- Lack of preconditioning (?)
- Misalignment of time series
- "Analyzer saturation," a.k.a. "plateaus"

• CONCLUSION:

- To include for MOVES2006
- APPROACH: use random sample
 - select duplicate or triplicate tests
 - differential weighting for pass/fail results

I/M Program Data IL (Metro Chicago)

- Type:
- Exemption:
- Tests:
 - MY 1980 and earlier:
 - MY 1981 to 1995
 - MY 1996 and later
- Screening?:
- Fast Pass: at 31 sec c
- Fast Fail:
- We have:
- Random sample:

Back to Back sample: YES

centralized on biennial cycle 4 most recent MY

- curb idle IM240
 - OBDII
- at 31 sec or later

NO

NO

"2% of fleet"

I/M Program Data IL (Metro Chicago)

• Issues:

- OBD Screen Bias (if using program data)
- Fast-pass bias
- Lack of preconditioning (?)
- Misalignment of time series

• CONCLUSION:

- To include for MOVES2006
- APPROACH: combine random and B2B samples

select duplicate tests

Program Data New York Instrumentation/ Protocol Assessment (NYIPA)

• Type:	within NY metro area (decentralized)			
• Exemption:		N/A		
• Tests:		IM240		
• Screening?:	N/A			
• Fast Pass:	N/A			
Fast Fail:		N/A		
• We have:		CY 2000 to 2004 (~5,500 tests)		
• Random sample:		???		
• Back to Back sample:		???		

Program Data New York Instrumentation/ Protocol Assessment (NYIPA)

• Issues:

- Random recruitment?
- NY adopted CA stds in 1999
 - are NYIPA vehicles nationally representative?
- Lack of preconditioning (?)
- Misalignment of time series

• CONCLUSION:

- Include for MOVES2006
- APPROACH: ID replicate B2B tests?
 - evaluate recruitment
 - evaluate influence of CA stds?

Summary: Sources and Issues Dynamometer Data

Issue	Dataset		t	Approach
	NYIPA	AZ I/M	IL I/M	
Measurement Error				
lack of pre-conditioning	???	R	R	use replicate B2B tests
implausibly high fuel economy	???	R	???	outlier screening
mis-alignment of time series	R	R	R	statistical alignment
"analyzer saturation," "plateaus"	???	R?	???	exclude extreme cases
Non-representativeness				
influence of CA LEV program?	???	n/a	n/a	
non-random recruitment	???	R	R?	use random samples
fast-pass/fast-fail bias	n/a	R	R	use random samples
clean-screen bias	n/a	n/a	n/a	
OBD -screen bias	R	R	R	use random samples

Data Sources: Remote Sensing (Approximate *no. measurements*)

Location	I/M	Non I/M
• St Louis (2004)	2,000,000	
• Virginia (2003-05)	210,000	79,000
• Colorado (2004-05)	280,000	14,000
• Georgia (2004)	170,000	
• Illinois (2003-05)	165,000	4,800
 Indiana (2003-05) 	49,000	56,000
• Tulsa, OK		19,000
• Omaha, NE		18,000

RSD: Processing

- Convert concentration ratios to mass ratios
 - Multiply by ratio of molecular weights
- Apply aromatic adjustment factor (THC only)
 - RSDs detect only alkanes
 - Adjustment accounts for missing aromatics
- Restrict to temperature range (68-86 deg. F)
- Use CO₂ rates to estimate mass rates
 - Can't generate mass rates independently
- Calculate VSP for each measurement
 - Necessary to fit into MOVES opModes
 - Necessary to compare to dynamometer data

Options to Represent I/M Programs?

• Adopt simplified approach ?

- Develop two sets of emission rates
 - I/M and non I/M
- Modify by program fraction
 - To represent program differences
- Default condition to be "I/M"
 - Adjust to "non-I/M"

How represent I/M difference?

I/M "non I/M" "Between Program Areas"

I/M

PRO: May be only option? CON: prone to confounding? difficult to match areas, interpret differences?

"Within Program Area(s)" PRO: free from extraneous confounding? CON: Can ID "non I/M" vehicles within area?

non I/M

How represent I/M difference? Options for analysis

• Within-Program

- "program evaluation" method

MOVES

- "out-of-program" vehicles method
 - Vehicles operating within I/M area that may not be influenced by the program?

Between Program

- Develop rates independently
 - Generate two sets of rates from separate data sources
- Develop default rates and adjustments
 - With I/M as default, and
 - Adjust to non I/M
- Remote-sensing is probable data source

"Program Evaluation" Method

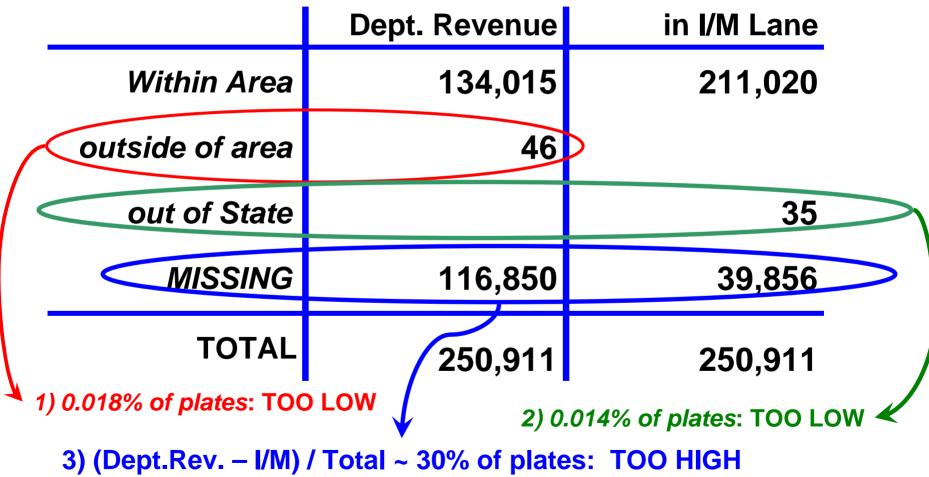
- Average initial and final Tests within each program cycle
- Calculate reduction from initial to final
 - Usually expressed as %

MOVES

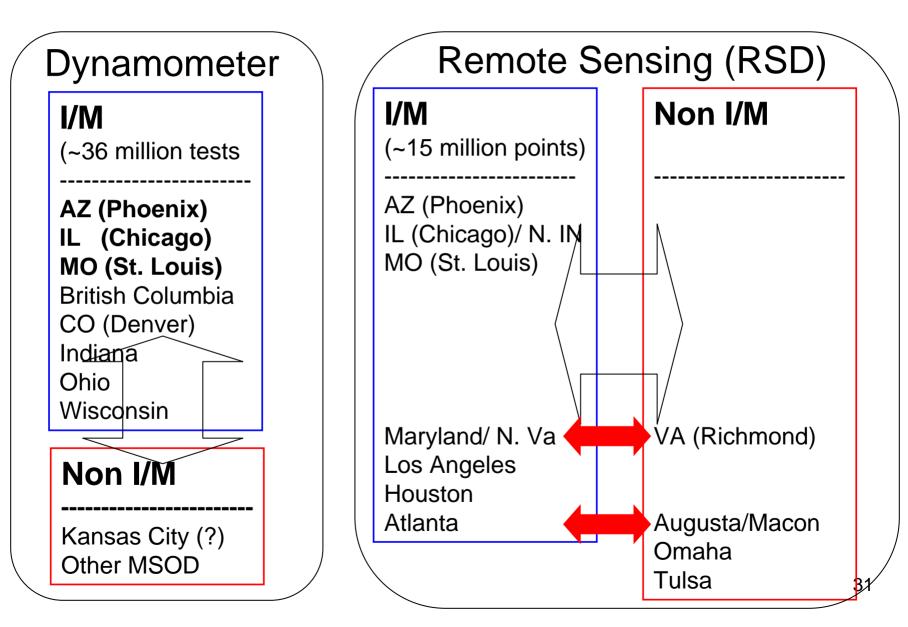
- Reduction(%) = (initial-final)/initial
- ISSUES with respect to MOVES2006
 - Requires use of program data
 - Need to estimate missing portions of partial tests
 - Sec-by-sec modal approach requires full time series
 - Initial and final tests not included in random samples
- CONCLUSION: adaptations needed to use I/M data in modal framework probably preclude this approach

Identifying Out-of-Program Vehicles? Example: MO (St. Louis)

- Can we use license plate information?
- Two Sources:
 - MO Dept. Revenue provides to MO DNR
 - Contractor collects in I/M Lane


MOVES

- Criteria (vehicle may be O-of-P if...)
 - 1) If "Dept. Rev." plate not from Program Area?
 - 2) If "I/M Lane" plate is out-of-state
 - 3) If "Dept. Rev." is MISSING and "I/M" is present?



Identifying "Out-of-Program" Vehicles? Example: MO (St. Louis)

Book-keeping for sources of information on license plates:

Between-Program Comparisons?

Next Steps

• General approach (open to debate)?

- I/M rates as default
 - Based on dynamometer data
- Non I/M rates by adjustment
 - Based on RSD

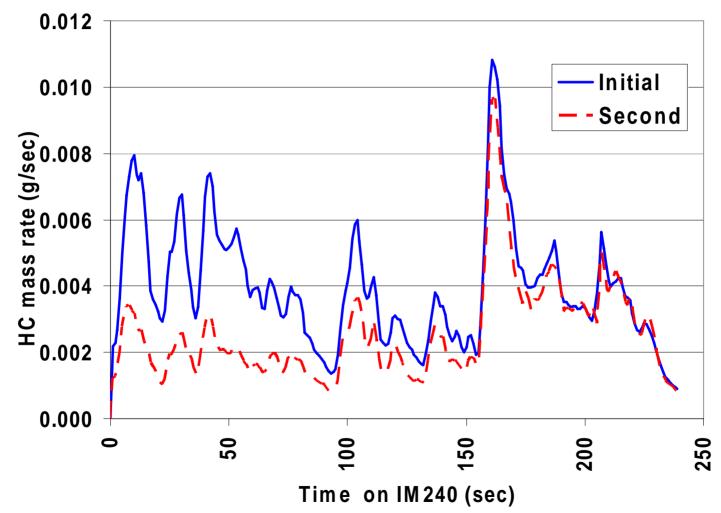
Issues

- Should I/M differences vary by opMode?
- Should I/M differences vary
 - by MYG,
 - by ageGroup,
 - or both?
 - RSD has poor coverage of age ranges in MY

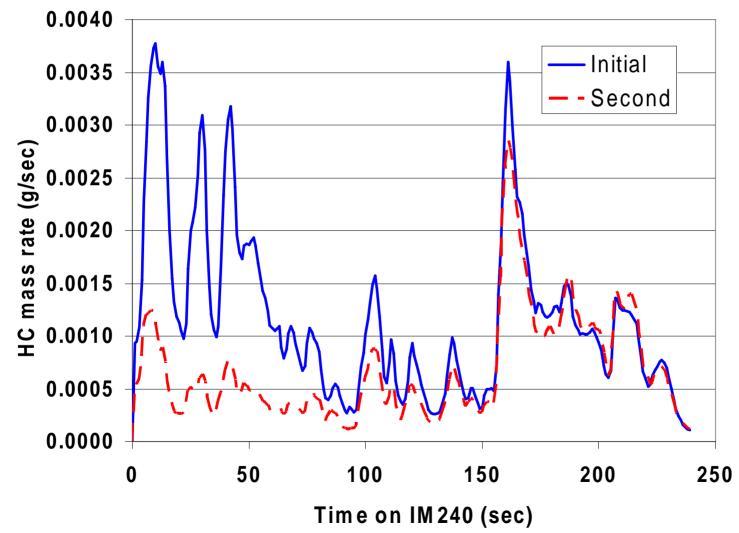
$$E_{\text{non}-\text{I/M}} = r E_{\text{I/M}} ?$$

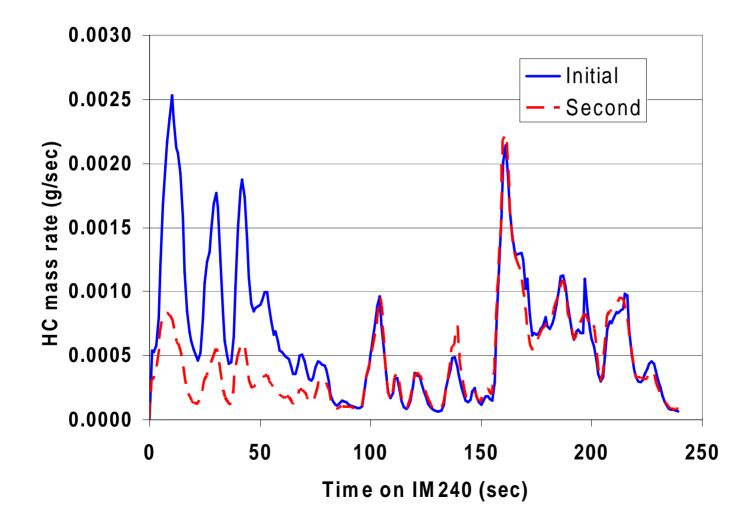
High Emitters? Or High Emissions?

- Presumption: MOVES will not model a separate class of "high emitters"
 - Issue still under discussion
- No available definition that is not arbitrary
 - distinct population of 'high emitters' not obvious
 - High on all pollutants, every day?
 - High in all operating modes?
- More rates require more book-keeping in MOVES
 - Separate set of "hi emitter rates would double number of rates needed
 - Could reduce model performance
- Current direction: Attempt to derive "representative" rates
 - Assume emissions represent single distribution with long tail
 - "clean and "dirty" vehicles in "correct" proportions



Pre-conditioning


- Example: data from Metro Chicago
- To assess level of conditioning:
 - Isolate sample of back-to-back tests
 - Average all tests by second over IM240
 - Plot "first" and "second" time series
- Examine three model years
 - 1994, 1998, 2000
 - Use THC as example


THC time series on IM240 MY1994

THC time series on IM240 MY 1998

THC time series on IM240 MY 2000

Time Series Alignment: Process Example: AZ I/M

- Steps
 - Calculate Vehicle-specific power (VSP)
 - Set negative VSP to 0.0

MOVES

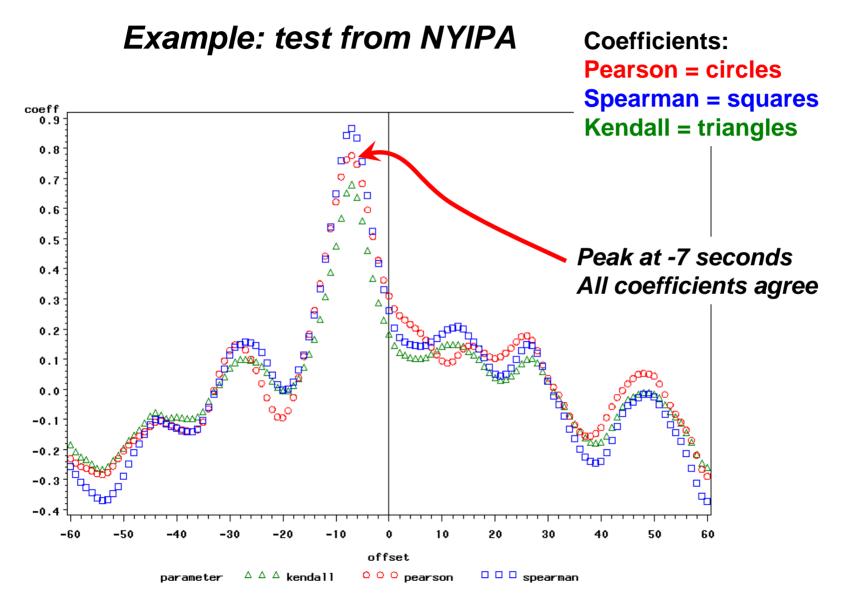
- Smooth VSP
- Calculate correlation coefficients at each offset over window of +/- 6 sec
- Get offsets associated with maximum correlation
- Apply offset to emissions time-series

Calculate and Smooth VSP...

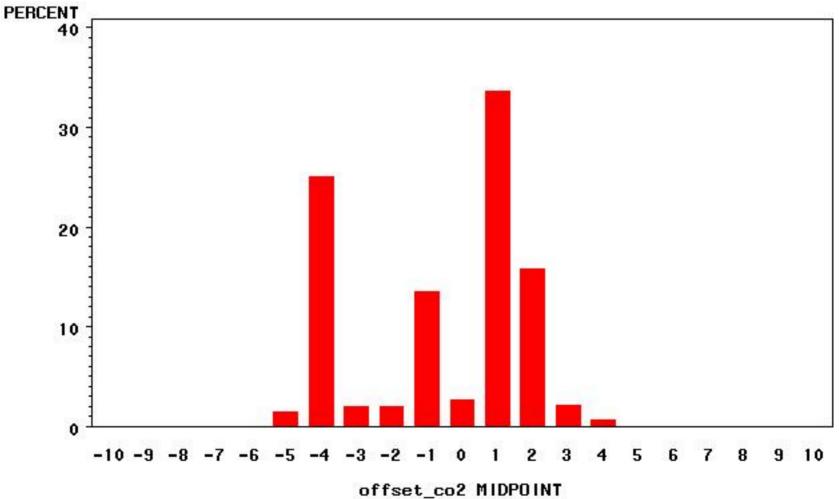
VSP represents the vehicle's tractive power normalized to its weight, and calculated is a function of velocity, acceleration, weight and the Vehicles road-load coefficients

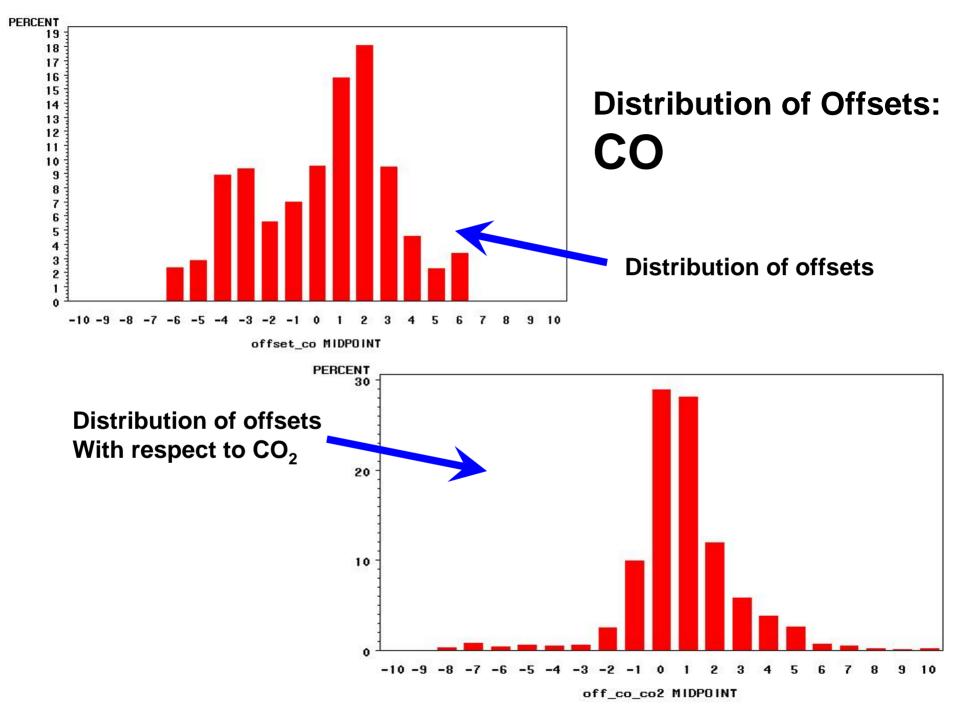
$$VSP_t = \frac{Av_t + Bv_t^2 + Cv_t^3 + v_t a_t}{m}$$

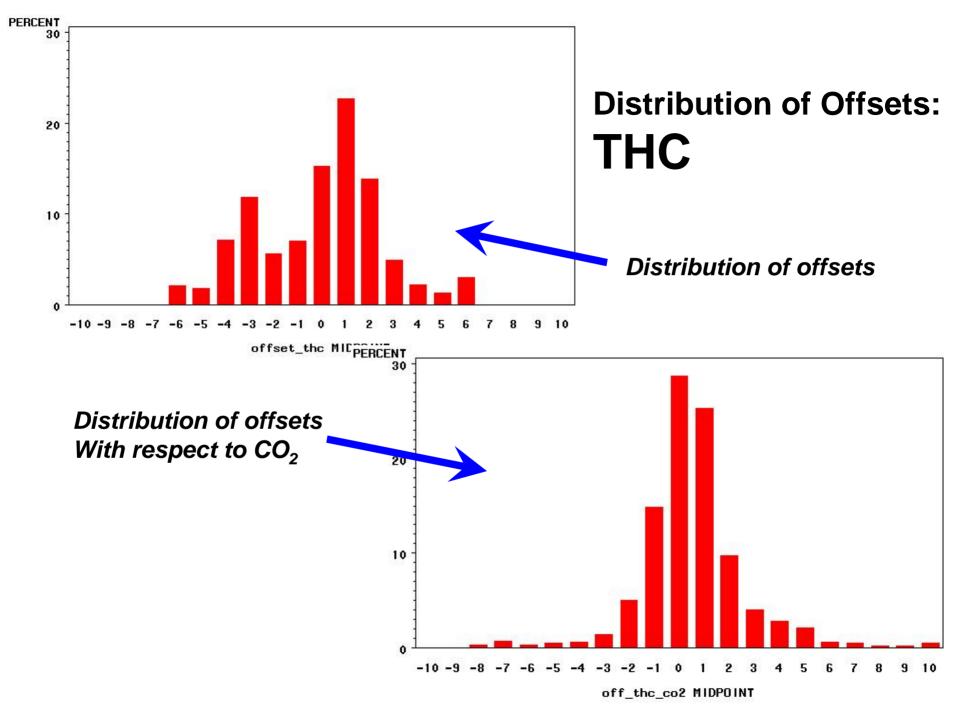
Then smooth VSP, using a weighted-centered moving average...

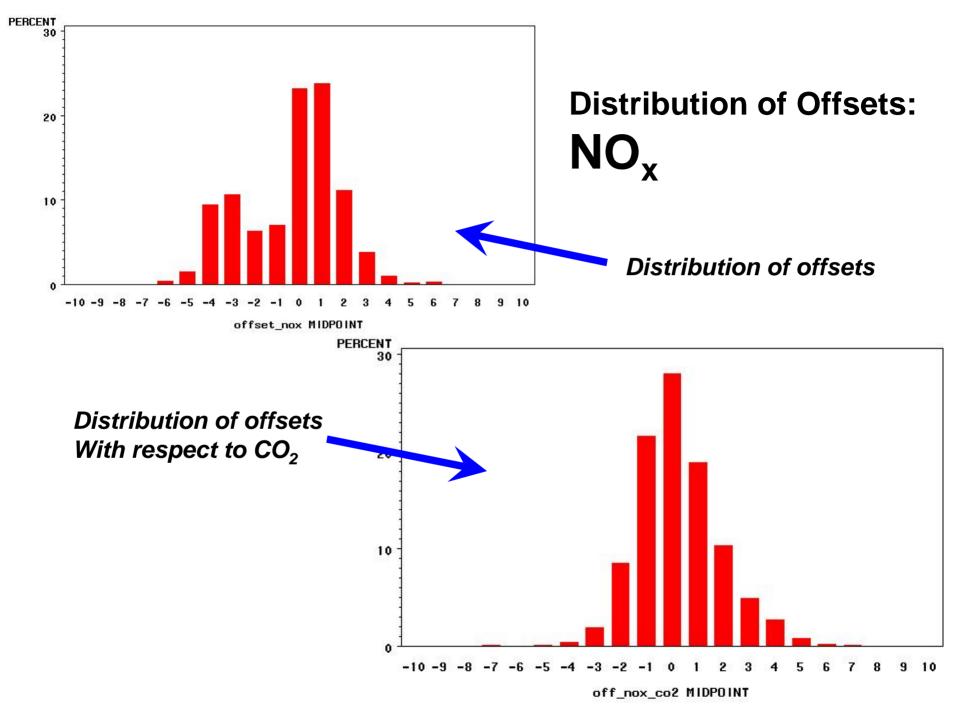

$$VSP_{wcma,t} = \frac{1}{4}VSP_{t-1} + \frac{1}{2}VSP_{t} + \frac{1}{4}VSP_{t+1}, VSP \neq 0$$

Offsetting the Time-Series


Offset Emissions against VSP over 6-sec window


						\wedge															
			1																		
-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6									
												1	2	3	4	5	6	7	8	9	10
Emissions time-series												2	3	4	5	6	7	8	9	10	
— "slides on VSP"										1	2	3	4	5	6	7	8	9	10		
									1	2	3	4	5	6	7	8	9	10			
								1	2	3	4	5	6	7	8	9	10				
	_		_				1	2	3	4	5	6	7	8	9	10					
VSP time-series					1	2	3	4	5	6	7	8	9	10							
					1	2	3	4	5	6	7	8	9	10							
				1	2	3	4	5	6	7	8	9	10								
			1	2	3	4	5	6	7	8	9	10									
		1	2	3	4	5	6	7	8	9	10		Get correlation coefficient — at each offset (R _{max}), —								
	1	2	3	4	5	6	7	8	9	10											
1	2	3	4	5	6	7	8	9	10				Select offset giving peak								
														in	CO	rrela	atio	n			


Correlation by Offset for NO_x



Distribution of Offsets: CO₂

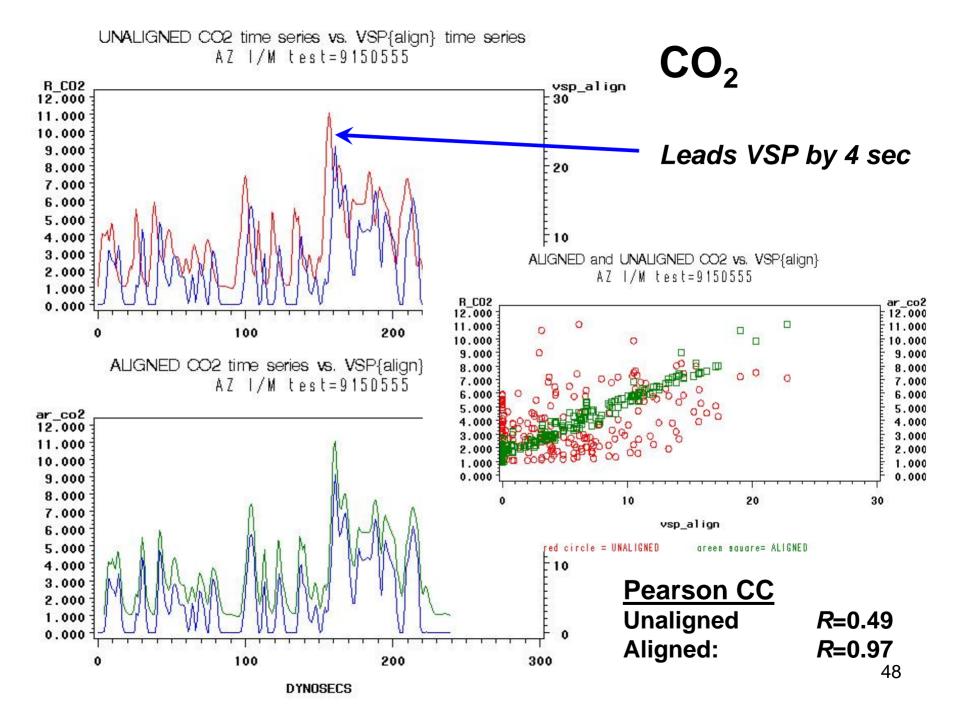
Alignment: Offsets and Options

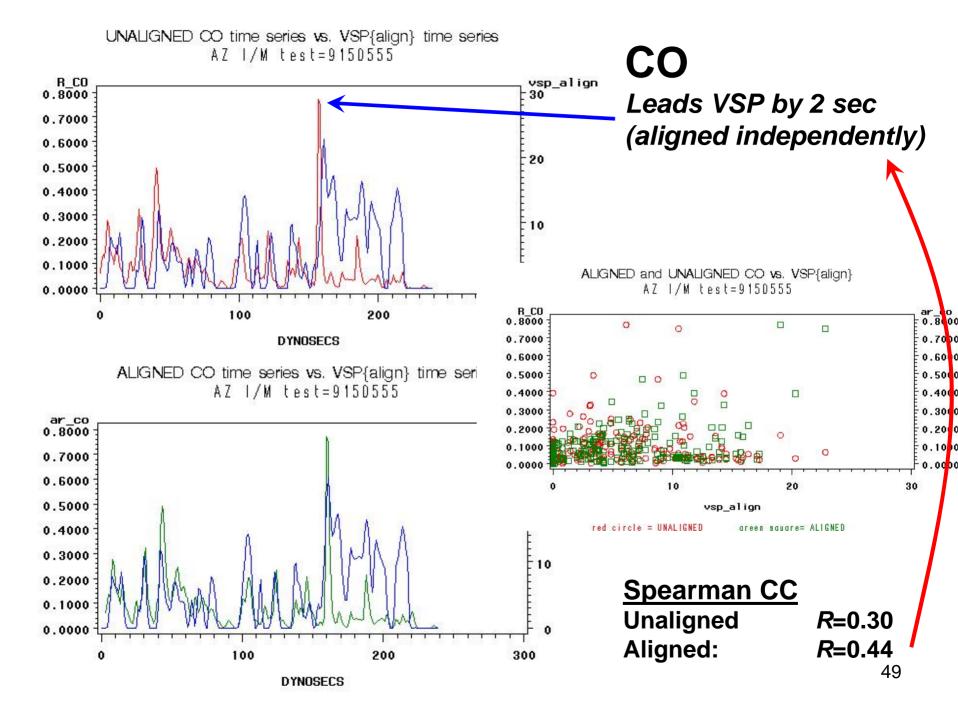
- Question: should pollutant emissions be aligned independently? Or aligned to CO₂?
- Rule of thumb: align independently,
 - If correlation at peak "high enough," AND
 - Offset not "too large"
- Options
 - CO and THC: $R_{max} >= 0.20$

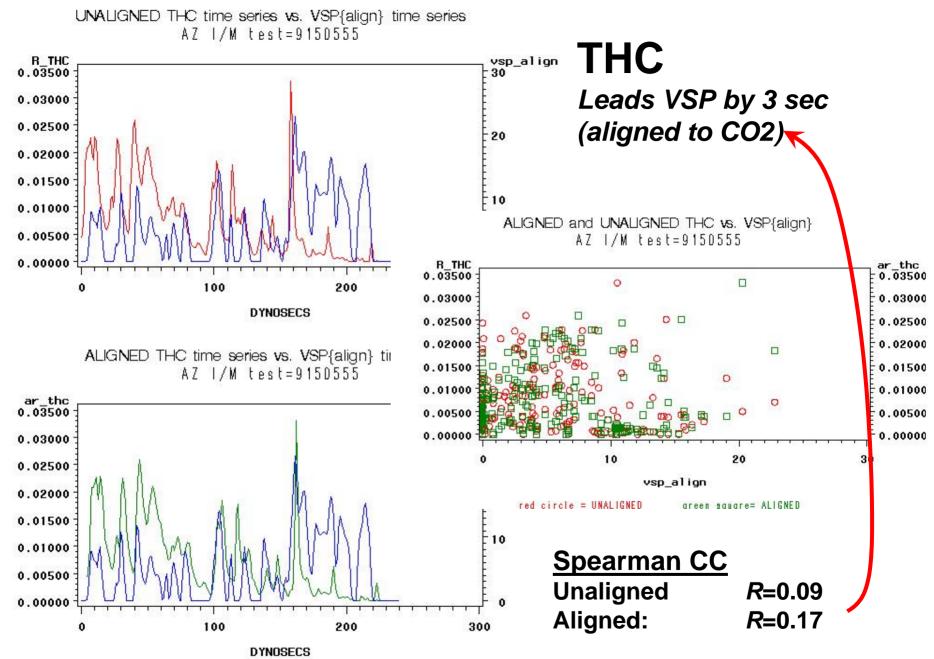
MOVES

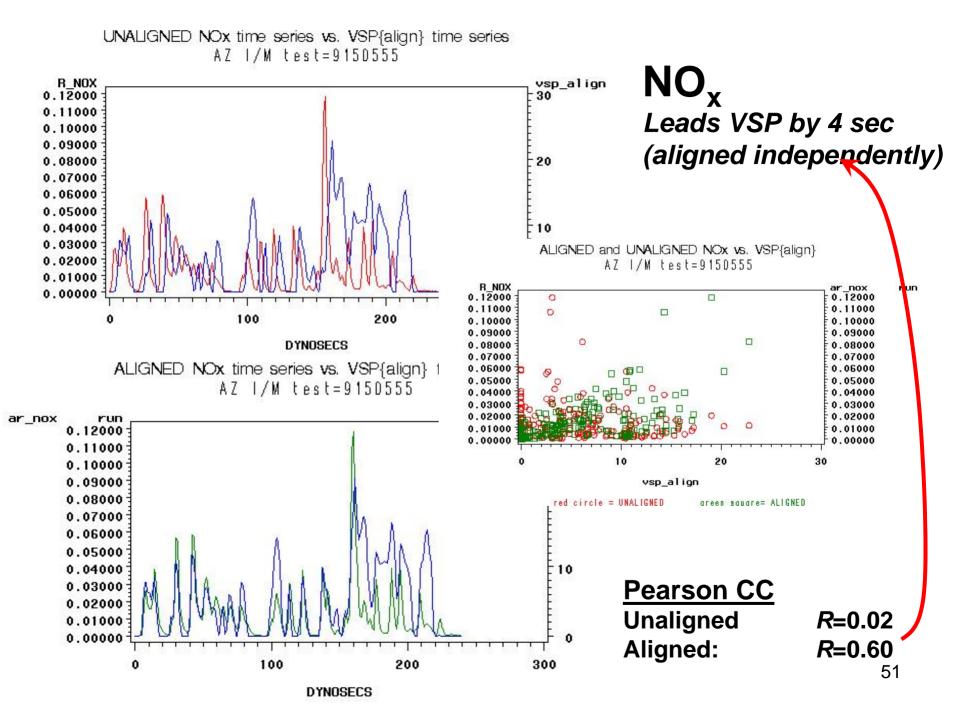
- CO2 and NOx: $R_{\text{max}} \ge 0.30$

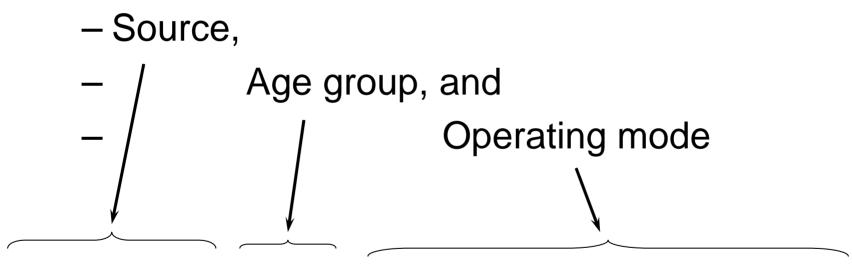
Alignment: An Example


Make: Oldsmobile Model: Delta 88 Model year: 1983


Test date:October, 1998Cycle:IM240


Options:


CO independentTHC dependent (align to CO2)NOx independent



Emissions by Source, Age, Mode

• MOVES uses a different rate for each combination of:

Gas-LDV-MY1998 / 8-9 years / "low-speed" coast Gas-LDT-MY2002 / 4-5 years / "cruise/accel" (speed 25-50 mph, VSP 12-15 kW/tonne)

MY by Age Coverage: LDT (dynamometer, NYIPA + MSOD "I/M") Model-Year Group by Age Group, LDT For area in green, we have data and (numbers of vehicles) Estimate rates by "binning" MYG **Age Group** 0 to 3 4 to 5 6 to 7 8 to 9 10 to 14 15 to 19 20 plus pre 1981 1981-82 1983-85 9 26 5 200 39 1986-89 1990-93 103 168 125 33 1994 6 61 24 75 1995 71 44 34 1996 91 22 1997 37 1998 53 8 For area in yellow, we have no data; 60 1999 estimate rates using a regression model 47 2000 2001 21

MY by Age Coverage: LDV (dynamometer, NYIPA + MSOD "I/M") Model-Year Group by Age Group, For area in blue, we have data and (numbers of vehicles) Estimate rates by "binning" MYG Age Group 0 to 3 4 to 5 6 to 7 8 to 9 10 to 14 15 to 19 20 plus pre 1981 1981-82 1983-85 1986-89 1990-93 For area in yellow, we have no data; estimate rates using a regression model

MOVES

Next Steps

• Current status: have generated draft set of rates

Based on NYIPA and MSOD

• Anticipated direction:

- Incorporate additional I/M datasets
 - AZ (Phoenix) and IL (Chicago)
- Incorporate RSD datasets
- Estimate set of I/M rates (as default)
 - Based on dynamometer data
 - Average available data within MOVES framework
 - Fill holes
- Estimate set of non-I/M rates (relative to I/M)
 - Based on some combination of dynamometer and RSD data

