MOVES Future Emission Rates

Edward Nam George Scora, John Koupal, Byron Bunker

FACA Modeling Workgroup Meeting August 8, 2006

EPA Office of Transportation & Air Quality

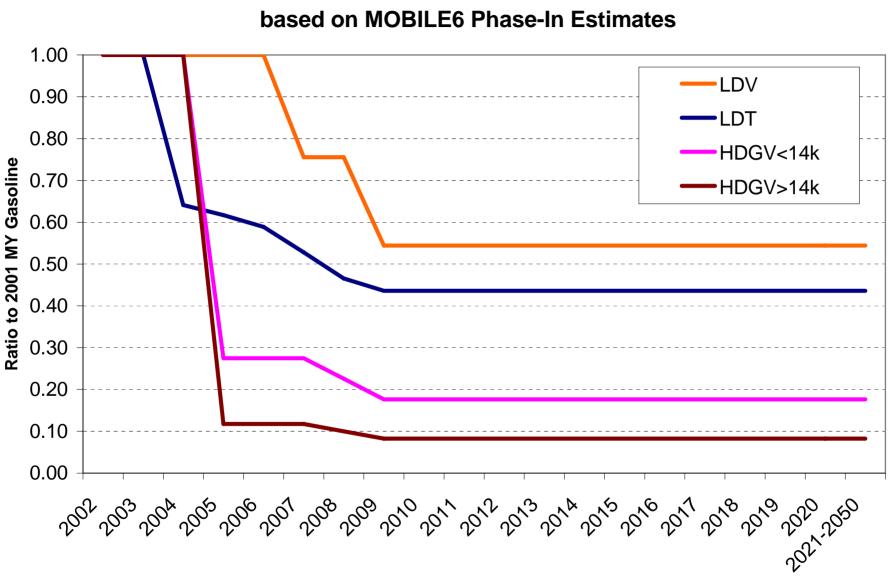
Projecting Future Emission Rates

• Light Duty & Heavy Duty Gas

- Tier 2 vehicles represent same basic technology as LEVs
- We propose to ratio current data by applicable standards
 - "Ratio approach"

Heavy Duty Diesel

- 2007/2010 standards will result in the introduction of aftertreatment technologies that do not exist in today's HD fleet
- We are evaluating whether and how current data can be used to project future rates
- The analysis presented here is one possible approach, based on developing new rates without consideration of current data
 - "Engineering approach"



Ratio Approach for Estimating Future Light-Duty and Heavy-Duty Gasoline Exhaust Emission Rates

Emission Standards

- Proposal is to ratio to standards using 2001 model year gasoline rates as base
 - First year of nationwide LEVs
 - Most complete recent model year
- Ratio would depend on pollutant, LDV or LDT, and model year, VSP bin
 - VSP bins only distinguished for "on-cycle" vs. "off-cycle"
 - Start emissions use "FTP" ratios
 - CO and PM would use HC ratios
- Treatment of high emitters requires further evaluation
 - E.g., for gas PM will smokers of tomorrow emit like smokers of today?



FTP Standard Ratios for HC

Model Year

FTP Standard Ratios for NOx based on MOBILE6 Phase-In Estimates

Model Year

Future "Off-Cycle" Rates

- Off cycle operating mode bins = 28-30, 38-40
- 2001 model year not fully SFTP compliant
- Analysis of MSOD data indicates early compliance with SFTP → 2001 a reasonable surrogate for SFTP compliant vehicles
- Tier 2 did not lower SFTP standards; different set of ratios used to reflect this

Future Alternative Fuel Rates

• Ratios to gasoline emissions by model year

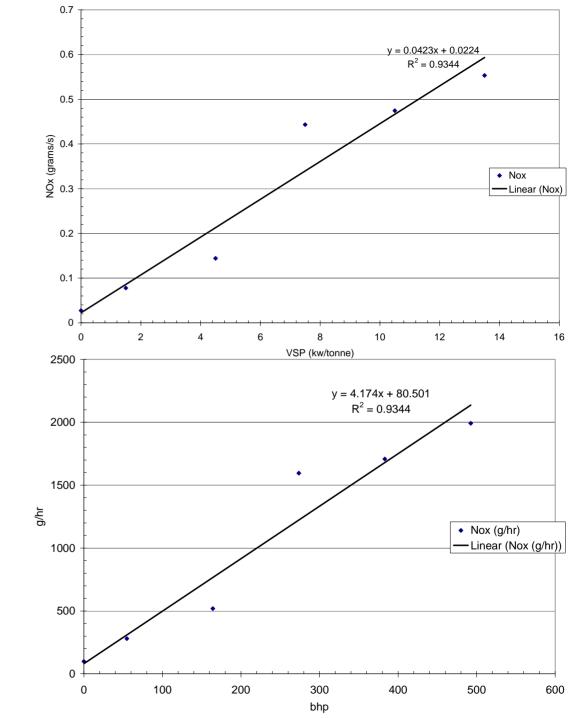
- depend on pollutant and fuel type

MOVES

- Fuel type is defined as unique engine technology; within fuel formulations (e.g. E10, BD20) handled as fuel adjustments
- CNG
 - GREET1.6 → ratios based on 1990's cert data
- LPG
 - HD only \rightarrow ratios based on early 2000's HD certification data
- E85
 - Ratios based on Tier 2 certification data
 - Separate for running and start
- Electric & Hydrogen
 - zero emissions (ptw)

Engineering Approach for Estimating Future Heavy Duty Diesel Emission Rates

Heavy Duty Emission Standards


• Based on work or g/bhp-hr

MOVES

- MOVES rates are based on specific power or kw/tonne
- By knowing vehicle weight, can compare like units
- bhp-hr to mile conversion factors are NOT required!

On-road emission rate example from CE-CERT (UC Riverside)

Emission Rate Calculation

 ER [g/hr] = ER_aa [g/bhp-hr] * VSP [kW/ton] * 1.34 * weight [lb] *1/2205* compRatio + idleOffSet [g/hr]

where

- ER_aa is the age adjusted emission standard in g/bhp-hr
- VSP is mean vehicle specific power for operating mode
- compRatio is compliance ratio and is assumed to be 1 at this point
 - Tampering and mal-maintenance were not included
- idleOffSet is the idle emission value set to zero for VSP > 0
 - Value estimated based on measured data samples

Deterioration

• Estimates for initial and final emission rates in g/bhp-hr over useful life

- Based on discussions with EPA personnel
- Assume compliance over useful life of vehicle
- Useful life is defined as 435,000 miles
- Used to determine deterioration rate

Rate of Emission Increase

 Rate of emission increase due to deterioration calculated based on emission rate estimates incRate = (final_rate – initial_rate)/ul_mileage [g/hp-hr-mile]

where ul_mileade is useful life mileade

Age Adjusted Emission Rate

emRate_aa = initial_rate + mileage * incRate

where

mileage is mileage for a particular age group

incRate is rate of emission increase due to deterioration

Vehicle Mileage Estimations

 Vehicle mileage estimated for HDD class and age group

MOVES

- Based on VIUS
- HDD classes include
- LHDD, MHDD, HHDD, and Urban Bus
- Age groups include current to 20+ years old vehicles

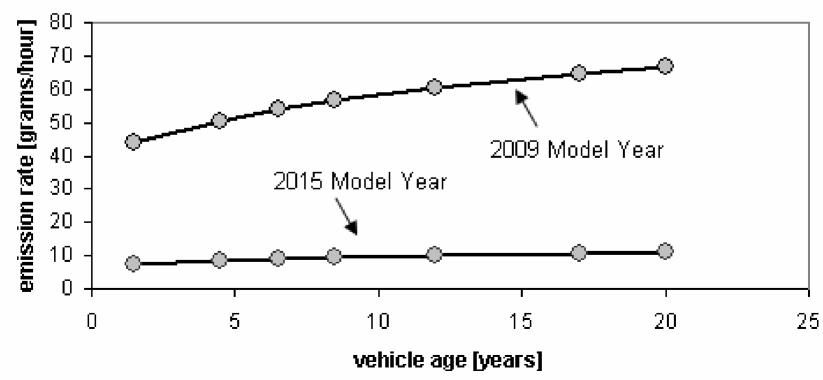
Age Group Id	Age, years
3	0-3
405	4-5
607	6-7
809	8-9
1014	10-14
1519	15-19
2099	20+

Mean Vehicle Weight (source VIUS)

- LHDD ~ 15000 lbs
- MHDD ~ 30000 lbs
- HDDD ~ 60000 lbs
- Buses ~ 30000 lbs

PM2.5 and EC/OC Relationships

- PM2.5 Fraction = 0.92
 - Literature review
- PM2.5 = PM10 x PM2.5 Fraction
- EC/OC Fractions vary by operating mode
 - From CRC E55
- Non-idle Modes
 - EC = 0.64
 - OC = 0.32
- Idle Modes
 - EC = 0.34
 - OC = 0.59



• Rates subject to change

Emission Rate Trends

Emission Rate vs. Vehicle Age for given operating mode and model year

Conclusions

- LD and HD future rates based on emission standards
- Currently assume relatively conservative compliance rates and mild deterioration rates
- Future considerations
 - Tampering and malmaintenance?
 - Retrofit model

