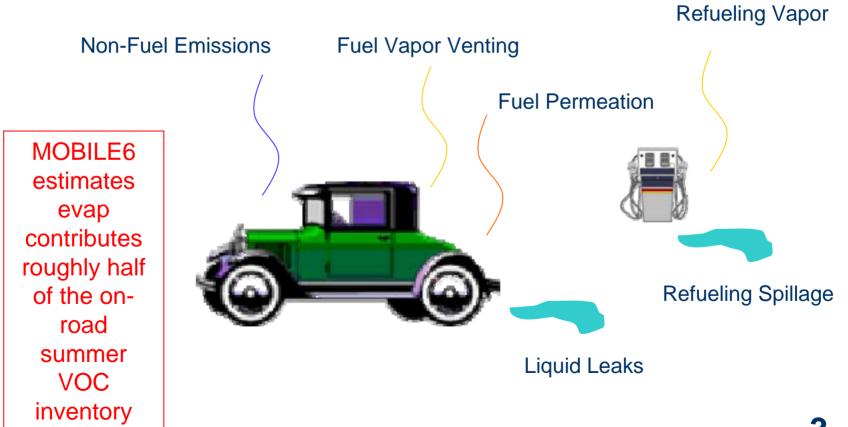
Approach for Modeling Evaporative Emissions in MOVES

John Koupal, Prashanth Gururaja U.S. EPA Office of Transportation and Air Quality

> FACA Modeling Workgroup Meeting August 8, 2006


Acknowledgments

- Mitch Cumberworth
- Megan Beardsley
- Dave Brzezinski
- Connie Hart
- Rick Rykowski
- Larry Landman
- Harold Haskew & Associates

Evaporative emissions a combination of many processes

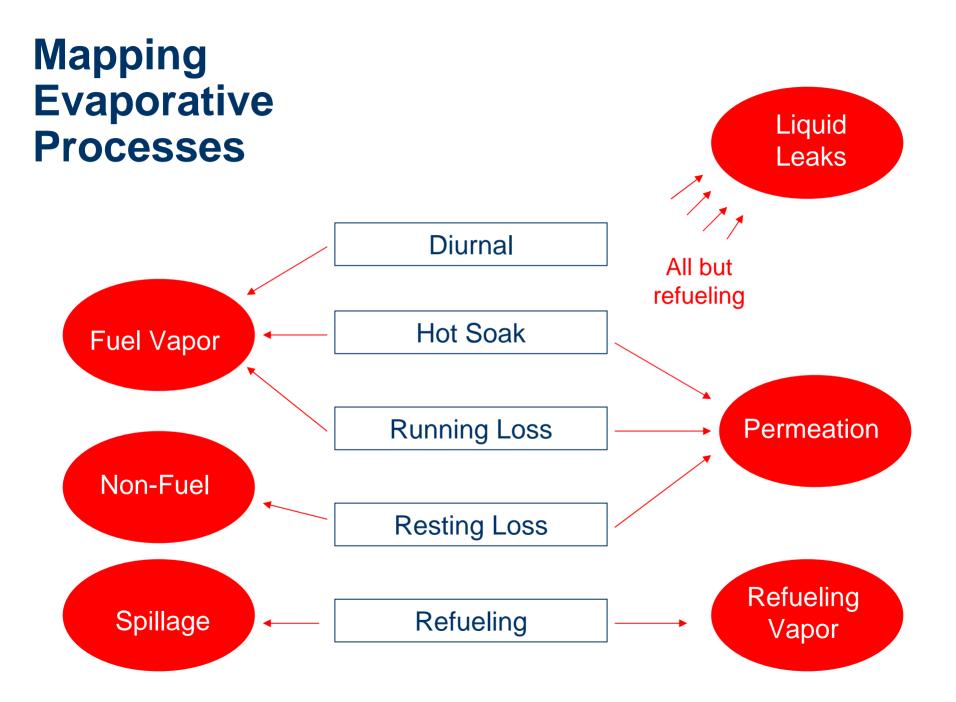
Objectives for MOVES evaporative component

- Use most recent data
- Better allocation of evaporative emissions by space and time
 - Evaporative emissions no longer coupled to VMT
- Dynamically consistent activity information
 - Trip starts, trip ends, soak times, trip times by hour
- Explicit treatment of EtOH permeation
 - Improve inventory
 - Energy Policy Act analysis

Scope of MOVES evaporative component

- Fleet average fuel tank temperature and emissions grouped by:
 - Hour of the day
 - Vehicle classes (LDV, LDT, HDV>14K, HDV>14K)
 - Model year
- Not attempting to model
 - Individual vehicles
 - Real-time emissions
 - Canister loading and purge cycles

Design Scoping


• Contracted HH&A to recommend new approach

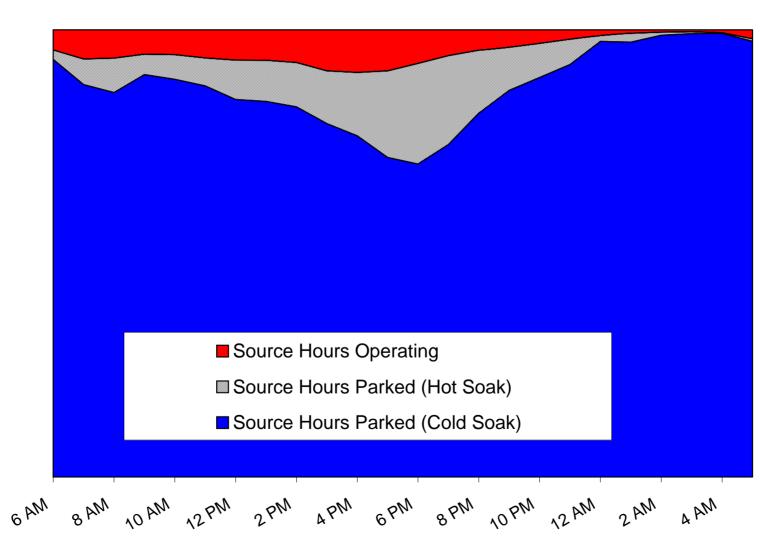
 "A New Approach to Modeling Vehicle On-Road Vehicle Evaporative Emissions", June 2005

• Key recommendations

- Redefine evaporative breakdowns to match physical processes
 - Increased focus on permeation
- Use time-based emission rates instead of mile-based
- Do more testing
 - New permeation test procedure
 - Better define the shape of the EtOH "curve"
 - Liquid leak rates
 - Non-fuel emissions (e.g. upholstery)

Activity Approach

• Time basis for activity


- Source hours parked (SHP)
 - Split into "cold soak", "hot soak" modes
- Source hours operating (SHO)
 - For "running" mode

• Allocated independently of VMT

- Distribution of hours parked (when, how long) calculated within MOVES via sample trip data
- Geographic allocation factor can account for commute and parking patterns

Breakdown of Evaporative Mode Based on Sample Trips Maricopa County, AZ Typical September Day Enhanced Evap Vehicles

Fuel Tank Temperature is Central

- Fuel temperature main driver for permeation and vapor venting emissions
- Depends on day-to-day vehicle operating pattern
- MOVES will estimate real-world fuel temperature based on sample trips
- Hourly averages by mode (cold soak, hot soak, operating) will be used to calculate emissions

Fuel Tank Temperature Algorithm

- Permeation and Fuel Vapor Venting calculations will use estimated fuel tank temperatures averaged by:
 - Hour of the day
 - Mode: Cold Soak, Hot Soak, Operating
 - Tank Temp Group: pre-enhanced LDV, pre-enhanced LDT, enhanced and later
- To produce these averages first requires estimating temperature over individual trip patterns
 - "Sample Vehicle Trip" input table contains summary information on individual vehicle trips from instrumented data (trip start time and end time)

Cold Soak Fuel Tank Temperature

In theory:

$$\frac{dT_{Tank}}{dt} = k(T_{air} - T_{Tank})$$

- Newton's law of cooling: Rate of tank temperature change is directly proportional to difference between ambient and tank temperatures
- Ambient temperature changes in a non-linear fashion
- Used computational programs (Matlab® and Simulink®) to validate and find k to match MSOD data
- Allows us to model any temperature cycle

MOVES

Cold Soak Fuel Tank Temperature

MOVES must integrate numerically, quickly...

Euler integration:
$$(T_{Tank})_{n+1} = T_{Tankn} + k(T_{air} - T_{Tank})_n \Delta t$$

- *Initial tank temp = ambient temp*

- *k*=1.4

-MOVES uses 15' time increments ($\Delta t = 15$ ') for this calculation, then averages by hour

Operating Fuel Tank Temperature

- Estimates temperature at beginning and end of each sample trip (or hour breakpoint if trip spans top of the hour)
 - ΔTemperature from Fuel Tank Temperature Profiles @ 95 deg
 - Pre-enhanced: CRC E-35; Enhanced: Certification FTTPs (thank you)
 - Pre-enhanced LDV = 35°, Pre-enhanced LDT = 29°; enhanced all = 24°
 - Need to scale Δ Temperature to actual key-on temperature

MOVES

$$\Delta T_{Tank} = 0.352(95 - T_{Tank, KeyON}) + \Delta T_{Tank95}$$
 SAE 930078

- The higher the starting temperature, the lower the temperature increase
- Calculate key-off temperature assuming linear increase in temperature during trip (includes scaling back Δ Temperature to 1 hour)

$$T_{Tank} = \frac{\Delta T_{Tank}}{4300 / 3600} (t - t_{keyON}) + T_{Tank, KeyON}$$

SAE 930078 Capped @ 140°

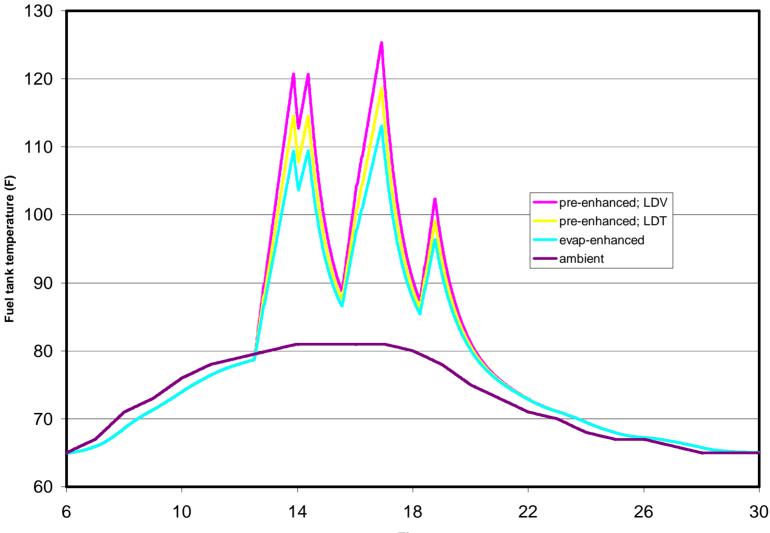
 Hourly average = average of key on & key off times weighted by sample trip length

Hot Soak Fuel Tank Temperature

Euler integration, same method as cold soak:

MOVES

$$(T_{Tank})_{n+1} = T_{Tankn} + k(T_{air} - T_{Tank})_n \Delta t$$


• *k*=1.4

- *Initial temp = key-off temp from previous trip*
- MOVES uses 1' time increments for this calculation, then averages across each hour
- •1' used since temperature drops rapidly during hot soak

Estimated Fuel Tank Temperature Profile For a Single Vehicle

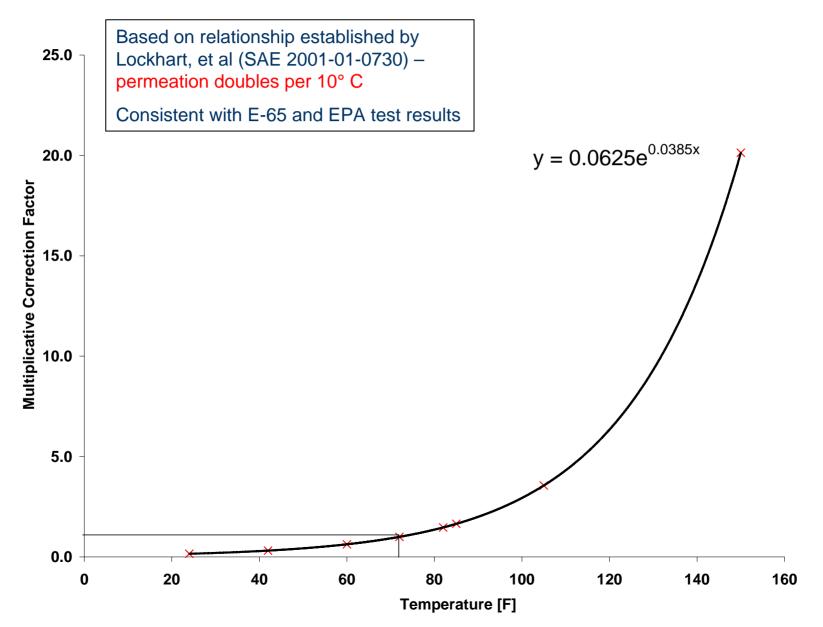
Washtenaw County Typical July Day

Time

Estimated Average Fuel Tank Temperature Based on Sample Trips Maricopa County, AZ Typical September Day Enhanced Evap Vehicles

Evaporative Emission Sources

- Historical EPA Testing (MSOD)
- Recent CRC Programs
 - E-9, E-35, E-41, E-65
- EPA Compliance Data (enhanced evap)
- E-77 underway
 - Pilot program to focus on aging enhanced vehicles
 - Includes permeation testing, "off-cycle" diurnal
- EtOH effects
 - E-65 & 65.3, EPA sponsored gas can program



Permeation

- Base rates @ fuel temp = 72°
- Stratified by model year group and age group
- Adjustments: fuel temp, EtOH
- Only difference in emissions over cold soak, hot soak and operating is fuel tank temperature

Permeation Tank Temperature Adjustment

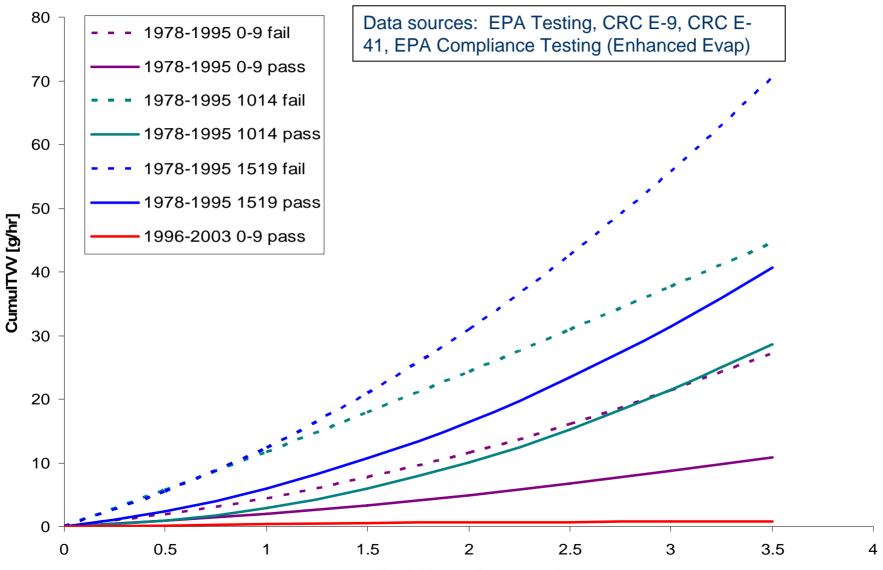
Future Assumptions - Permeation

- No deterioration of permeation emissions on enhanced evaporative and later vehicles
- No reduction in permeation emissions with Tier 2 / LEV II standards (reduction attributed to fuel vapor venting)
 - AAM has commented that permeation emissions should be reduced with standard
- Will re-evaluate as new data becomes available, e.g. E-77

Fuel Vapor Venting

Hot Soak & Running

- Average available gram/hour emission test results
- Hot Soak Emissions_{hour} = SHP * hot soak rates
- Running Emissions_{hour} = SHO * running rates


• Cold Soak (diurnal)

- Tank Vapor Generated \approx f (Δ temp, RVP, EtOH)
 - Reddy, SAE Paper 892089 (A e^{B(RVP)} (e^{CT2} e^{CT1}))
 - A,B,C depend on altitude and EtOH volume
- Cumulative HC emissions ≈ f (TVG)
- Cold Soak Emissions_{hour} =

SHP * $\sum_{\text{Neutrinitial hour}}^{\text{Initial hour}}$ (cumHC_{hour} – cumHC_{initial hour}) * fraction of soaks starting in initial hour

Cumulative TVV vs. Tank Vapor Generated

Tank Vapor Generated

Fuel Vapor Venting, cont.

- Limited data requires weighting pressure test pass/fail strata outside MOVES to approximate representative rates
- Develop weightings based on pressure test failure, gas cap failure & non-gross liquid leak rates for pre-OBD vehicles
 - Sources: BAR roadside studies, CRC E-9/35/41, API/CRC liquid leak survey
- Develop weightings from OBD Evaporative MIL rates for OBD vehicles
 - Look at "new" OBD IM programs where there is less chance of learning curve

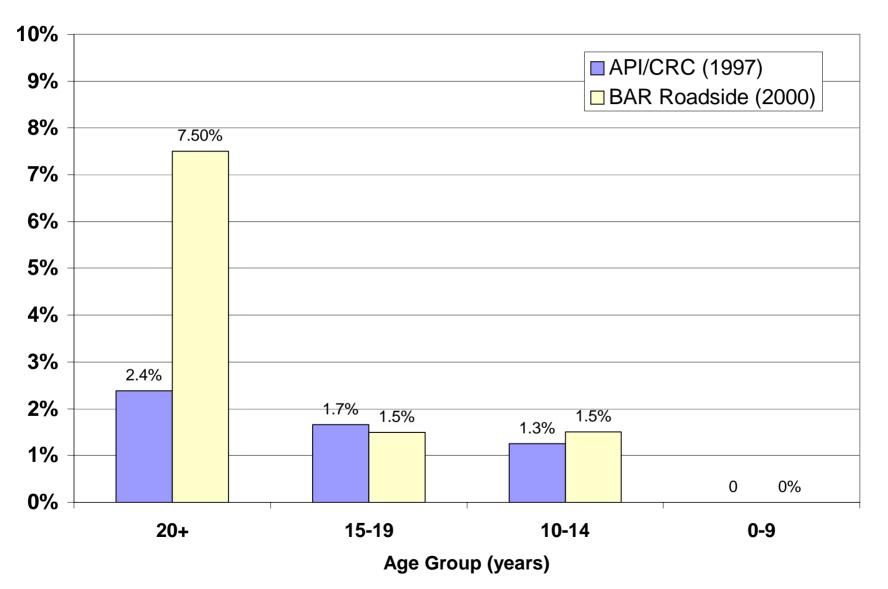
Future Assumptions – Fuel Vapor Venting

• Passing vehicles

- No deterioration of fuel vapor emissions on "passing" enhanced evap and later vehicles
- Reduction in fuel vapor emissions from LEV II standards based on ratio to standards

• Failing vehicles

- Emissions on failing vehicles same as pre-enhanced
- Failure rates based on "new" IM OBD program leak code rates (P0442, P0455, P0456, P0457)
- For ages for which OBD data doesn't exist yet, assuming residual failures due to gas caps and non-gross liquid leaks



Liquid Leaks

- Gross leaks i.e. dripping fuel
 - Less severe leaks accounted for in FVV rates
- Small frequency but very high emissions; could drive evap inventory even if < 1% of fleet
- Only data on emissions from 70-80's vehicles
 - but a drop of fuel is a drop of fuel...?
- Available data on frequency differs significantly
 - Would be great to have an update of 1997 API/CRC study
 - Lower frequency of leaks on old fuel injected vehicles? Or will people inadvertently drill holes in fuel tanks at the same rate?
- Assuming for the future that gross leak emissions and frequency rates are not affected by evap standards or OBD

Gross Leak Frequency

Refueling

- Split into spillage and vapor
- g/gallon emission rates * fuel consumption
 - allows refueling emissions to reflect changes in fuel consumption as estimated by MOVES
- Varies by model year (ORVR), location (Stage II)

Non-Fuel Emissions

Combination of several things

- Fluids (e.g. wiper)
- Tires
- A/C refrigerant
- Upholstery and adhesives
- Will be encompassed in MOVES2006 permeation and fuel vapor emissions
- Will consider breaking out for MOVES2007

Possible Inventory Trends vs. MOBILE6

- Current data on enhanced evaporative vehicles shows very low permeation and fuel vapor venting emissions; data on aging enhanced evap vehicles is needed
- EtOH permeation effects relative large; not included in MOBILE6
- ⇔ Liquid leaks large in MOBILE6, may continue to drive inventory for MOVES

